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Figure 3: The νµ → νe oscillation probability is plotted in the upper part of the figure for

DUNE parameters; a 1300 km baseline and Yeρ = 1.4 g·cm−3. The fractional uncertainties

at zeroth and first order are plotted using the analytic formulas in tables 1 and 2 respec-

tively. The probability to second order is calculated by using λ’s and W through second

order, see eqs. 3.1.3 and 3.2.6

.

the mixing matrix, W2, have been used to calculate the oscillation probabilities to second

order. The resulting oscillation probabilities are more than two orders of magnitude closer

to the exact values than the first order probabilities.

4.4 Precision of the perturbation expansion

The oscillation probabilities that were perturbatively calculated in this section are only

useful if they are more precise than the experimental uncertainties. In figure 3, we have

plotted the fractional uncertainties8 at each order of our perturbative expansion for the

νµ → νe channel at the DUNE [16], baseline of 1300 km. The precision at the first

oscillation maximum and minimum for DUNE are shown in table 3. We note that the

precision improves at lower energies, such as for NOνA [17] and T2K/T2HK [18, 19].

The results are comparable for different values of δ, for the inverted ordering, for other

channels, and for antineutrino mode. Therefore, even at zeroth order, the precision exceeds

the precision of the expected experimental results.

8The exact oscillation probability were calculated using [3, 4].
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10/31/2015! Steve Brice - Status of Fermilab and Future Plans!8!

DUNE!

Fermilab’s proposed flagship experiment will be the “first truly 
international mega-science project on U.S. soil,” according to 
Pat Dehmer, deputy director of the DOE Office of Science. It 
will be the game-changing experiment for neutrino research. !

Sunny	Seo,	SNU	 TAUP	@	Sudbury	2017.07.26	 6	
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“the billion $ process”
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Neutrino oscillations in vacuum: disappearance
For example, it is easy to calculate the exact disappearance
expression in vacuum:
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µe

|2

⌫µ ! ⌫⌧

)

Implies ✓23 = ⇡/4

AND sin � = ±1 !

– Typeset by FoilTEX – 1



In Vacuum:

5
Stephen Parke, Fermilab                                                           DPF 2017                                                            7/31/2017

P (⌫� ! ⌫↵) =

�����

3X

i=1

U↵iU
⇤
�i e

�i
m2

i L
2E

�����

2

= �↵� � 4
X

j>i

Re[U↵iU
⇤
�iU

⇤
↵jU�j] sin

2 �m2
ijL

4E

+ 8 Im[V↵1V
⇤
�1V

⇤
↵2V�2] sin

�m2
32L

4E
sin

�m2
21L

4E
sin

�m2
13L

4E
.

�m2
ij ⌘ m2

i � m2
j

P (⌫� ! ⌫↵) =

�����

3X

i=1

V↵iV
⇤
�i e

�i
�iL
2E

�����

2

= �↵� � 4
X

j>i

Re[V↵iV
⇤
�iV

⇤
↵jV�j] sin

2 (�j � �i)L

4E

+ 8 Im[V↵1V
⇤
�1V

⇤
↵2V�2] sin

(�3 � �2)L

4E
sin

(�2 � �1)L

4E
sin

(�1 � �3)L

4E
. (1)

– Typeset by FoilTEX – 1

P (⌫
�

! ⌫

↵

) =

�����

3X

i=1

U

↵i

U

⇤
�i

e

�i

m

2
i

L

2E

�����

2

= �

↵�

� 4
3X

j>i

Re[U
↵i

U

⇤
�i

U

⇤
↵j

U

�j

] sin2 �m

2
ij

L

4E

+ 8 Im[U
↵1U

⇤
�1U

⇤
↵2U�2] sin

�m

2
32L

4E
sin

�m

2
21L

4E
sin

�m

2
13L

4E

if ⇢Y
e

= 1.5 g/cm3 and E = 10 GeV then a ⇡ �m2
31

CPV

Jarlskog:

– Typeset by FoilT
E

X – 1

P (⌫� ! ⌫↵) =

�����

3X

i=1

U↵iU
⇤
�i e

�i
m2

i L
2E

�����

2

= �↵� � 4
3X

j>i

Re[U↵iU
⇤
�iU

⇤
↵jU�j] sin

2 �m2
ijL

4E

+ 8 Im[U↵1U
⇤
�1U

⇤
↵2U�2] sin

�m2
32L

4E
sin

�m2
21L

4E
sin

�m2
13L

4E

4 sin

�m2
32L

4E sin

�m2
21L

4E sin

�m2
13L

4E = sin

�m2
32L

2E + sin

�m2
21L

2E + sin

�m2
13L

2E

if ⇢Ye = 1.5 g/cm3 and E = 10 GeV then a ⇡ �m2
31

CPV

– Typeset by FoilT
E

X – 1

3 flavor 

P (⌫� ! ⌫↵) =

�����

3X

i=1

U↵iU
⇤
�i e

�i
m2

i L
2E

�����

2

= �↵� � 4
3X

j>i

Re[U↵iU
⇤
�iU

⇤
↵jU�j] sin

2 �m2
ijL

4E

+ 8 Im[U↵1U
⇤
�1U

⇤
↵2U�2] sin

�m2
32L

4E
sin

�m2
21L

4E
sin

�m2
13L

4E

4 sin

�m2
32L

4E sin

�m2
21L

4E sin

�m2
13L

4E = sin

�m2
32L

2E + sin

�m2
21L

2E + sin

�m2
13L

2E

CPV: ⇠ (L/E)

3 not ⇠ (L/E)

1

if ⇢Ye = 1.5 g/cm3 and E = 10 GeV then a ⇡ �m2
31

– Typeset by FoilT
E

X – 1

P (⌫� ! ⌫↵) =

�����

3X

i=1

V↵iV
⇤
�i e

�i
�iL
2E

�����

2

= �↵� � 4

3X

j>i

Re[V↵iV
⇤
�iV

⇤
↵jV�j] sin

2

(�j � �i)L

4E

+ 8 Im[V↵1V
⇤
�1V

⇤
↵2V�2] sin

(�
3

� �
2

)L

4E
sin

(�
2

� �
1

)L

4E
sin

(�
1

� �
3

)L

4E

Wronskian is non-vanishing as function of L/E

– Typeset by FoilT
E

X – 3



Stephen Parke, Fermilab                                       NuFact 2017 / Uppsala, Sweden                                                   9/28/2017 6

oscillation probabilities have less than half the number of L/E structures, but the form of

the L/E dependence is made manifest and identical to the vacuum form.

We note that when our formulas are expanded by �m2
21/�m2

31, they agree, of course,

with the existing ones calculated previously. Therefore, our formalism may be regarded

as a systematic way of organizing the equivalent expressions to order �m2
21/�m2

31 into

neater, structure-revealing ones. The benefit for having such simple expressions is that the

physical interpretation of the formulas is transparent, as emphasized in section 2.

4 Formulating the renormalized helio-perturbation theory

In this section, we formulate the helio-to-terrestrial ratio perturbation theory, for short the

helio-perturbation theory, which has the unique expansion parameter

✏ ⌘ �m2
21

�m2
ee
. (4.1)

We will show that use of its renormalized version is the key to the very simple formulas

of the oscillation probabilities exhibited in section 3.3 and appendix B. In fact, there are

two ways of deriving the oscillation probabilities, the S matrix method and the wave

function method. Here we sketch both of them, leaving technical or computational parts

into Appendices A and B. The meaning of the agreement between results obtained by both

the S matrix and the wave function methods will be discussed at the end of this section.

The S matrix describes neutrino flavor changes ⌫� ! ⌫↵ after traversing a distance L,

⌫↵(L) = S↵�⌫�(0), (4.2)

and the oscillation probability is given by

P (⌫� ! ⌫↵;L) = |S↵� |2. (4.3)

When the neutrino evolution is governed by the Schrödinger equation, i d
dx⌫ = H⌫, S

matrix is given as

S = T exp


�i

Z L

0
dxH(x)

�
(4.4)

where T symbol indicates the “time ordering” (in fact “space ordering” here). In the

standard three-flavor neutrinos, Hamiltonian is given by

H =
1

2E

8
><

>:
U

2

64
0 0 0

0 �m2
21 0

0 0 �m2
31

3

75U † +

2

64
a(x) 0 0

0 0 0

0 0 0

3

75

9
>=

>;
, (4.5)

where the symbols are defined in an earlier footnote. For the case of constant matter

density, the right-hand side of (4.4) may be written as e�iHx. We recapitulate here the

earlier footnote: In (4.5) �m2
ji ⌘ m2

j � m2
i where mi denotes the mass of i-th mass

eigenstate neutrinos. Position dependent function a(x) ⌘ 2
p
2GFNe(x)E is a coe�cient
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In eq. (3.1), the renomalized �m2 ⌘ �m2
ee, the expansion parameter ✏, and the Wolfenstein

matter potential [1], a, are defined as follows:6

�m2
ee ⌘ �m2

31 � s212�m2
21, (3.2)

✏ ⌘ �m2
21

�m2
ee
, (3.3)

and a = 2
p
2GFNeE ⇡ 1.52⇥ 10�4

✓
Ye⇢

g.cm�3

◆✓
E

GeV

◆
eV2. (3.4)

This choice of �m2
ee is crucial to the compact formulas for the oscillation probabilities that

will be given in this paper. Note also that the sign of �m2
ee signals the mass ordering, both

�m2
ee and ✏ are positive (negative) for NO (IO). However, for both orderings ✏�m2

ee =

�m2
21 > 0, as required by nature. Notice that �0 is the same for the both mass orderings,

and when we switch from NO to IO we also switch the sign in front of the square root

in eq. (3.1). The nicest feature of the sign choice is that the oscillation probability has

a unified expression and the solar resonance is in ⌫�-⌫0 level crossing for the both mass

orderings.

�m2
ee is equal to the e↵ective atmospheric �m2 measured in a electron (anti-) neutrino

disappearance experiment in vacuum, �m2
ee ⌘ c212�m2

31 + s212�m2
32 [12]. This quantity

is identical to �m2
ee recently measured by the reactor ✓13 experiment [13] up to e↵ects of

O(�m2
21/�m2

31)
2. Whether the coincidence between�m2

ee and�m2
ee reflects a deep aspect

of neutrino oscillation or not will be judged depending upon what happens at second order

in ✏. This point as well as the relevance of the other e↵ective �m2
µµ [12], ⌫µ equivalent of

�m2
ee, will be discussed in depth in a forthcoming communication.

3.2 The mixing angle ✓13 and mixing matrix in matter

We use the angle � to represent the mixing angle ✓13 in matter. With the definitions of

the eigenvalues (3.1), the following mass-ordering independent expressions for cosine and

sine 2� (see section 4.2) are given by

cos 2� =
�m2

ee cos 2✓13 � a

�+ � ��
,

sin 2� =
�m2

ee sin 2✓13
�+ � ��

. (3.5)

It is easy to show that � goes from 0 ! ⇡/2 as a goes from � 1 to + 1 for the NO

and as a goes from + 1 to � 1 for the IO. In vacuum (a = 0), � = ✓13 and � = ⇡/4 at

the atmospheric resonance, when a = �m2
ee cos 2✓13, for both mass orderings.

6 The following notation is used throughout: �m

2
ij

⌘ m

2
i

� m

2
j

, s
ij

= sin ✓
ij

and c

ij

= cos ✓
ij

where

✓

ij

are the standard neutrino mixing angles and G

F

is the Fermi constant, N
e

is the number density of

electrons, E is the energy of the neutrino, Y
e

the electron fraction and ⇢ is the density of matter.
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What is less well appreciated is that the expressions of the oscillation probabilities in

(2.1) are maximally simple and compact. That is, they contain 5 (including the constant

term) functions of L/E which are linearly independent. This property can be easily verified

by showing the Wronskian is nonvanishing, which implies that none of the functions can be

written in terms of the other functions for all L/E. Hence, in a true mathematical sense,

eq. (2.1) and it’s equivalents give the simplest and most compact form for the complete set

of three flavor oscillation probabilities in vacuum and in uniform matter.2

A special feature of the oscillation probabilities which is also worth noting is that

each term in eq. (2.1) factorizes into the characteristic sin [(�j � �i)L/4E] factor and the

products of the V matrix elements which control the amplitude of the oscillation. Both the

eigenvalues, �i and the matrix elements of V are independent of the baseline, L, but are

functions of the mixing angles, ✓’s, the �m2
ji, and the product of the energy of neutrino

times the matter density via the matter potential.3 CP and T violation is described by the

last term in (2.1), which has the universal, channel-independent form in the three neutrino

mixing.

2.2 Raison d’ être and the requirements for perturbative treatment

With the simplest form of the oscillation probability eq. (2.1) and by knowing both the

exact form of the eigenvalues, �i/2E, and the elements of the V matrix, see [3], one might

expect we have all that is needed for theoretical discussions. Unfortunately, the analytic

expressions for these eigenvalues, �i/2E, as well as the V matrix elements are notoriously

complex and give no analytic insight into the oscillation physics in uniform matter. This

is true even when one of �m2
21, sin ✓13, sin ✓12 or a is set equal to zero. In any one of

these limits, the characteristic equation for the eigenvalues factorizes. But, the form of the

general solution does not simplify trivially to yield the correct eigenvalues, even though

it must. The structure of the general solutions of the cubic characteristic equation is the

root cause of this rather unusual behaviour. Hence, there is a need for a reformulated

perturbative framework so that we can obtain approximate but much simpler expressions

for the eigenvalues, �i, and the mixing matrix elements, V↵i, which provide the necessary

physics insight.

In this paper, we formulate perturbation theory by which we can calculate the eigen-

values �i and the elements of V matrix as a simple power series of the small expansion

parameter, a renormalized �m2
�/�m2

�. At the same time the structure-revealing form

of the oscillation probabilities (2.1) is kept intact. While the existing frameworks do not

satisfy the latter requirement, the key to the success in our case is due to the correct

decomposition of the Hamiltonian into the unperturbed and the perturbed terms. Use of

2 There are equivalent ways to write this set of oscillation probabilities with 5 independent L/E functions,

e.g one could use the trigonometric identity 2 sin2
x = 1 � cos 2x to replace the sin2

x. Any other way of

writing these oscillation probabilities will have 5 or more linearly independent functions, e.g., using the

identity (C.2) increases the number of independent functions by 2.
3
a / ⇢E with ⇢ being the matter density. The V matrix elements are determined solely by the elements

of the Hamiltonian matrix. It is easy to observe this feature by using the method developed in ref. [4],

which is valid for nonuniform matter density as well.
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New Perturbation Theory for Osc. Probabilities
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Figure 3: The νµ → νe oscillation probability is plotted in the upper part of the figure for

DUNE parameters; a 1300 km baseline and Yeρ = 1.4 g·cm−3. The fractional uncertainties

at zeroth and first order are plotted using the analytic formulas in tables 1 and 2 respec-

tively. The probability to second order is calculated by using λ’s and W through second

order, see eqs. 3.1.3 and 3.2.6

.

the mixing matrix, W2, have been used to calculate the oscillation probabilities to second

order. The resulting oscillation probabilities are more than two orders of magnitude closer

to the exact values than the first order probabilities.

4.4 Precision of the perturbation expansion

The oscillation probabilities that were perturbatively calculated in this section are only

useful if they are more precise than the experimental uncertainties. In figure 3, we have

plotted the fractional uncertainties8 at each order of our perturbative expansion for the

νµ → νe channel at the DUNE [16], baseline of 1300 km. The precision at the first

oscillation maximum and minimum for DUNE are shown in table 3. We note that the

precision improves at lower energies, such as for NOνA [17] and T2K/T2HK [18, 19].

The results are comparable for different values of δ, for the inverted ordering, for other

channels, and for antineutrino mode. Therefore, even at zeroth order, the precision exceeds

the precision of the expected experimental results.

8The exact oscillation probability were calculated using [3, 4].
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and the Hamiltonian is given by

H̃ = U †
23(θ23, δ) H U23(θ23, δ)

=
1

2E

[

U13(θ13)U12(θ12) diag(0,∆m2
21,∆m2

31)U
†
12(θ12)U

†
13(θ13)

+ diag(a, 0, 0)
]

.

(2.2.2)

As was shown in [10], the Hamiltonian, H̃, is most simple written in terms of a renormalized

atmospheric ∆m2,

∆m2
ee ≡ ∆m2

31 − s212∆m2
21 , (2.2.3)

as defined in [11, 12], and the ratio of the ∆m2’s

ϵ ≡ ∆m2
21/∆m2

ee . (2.2.4)

In terms of the |a| → ∞ eigenvalues

λa = a+ (s213 + ϵs212)∆m2
ee ,

λb = ϵc212∆m2
ee ,

λc = (c213 + ϵs212)∆m2
ee ,

(2.2.5)

the exact Hamiltonian is simple given by3

H̃ =
1

2E

⎛

⎜

⎝

λa s13c13∆m2
ee

λb
s13c13∆m2

ee λc

⎞

⎟

⎠
+ ϵs12c12

∆m2
ee

2E

⎛

⎜

⎝

c13
c13 −s13

−s13

⎞

⎟

⎠
. (2.2.6)

Note that H̃ is real and does not depend on θ23 or δ.

2.3 U13(φ) rotation

Since s13 ∼ O(
√
ϵ), it is natural to diagonalize the (1-3) sector next, using U13(φ), again

see [10]. After this rotation the neutrino basis is

|ν̂⟩ = U †
13(φ)|ν̃⟩ = U †

13(φ)U
†
23(θ23, δ)|ν⟩ , (2.3.1)

and the Hamiltonian is given by

Ĥ = U †
13(φ) H̃ U13(φ)

=
1

2E

⎛

⎜

⎝

λ−
λ0

λ+

⎞

⎟

⎠
+ ϵc12s12

∆m2
ee

2E

⎛

⎜

⎝

c(φ−θ13)
c(φ−θ13) s(φ−θ13)

s(φ−θ13)

⎞

⎟

⎠
.

(2.3.2)

where

λ∓ =
1

2

[

(λa + λc)∓ sign(∆m2
ee)
√

(λc − λa)2 + 4(s13c13∆m2
ee)

2
]

,

λ0 = λb = ϵc212∆m2
ee ,

(2.3.3)

3One can use H̃ to do a perturbative expansion, such that it is simple to recover the νµ → νe appearance

probability of Cervera et al., [6] at first order.
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Figure 1: The upper figure shows the angles, φ and ψ, as a function of the matter potential

for both NO and IO. φ and ψ are the mixing angles θ13 and θ12 in matter respectively. For

ψ, the curves for the two mass ordering are nearly identical. The two lower figures show the

eigenvalues to zeroth order, λ1,2,3, in matter as a function of the matter potential for NO

and for IO. For all our figures, YeρE ≥ 0 is for neutrinos and YeρE ≤ 0 for antineutrinos.

• The size of the perturbing Hamiltonian, Ȟ1, is controlled by the parameter

ϵ′ ≡ ϵ s(φ−θ13) s12c12

= s(φ−θ13)s12c12
∆m2

21

∆m2
ee

,
(2.5.4)

which is never larger than 1.4%.

• In vacuum,

s(φ−θ13) = 0 , (2.5.5)

so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where

a → −∞ for NO or a → +∞ for IO s(φ−θ13) → −s13 which is of O(
√
ϵ). Whereas for

a → +∞ for NO or a → −∞ for IO s(φ−θ13) → c13 ∼ 1, see figure 2.
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and the Hamiltonian is given by

H̃ = U †
23(θ23, δ) H U23(θ23, δ)

=
1

2E

[

U13(θ13)U12(θ12) diag(0,∆m2
21,∆m2

31)U
†
12(θ12)U

†
13(θ13)

+ diag(a, 0, 0)
]

.

(2.2.2)

As was shown in [10], the Hamiltonian, H̃, is most simple written in terms of a renormalized

atmospheric ∆m2,

∆m2
ee ≡ ∆m2

31 − s212∆m2
21 , (2.2.3)

as defined in [11, 12], and the ratio of the ∆m2’s

ϵ ≡ ∆m2
21/∆m2

ee . (2.2.4)

In terms of the |a| → ∞ eigenvalues

λa = a+ (s213 + ϵs212)∆m2
ee ,

λb = ϵc212∆m2
ee ,

λc = (c213 + ϵs212)∆m2
ee ,

(2.2.5)

the exact Hamiltonian is simple given by3

H̃ =
1

2E

⎛

⎜

⎝

λa s13c13∆m2
ee

λb
s13c13∆m2

ee λc

⎞

⎟

⎠
+ ϵs12c12

∆m2
ee

2E

⎛

⎜

⎝

c13
c13 −s13

−s13

⎞

⎟

⎠
. (2.2.6)

Note that H̃ is real and does not depend on θ23 or δ.

2.3 U13(φ) rotation

Since s13 ∼ O(
√
ϵ), it is natural to diagonalize the (1-3) sector next, using U13(φ), again

see [10]. After this rotation the neutrino basis is

|ν̂⟩ = U †
13(φ)|ν̃⟩ = U †

13(φ)U
†
23(θ23, δ)|ν⟩ , (2.3.1)

and the Hamiltonian is given by

Ĥ = U †
13(φ) H̃ U13(φ)

=
1

2E

⎛

⎜

⎝

λ−
λ0

λ+

⎞

⎟

⎠
+ ϵc12s12

∆m2
ee

2E

⎛

⎜

⎝

c(φ−θ13)
c(φ−θ13) s(φ−θ13)

s(φ−θ13)

⎞

⎟

⎠
.

(2.3.2)

where

λ∓ =
1

2

[

(λa + λc)∓ sign(∆m2
ee)
√

(λc − λa)2 + 4(s13c13∆m2
ee)

2
]

,

λ0 = λb = ϵc212∆m2
ee ,

(2.3.3)

3One can use H̃ to do a perturbative expansion, such that it is simple to recover the νµ → νe appearance

probability of Cervera et al., [6] at first order.
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which is identical to eq. 3.1 of [10].

The angle, φ, that achieves this diagonalization of the (1-3) sub-matrix (see appendix

A.1), satisfies

λa = c2φλ− + s2φλ+ , λc = s2φλ− + c2φλ+ , and sφcφ =
s13c13∆m2

ee

λ+ − λ−
, (2.3.4)

from which it is easy to derive

c2φ − s2φ =
λc − λa
λ+ − λ−

, (2.3.5)

sφ =

√

λ+ − λc
λ+ − λ−

, cφ =

√

λc − λ−
λ+ − λ−

. (2.3.6)

The Hamiltonian given in eq. 2.3.2 was used to derive simple, compact and accurate oscil-

lation probabilities for a wide range of the L/E versus ρE plane, see [10]. However, as was

noted in that paper, there is a region of this plane for which a perturbation theory based

on Ĥ is insufficient to describe the physics accurately. This region is small ρE and large

L/E given by

|a| <
1

3
∆m2

ee and L/E >
4π

∆m2
ee

. (2.3.7)

To address this region of the L/E versus ρE plane, we perform one further rotation on the

Hamiltonian. This rotation removes the degeneracy of the zeroth order eigenvalues at the

solar resonance when λ− = λ0. This is performed in the next subsection.

2.4 U12(ψ) rotation

Since λ− and λ0 cross at the solar resonance, a ≈ ϵ∆m2
ee cos 2θ12/ cos

2 θ13, to describe

the physics near this degeneracy we need to diagonalize the (1-2) submatrix of Ĥ, using

U12(ψ). The new neutrino basis is

|ν̌⟩ = U †
12(ψ)|ν̂⟩ = U †

12(ψ)U
†
13(φ)U

†
23(θ23, δ)|ν⟩ . (2.4.1)

The resulting Hamiltonian, split into a zeroth order Hamiltonian and a perturbing Hamil-

tonian, is given by

Ȟ = U †
12(ψ) Ĥ U12(ψ) = Ȟ0 + Ȟ1 , (2.4.2)

where

Ȟ0 =
1

2E

⎛

⎜

⎝

λ1
λ2

λ3

⎞

⎟

⎠
, (2.4.3)

Ȟ1 = ϵs(φ−θ13)s12c12
∆m2

ee

2E

⎛

⎜

⎝

−sψ
cψ

−sψ cψ

⎞

⎟

⎠
. (2.4.4)
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Figure 1: The upper figure shows the angles, φ and ψ, as a function of the matter potential

for both NO and IO. φ and ψ are the mixing angles θ13 and θ12 in matter respectively. For

ψ, the curves for the two mass ordering are nearly identical. The two lower figures show the

eigenvalues to zeroth order, λ1,2,3, in matter as a function of the matter potential for NO

and for IO. For all our figures, YeρE ≥ 0 is for neutrinos and YeρE ≤ 0 for antineutrinos.

• The size of the perturbing Hamiltonian, Ȟ1, is controlled by the parameter

ϵ′ ≡ ϵ s(φ−θ13) s12c12

= s(φ−θ13)s12c12
∆m2

21

∆m2
ee

,
(2.5.4)

which is never larger than 1.4%.

• In vacuum,

s(φ−θ13) = 0 , (2.5.5)

so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where

a → −∞ for NO or a → +∞ for IO s(φ−θ13) → −s13 which is of O(
√
ϵ). Whereas for

a → +∞ for NO or a → −∞ for IO s(φ−θ13) → c13 ∼ 1, see figure 2.
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C Some useful Identities 30

1 Introduction

Neutrino oscillation based on the standard three-flavor scheme provides the best possi-

ble theoretical framework available to date to describe most of the experimental results

obtained in the atmospheric, solar, reactor, and the accelerator neutrino experiments.

Although numerically calculated neutrino oscillation probabilities su�ce to analyze exper-

imental data, understanding of the framework, in particular the one in matter [1], has not

yet reached a su�cient level, in our opinion. Under the assumption of uniform matter den-

sity distribution, the exact expressions of the eigenvalues, mixing angles, and the oscillation

probabilities in matter have been obtained [2–4]. Yet, the results for these quantities are

generally too complicated to facilitate understanding of the structure of the three flavor

neutrino oscillations in matter primarily due to the complexities of solving the cubic eigen-

value characteristic equation. For a recent comprehensive treatment of neutrino oscillation

in the matter, see ref. [5].

Analytic approaches to the neutrino oscillation phenomenon, so far, are mostly based

on variety of perturbative frameworks. If the matter e↵ect is small one can treat it as a

small perturbation [6]. In the environments in which the matter e↵ect is comparable to

the vacuum mixing e↵ect, the only available small expansion parameter known to us is the

ratio of the solar-scale �m2
� to the atmospheric-scale �m2

�, �m2
�/�m2

� ' 0.03. sin ✓13
has been often used as an expansion parameter (there are enormous number of references,

see e.g., [7]), but it is now known that its value is not so small, sin ✓13 ' 0.15, which is of

the order of
q
�m2

�/�m2
�. Moreover, expansion around sin ✓13 = 0 misses the physics of

the resonance which exists at an energy around E ⇠ 10 GeV for earth densities. Therefore,

it appears that the suitable perturbative framework is the one with the unique expansion

parameter�m2
�/�m2

�. This framework was indeed examined in the past, to our knowledge

in refs. [7–10].

In this paper, we present a new framework of perturbative treatment of neutrino

oscillation in matter. We follow the reasoning stated above which led to identification of

the unique expansion parameter ✏ ⇡ �m2
�/�m2

�. But, unlike the preceding works, we use a

“renormalized basis” as the basis of perturbation. That is, we absorb certain terms of order

✏ to our “zeroth-order” Hamiltonian around which we perturb. Or, in other word, we take

the zeroth-order eigenvalues in matter such that it matches the exact eigenvalues to order

✏, see section 5. We will show that use of the renormalized basis makes the structure of the

perturbation theory exceptionally transparent, as we will explain in the next section. It

allows us to obtain simple, elegant and compact expressions for the oscillation probabilities,

which have a universal form even to first order in our expansion parameter.

For example, ⌫e survival probability takes the form to order ✏ as

P (⌫e ! ⌫e) = 1� sin2 2� sin2
(�+ � ��)L

4E
(1.1)
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Figure 2. The ⌫e disappearance probability as a function of energy E for baselines of 3000 km
(upper panel) and 5000 km (lower panel). We have used the earth matter density 2.8 g/cm3.

Because of the simplicity of our expression for P (⌫e ! ⌫e), eq. (3.11), these shifts are

accurate to first order in the expansion parameter ✏. This simple understanding of the

features of P (⌫e ! ⌫e) is new to this paper.

3.3.6 Comparison with the existing perturbative frameworks

As we emphasized in section 2, our machinery has an advantage over the existing perturba-

tive frameworks by having the minimum number of terms composed of sin [(�j � �i)L/4E]

(i, j = 1, 2, 3) in the oscillation probabilities. This contrasts with the features of the exist-

ing perturbative frameworks in which much larger number of terms than those minimally

necessary as in (2.1) are produced. They include, typically, the terms with either extra

L/E dependences or di↵erent frequencies in the sine functions, or often both, which easily

obscures the physical interpretation.

To give a feeling to the readers on how simple and compact our formulas are, we com-

pare our expressions to the ones in the existing literatures to the same order in expansion.

For definiteness, we pick the ones in ref. [10] to make the comparison, the most recent one

among the reference list given in section 1.

Our expression of P (⌫e ! ⌫e) in (3.11) which has only a single term (ignoring unity)

may be compared with eqs. (4.6) and (4.7) which consist of total 3 terms. With regard to

P (⌫e ! ⌫µ), if we count numbers of terms with di↵erent L/E dependence we have one �-

independent and 2 �-dependent terms in (3.14), total 3. Whereas eqs. (4.8) and (4.9) in [10]

have total 7 terms, 3 �-independent and 4 �-dependent ones. Our expression of P (⌫µ ! ⌫⌧ )

in (3.17) has 3 �-independent and 2 �-dependent terms, adding up to total 5. On the other

hand, eqs. (4.10) and (4.11) in [10] contain total 8 �-independent and 10 �-dependent terms

(2 sin � and 8 cos � terms), which adds up to 18. So not only do our expressions for the

– 15 –

exact - approx - vaccum

approximation to somewhat beyond L/E = 1000 km/GeV because the leading terms are

not suppressed by the smallness of sin2 2✓13.

Then, what about the validity in matter? In section 5 we will argue that our per-

turbative description is valid outside the solar resonance. Notice that the region without

validity (no guarantee for approximation being good) is rather wide and includes the vac-

uum because the solar resonance width |�a| = p
3(sin 2✓12/ cos2 ✓13)�m2

21 is larger than

the solar resonance position a = (cos 2✓12/ cos2 ✓13)�m2
21. We expect then that our helio-

perturbation theory works for the matter potential a larger than a few tenth of |�m2
ee|.

To give the reader a sense of the precision of our approximation we have plotted in

Fig. 1, the contours of equal probability for the exact and the approximate solutions for

the channels ⌫e ! ⌫µ, ⌫e ! ⌫e and ⌫µ ! ⌫µ. The right (left) half plane of each panel of

Fig. 1 corresponds to the neutrino (anti-neutrino) channel. As expected, for large values of

the matter potential, |a| > 1
3 |�m2

ee| we find we have no restrictions on L/E, to have a good

approximation to the exact numerical solutions. Whereas for small values of the matter

potential, |a| < 1
3 |�m2

ee| we still need the restriction L/E <⇠ 1000 km/GeV.9

We note that most of the settings for the ongoing and the proposed experiments,

except possibly for the one which utilizes the second oscillation maximum, fall into the

region L/E <⇠ 1000 km/GeV. To improve the accuracy to larger values of L/E, especially

for values of |a| < 1
3 |�m2

ee|, second order perturbation theory in ✏ is needed, which will be

the subject of a future publication.

3.3.5 An example of the power of our oscillation probabilities

In this section we present an example of the power of our compact expression of the

oscillation probabilities in understanding the physics of oscillations to first order in our

expansion parameter ✏. For simplicity we consider the ⌫e disappearance channel. In fig. 2

the ⌫e disappearance probability is shown, as a function of neutrino energy E, for baselines,

L, of 3000 km (upper panel) and 5000 km (lower panel). As in figure 1, the solid blue curves

are drawn by using the exact expression of P (⌫e ! ⌫e), and the dashed red curves by our

compact formula in eq. (3.11). The black dotted curves are for the vacuum case.

We first notice that our approximate formula agrees well with the exact expression in

particular at higher energy. Secondly, because of the long baselines, the matter e↵ect is

sizeable, producing not only a large shift in the position of the first oscillation minimum but

also an significant increase in the depth of the minimum. These two e↵ects are correlated

by the energy dependent quantity, (�+ � ��) which can be seen graphically in Fig. 3: the

depth of the oscillation minimum changes from

sin2 2✓13 !
✓

�m2
ee

�+ � ��

◆2

sin2 2✓13

whereas the energy at which the the first oscillation minimum occurs changes from

�m2
eeL

2⇡
! (�+ � ��)L

2⇡
.

9 Of course, the boundary between these two regions should be interpreted as an approximate one. In

fact, an exact boundary would sensitively depend on the definition of the di↵erence allowed between the

exact and the approximate probabilities.
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approximation to somewhat beyond L/E = 1000 km/GeV because the leading terms are

not suppressed by the smallness of sin2 2✓13.

Then, what about the validity in matter? In section 5 we will argue that our per-

turbative description is valid outside the solar resonance. Notice that the region without

validity (no guarantee for approximation being good) is rather wide and includes the vac-

uum because the solar resonance width |�a| = p
3(sin 2✓12/ cos2 ✓13)�m2

21 is larger than

the solar resonance position a = (cos 2✓12/ cos2 ✓13)�m2
21. We expect then that our helio-

perturbation theory works for the matter potential a larger than a few tenth of |�m2
ee|.

To give the reader a sense of the precision of our approximation we have plotted in

Fig. 1, the contours of equal probability for the exact and the approximate solutions for

the channels ⌫e ! ⌫µ, ⌫e ! ⌫e and ⌫µ ! ⌫µ. The right (left) half plane of each panel of

Fig. 1 corresponds to the neutrino (anti-neutrino) channel. As expected, for large values of

the matter potential, |a| > 1
3 |�m2

ee| we find we have no restrictions on L/E, to have a good

approximation to the exact numerical solutions. Whereas for small values of the matter

potential, |a| < 1
3 |�m2

ee| we still need the restriction L/E <⇠ 1000 km/GeV.9

We note that most of the settings for the ongoing and the proposed experiments,

except possibly for the one which utilizes the second oscillation maximum, fall into the

region L/E <⇠ 1000 km/GeV. To improve the accuracy to larger values of L/E, especially

for values of |a| < 1
3 |�m2

ee|, second order perturbation theory in ✏ is needed, which will be

the subject of a future publication.

3.3.5 An example of the power of our oscillation probabilities

In this section we present an example of the power of our compact expression of the

oscillation probabilities in understanding the physics of oscillations to first order in our

expansion parameter ✏. For simplicity we consider the ⌫e disappearance channel. In fig. 2

the ⌫e disappearance probability is shown, as a function of neutrino energy E, for baselines,

L, of 3000 km (upper panel) and 5000 km (lower panel). As in figure 1, the solid blue curves

are drawn by using the exact expression of P (⌫e ! ⌫e), and the dashed red curves by our

compact formula in eq. (3.11). The black dotted curves are for the vacuum case.

We first notice that our approximate formula agrees well with the exact expression in

particular at higher energy. Secondly, because of the long baselines, the matter e↵ect is

sizeable, producing not only a large shift in the position of the first oscillation minimum but

also an significant increase in the depth of the minimum. These two e↵ects are correlated

by the energy dependent quantity, (�+ � ��) which can be seen graphically in Fig. 3: the

depth of the oscillation minimum changes from

sin2 2✓13 !
✓

�m2
ee

�+ � ��

◆2

sin2 2✓13

whereas the energy at which the the first oscillation minimum occurs changes from

�m2
eeL

2⇡
! (�+ � ��)L

2⇡
.

9 Of course, the boundary between these two regions should be interpreted as an approximate one. In

fact, an exact boundary would sensitively depend on the definition of the di↵erence allowed between the

exact and the approximate probabilities.
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3.3.1 ⌫e ! ⌫e disappearance channel

The derivation of the ⌫e survival oscillation probability, P (⌫e ! ⌫e), in our renormalized

helio-perturbation theory is extremely simple. Starting from the general expression

P (⌫e ! ⌫e) = 1� 4|Ve+|2|Ve�|2 sin2 (�+ � ��)L

4E

� 4|Ve+|2|Ve0|2 sin2 (�+ � �0)L

4E

� 4|Ve0|2|Ve�|2 sin2 (�0 � ��)L

4E

where, L, is the baseline. Now |Ve0|2 = O(✏2), so we obtain to order ✏ eq. (1.1), or

P (⌫e ! ⌫e) = 1� sin2 2✓13

✓
�m2

ee

�+ � ��

◆2

sin2
(�+ � ��)L

4E
(3.11)

where |�+ � ��| =
q
(�m2

ee � a)2 + 4s213a�m2
ee from eq. (3.1).

Notice that the formula in eq. (3.11) takes into account the matter e↵ect as well as the

e↵ect of s13 to all orders. Nonetheless, it keeps an exceptional simplicity, an e↵ective two-

flavor form in matter which consists of single term with the unique eigenvalue di↵erence

�+ � ��, the feature we believe to be unique in the market. The feature stems from the

fact that there is no ⌫e component at zeroth order in ✏ in the “0” state in matter. It is

expressed in the zero in the Ve0 element of the zeroth-order V matrix as in (3.8), see also

section 4.4.

3.3.2 ⌫e ! ⌫µ and ⌫e ! ⌫⌧ appearance channels

Now, we discuss the appearance channels ⌫e ! ⌫µ and ⌫e ! ⌫⌧ . We describe here the

simplest way to derive the formulas for the oscillation probabilities starting from the V

matrix by using unitarity. The oscillation probability P (⌫e ! ⌫µ) can be computed as

P (⌫e ! ⌫µ) =

����Vµ�V
⇤
e�e

�i
��L

2E + Vµ0V
⇤
e0e

�i
�0L
2E + Vµ+V

⇤
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�i
�+L

2E

����
2

(3.12)

We use unitarity relation Vµ�V
⇤
e� + Vµ0V

⇤
e0 + Vµ+V

⇤
e+ = 0 to eliminate the Vµ�V

⇤
e� term in

(3.12). Then, we obtain

P (⌫e ! ⌫µ) = 4|Vµ+V
⇤
e+ sin�+�e

�i�+0 � Vµ0V
⇤
e0 sin��0|2

= 4|Vµ+|2|Ve+|2 sin2�+�

�8R(Vµ+V
⇤
e+V

⇤
µ0Ve0) sin�+� sin��0 cos�+0

�8I(Vµ+V
⇤
e+V

⇤
µ0Ve0) sin�+� sin��0 sin�+0

+4|Vµ0|2|Ve0|2 sin2��0 (3.13)
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The diagonal elements of the zeroth order Hamiltonian are

λ1,2 =
1

2

[

(λ0 + λ−)∓
√

(λ0 − λ−)2 + 4(ϵc(φ−θ13)c12s12∆m2
ee)2

]

,

λ3 = λ+ .
(2.4.5)

The angle, ψ, that achieves this diagonalization of the (1-2) sub-matrix of Ĥ (see

appendix A.1), satisfies

λ− = c2ψλ1 + s2ψλ2 , λ0 = s2ψλ1 + c2ψλ2 , (2.4.6)

sψcψ =
ϵc(φ−θ13)s12c12∆m2

ee

∆λ21
, (2.4.7)

where we introduce the useful shorthand notation,

∆λij ≡ λi − λj . (2.4.8)

It is easy to derive that4

c2ψ − s2ψ =
λ0 − λ−

∆λ21
, (2.4.9)

and sψ =

√

λ2 − λ0
∆λ21

, cψ = sign(∆λ21)

√

λ0 − λ1
∆λ21

. (2.4.10)

Figure 1 shows φ and ψ as functions of the matter potential as well as the eigenvalues

of Ȟ for both the normal ordering (NO) and the inverted ordering (IO). Several additional

useful identities used in the calculations throughout this paper are listed in appendix A.2.

2.5 Remarks

A number of summarizing and useful comments are warranted at this point.

• The neutrino basis that will be used in our perturbation theory, |ν̌⟩ is related to the

flavor basis, |ν⟩ by
⎛

⎜

⎝

νe
νµ
ντ

⎞

⎟

⎠
= Um

MNS

⎛

⎜

⎝

ν̌1
ν̌2
ν̌3

⎞

⎟

⎠
, (2.5.1)

where

Um
MNS ≡ U23(θ23, δ)U13(φ)U12(ψ) . (2.5.2)

• The Hamiltonian, eqs. 2.4.3 and 2.4.4, that will used as the basis for our perturbation

theory is given by

Ȟ = (Um
MNS)

†HUm
MNS = Ȟ0 + Ȟ1 , (2.5.3)

with the diagonal elements the zeroth order Hamiltonian and the off-diagonal ele-

ments the perturbing Hamiltonian. While the λa,b,c eigenvalues cross twice and the

λ−,0,+ eigenvalues cross once, the new λ1,2,3 eigenvalues do not cross, see figure 1,

which allows for the perturbation theory to be well defined everywhere.

4Given the definition of λ1,2 in eq. 2.4.5, the sign term in from of cψ is not necessary, but will become

necessary when we discuss the λ1 ↔ λ2 interchange symmetry.

– 7 –

The diagonal elements of the zeroth order Hamiltonian are

λ1,2 =
1

2

[

(λ0 + λ−)∓
√

(λ0 − λ−)2 + 4(ϵc(φ−θ13)c12s12∆m2
ee)2

]

,

λ3 = λ+ .
(2.4.5)

The angle, ψ, that achieves this diagonalization of the (1-2) sub-matrix of Ĥ (see
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Figure 1: The upper figure shows the angles, φ and ψ, as a function of the matter potential

for both NO and IO. φ and ψ are the mixing angles θ13 and θ12 in matter respectively. For

ψ, the curves for the two mass ordering are nearly identical. The two lower figures show the

eigenvalues to zeroth order, λ1,2,3, in matter as a function of the matter potential for NO

and for IO. For all our figures, YeρE ≥ 0 is for neutrinos and YeρE ≤ 0 for antineutrinos.

• The size of the perturbing Hamiltonian, Ȟ1, is controlled by the parameter

ϵ′ ≡ ϵ s(φ−θ13) s12c12

= s(φ−θ13)s12c12
∆m2

21

∆m2
ee

,
(2.5.4)

which is never larger than 1.4%.

• In vacuum,

s(φ−θ13) = 0 , (2.5.5)

so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where

a → −∞ for NO or a → +∞ for IO s(φ−θ13) → −s13 which is of O(
√
ϵ). Whereas for

a → +∞ for NO or a → −∞ for IO s(φ−θ13) → c13 ∼ 1, see figure 2.
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Figure 1: The upper figure shows the angles, φ and ψ, as a function of the matter potential

for both NO and IO. φ and ψ are the mixing angles θ13 and θ12 in matter respectively. For

ψ, the curves for the two mass ordering are nearly identical. The two lower figures show the

eigenvalues to zeroth order, λ1,2,3, in matter as a function of the matter potential for NO

and for IO. For all our figures, YeρE ≥ 0 is for neutrinos and YeρE ≤ 0 for antineutrinos.

• The size of the perturbing Hamiltonian, Ȟ1, is controlled by the parameter

ϵ′ ≡ ϵ s(φ−θ13) s12c12

= s(φ−θ13)s12c12
∆m2

21

∆m2
ee

,
(2.5.4)

which is never larger than 1.4%.

• In vacuum,

s(φ−θ13) = 0 , (2.5.5)

so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where

a → −∞ for NO or a → +∞ for IO s(φ−θ13) → −s13 which is of O(
√
ϵ). Whereas for

a → +∞ for NO or a → −∞ for IO s(φ−θ13) → c13 ∼ 1, see figure 2.
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ē L

U
(1

)

C
P
T

:
e L
⇥
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What is less well appreciated is that the expressions of the oscillation probabilities in

(2.1) are maximally simple and compact. That is, they contain 5 (including the constant

term) functions of L/E which are linearly independent. This property can be easily verified

by showing the Wronskian is nonvanishing, which implies that none of the functions can be

written in terms of the other functions for all L/E. Hence, in a true mathematical sense,

eq. (2.1) and it’s equivalents give the simplest and most compact form for the complete set

of three flavor oscillation probabilities in vacuum and in uniform matter.2

A special feature of the oscillation probabilities which is also worth noting is that

each term in eq. (2.1) factorizes into the characteristic sin [(�j � �i)L/4E] factor and the

products of the V matrix elements which control the amplitude of the oscillation. Both the

eigenvalues, �i and the matrix elements of V are independent of the baseline, L, but are

functions of the mixing angles, ✓’s, the �m2
ji, and the product of the energy of neutrino

times the matter density via the matter potential.3 CP and T violation is described by the

last term in (2.1), which has the universal, channel-independent form in the three neutrino

mixing.

2.2 Raison d’ être and the requirements for perturbative treatment

With the simplest form of the oscillation probability eq. (2.1) and by knowing both the

exact form of the eigenvalues, �i/2E, and the elements of the V matrix, see [3], one might

expect we have all that is needed for theoretical discussions. Unfortunately, the analytic

expressions for these eigenvalues, �i/2E, as well as the V matrix elements are notoriously

complex and give no analytic insight into the oscillation physics in uniform matter. This

is true even when one of �m2
21, sin ✓13, sin ✓12 or a is set equal to zero. In any one of

these limits, the characteristic equation for the eigenvalues factorizes. But, the form of the

general solution does not simplify trivially to yield the correct eigenvalues, even though

it must. The structure of the general solutions of the cubic characteristic equation is the

root cause of this rather unusual behaviour. Hence, there is a need for a reformulated

perturbative framework so that we can obtain approximate but much simpler expressions

for the eigenvalues, �i, and the mixing matrix elements, V↵i, which provide the necessary

physics insight.

In this paper, we formulate perturbation theory by which we can calculate the eigen-

values �i and the elements of V matrix as a simple power series of the small expansion

parameter, a renormalized �m2
�/�m2

�. At the same time the structure-revealing form

of the oscillation probabilities (2.1) is kept intact. While the existing frameworks do not

satisfy the latter requirement, the key to the success in our case is due to the correct

decomposition of the Hamiltonian into the unperturbed and the perturbed terms. Use of

2 There are equivalent ways to write this set of oscillation probabilities with 5 independent L/E functions,

e.g one could use the trigonometric identity 2 sin2
x = 1 � cos 2x to replace the sin2

x. Any other way of

writing these oscillation probabilities will have 5 or more linearly independent functions, e.g., using the

identity (C.2) increases the number of independent functions by 2.
3
a / ⇢E with ⇢ being the matter density. The V matrix elements are determined solely by the elements

of the Hamiltonian matrix. It is easy to observe this feature by using the method developed in ref. [4],

which is valid for nonuniform matter density as well.
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Figure 3: The νµ → νe oscillation probability is plotted in the upper part of the figure for

DUNE parameters; a 1300 km baseline and Yeρ = 1.4 g·cm−3. The fractional uncertainties

at zeroth and first order are plotted using the analytic formulas in tables 1 and 2 respec-

tively. The probability to second order is calculated by using λ’s and W through second

order, see eqs. 3.1.3 and 3.2.6

.

the mixing matrix, W2, have been used to calculate the oscillation probabilities to second

order. The resulting oscillation probabilities are more than two orders of magnitude closer

to the exact values than the first order probabilities.

4.4 Precision of the perturbation expansion

The oscillation probabilities that were perturbatively calculated in this section are only

useful if they are more precise than the experimental uncertainties. In figure 3, we have

plotted the fractional uncertainties8 at each order of our perturbative expansion for the

νµ → νe channel at the DUNE [16], baseline of 1300 km. The precision at the first

oscillation maximum and minimum for DUNE are shown in table 3. We note that the

precision improves at lower energies, such as for NOνA [17] and T2K/T2HK [18, 19].

The results are comparable for different values of δ, for the inverted ordering, for other

channels, and for antineutrino mode. Therefore, even at zeroth order, the precision exceeds

the precision of the expected experimental results.

8The exact oscillation probability were calculated using [3, 4].
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Neutrino Oscillation Amplitudes
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and the Hamiltonian is given by

H̃ = U †
23(θ23, δ) H U23(θ23, δ)

=
1

2E

[

U13(θ13)U12(θ12) diag(0,∆m2
21,∆m2

31)U
†
12(θ12)U

†
13(θ13)

+ diag(a, 0, 0)
]

.

(2.2.2)

As was shown in [10], the Hamiltonian, H̃, is most simple written in terms of a renormalized

atmospheric ∆m2,

∆m2
ee ≡ ∆m2

31 − s212∆m2
21 , (2.2.3)

as defined in [11, 12], and the ratio of the ∆m2’s

ϵ ≡ ∆m2
21/∆m2

ee . (2.2.4)

In terms of the |a| → ∞ eigenvalues

λa = a+ (s213 + ϵs212)∆m2
ee ,

λb = ϵc212∆m2
ee ,

λc = (c213 + ϵs212)∆m2
ee ,

(2.2.5)

the exact Hamiltonian is simple given by3

H̃ =
1

2E

⎛

⎜

⎝

λa s13c13∆m2
ee

λb
s13c13∆m2

ee λc

⎞

⎟

⎠
+ ϵs12c12

∆m2
ee

2E

⎛

⎜

⎝

c13
c13 −s13

−s13

⎞

⎟

⎠
. (2.2.6)

Note that H̃ is real and does not depend on θ23 or δ.

2.3 U13(φ) rotation

Since s13 ∼ O(
√
ϵ), it is natural to diagonalize the (1-3) sector next, using U13(φ), again

see [10]. After this rotation the neutrino basis is

|ν̂⟩ = U †
13(φ)|ν̃⟩ = U †

13(φ)U
†
23(θ23, δ)|ν⟩ , (2.3.1)

and the Hamiltonian is given by

Ĥ = U †
13(φ) H̃ U13(φ)

=
1

2E

⎛

⎜

⎝

λ−
λ0

λ+

⎞

⎟

⎠
+ ϵc12s12

∆m2
ee

2E

⎛

⎜

⎝

c(φ−θ13)
c(φ−θ13) s(φ−θ13)

s(φ−θ13)

⎞

⎟

⎠
.

(2.3.2)

where

λ∓ =
1

2

[

(λa + λc)∓ sign(∆m2
ee)
√

(λc − λa)2 + 4(s13c13∆m2
ee)

2
]

,

λ0 = λb = ϵc212∆m2
ee ,

(2.3.3)

3One can use H̃ to do a perturbative expansion, such that it is simple to recover the νµ → νe appearance

probability of Cervera et al., [6] at first order.
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which is identical to eq. 3.1 of [10].

The angle, φ, that achieves this diagonalization of the (1-3) sub-matrix (see appendix

A.1), satisfies

λa = c2φλ− + s2φλ+ , λc = s2φλ− + c2φλ+ , and sφcφ =
s13c13∆m2

ee

λ+ − λ−
, (2.3.4)

from which it is easy to derive

c2φ − s2φ =
λc − λa
λ+ − λ−

, (2.3.5)

sφ =

√

λ+ − λc
λ+ − λ−

, cφ =

√

λc − λ−
λ+ − λ−

. (2.3.6)

The Hamiltonian given in eq. 2.3.2 was used to derive simple, compact and accurate oscil-

lation probabilities for a wide range of the L/E versus ρE plane, see [10]. However, as was

noted in that paper, there is a region of this plane for which a perturbation theory based

on Ĥ is insufficient to describe the physics accurately. This region is small ρE and large

L/E given by

|a| <
1

3
∆m2

ee and L/E >
4π

∆m2
ee

. (2.3.7)

To address this region of the L/E versus ρE plane, we perform one further rotation on the

Hamiltonian. This rotation removes the degeneracy of the zeroth order eigenvalues at the

solar resonance when λ− = λ0. This is performed in the next subsection.

2.4 U12(ψ) rotation

Since λ− and λ0 cross at the solar resonance, a ≈ ϵ∆m2
ee cos 2θ12/ cos

2 θ13, to describe

the physics near this degeneracy we need to diagonalize the (1-2) submatrix of Ĥ, using

U12(ψ). The new neutrino basis is

|ν̌⟩ = U †
12(ψ)|ν̂⟩ = U †

12(ψ)U
†
13(φ)U

†
23(θ23, δ)|ν⟩ . (2.4.1)

The resulting Hamiltonian, split into a zeroth order Hamiltonian and a perturbing Hamil-

tonian, is given by

Ȟ = U †
12(ψ) Ĥ U12(ψ) = Ȟ0 + Ȟ1 , (2.4.2)

where

Ȟ0 =
1

2E

⎛

⎜

⎝

λ1
λ2

λ3

⎞

⎟

⎠
, (2.4.3)

Ȟ1 = ϵs(φ−θ13)s12c12
∆m2

ee

2E

⎛

⎜

⎝

−sψ
cψ

−sψ cψ

⎞

⎟

⎠
. (2.4.4)
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The diagonal elements of the zeroth order Hamiltonian are

λ1,2 =
1

2

[

(λ0 + λ−)∓
√

(λ0 − λ−)2 + 4(ϵc(φ−θ13)c12s12∆m2
ee)2

]

,

λ3 = λ+ .
(2.4.5)

The angle, ψ, that achieves this diagonalization of the (1-2) sub-matrix of Ĥ (see

appendix A.1), satisfies

λ− = c2ψλ1 + s2ψλ2 , λ0 = s2ψλ1 + c2ψλ2 , (2.4.6)

sψcψ =
ϵc(φ−θ13)s12c12∆m2

ee

∆λ21
, (2.4.7)

where we introduce the useful shorthand notation,

∆λij ≡ λi − λj . (2.4.8)

It is easy to derive that4

c2ψ − s2ψ =
λ0 − λ−

∆λ21
, (2.4.9)

and sψ =

√

λ2 − λ0
∆λ21

, cψ = sign(∆λ21)

√

λ0 − λ1
∆λ21

. (2.4.10)

Figure 1 shows φ and ψ as functions of the matter potential as well as the eigenvalues

of Ȟ for both the normal ordering (NO) and the inverted ordering (IO). Several additional

useful identities used in the calculations throughout this paper are listed in appendix A.2.

2.5 Remarks

A number of summarizing and useful comments are warranted at this point.

• The neutrino basis that will be used in our perturbation theory, |ν̌⟩ is related to the

flavor basis, |ν⟩ by
⎛

⎜

⎝

νe
νµ
ντ

⎞

⎟

⎠
= Um

MNS

⎛

⎜

⎝

ν̌1
ν̌2
ν̌3

⎞

⎟

⎠
, (2.5.1)

where

Um
MNS ≡ U23(θ23, δ)U13(φ)U12(ψ) . (2.5.2)

• The Hamiltonian, eqs. 2.4.3 and 2.4.4, that will used as the basis for our perturbation

theory is given by

Ȟ = (Um
MNS)

†HUm
MNS = Ȟ0 + Ȟ1 , (2.5.3)

with the diagonal elements the zeroth order Hamiltonian and the off-diagonal ele-

ments the perturbing Hamiltonian. While the λa,b,c eigenvalues cross twice and the

λ−,0,+ eigenvalues cross once, the new λ1,2,3 eigenvalues do not cross, see figure 1,

which allows for the perturbation theory to be well defined everywhere.

4Given the definition of λ1,2 in eq. 2.4.5, the sign term in from of cψ is not necessary, but will become

necessary when we discuss the λ1 ↔ λ2 interchange symmetry.
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MNS = Ȟ0 + Ȟ1 , (2.5.3)

with the diagonal elements the zeroth order Hamiltonian and the off-diagonal ele-

ments the perturbing Hamiltonian. While the λa,b,c eigenvalues cross twice and the

λ−,0,+ eigenvalues cross once, the new λ1,2,3 eigenvalues do not cross, see figure 1,

which allows for the perturbation theory to be well defined everywhere.

4Given the definition of λ1,2 in eq. 2.4.5, the sign term in from of cψ is not necessary, but will become

necessary when we discuss the λ1 ↔ λ2 interchange symmetry.

– 7 –

⌫ ⌫̄

✓13, ✓12, ✓23, �

� is ✓13 in matter

�, ✓12, ✓23, �

 is ✓12 in matter

�,  , ✓23, �

H0 =

H1 =

– Typeset by FoilTEX – 1

⌫ ⌫̄ 0 ⌫

✓13, ✓12, ✓23, �

� is ✓13 in matter

�, ✓12, ✓23, �

 is ✓12 in matter

�,  , ✓23, �

H0 =

H1 =

– Typeset by FoilTEX – 1

Stephen Parke, Fermilab                                       NuFact 2017 / Uppsala, Sweden                                                   9/28/2017 15

and the Hamiltonian is given by

H̃ = U †
23(θ23, δ) H U23(θ23, δ)

=
1

2E
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As was shown in [10], the Hamiltonian, H̃, is most simple written in terms of a renormalized

atmospheric ∆m2,
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31 − s212∆m2
21 , (2.2.3)

as defined in [11, 12], and the ratio of the ∆m2’s

ϵ ≡ ∆m2
21/∆m2

ee . (2.2.4)

In terms of the |a| → ∞ eigenvalues

λa = a+ (s213 + ϵs212)∆m2
ee ,

λb = ϵc212∆m2
ee ,

λc = (c213 + ϵs212)∆m2
ee ,

(2.2.5)

the exact Hamiltonian is simple given by3

H̃ =
1

2E

⎛

⎜

⎝

λa s13c13∆m2
ee

λb
s13c13∆m2

ee λc

⎞

⎟

⎠
+ ϵs12c12

∆m2
ee

2E

⎛

⎜

⎝

c13
c13 −s13

−s13

⎞

⎟

⎠
. (2.2.6)

Note that H̃ is real and does not depend on θ23 or δ.
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Since s13 ∼ O(
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†
13(φ)U

†
23(θ23, δ)|ν⟩ . (2.4.1)

The resulting Hamiltonian, split into a zeroth order Hamiltonian and a perturbing Hamil-

tonian, is given by

Ȟ = U †
12(ψ) Ĥ U12(ψ) = Ȟ0 + Ȟ1 , (2.4.2)

where

Ȟ0 =
1

2E

⎛

⎜

⎝

λ1
λ2

λ3

⎞

⎟

⎠
, (2.4.3)

Ȟ1 = ϵs(φ−θ13)s12c12
∆m2

ee

2E

⎛

⎜

⎝

−sψ
cψ

−sψ cψ

⎞

⎟

⎠
. (2.4.4)
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Figure 1: The upper figure shows the angles, φ and ψ, as a function of the matter potential

for both NO and IO. φ and ψ are the mixing angles θ13 and θ12 in matter respectively. For

ψ, the curves for the two mass ordering are nearly identical. The two lower figures show the

eigenvalues to zeroth order, λ1,2,3, in matter as a function of the matter potential for NO

and for IO. For all our figures, YeρE ≥ 0 is for neutrinos and YeρE ≤ 0 for antineutrinos.

• The size of the perturbing Hamiltonian, Ȟ1, is controlled by the parameter

ϵ′ ≡ ϵ s(φ−θ13) s12c12

= s(φ−θ13)s12c12
∆m2

21

∆m2
ee

,
(2.5.4)

which is never larger than 1.4%.

• In vacuum,

s(φ−θ13) = 0 , (2.5.5)

so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where

a → −∞ for NO or a → +∞ for IO s(φ−θ13) → −s13 which is of O(
√
ϵ). Whereas for

a → +∞ for NO or a → −∞ for IO s(φ−θ13) → c13 ∼ 1, see figure 2.
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unchanged

Summary:

The diagonal elements of the zeroth order Hamiltonian are

λ1,2 =
1

2

[

(λ0 + λ−)∓
√

(λ0 − λ−)2 + 4(ϵc(φ−θ13)c12s12∆m2
ee)2

]

,

λ3 = λ+ .
(2.4.5)

The angle, ψ, that achieves this diagonalization of the (1-2) sub-matrix of Ĥ (see

appendix A.1), satisfies

λ− = c2ψλ1 + s2ψλ2 , λ0 = s2ψλ1 + c2ψλ2 , (2.4.6)

sψcψ =
ϵc(φ−θ13)s12c12∆m2

ee

∆λ21
, (2.4.7)

where we introduce the useful shorthand notation,

∆λij ≡ λi − λj . (2.4.8)

It is easy to derive that4

c2ψ − s2ψ =
λ0 − λ−

∆λ21
, (2.4.9)

and sψ =

√

λ2 − λ0
∆λ21

, cψ = sign(∆λ21)

√

λ0 − λ1
∆λ21

. (2.4.10)

Figure 1 shows φ and ψ as functions of the matter potential as well as the eigenvalues

of Ȟ for both the normal ordering (NO) and the inverted ordering (IO). Several additional

useful identities used in the calculations throughout this paper are listed in appendix A.2.

2.5 Remarks

A number of summarizing and useful comments are warranted at this point.

• The neutrino basis that will be used in our perturbation theory, |ν̌⟩ is related to the

flavor basis, |ν⟩ by
⎛

⎜

⎝

νe
νµ
ντ

⎞

⎟

⎠
= Um

MNS

⎛

⎜

⎝

ν̌1
ν̌2
ν̌3

⎞

⎟

⎠
, (2.5.1)

where

Um
MNS ≡ U23(θ23, δ)U13(φ)U12(ψ) . (2.5.2)

• The Hamiltonian, eqs. 2.4.3 and 2.4.4, that will used as the basis for our perturbation

theory is given by

Ȟ = (Um
MNS)

†HUm
MNS = Ȟ0 + Ȟ1 , (2.5.3)

with the diagonal elements the zeroth order Hamiltonian and the off-diagonal ele-

ments the perturbing Hamiltonian. While the λa,b,c eigenvalues cross twice and the

λ−,0,+ eigenvalues cross once, the new λ1,2,3 eigenvalues do not cross, see figure 1,

which allows for the perturbation theory to be well defined everywhere.

4Given the definition of λ1,2 in eq. 2.4.5, the sign term in from of cψ is not necessary, but will become

necessary when we discuss the λ1 ↔ λ2 interchange symmetry.
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