Article

Developing a task-based qualification framework for circular skills in construction and its application in training plans (for trainers and SMEs)

Martin Breen¹, Laura Reus², Bojan Milovanovic³, Gloria Callinan⁴, Pavla Dvořáková⁵, Jan Cromwijk⁶, Carmen Poort⁷

- ¹ Technological University of the Shannon; <u>martin.breen@tus.ie</u>
- ² Valencian Association of Construction Companies, FEVEC; <u>lreus@fevec.net</u>
- 3 University of Zagreb, Faculty of Civil Engineering; bojan.milovanovic@grad.unizg.hr
- 4 Technological University of the Shannon; gloria.callinan@tus.ie
- 5 Czech Technical University in Prague, CVUT; pavla.dvorakova@fsv.cvut.cz
- 6 Stichting ISSO; j.cromwijk@isso.nl
- 7 TinQwise B.V.; carmen-poort@hotmail.com
- Correspondence: <u>bojan.milovanovic@grad.unizg.hr</u>;

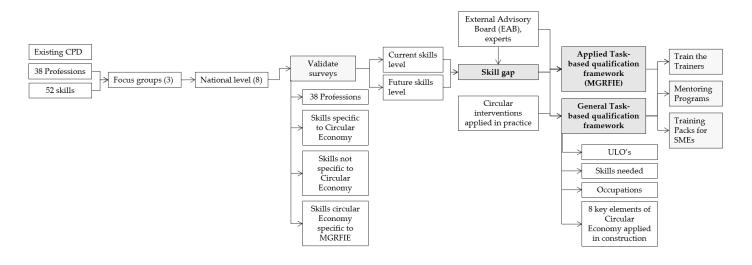
Abstract: We are facing a major skills gap within the construction sector and there is a pressing need for upskilling in circular skills after identifying the existing skills gaps. Using Multi-functional Green Roofs Facades and Interior Elements (MGRFIE) as a pilot case, the BUS-GoCircular project has mapped the circular skills gaps that currently exist throughout Europe. This has created the basis for the development of the task-based Qualification Framework, resulting in 80 Units of Learning Outcomes (ULOs) required to upgrade circular skills. This then supports the creation of training packs and training programs to upskill professionals within the sector. Through our research we discover that there are skills gaps existing within every profession across the sector meaning training must be provided for all professions to bridge these gaps. Training packs for small and medium enterprises (SMEs) and materials were created with this in mind and are now playing an important role in Train the Trainer (TtT) programs as well as mentoring programs being carried out across Europe.

Keywords: Circular Economy, Task-based Qualification Framework, SMEs Training Packs, Train the Trainer (TtT), MGRFIE (Multi-functional Green Roofs Facades and Interior Elements), Units of Learning Outcomes (ULOs), skills gaps in construction, Training Material in Circularity, Upskilling, Skills in Circularity

1 The Circular Economy [1] is gaining traction due to the finite number of raw materials on the planet, we must now take resource efficiency more seriously, especially within the construction sector to ensure these resources are not depleted entirely. According to the European Commission the construction sector is responsible for up to 50% of all materials used on the planet [2] and "*Construction and demolition waste* (*CDW*) accounts for more than a third of all waste generated in the EU" [3]. The need for a more circular economy has been translated into European directives that are replicated in national regulations [4-5] and, most importantly, are taken on board by industry. Change is difficult within the construction sector, but action must be taken in order to align with EU directives. This is partially due to the fact that there is currently no harmonised and holistic European framework on circularity (regulated courses, certificates schemes of circularity, certificates of competences or micro competence, etc)[9], between EU countries

or even in public administration. New training and skills are needed following the initial study carried out by the BGC partners on the current Circularity on Education' State of Art [6].

The research conducted within the BUS-GoCircular [7] project aimed to tackle the above-mentioned issues and create a more sustainable construction sector by developing a harmonised qualification framework [8] in circular construction and supplying the initial steps for its implementation and replication across the sector. The first step in this process was the skills gap analysis and mapping [9], to understand where skills gaps currently exist within the construction sector in relation to the circular economy and Multi-Functional Green Roofs Facades and Interior Elements (MGRFIE). Based on this analysis of skills, a task-based qualification framework for circular economy in construction [10] was developed which acts as the basis for the design of different training approaches to disseminate and implement this framework: Train the Trainer programs [11], SMEs Training Packs [12] and Mentoring programs between professionals [13].


Training packs for SMEs [12] deals with the stimulation of the demand of skills in circularity providing coverage of the basic initial knowledge and competencies required by the workers in circular practices, where training is often limited to higher education or specific single-topic courses having difficulties in the availability of open-source and dispersed training materials. The training packs are created as free access to self-directed material and activities about circular economy to involve the workforce of SMEs in the exploitation and validation of the skill qualification framework.

The approach this project takes is novel and significant due to its focus on workers across the entire construction sector. This research takes a specific element of the built environment (in this case MGRFIE) and identifies what skills are necessary in order to make this process circular. In this we are identifying what skills are necessary, what level each professional must reach to be proficient in this circular task and then provide the training and upskilling needed in order to carry this task out. This process is replicable for all aspects of the built environment and focuses on the entire sector, rather than one subsection, to ensure the circular economy can be implemented properly.

2. Materials and Methods

The methodological approach of this research has been based on the combination of existing European project approaches, such as PROF/TRAC [14], together with the training and construction knowledge and national experience of the participating partners. We utilised the Key Elements Framework [15] created by Circle Economy as a basis throughout the initial steps of the project. In this section we will go through the a. skills gaps and skills mapping [9], b. task based qualification framework for circular skills [10] and c. Training plans and packs for SMEs [12]. This research has been focused on Multi-function Green Roofs Facades and Interior Elements (MGRFIE) as a focus area for the project yet the methods used within the project should be applicable to any area of the construction process i.e. ventilation, foundations, interior elements. Training packs are developed based on the general task based qualification framework.

2.1 Skills Gaps and Skills Mapping

To close the skills gap existing between current and future circular skills, it is first necessary to define these gaps and identify what skills and professions are not yet in the conversation. To do this, the BUS-GoCircular project has pinpointed 38 professions [Table 11: Appendix A] and 52 skills [Table 1], and then compared these to one another. With the help of experts working in each field, it has been discovered the 'Current' and 'Future' skills levels exist in each profession. This research was carried out by each country involved in the project (Bulgaria, Czechia, Croatia, Hungary, Ireland, Spain and The Netherlands) allowing us to first define the skills gaps which exist within each of these countries, before collating this information resulting in a European wide skills gap profile. It was possible to explore the skills gaps that exist on a general scale but also to understand where these skills are lacking and in some cases why they are lacking in each country. This extensive work allowed us to define the gaps that exist within the construction industry and thus will allow us to begin to close these gaps through training and upskilling programmes.

The PROF/TRAC [14] framework has been utilised for our skills mapping task which enabled us to quickly collect a large amount of data from partner countries across Europe. This methodology was used to identify relevant skills and professions which are related to a given process (in this case Circular Economy in relation to MGRFIE).

Step 1: Collection of existing CPD (Continuous Professional Development) training [9]. The collection of current freely available CPD courses across Europe to indicate what is available and to what level. Each of these courses can provide an indicator of what can be offered to future participants in BUS-GoCircular as well as indicating what can be built upon and what must be created. This also offers an early indication of the gaps which exist within the sector.

Step 2: Identifying relevant professions. This list was tailored to suit the relevance associated with MGRFIE as this was the scope for this project. Often similar roles may have different names in different geographical areas, so we had to add many sub-headings to ensure we accounted for each relevant profession within each country. As MGRFIE is our focus point, we considered all elements of MGRFIE within our project work including

green walls, green facades (interior and exterior), multifunctional roofs, social roofs, water storage (predominantly on roofs), functional roofs and energy collection and storage. These are some of the examples of the areas we are concentrating on, however, this list is constantly expanding and growing as new research is developed. Our list of professions [Table 11: Appendix A] is based directly on these areas and our skills table also arises from this list. The conclusions will be shown in the results section.

Step 3: Identifying the skills. Here the skills are broken up into 3 categories, skills specifically relating to circular economy, skills not specific but that heavily influence circular economy and finally skills relating specifically to MGRFIE.

To identify the skills to be tested in the interviews/questionnaires we have relied on Circle Economy's Keys Elements Framework as this permits us to define a scope for this task using a common language. There are eight main principles to achieve circular economy according to this classification, differentiating between three core elements and five enabling elements. The core elements are the activities that directly handle products or material flow meaning these elements are vital to the success of circular economy practices; these are Prioritise Regenerative Resources, Stretch the Lifespan and Use Waste as a Resource. The enabling elements support the core elements to be implemented and help to engage the sector by ensuring that any obstacles are removed. These are *Rethink the* Business model, Design for the Future, Collaborate to Create Joint Value, Incorporate Digital Technology and Strengthen and Advance Knowledge. After analysing the Key Elements Framework, we identified sub skills within each of the eight elements. For example, within the three core elements we identified sub skills such as, bio-based and regenerative material application, deconstruction for reuse, maintenance of building components, sustainable *drainage systems* and the *production of renewable energy*. Within the enabling elements, we added several sub-skills including, Apply material passports, Collaboration for Circular Economy, BIM/Digitisation, Design for Adaptability and Design/Build for Reuse. Many of these skills are not specifically related to Circular Economy, however, they are needed to support the design, application and use of circular practices within the construction industry. Finally, we also looked at skills specifically relating to MGRFIE, these skills are of particular importance when looking at our research parameters. The sub-skills here include; Solar power systems for electricity generation, Establishing the cooling and heating function of green roofs and Multi-functional Green Roofs Facades and Interior Elements.

		Specific to Circular Economy		Not specific to Circular		Circular Economy specific to MGRFIE
				Economy		
	PRR	Prioritise regenerative resources	PRR3	Sustainable Sourcing	MF	Multi-functional Green Roofs Facades
						and Interior Elements
	PRR1	Bio-Based and regenerative	PRR4	Energy storage and distribution	MF1	Solar power systems for electricity
		material application				generation
ſ	PRR2	Reusable material application	PRR5	Production of Renewable	MF2	Solar thermal systems for domestic
				Energy		hot water and/or heating generation

Table 1. Identified skills for skills survey

PE	Preserve and extend what is	PRR6	Continuous reuse of water with	MF3	Heat Pump		
	already made		little or no waste				
UWR	Use waste as a resource	PE1	Maintenance of building	MF4	Insulation Installation		
			components				
UWR1	Deconstruction for reuse	PE2	Upgrade of building	MF5	Establishing the cooling and heating		
			components		function of green roofs		
UWR2	Material Innovation	UWR5	Grey Water Collection and Use	MF6	Horticulture		
UWR3	Reclaiming Energy	UWR6	Rainwater collection and use				
DF	Design/Build for the future	UWR7	Sustainable Drainage Systems				
DF1	Design/Build for Reuse	DF9	Design for Adaptability				
DF2	Design/Build for repurpose of materials	DF10	Modular Design				
DF3	Apply material passports	CCJV2	Collaboration				
DF4	Design/Build for material impact reduction	RBM3	Facades as a services				
DF5	Reduce/Build reliance on critical	RBM4	Technical Installation as a				
	raw materials		service				
DF6	Design/Build out waste	RBM5	Interior features as a service				
DF7	Design/Build for Durability	IDT1	Drones Use				
DF8	Design/Build for Cyclability	IDT2	3D Printing				
CCJV	Collaborate to create joint value	IDT3	Prefabrication				
CCJV1	Collaboration for Circular Economy	IDT4	BIM/Digitisation				
RBM	Rethink the business model	SAK1	Research and development				
RBM1	Repairs as a service						
RBM2	Environmental costing models						
	and carbon taxes						
IDT	Incorporate digital technology						
SAK	Communication, Education and						
	information						

Step 4: Mapping the skills gaps. As we are using the PROF/TRAC [14] method we are also using the skills levels that are recommended along with this method. These levels span from 0 to 5 (0 meaning not applicable or no knowledge/skill required while 5 represents an expert in the corresponding skill). The skill gap will be the difference between the future skills and the current skills level.

Table 2. Definition of skills levels according to PROF/TRAC method.

0	Not applicable / no knowledge and skills required		
1	Has little knowledge and skills with respect to the relevant field / technology		
2	Understands basic knowledge and has practical skills within the field, is able to solve problems by selecting and		
	applying basic methods, tools, materials and information		

3	Has comprehensive, factual and theoretical knowledge, is capable of solving problems within the field			
4	Has advanced knowledge involving a critical understanding of theories and principles and skills, required to solve			
	complex and unpredictable problems in the field and is aware of the boundaries			
5	Has specialised knowledge and problem-solving skills, partly at the forefront of knowledge in the field, in order to			
	develop new knowledge and procedures and to integrate knowledge from different fields			

Following the creation of the skills tables and list of professions we began to create focus groups to discuss them with. The rollout of the interview process was split into three categories/groupings throughout participating partner countries in BUSGo-Circular and European wide organisations. These divisions were; Pre-Design Phase, Design Phase and Construction and Deconstruction Phase. These three focus groups were directed independently by each partner country following previous guidelines accorded to ensure the results across Europe could be easily compared. Each partner country was asked to complete at least one group session with each of the three focus groups. The first group session with these focus groups dealt with current skills (189 participants total) and the second session, in most cases containing the same or similar groups of participants, dealt with future skills (173 participants total). This allowed us to tailor our final survey and interview process to the professions involved in order to identify skills gaps. These validated surveys were distributed at a national level. Different feedback was received depending on the profession profile and country as it is shown in the Results section.

2.2. Task-based Qualification Framework for Circular Skills in Construction

Utilising the skills gap analysis [9] and the different circular strategies and interventions that are being applied in practice, we have mapped which occupations are involved within the implementation of these interventions. Based on this work we have started mapping the different skills that are required. A generic framework for Circular Economy interventions in the construction value chain and its first application [16] has been developed for the BUS-GoCircular project.

Based on research by Roland Berger [17] we have condensed the strategies and interventions to the following five stages of a project in the building environment, that, in order are:

Plan - design and commission (new and existing buildings);

Procure - source materials, products and services (new and existing buildings); Construct - build, install and fit-out (new buildings);

Operate - use, maintain, renovate and manage (new and existing buildings); and

End of service life (EoSL) that covers Deconstruct, dismantle, repurpose, sort and process.

To this, a further stage is added that captures the important role played by industry and public actors in setting ambitions and standards for the built environment. This stage, which sits outside of the value chain, greatly influences attitudes to building projects that, in the linear economy, are typically concerned with ensuring compliance while limiting costs up to the point of delivery. For the purpose of skills mapping, roles associated with governance are integrated within the planning phase.

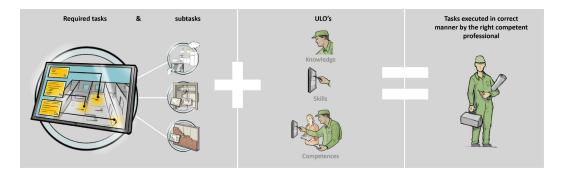
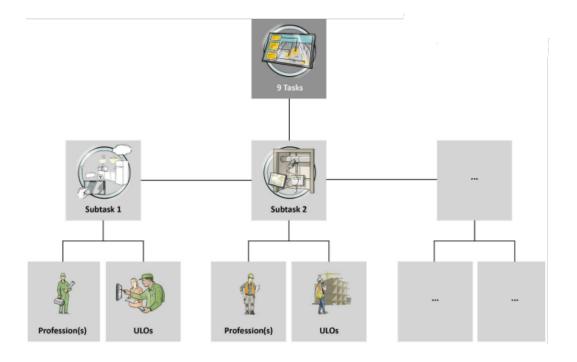



Figure 1: Overview of the methodology

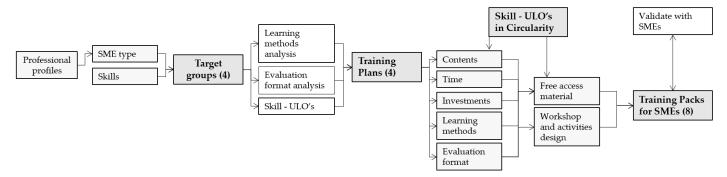

To account for differences in naming conventions for job titles across countries and companies, the work builds on previous EU projects such as PROF/TRAC [14], Construction Blueprint [18] and Train4Sustain [19] to define different work-fields and the reference professions and job roles within these. The different reference professions and trades have been plotted [Table 11: Appendix A], for the different circular interventions across the five stages in the value chain. It is important to note that self-employed workers in the construction value chain and those working in SMEs that share the same reference profession or trade with their counterparts in larger firms may adopt similar tasks. Across multiple stages in the value chain tasks are conducted by specialists or operational staff in larger firms or are contracted out on larger-scale projects. For example, a carpenter on a small renovation project is likely to be responsible for procuring the materials to carry out their work while also being responsible for dealing with waste materials. On a larger project, the procurement of materials and waste management may instead be handled by specialist staff.

Figure 2: Overview of the results of circular construction task-based qualification framework - Task and subtasks

The framework is based on the eight Key Elements of the circular economy [15], both the general framework and the applied to MGRFIE. The eight Key Elements consist of 25 more specific strategies. For these 25 different circular strategy groups, the professions, trades and roles that are involved with implementing each strategy have been mapped across five stages of the value chain: Plan, Procure, Construct, Operate, and End of Service Life. This serves as the basis to provide an overview of the different roles that are required to implement such a strategy. The result of all of this is a set of archetypical interventions that improve the energy, materials, water, waste and management performance of a building while applying circular key elements (related with each profession). The framework also has then been applied to circular strategies relating specifically to MGRFIE, including strategies evolving around energy efficiency. Structured interviews with relevant external stakeholders has been the main form of validation along with close collaboration with relevant experts from across the BUS-GoCircular project consortium.

2.3. Training Plans and Packs for SMEs

SMEs training in circular economy approaches and methods can support the integration of the circularity into the construction industry by fostering new skills. As previously outlined the enabling elements of the Key Elements Framework [15] *Rethink the Business model, Design for the Future, Collaborate to Create Joint Value* and *Strengthen and Advance Knowledge* are key to supporting change and are elements SMEs can relate to. Moreover, with these new skills the SMEs themselves can generate new business prospects and avail of new opportunities could create new professional or SMEs profiles required for increasing the circular construction demands.

Once the skills gaps [9] have been detected and the General Task-based Qualification Framework [8] have been developed, the application of this framework transfers to training plans (TPs) for SMEs [12] workforce (Self-Training Packs). For SMEs, training plans are designed to achieve at least a basic knowledge on circularity in construction on these required competences. The TPs can be adapted to the needs and possibilities of each company as they are structured by profile, stage involved or speciality. They are also divided into independent modules that can be trained separately. In the second stage, these training plans, modelled on SMEs profiles groups, will be expanded into training packs adapted to the countries participating in the project. These are made up of free access material to be implemented autonomously in the SMEs (self-directed). These also include activity proposals, such as site visits, workshops or product demonstrations, in addition to the training material based on case studies.

To design a training pack for SMEs, the methodology has been:

- 1. Relate the worker profiles (per BUSGoCircular skills mapping [9]) to relevant SMEs.
- 2. Find the target groups and their special needs in a training plan.
- 3. Discover the learning methods best suited to each professional profile, each skill to be trained or what free access material is available. Time, facilities and investment requirements of SMEs will also be considered.
- 4. Identify the appropriate evaluation approach for SMEs.
- 5. Develop a workshop methodology for Training Plans focused on practical profiles.
- 6. Collate the Training Plans: providing the contents, methods, timing and evaluation for achieving at least a base knowledge on circularity.
- 7. Based on these Training Plans, develop Training Packs designed to be selfdirected (materials and activities).
- 8. Validate Training Packs through focus groups of SME at a national level using pre or post course evaluations.
- 9. Update plans depending on evaluation results through focus groups of SMEs at a national level.
- 10. They will be published in open access for dissemination. Available in February 2024.

3. Results

3.1. Skills Gaps and Skills Mapping

While identifying relevant professions in step 2 of skills gaps and mapping, it is vital to ensure that the whole construction process is considered and all construction workers included in this journey towards a more circular construction sector. Among the many professions we identified, we first looked at roles that have existed within the construction industry for centuries such as Architects, Engineers, Bricklayers, Plasterers, Carpenters and many more. These are often the most common professions and collecting data was, in most cases, (particularly for Architects, Engineers and Sustainability Consultants) relatively straight forward. We found that collecting data from on-site workers was considerably more difficult depending on the country as they often can be more difficult to reach due to the kind of work they carry out, this is something we have also highlighted throughout our research. It is important to also include Policy Makers, Financial Managers, Project Developers and a number of other pre-design phase professionals within our research as these professions are a vital part in achieving our climate action goals and in creating legislation and requirements that support and enforce the circular economy. Finally, have been included several new or emerging professions that we also pinpointed as vital in bridging the current gap. Some of these professions include Green Public Procurers (GPP), Demolition or Deconstruction Auditor, Green Roofer and Repair and Maintenance Operatives. Again, collecting data in these areas was difficult as some countries do not yet have established professionals within these roles.

Concerning the interviews conducted for mapping these skills gaps, we received varied levels of feedback from the focus groups. Some examples of this are; predominantly white collar workers from Croatia and blue collar workers from Spain while information was difficult to collect from Hungary. We also have an imbalance in feedback information based on certain professions, as an example, 23 Civil Engineers filled out our future skills mapping while only 2 green roofers completed this. This was a limitation of the method, consequently we had to rely on expertise to further validate the process. It is assumed that some data is more representative in some countries and construction phases than others.

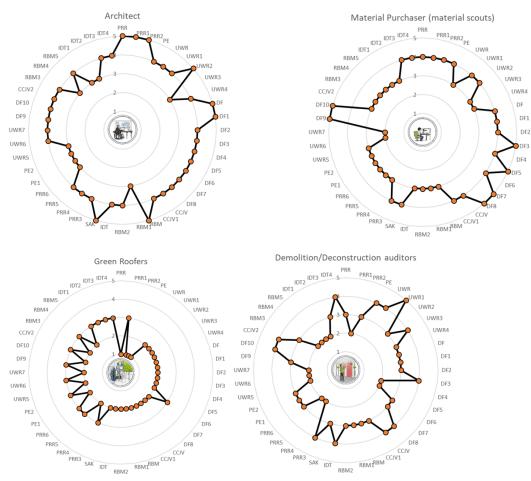


Figure 3: Future Skills detected by profession.

After collating the data, we have created a European skills level for each of our professions by creating a mean of all the results, without weighting by country. We brought in experts (External Advisory Boards, EABs) to help us to remove any outliers and resolve any remaining issues that existed due to the high variance and volume of the data and unique challenges this kind of data brings with it. The EAB was composed of 182 companies and institutions, including training providers (VET and CPD), universities,

government representatives, industry professionals and more, of the seven countries involved and 27 at EU level. This method has been beneficial as it has allowed us to speak with not only experts in the field of Circular Economy but also professionals that are not yet familiar with this work. Following the final validation of the Current and Future skills levels we created skills graphs. In the graphs (Figure 3), the different skills analysed in the surveys are distributed around the circle and the skills levels detected are shown on the axis (radius of the circle). The orange points mark the future skill level for each skill analysed.

When we isolate the skills we notice another pattern, while some of the skills are marked as being outside the scope of knowledge for a given profession, most indicate a gap of some description. We can see from the research that there are variations depending on the countries. Valuable information has been produced at national level across Europe and will feed into the European wide framework reinforcing our premise that a cross sectorial skills programme needs to be created for training to ensure that the skills level is similar across Europe. We have also noted that professionals tended to rate their current skills levels as higher than our External Advisory Boards (EAB) suggested, in some cases a worker may have stated that a current skills level may be 5 and the future skills level required is 4. While this was rare it was often noted that this person may already be an expert in that skill or that they simply exaggerated their skills level. This, however, was not the case with future skills levels according to our EABs as these were generally rated fairer, possibly due to the fact that professionals were not rating their own skills but rather industry levels. The full list of future skills graphs can be seen in complete here [9].

3.2. Task-based Qualification Framework for Circular Skills in Construction

Within the BUS-GoCircular project, a general task-based qualification framework [16] was developed for circular skills in construction, meaning a set of tasks and corresponding learning outcomes were mapped and connected to relevant professions throughout the construction value chain. By doing so, the project offers a practical interpretation of the Key Elements of the Circular Economy, made applicable to the construction sector.

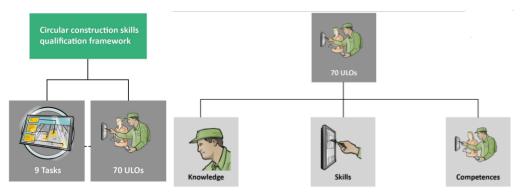


Figure 4 (left) 5 (right): Circular construction skills method

By using the methodology of developing a task-based qualifications framework, the general circular construction skills qualification framework [16] was adjusted to the

applied context of MGRFIE [10]. The resulting qualification framework consists of a list of 9 tasks with 60 subtasks. Each subtask is linked to corresponding Unit of Learning Outcome (ULO) numbers and relevant professions, with a total of 70 ULO's. ULO's, then, consist of a set of competences (70), skills (52), and knowledge components.

Table 3: Overview of the 9 tasks of the circular construction task-based qualification framework.

Tasks	General Task-based qualification framework			
1	Prioritise regenerative and efficient use of resources			
2	Design for the future			
3	Assemble/construct for the future			
4	Rethink the business model			
5	Stretch the lifetime			
6	Use secondary resources			
7	Incorporate digital technology			
8	Collaborate to create joint value			
9	Strengthen and advance knowledge			

Table 4: General Qualification Framework

#	Subtask	ULO Nr.	Profession(s)
1	TASK: Prioritise regenerative and efficient use of resources	81	
1.1	Design with bio-based, non-toxic and/or non-critical materials	1, 2, 3, 4	AR, MS, ME, CE, EE, UP, AM, C
1.2	Replace energy sources with less impactful alternatives	8	AR, EE, EL, MS, PM
1.3	Apply suitable energy efficiency measures to the building design (taking	9	AR, EE, EL
	into account building purpose and climate)		
1.4	Generate energy from renewable sources - e.g. solar, sustainable	10	AR, EE, EL
	biomass		
1.5	Apply measures that replace freshwater with less impactful alternatives	6	P, Gd, R, EI
1.6	Enact water efficiency measures	7, 15	P, Gd, R, EI
1.7	7 Source bio-based, reusable, non-toxic and non-critical materials		MS, PM
		36	
1.8	Source local and lightweight materials	74	MS, PM

The organisation of the applied circular construction skills qualification framework is shared with the general framework, however, in this case there are 84 ULO's. The applied qualification framework can be used in the same way as the general framework: to guide upskilling in order to move towards a circular construction sector, and to inspire professionals and companies to take the next, concrete steps in their journey towards circularity. The applied framework helps in finding or developing the right training for professionals and craftspeople who (want to) work with roofs, façades, and interior elements specifically. Consequently the applied framework has given insight into the replicability of the general framework to a context that represents a highly complex line of work.

ULO Nr.		Skills		
1	Design roofs, façades, and interior elements with bio-based	Select bio-based materials for the roof, façade or inner		
	materials as an alternative for conventional construction	wall		
	materials	Consider the purpose of the building and the context of		
		the entire building solution, as well as construction		
		requirements		
		When biobased materials are not an option, select proper		
		low impact materials		
		Integrate use of the Material Circularity Indicator (make		
		sure it is not higher than X)		
		Ensure use of materials that have little to no volatile		
		organic compounds (VOC) emissions		
2	Enact measures that optimise material use to strive for	Apply measures that optimise material use to		
	material efficacy	multifunctional green roofs, façades, and interior		
		elements		
		Combat underutilisation or surplus of materials by		
		sharing products or assets and optimising their use		
3	Design with non-critical raw materials as defined by EU	Avoid, insofar as possible, use of critical raw materials as		
		defined by EU while selecting materials for		
		multifunctional green roofs, façades, and interior		
		elements		
4	Design with non-toxic materials as defined by EU	Avoid, insofar as possible, use of chemicals as defined by		
		EU while selecting materials for multifunctional green		
		roofs, façades, and interior elements		
5	Design with products and materials that can be easily	Recognise and select materials that can be easily reused		
	reused or recycled after use	or recycled after the building's end-of-lifetime		
		Recognise and avoid composites or other mixed		
		materials that are then hard to recycle/repurpose		

3.3. Training Material

Utilising the findings of our skills gap analysis [9], the resulting qualification framework [10] and freely available materials collected throughout the project, a bank of training material which is intended to be used by trainers within the construction industry

in order to upskill their trainees in circular practices, was created to be shared on the BUSGo-Circular website and act as a basis for future training programs. 11 modules [20] were created to ensure that all 52 skills from most of the ULOs (70) and 38 professions were covered for.

Table 6: Overview of modules and topics available in the materials for trainers.

Module Title	Module Topics		
Module 1: Circular Economy and its Implementation in the Design and Construction Sector	The Circular Economy and its Application in the Construction Sector - Introduction to the Circular Economy - Circular Economy in the Construction Sector - The Key Elements Framework		
	Multi-functional Green Roofs Facades and Interior Elements and the Circular Economy - Introduction to Multi-functional Green Roofs Facades and Exterior Elements - Types of Green Roofs - Benefits of Multi-functional Green Roofs Facades and Exterior Elements		
Module 2: Implementing Circular Practice in	Modular and Adaptable Design and Construction		
the Design, Build and Deconstruction Phase	Design For Disassembly (DfD)		
of Construction	Product-as-a-service (Paas)		
	Design and build Multi-functional Green Roofs Facades and Exterior Elements		
Module 3: Bio Based Material Implementation	Bio-based Materials		
and Application in Circular Economy	Existing Bio-based Materials and Techniques: Earth, Timber, Straw, Wool, Hemp, Stone		
	New Bio-based Materials and Techniques: Mycelium, Biochar, Bio- based Concretes and Cement, Bio Plastics, 3D-Printing		
	Bio Based material opportunities for Multi-functional Green Roofs Facades and Interior Elements		
Module 4: Upgrades and Maintenance for	Repairs and Maintenance		
Sustainability in the Design and Construction	Upgrades and Retrofits		
Industry	nZEB, Passive Houses and Environmental Certification Schemes		
	Sustainable Neighbourhoods		
	Upgrades and Maintenance for Multi-functional Green Roofs Facades and Interior Elements		
Module 5: Water and the Circular Economy	Water in Construction: Water and the Circular Economy		
	Water and Sustainable Use in Construction		

	- Sustainable Drainage Systems - Rainwater Harvesting			
	Water Management Plan			
	Application for Multi-functional Green Roofs Facades and Interior Elements			
Module 6: Energy and the Circular Economy	Energy in Construction: Energy and the Circular Economy			
	Energy and Sustainable Use in Construction: Renewable energy sources			
	Application for Multi-functional Green Roofs Facades and Interior Elements			
Module 7: Digitalisation and Material	Digitalization in Design and Construction, BIM			
Passports in the Design and Construction	Drones			
Sector	3D Modelling			
	VR (Virtual Reality)Headsets			
	Exoskeleton Suits			
	3D Printing and Prefabrication			
	Digital Twins			
	Material Passports			
	Application for Multi-functional Green Roofs Facades and Interior Elements			
Module 8: Material Impact in Relation to the	Material Impact Reduction			
Circular Economy	Green Public Procurement			
	Life Cycle Analysis			
	Life Cycle Costing			
	Level(s)			
	Application for Multi-functional Green Roofs Facades and Interior Elements			
Module 9: Waste as a Resource in Circular	Waste as a Resource and Implementing material reuse			
Economy	Digital marketspace			
	Material Banks			
	Application for Multi-functional Green Roofs Facades and Interior Elements			
Module 10: Deconstruction as an Element of a	a Pre-demolition survey			
Building Life	Circular Deconstruction			
	Urban mining			

	Application for Multi-functional Green Roofs Facades and Interior Elements		
Module 11: Circular Economy Across the	Collaboration and Knowledge sharing		
Value Chain	Integration and implementation of Circular Economy in the workplace		
	Regulation and Definition		
	Multi-functional Green Roofs Facades and Exterior Elements		

3.4. Training Plans and Packs for SMEs

The BUSGoCircular Fundamentals Training Pack's are developed for workers unskilling in circularity or low-skilled workers who are often faced with the design or installation of systems related to the circular economy. These installations can be required in certain cases by European regulations or by the customers themselves. Without training, unintentional errors may be caused in the application of these systems and hamper further progress towards a more circular construction sector.

To identify the target groups for these training packs, construction sector SMEs and the professionals involved within them were categorised according to their participation in the five main stages in which a construction project is developed, being: Plan, Procure, Construct, Operate and End of service life [17]. They were also divided into two categories of workers: blue-collar workers who are manual labourers often with vocational training (trade school) or no formal education and white-collar, with technical, administrative, or management roles in jobs and more regulatory education degrees like university. For example, SMEs like architecture/technical/public works/interior design offices are in almost all stages except construct and comprise of white collar workers but building/construction companies can be present at all stages except the plan/design stage having both blue and white collar profiles in their staff. On the other hand, companies that are only in the construct and operate stage (practical skills) comprise mostly of blue collar workers like in renovation (masonry, carpenter, plumber, etc.), maintenance, waste management or installations companies but real estate investors include only white collar profiles in the plan stage. The entire classification table of SMEs can be seen below.

Table 7: SMEs involved in the construction sector classify in worker profiles and stages of the built environment.

PROFILE		PLAN	PROCURE	CONSTRUCT	OPERATE	EoSL
White	GENER	Architecture/public works	/technical architecture or		Architecture/public	works/technical
-collar	AL	interior design offices			architecture or interi	or design offices
			Building company			
					Real estate	
		Real estate investor-			investor- Project	
		Project developer			developer	

1	1		l -			
		Urban-planning offices /				
		Administration(governa				
		nce)		1		
	SPECIA		Materials companies /			
	LIST		producers			
			Industrial			
			intermediaries			
			suppliers / distributors			
			Insurance providers			
			Housing software			
			companies			
		Landscape offices				
		Sustainable consulting			Sustainable consu	ulting or engineering
		or engineering			(including specialist	s in energy, materials, LCA)
		Engineering office			Engineering office	
		Specialist architects' offic	ces: façadists, structural			
		engineers				
		3D makers office				
Blue-	GENER		·		Maintenance	
collar	AL				company	
			Building company			·
	SPECIA					Demolition companies
	LIST					(usually building
	LIST					(usually building companies)
	LIST					
	LIST					companies)
	LIST					companies) Waste management
	LIST					companies) Waste management companies
	LIST		Electrical installation cor	npany		companies) Waste management companies Waste treatment and
	LIST		Electrical installation compa			companies) Waste management companies Waste treatment and
	LIST			any		companies) Waste management companies Waste treatment and
	LIST		Water installation compa	any bany		companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp	any vany y	rstems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any vany y	/stems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any vany y n specific material sy	/stems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any oany y n specific material sy Masonry	/stems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any Pany y n specific material sy Masonry company	/stems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any any y n specific material sy Masonry company Carpenter	vstems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any any y n specific material sy Masonry company Carpenter (wood)	/stems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any any xany y n specific material sy Masonry company Carpenter (wood) company	/stems	companies) Waste management companies Waste treatment and
	LIST		Water installation compa HVAC installation comp RE installations compan	any any vany v specific material sy Masonry company Carpenter (wood) company Specific	/stems	companies) Waste management companies Waste treatment and

	gardener)	
	company	

We also observe some companies cover multiple stages. These companies incorporate from specific profiles of professionals to a wide variety in the same company. There are companies that are only involved in the initial phases of the project, such as planning, but need to have professionals with cross-craft knowledge to deal with all the subsequent stages they must design, even if their companies are not directly involved in them. Such packs will have to be more comprehensive and cover more building stages in a generic way. Blue collar workers tend to have more specialised companies and professions, making it easier to provide them with subject-specific training packages making it important to design more defined packs. These packs may incur some costs due to having to include tailored workshops for these trades.

For professions like sustainability consultants, who may need a higher level of knowledge in specific content on circularity (deconstruct, waste management,etc.) it is important to combine more specific detailed modules with short generic ones containing circular economy principles in construction. This last one will act like a common introductory module and will be recommended as an introduction in all training packs in order to acquire a shared knowledge base across all trades/professions. After this analysis, we conclude with the following target groups [Table 8].

Table 8: Training Plans for each target group. Future packs will be developed based

 on these plans to cover all target groups if possible.

TRA	INING	PLAN	Stages	Profile	SMEs	Modules	DURATION of	EQ	FUTURE
PRO	POSAL (TP)						all modules	LEVE	PACKS
								L	
TP1	STARTING		Plan and	lWhite-	-Architecture/public works/technical	10	24	3	4 Pack (CZ,
	CIRCULARIT	Υ	Procure	collar	Architecture or interior design offices				ES, EU, IE,
					- Building company				HR)
					- Real estate investor- Building promoter				
					(Procure stage part)				
					- Urban planning offices - Landscape offices				
					(only some modules)				
					- Specialist architects' offices: façadists,				
					structural engineers				
TP2	CONSTRUCT	ION	Construct	Blue-	- Company specialised in specific material	10	55	3	2 Pack
	WORKS	IN		collar	systems -installers				(BG,HU)
	CIRCULARIT	Y			- Masonry company				
					- Carpenter (wood) company				
					- Another specific professions (welder,				
					plasterer, plumbers, etc) company				

	ĺ	1		- Maintenance company		l		
				- Building company				
TP3	CIRCULARITY IN	Construct		- Electrical installation company	10	42	3	
	INSTALLATIONS	and operate		- Water systems installation company				
				- HVAC installation company				
				- RE installations company				
				- Engineering office				
				- Maintenance company				
TP4	ADVANCING IN	Plan,	White-	- Sustainable consulting or engineering	22	50	4/5	1 Pack (NL)
	CIRCULARITY	Procure	collar &	Architecture's office				
		and EoSL	Blue-	- Public management/ governance				
			collar	Engineering office (some modules only)				
				(Procure and EoSL part)				
				- Demolition and/or building companies				
				- Waste management company				
				- Material producer				

The first target group is composed of white collar workers involved in mainly plan, procure and EoSL stages and the content provided is an initial solid base of knowledge in shorter packs. The second and third group focuses on blue collar workers involved in the construction and operation stages with content more specific and practical for their profile. The last group provides both workers profiles in plan, procure or EoSL stages with more in depth and specific content in a longer pack. For these target groups, four training plans have been designed with the common introductory module of the eight key elements of circularity. It should be highlighted that these fundamental training packs are focused on acquiring introductory and broad concepts. The diagnostic assessment start part is considered before the of the pack, if the enrollment and initial application BUILD UP Skills advisor-app skills test is done in the [21].

Once we identified what the TP's needed to cover and mapped most of the profiles in the construction sector, we analysed the training methods that best suited each target group and skills to be trained. We also considered the time and investment requirements of SMEs and the free access material available to then elaborate the packs. The results must be attractive, simple, low-cost and accessible training. There are a variety of teaching approaches which we have classified into three main methods: digital, face-to-face education and hybrid. We assessed the main advantages and disadvantages of each one. For example, the digital method we call *Information Pills* [22] which are flexible (being able to do it in small daily time like in breaks), asynchronous (no need for all the workers to coincide in time, individual basis), repeatable, dynamic (mainly video format, visual presentation, testing online tools or podcast) and highly economical (free access material selected online). *Information or training pills* are short (3-10 min.) messages of specific concepts where the most essential points are summarised in a precise way in audiovisual format that capture the attention of students. This format however, makes it impossible to have direct feedback or interactions, is less customised and usually contains more generic content. Even so, rapid learning is often the fastest way to train people with busy work schedules. The formats considered will depend on the material found but will prioritise videos. An introductory microlearning course available in English and Dutch languages [23] is also included in the digital methods chosen. Both digital methods will be carried out individually.

It must be recognised that a number of competences and skills, particularly in construction are practical, mainly in bluecollar profiles and these cannot be omitted from the packs. In total three methods were selected: short product demonstrations and two types of workshops. The idea with product demonstrations of 30 mins is also to introduce rapid learning, but instead of videos/pills, utilising products from material suppliers that promote circularity face to face, "touching knowledge". It consists of a visit from a supplier of materials or circular products who will give a free demonstration and explanation of their product, if possible with real samples to touch, in exchange for the publicity they get for their product. An alternative option is workshops that contain practical knowledge and proactive activities but require more effort, planning (logistics), time and money than digital training or shorter demonstrations. The methodology of these two workshops have been developed within BUSGoCircular [12]; one consisting of a demonstration by constructing one construction technique or HVAC systems that promotes circularity and a practical exercise for participants and the second consisting of an internal competition within the company, in which a problem is proposed and has to be solved in different groups previously formed. The problem posed can be a real company problem related to the circular economy. All the face-to-face methodologies introduced will be in groups and all except one are based on project based learning.

Finally, we have prioritised providing knowledge by case studies because it is a method in which theoretical concepts relate to existing real-life examples and are not limited to the presentation of the facts, being more direct and attractive material for these initial levels or practical profiles. The learning methodologies included are mostly project-based learning, micro-learning (problem-solving), learning by doing, gamification and classical learning. The training methods chosen for the packs are shown in the following table.

TYPE METT GY	OF HODOLO	AIM	SKIL LS	FORMAT	ſ		DU RA TIO N	LEVE L	EVALUA TION FORMAT	PROFII	LE		COST	COMME NTS
DI GIT AL	Microlea rning courses	Modul es (sever al	Theo retica l and conce ptual	Present ations with interact	Self lea d	Indiv idual	6 -7 h	Initial - Inter media te	Quiz - gamificat ion	Whit e / blue collar	All stages (more Plan, Procure and EoSL)	Gen eral	Medium (one material inversion or	Introducin g cases study (real

		ULO's)		ive quizzes									maintenan ce of the web)	applicatio ns)
	Informati on pills	ULO	Theo retica l and conce ptual	Videos, podcas t	Self lea d	Indiv idual	3-10 min	Initial - Inter media te	-	Whit e / blue collar	All stages	Gen eral / Spe ciali st	Low (videos free access already online)	More effective with cases study - applicatio ns
	Worksho ps- practical	Modul es (sever al ULO's)/ ULO	Practi cal skills	Demon stration + constru ct prototy pe	Tut or lea d / Self lea d	Grou p	4 h	All	Practical Exercise	Blue collar	Constructi on and operation stage	Spe ciali st	Elevate (materials, tutor, time: sponsors?)	They can be cheaper if they are contracted by various SMEs together
FA CE	Worksho ps- SME internal contest	Modul es (sever al ULO's)/ ULO	Mana ge - Desig n and plan	Contest (divers e)	Tut or lea d / Self lea d	Grou p	2 -4 h	Inter media te	Presentat ion Exercise	Whit e / blue collar	All stages	Gen eral / Spe ciali st	Medium (tutor, time: sponsors?)	Cheaper if already there is a specialist inside the SME
TO FA CE	Visits/ Visits a case study with "detectiv e game"	Modul es (sever al ULO's)	All	Explan ation Discov er the answer s in the buildin g (game)	Tut or lea d / Self lea d	Grou p	1:30 - 2 h	All	Photos, draws, quiz	Whit e / blue collar	All stages	Gen eral / Spe ciali st	Elevate (transport, time, maybe tutor)	Lower if organised in your company buildings or without transport
	Short demonstr ation of circular products or materials	ULO	Desig n and plan	Oral and Touch Demon stration	Tut or lea d	Grou p	45 min	All	Oral questions	Whit e / blue collar	Plan, procure and constructio n	Gen eral / Spe ciali st	Low (publicity of material/p roduct in exchange)	

	Informati on pills (video) + discussio n with an expert	ULO's	Theo retica l and conce ptual - Desig n and plan	Mix	Indiv idual / grou p	Vid eos + 1 h	All	Oral questions	Whit e / blue collar	Plan, procure, operate and EoSL stage	Gen eral / Spe ciali st	Medium (expert tutor)	
HY BRI D	Digital packs + Trivia quizzes	Modul es (sever al ULO's)	Theo retica l and conce ptual	Mix	Grou p	-	All	Quiz (question s)	Whit e / blue collar	Plan, procure, operate and EoSL stage	Gen eral / Spe ciali st	Medium (trivia, time)	Lower once the trivia quizzes are created
	Digital packs + SME's Mentorin g	Modul es (sever al ULO's)	All	Mix	Indiv idual	-	Initial - Inter media te	Followin g of the mentor	Whit e collar	-	Gen eral / Spe ciali st	Low (because is digital pack and mentoring is by volunteeri ng)	

For modules in TP1, Starting Circularity, as it is entry-level content and less practical profiles, have included mostly digital methods and consequently are more economical. Instead modules in TP2 and TP3, Construction and Installations works, digital and face-to-face methods have been combined due to the specific characteristics of practical profiles; implementing workshops, tutorials and product demonstrations along with some theoretical content outlining the main strategies of circularity. Due to this, they are less economical. Finally, the modules included in TP4, Advancing Circularity plan, hybrid methodologies have been considered in some cases due to the need for specific knowledge with a one-time tutor in some punctual content. This results in a variable economic investment depending on the activity and time required with the tutor. All the training plans developed recommend a visit to a case study when finalising some modules.

The evaluation recommended utilises a qualitative methodological approach, as the intention is to implement competences and skills of the company so, at first, no certificates are granted. In the future, it would be interesting to relate the TP's modules to existing European Qualification Framework (EQF) levels to create certifications and micro-credentials. Digital training doesn't have a direct evaluation, however, it is highly recommended to conclude the modules with a site visit to a building implementing a *detective game* that makes it possible to evaluate the participants verbally determining whether the participant has acquired the knowledge or not. This *Visiting a case study with*

detective games evaluation consists of searching for answers to previously prepared questions by examining the building visited (30-45 minutes). Questions must relate mainly to construction techniques or circular economy strategies implemented. The first group to answer all questions correctly, *"win"*. To reduce the cost of this activity for SME, they may choose buildings constructed or designed by the company themselves. Learnings can be achieved even if it is not a good example of circular construction by identifying ways to make the building more circular. Usually, training related to the specific site on which the blue-collar professionals are currently working is the most efficient and impactful. In the practical workshops, there will be a formal and continuous evaluation with a final group presentation to evaluate what has been learnt while doing the practical exercise and to reinforce those aspects that have not been sufficiently assimilated. This assessment is possible due to the tutor-led, face-to-face format.

Independently of the packs, it is recommended to consider the evaluation of the acquired knowledge with gamification to avoid the possible lack of motivation of the workers and promote an engaging and fun experience. The introduction of achievement insignias/badges for workers from the company or rewards related to the module (i.e. paid short courses of specific training), the incorporation of a ranking system or points published in a company newsletter, appearing on the company's Instagram profile or include a *"serious game"* methodology like trivia-type questions setting time limits for answering, are some applicable examples of both qualitative evaluation and motivation to carry out these TPs attractively within SMEs. In fact, some gamification proposals for each module are already incorporated in the training plans designed.

In parallel, the index of context of the training plans have been developed based on the Circular construction task-based qualification framework explained in *3.2. Task-based Qualification Framework for Circular Skills in Construction*. Each module of the TP will correspond to the main competencies and skills of the framework and the corresponding ULO's will be linked for this content. The structure of the modules for the training plans are divided into stages of the construction process: Plan, Procure, Construction, Operate and/or EoSL [17]. Then, it is divided into the three main resources or flows to which it relates: Materials & waste, energy and water. Within that distribution, the TP is organised in modules. It is recommended not to divide but select and combine the modules to tailor the plan for your specific objectives and interest. We aimed to create flexible TPs. Meaning there is no sequence to be followed for the modules and each can be completed independently, however, each module contents must be completed from beginning to end. The exception is the common introductory module of the eight key elements of circular economy in construction that is recommended to begin each pack. Some other modules will also be considered essential for particular profiles.

After this methodology analysis, four complete training plans for the four target groups have been designed to guide the creation of future packs; defining: related profiles, appropriate index of content and proposed training methods for each one, minimum time, the evaluation approach and the qualitative economical inversion. The method proposed could be changed when creating the packs if no national available materials are found for the specific content. Some materials will need to be created to configure the pack, such as face-to-face methodologies like workshops, *detective games* and trivia quizzes. The recommended visits could be changed to case studies in video format or similar, if there is not enough economical resources to develop in the SMEs.

Below is a part of the example developed for the TP1, Starting Circularity. All the developed TPs in detail are here [12].

Table 10: Extraction of the Training Plan 1 proposed - Starting circularity. [Table 13:

 Appendix C]

STARTING CIRCULARITY		TP1		24 hours		
Contents	ULO's	Format for contents	Training methodology	Minimu m Time	Cost qual.	Eval uati on
COMMON MODULE						
Module 1. INTRODUCTION TO CIRCULAR ECONOMY IN CONSTRUCTION				6 h	€	
8 Key principles of circular economy	All	Reading material + quizzes	8 Microlearning courses			
Circularity definition and different flows: Materials, energy, waste and water	51	Videos /schemes	Information pills	5 min		
PLAN						
MATERIALS & WASTE	-	-		6:20 h	€€	(2)
Module 2. STRATEGIES OF CIRCULAR DESIGN IN MATERIALS				5:40 h	€€	
Main strategies related with materials in circular construction	51	Reading material	Information pills			
DESIGN TO CLOSE THE LOOP OF MATERIALS: 1 Case study to chose from renewable materials (bio-based): wood structure, cork exterior isolation, straw bricks, rammed earth or bio "concrete"(hemp)	1, 2, 3, 4, 36	Video	Information pills	5 min		•
DESIGN TO CLOSE THE LOOP OF MATERIALS: 1 Case study : recycled aggregates in concrete, recycled cotton isolation, steel, aluminium windows, etc.	1, 2, 3, 4, 36	Video	Information pills	5 min		
DESIGN TO CLOSE THE LOOP OF MATERIALS: 1 Case of study in reuse of materials in national level if possible: close loop, high quality reuse	1, 2, 3, 4, 36	Video	Information pills	5 min		
DESIGN TO REDUCE IMPACT: LOCAL, LOW IMPACT AND/OR NON-CRITICAL MATERIALS: 1 Case study of low impact materials: at least one material not repeated and preferably biobased and/or local	1, 2, 3, 4, 36	Video	Information pills	5 min		
DESIGN TO REDUCE IMPACT: NON-TOXIC MATERIALS: Types of non-toxic construction materials (alternatives to anti-flame retardants used on wood, low formaldehyde panels, COV's free paints, etc)	4	Video	Information pills	5 min		

	1	1	Γ	1	T	T
DESIGN TO REDUCE WASTE IN SITE AND IN EOSL: 1 Case of	26	Video	Information pills	5 min		
products demonstrations of modular and/or prefabricated (dry						
solutions) to deconstruct						
DESIGN TO REDUCE WASTE IN SITE AND IN EOSL: 1 Case study of	45	Video	Information pills	5 min		
renovation (showing savings versus NB) + Subsides or incentives EU or						
national.						
2 Products demonstration	1, 2, 3, 4,	Visual	Demonstration	3 h		
	26, 36	presentation	of circular			
			products			
Maintenance plan example	11, 17,42,	Reading	Information pills	extra ma	terial	
	64, 68	material				
1 Visit with detective game to a different case study (from list)	1, 2, 3, 4,	Visit + quiz	Visit + "detective	2 h		ø
	26, 36, 45,		games"			
	64, 68					
Module 3. TOOLS TO SUPPORT CIRCULAR DESIGN IN MATERIALS				40 min	€	
How to read an EPDs	36	Video	Information pills	5 min		
2 Cases study: two EPD's to compare (one high impact like plastic	36	Reading	Information pills	10 min		
element and other low impact)		material				
Material Circularity Indicator	1	Reading	Information pills	5 min		
		material				
How to read material passports and its use	47	Example	Digital / self-led	5 min		
2 Cases study: examples of LCA assessment (one new building, other	25	Videos	Information pills	10 min		
renovation)						
BIM modelling applications to building to aid circular applications	57	Video	Information pills	5 min		
ENERGY				3:30 h	€€	0
Module 4. DESIGN TO REDUCE ENERGY DEMAND				3:00 h	€€	6/ (A
1 example with climate consultant analysis of 2 different climates and	9,1	Video	Information pills	10 min		
main strategies of psychometric chart			1			
1 case study with design strategies for hot climates or hot season (can	9,10, 56	Video	Information pills	10 min		
be historical examples)	.,,		I			
1 case study with design strategies for cold climates or cold season (can	9,10, 56	Video	Information pills	10 min		
be historical examples)	,,_,, _ ,		r			
1 Visit with detective game to a case study with cool and hot	56, 63	Visit + quiz	Visit + "detective	2 h		ø
bioclimatique strategies and PV panels	50,05	visit (quiz	games"	211		
Module 5. TOOLS TO SUPPORT ENERGY EFFICIENT DESIGN /			games	30 min	€	
DIGITIZATION				50 11111	C	
	26	Video	Information mill-	15 min		
Software for energy simplify models (National energy certifications,	20	viueo	Information pills	15 min		
CE3x, etc)	E 4	E	Distribution 1 14	15 .		
1 practice with Tools such as R10 from IVE for renovation, triplea-reno	54	Exercise	Digital tool self-	15 min		
to get some initial advice			led			
WATER				30 min	€	@ •
						2

Module 6. DESIGN TO REDUCE WATER CONSUMPTION				10 min	€	
1 Case study (national level) of Harvesting greywater and rainwater	6,7	Video	Information pills	3 min		
1 Case study (national level) of purify water with Plant-based biofilters	7	Video	Information pills	2 min		
1 Case study (national level) of draining pavements for public spaces or	6, 27	Video	Information pills	5 min		
green roofs/facades						
Module 7. TOOLS TO SUPPORT WATER EFFICIENT DESIGN /				20 min	€	
DIGITIZATION						
1 practice with tool with tips for reducing water consumption (Drive 0)	6,7, 27	Exercise	Digital tool self-	20 min		
			led			

4. Discussion and conclusions

The skills mapping identified skills gaps throughout the construction sector. It is apparent through this research that gaps must be bridged within each profession depending on the skills that most relate to them for a more circular industry. It is also important to note that while not all professions must be an expert in every skill it is vital that every skill must be accounted for within any construction project. The project has identified an overview of the situation in Europe however as the surveys were carried out at a national level initially there is data available for each of the partners involved in the project. The volume of this data varies depending on the country and in some cases many professionals are missing within that country. For the national situation to become apparent and useful further research must be carried out to build on this existing work. The results of this skills mapping has allowed professionals to understand the circular skills they will need using the BUS advisor app as well as allowing the BUSgo-Circular team to create task based qualification framework and the training material targeted at filling these gaps.

Both the general and applied circular construction skills qualification framework have multiple purposes. A framework based on 9 tasks was created that is the practical application of the 8 principles and 25 subtasks. These are related to skills, competentes and knowledge resulting in a total of 70 ULO's. Firstly, within the BUS-GoCircular project, the qualification framework was used as a baseline for setting up the Train-the-Trainer and mentoring programmes between professionals, as well as the fundamentals training packs for SMEs. The resulting 70 ULO's in the general qualification framework and 84 ULO's in the applied framework can either be utilised as the basis for creating these programmes or can be incorporated into existing programs where the BUSgo-Circular findings and outputs can create added value. The findings of this work will inform further research carried out on different elements of construction related to circular economy. In the coming months we will continue to carry out further Train the Trainer courses and mentoring programs which will be created and delivered by our trainers throughout Europe, utilising the materials and information collected and shared by the BUSgo-Circular consortium. These programmes will provide more outcomes about the utility of the task based qualification developed. Secondly, the qualification framework will be used for extending the Build Up Skills (BUS)-Advisor app, enriching skills repositories,

and connecting skills and skill sets to relevant upskilling and eLearning opportunities. The availability of a set of general qualifications for circular construction can be used for recognition of skills across countries and develop certificates of professionalism or of micro competencies needed in the sector. In order to test the applicability of the framework to specific fields in construction, it is applied to the subject of MGRFIE.

One of the implementation actions of the task based qualification framework developed has been the Training packs for SMEs that will serve to stimulate the demand for circular skills and practices in the construction sector upskilling the workforce. Four training plans [12] have been created for the target groups detected to guide the creation of future packs, serving also as a basis for other future training developments. These training plans define the appropriate index of content for achieving the basic knowledge on circularity (related to ULO's) and propose the best suited training methods for each one, the minimum time expected, the evaluation approach and the qualitative economical inversion. The best learning methods for SMEs have been detected, the most appropriate being digital formats based on case studies (project-based learning) without being able to avoid, for some imminently practical profiles, the need to incorporate face-to-face methods with practical workshops and site visits (learning by doing). For the digital methodologies it has been considered appropriate to propose qualitative evaluations and for the face-to-face practical ones, a formal and continuous evaluation, being convenient to include in each module gamification either with visits with questions, acquisition of badges or prizes or company trivia quizzes to avoid the possible lack of motivation. The modules and contents have been structured in a way that is easy to understand and flexible to be adaptable to different profiles, or divided according to the needs or time of the SMEs and the limitation of the national materials available. In addition, existing available materials have been selected for the creation of packs, activities have been proposed to serve as qualitative evaluation of the contents and methodologies have been designed for the two proposed workshops (construction techniques and HVAC installation and internal contest for SMEs).

The training packs for SMEs are still under development in the BUSGo-Circular project. Seven self-directed packs adapted to the national level of each country involved in the project will be created in their national language and one at European level. During their elaboration, they will be validated by SMEs in each country involved through interviews and on a larger scale at European level through questionnaires and will be adapted to the inputs collected if necessary, always taking into account the stakeholders of the project. These packs will consist of attractive training material and activities proposals and once completed they will be freely accessible to any company to upskill their employees in the field of circularity in construction. These packs will be published on the BUS-GoCircular website[7], for their desired dissemination and implementation in the countries participating in the project and at a European level.

Training Packs should be developed to incorporate certificates or microcredentials. These actions will increase the attractiveness of the packs. Relating some modules and specially some practical workshops to microcredentials of projects such as BUS League or other existent certificates could be good opportunities for growth. Other options will be to incorporate these key competences developed in the task based qualification framework in current national certifications related to circular practices.

Finally, the project is also rolling out mentoring programs [13] during 2023 and 2024 to offer circular support and guidance between professionals for current and future projects. The method used within this project to map skills gaps within the construction sector in order to understand what upskilling is necessary, is intended to be replicable and should be utilised within other areas of the construction process and sector in future, allowing this method to become a blueprint for other elements of the built environment.

Appendix A

Reference Profession	Enter national name for profession / type of profession	Definition of the professions (proposal, change if necessary)
/ Trade		
Architect	Architect / building designer, project manager, building	Architects investigate, design and oversee the implementation of
	construction manager, director of the execution of the	buildings taking into account functional, architectural, aesthetic,
	works, urban architect, structures' calculist, health and	structural, technical, regulatory, cost and contextual requirements
	safety coordinator, Building Energy Auditor, Building	with due regard to public health and safety.
	Energy Chief Auditor) technical architect	
Civil Engineer	Designer, Mechanical engineer, Electronics engineer,	Designer of materials and structures, considering the limitations
	Electrical engineer, Structural/Building/Installations	imposed by practicality, regulation, safety, and cost.
	engineer, Energy engineer, Management engineer,	Specialisation is possible on topics like construction safety,
	technical engineer	thermal performance, acoustics, building physics.
Mechanical Engineer	Energy engineer, Multifunctional use for solar PV /	Designer of materials and systems for HVAC and sanitary
	Urban wind turbines	equipment, considering the limitations imposed by practicality,
		regulation, safety, and cost.
Electrical Engineer	ICT engineer, Building automation engineer, Sensoring	Designer of power, lighting, data and or communication
	and Building Management Systems	installations, considering the limitations imposed by practicality,
		regulation, safety, and cost. Designer of building automation
		systems, system engineer / system integrator, considering the
		limitations imposed by practicality, regulation, safety, and cost.
Construction	Construction design engineer, building construction	Engineer of the building construction safety
Engineer	engineer, building engineer, engineering support	
	manager, construction project engineer, site engineer,	
	Building Surveyor	
Environmental	Air protection environmental engineer, environmental	Designer of solutions to protect human health, nature's beneficial
engineer	engineering expert, environment engineer, industrial	ecosystems, and to improve environmental-related enhancement
	environmental engineer, water pollution engineer,	of the quality of human life.
	environmental engineering adviser, chemical	
	environmental engineer, environmental engineering	
	specialist, environmental engineering consultant,	
	sanitary engineer, pollution engineer, environmental	

Table 11: List of professions

	analyst, environmental specialist for water	
	management, agricultural conservation engineer	
Data analyst	BIM programmers, BIM designers, BIM Software	Building Information Modelling, Digital twin, Predictive
(Software Engineer)	engineers, 3D image technician / engineer, Building	maintenance as roof has shorter lifespan than building
	Information Modelling/management, Digital twin,	
	Predictive maintenance as roof has shorter lifespan than	
	building	
Material Purchaser	Procuring and buying bio-based and secondary	Procuring and buying bio-based and secondary materials for
(material scouts)	materials for MGRFIE	MGRFIE
Project manager	Management engineer, Industrial Engineer / Project	The person responsible for the planning, execution and closing of
	manager Building company or Project manager	any building project
	Installation company, Cost engineer, Quality assurance	
Project developer	Management engineer, Industrial engineer / Project	The project developer takes responsibility for the associated risks
	manager Building company or Project manager	involved in the building process for the customer and hands over
	Installation company	the project to the tenant / buyer after completion and use of the
		building
Onsite Manager	Architect, Structural/Building engineer, Construction	The person responsible for quality assurance during on-site
(building process)	manager/ Building Surveyor	construction works in the realisation of MGRFIE
Building	Facility manager, housing corporation, Asset manager,	The person responsible to maintain the real estate as it was
owner/Operator	Real estate investor	realised at the end of the MGRFIE building process (including
		facility management). The person responsible for management,
		monitoring and improvement of operation of facilities.
Financial manager	Cost expert	The person responsible for all finances involved during planning,
		execution and closing of any building project
Procurer co-	Buyer, chief procurement officer	The person responsible for facilitating the process of MGRFIE
ordinator (Tenders)		tenders and (sub)contracts
Landscape Architect	Landscapes architect, landscape engineer, landscape	The person responsible for the construction of gardens and
	design expert, landscape artist, landscape design	natural spaces in MGRFIE design. Design multi-functional green
	specialist, landscape specialist, landscape expert	roofs and facades, Specific plant design based on size, weight,
		water needs etc
Insulation Installers	Lagger, cavity insulation installer, energy saving	Insulation workers install a variety of insulation materials to
	materials installer, insulation installation worker,	shield a structure or materials from heat, cold, and noise from the
	insulator	environment. Roof insulation (on top / below), Root Resistant
		material selection
Plasterer, Facade	Heritage plasterer, fibrous plasterer, wall finisher, solid	Finishing (Suitable finishing for MGRFIE), Innovative facade
worker	plasterer, plaster labourer, plaster worker, stucco	design using easily repeatable designs
	mason, wall plasterer	
Roofers	Roofing carpenter, cladding installer, asphalt roofer,	Roofers cover structures with roofs. They install the weight-
	roof tiler, tinsmith, felt roofer, house roofer, roof slater	bearing elements of a roof, either flat or pitched, then cover it

		with a weatherproof layer. Waterproofing and water collection,
		Design to reduce flooding, Roof insulation (on top/below)
Landscaper (roof and facade)	Interior planter/landscaper, exterior planter/landscaper	Plant selection, Soil selection (Lightweight)
Plumber	Commercial plumber, gas fitter, domestic plumber, pipe	Plumbers maintain and install water, gas and sewage systems.
	worker	Solar PV, cables and mounting of sensors, Roof accessibility
		(Lighting)
Electrical installers	Installation electrician, electrical services installer,	Electricians fit and repair electrical circuits and wiring systems.
and technicians	electrical maintenance technician, maintenance	They also install and maintain electrical equipment and
	electrician, electrical systems installer, electrical	machinery. Solar PV, cables and mounting of sensors, Roof
	maintenance worker, electrical installer, electrical	accessibility (Lighting)
	worker	
Renewable energy		Solar PV, cables and mounting of sensors
systems installers		
(electric)		
Renewable energy		Solar thermal systems
systems installers		
(thermal)		
Heat pump installers		Placement of outdoor unit heat pump
Demolition/Deconstr	Demolition expert, Urban miners, Waste Recovery and	Site analysts, Material Recovery, Material Reuse
uction auditors	salvage	
Repair and	Maintenance planner, Safety maintenance operative	
maintenance	(check on safety measures)	
operatives		
Ventilation installers	Heating, ventilation, air conditioning engineers design	Placement of air handling unit
	and develop heating, ventilation, air conditioning and	
	possibly refrigeration systems	
Painter and decorator	Specialist painter, decorator, commercial painter and	They may use standard latex based paints or specialised paints
	decorator, construction painter and decorator, painter	for decorative effect or protective properties. Building painters
	(construction), industrial painter, commercial decorator,	are skilled in using brushes, paint rollers and paint sprayers for
	construction decorator, Interior designer	different applications.
Wood manufacturer	Prefabricated building assembler, Truss assembler	
and finisher		
Building energy	Energy assessors, energy saving consultant, energy	Energy consultants advise clients on the advantages and
consultants	procurement consultant, energy advice consultant,	disadvantages of different energy sources. They help clients to
	energy procurement advisor, energy saving equipment	understand energy tariffs and try to reduce their energy
	advisor, energy and sustainability consulta, energy	consumption and carbon footprint by using energy efficient
	saving advisor, energy and environmental consultant,	products and methods.
	sustainability consultant, energy advisor	
Policy maker for		Setting ambition and providing regulation. Advising on
building		advantages (and disadvantages) of multi-functional roof use
		policy

Green Public		Advising on how to make use of GPP for stimulating MFGRIE in
Procurement (GPP)		combination with other climate goals
advisor in		
construction		
Carpenter	Craftsperson carpenter, commercial carpenter, heritage	Carpenters cut, shape and assemble wooden elements for the
	carpentry, craft carpenter, joiner, woodworker,	construction of buildings and other structures.
	carpentry framer, frame-maker, joiner supervisor,	
	joinery worker, timber worker	
Window installers /	Window installation team worker, window fitter,	Window installers/glazer place windows into structures and
glazers	window installation team member, window technician	service them. They take out old windows if present, prepare the
		opening, mount the window, and attach it in place plumb,
		straight, square and watertight.
Stonecutter and	Stone carver, structural stoneworker, artisanal	Stonemasons/mason manually carve and assemble stone for
mason	stonemason, stoneworker, craft stonemason, stone	construction purposes. While CNC operated carving equipment
	setter, heritage stonemason, memorial mason, stone	is the industry standard, artisanal carving for ornamental stone is
	finisher, fixer mason, stone cutter, architectural	still done manually.
	stonemason, craft mason, building mason	
Bricklayer	Industrial oven brick mason, trowel occupation worker,	Bricklayers assemble brick walls and structures by skilfully laying
	bricklaying labourer, specialist bricklayer, brick laying	the bricks in an established pattern, using a binding agent like
	worker, bricklayer	cement to bond the bricks together. They then fill the joints with
		mortar or other suitable materials.
Green Roofers		Design specifically for green roof and facades. Material, weight,
		water etc specialist when consideration is made for green roof
		design

Appendix B

Table 12: Applied Task Based Qualification Framework, ULOs

ULO			
Nr.	Competence	Skills	Knowledge
1	Design roofs, façades, and interior	Select bio-based materials for the roof, façade or inner	Types of bio-based materials suitable for
	elements with bio-based materials as	wall	roofs, façades, and inner walls (such as
	an alternative for conventional	Consider the purpose of the building and the context of	hemp, straw, bamboo, sustainably
	construction materials	the entire building solution, as well as construction	sourced wood, agricultural residues)
		requirements	Advantages and disadvantages of
		When biobased materials are not an option, select proper	biobased materials
		low impact materials	Seven functional requirements of
		Integrate use of the Material Circularity Indicator (make	building walls
		sure it is not higher than X)	Alternative forms of concrete
		Ensure use of materials that have little to no volatile	Wood or thatch/straw panels for
		organic compounds (VOC) emissions	rainscreen cladding and insulation on
			façades

_	L		I
2	Enact measures that optimise	Apply measures that optimise material use to	General knowledge about measures that
	material use to strive for material	multifunctional green roofs, façades, and interior	optimise material use in construction,
	efficacy	elements	such as 3D printing or accurate structural
		Combat underutilisation or surplus of materials by	design/industrialised prefabricated
		sharing products or assets and optimising their use	products (keep design lightweight)
3	Design with non-critical raw	Avoid, insofar as possible, use of critical raw materials as	Types of non-critical raw materials as
	materials as defined by EU	defined by EU while selecting materials for	defined by EU
		multifunctional green roofs, façades, and interior	
		elements	
4	Design with non-toxic materials as	Avoid, insofar as possible, use of chemicals as defined by	Types of non-toxic construction materials,
	defined by EU	EU while selecting materials for multifunctional green	such as alternatives to anti-flame
		roofs, façades, and interior elements	retardants used on wood
5	Design with products and materials	Recognise and select materials that can be easily reused	Reusable and/or recyclable materials,
	that can be easily reused or recycled	or recycled after the building's end-of-lifetime	such as glass, plasterboard, steel, gravel
	after use	Recognise and avoid composites or other mixed	(aggregates), rammed earth walls
		materials that are then hard to recycle/repurpose	Recycling requirements for specific
			products and materials for safety and
			functionality (and regional/local
			infrastructure capacity)
6	Replace freshwater use with	Use alternative water source applications that are	Alternative water sources such as
	alternative water sources	suitable for the project at hand	rainwater, fogwater, seawater, grey water
		Harvest greywater and rainwater on roofs or façades for	etc.
		certain applications	When are roofs and façades suitable for
		Design sustainable drainage systems	applying alternative water sources
		Stimulate the cooling of the city/building by slowly	Sustainable drainage systems
		releasing rain water	
7	Enact measures that optimise water	Apply plant-based biofilters/ phytopurification in green	Sustainable water technology
	use for water efficiency	roofs, façades, or interior plant walls	Plant-based biofilters to purify
		Create water cascading systems	wastewater
		Stimulate the sponge function of green roofs and façades	Criteria for reuse of water
		for peak moments of water	Cascading water for efficiency
		Harvest greywater and rainwater for certain applications	Innovative measures, such as using
			recycled textiles as roofing materials to
			catch water
8	Select sources with less impact to	Select best energy solution that is less impactful based on	Fossil fuel based operations vs. electric
	apply to operations in buildings	current situation in country (e.g. convert fossil fuel based	operations
		operations to electric)	Renewable fuels, such as biomass
I			
			How circular economy works with
			How circular economy works with regards to materials and sources,
			regards to materials and sources,
			regards to materials and sources, renewability

1	1		
9	Enact measures that reduce and	Include energy efficiency measures in design of roofs,	Smart solutions to spread demand
	optimise energy use through	façades, and interior elements (e.g. insulation of roofs,	throughout the day
	solutions on roofs and facades whilst	roof ventilation)	Measures such as draught-proofing,
	taking into account building purpose	Include passive design techniques in design of roofs,	airtightness, insulation, ventilation
	and climate	façades, and interior elements (e.g. solar orientation,	Materials with lower thermal
		skylight windows, shading)	conductivity (e.g. sheep's wool, cellulose,
			earthwool)
10	Generate energy or heat/cold from	Include renewable energy technologies in building	Options for renewable energy, e.g.
	renewable sources in design of	design	solar/PV panels, solar thermal collectors,
	multifunctional green roofs, façades,		heat pumps, waste water heat recovery
	and interior elements		Systems that generate power or heat/cold
11	Provide repair services or	Renovate buildings or parts of buildings to maximise	Renovation techniques
	maintenance services for	their lifetime	Renovation of bio-based, non-critical and
	multifunctional green roofs, façades,	Conduct regular checks and repairs for multifunctional	non-toxic materials
	and interior elements	green roofs, façades, and interior elements	
12	Provide upgrade programmes or	Educate home-owners and facility managers on the	Which (local) organisation can help
	upgrade services for roofs and	possibilities of upgrading roofs and façades	upgrade roofs and façades
	façades	Provide upgrade services	Upgradeability of roofs and façades at
			hand
13	Provide DIY repair kits or spare part	Describe information to building users and facility	DIY techniques for repair and
	programmes for enabling self-repair	managers about how to repair and maintain green roofs,	maintenance
	of roofs, façades or inner walls.	façades, and interior elements (e.g. maintenance of	
		greenery, cleaning solar panels)	
14	Extract and reuse parts from end-of-	Dismantle built structures whilst maintaining value of	Dismantling for re-use
	life roofs, façades, or interior	products and materials	Detachable construction details
	elements for use in new buildings	Read construction details for detachability of building	
		components	
15	Arrange a safe working environment	Arrange a safe working environment at the construction	Health and safety requirements specific
	and continuously consider health	site	to biobased and secondary materials
	and safety requirements, especially	Consider health and safety requirements	(construction)
	for working on roofs and facades	Assure sufficient environmental air quality	Requirements specific to renewable
		Arrange the right measures to ensure safety for roof and	energy technologies and smart solutions
		façade workers	(installation)
			Hazards of certain materials and their
			compositions
			Rooftop safety and hazards
16	Enable second hand sale of	Make use of (digital) marketplaces to find a new use for	Potential new purposes for construction
10	multifunctional roof/façade products	disassembled materials (construction)	materials and products
			inateriais and products
	through marketplaces or services	Make use of (digital) marketplaces to find a new use for	
		disassembled products and parts of products	
		(installation)	

1	I		
17	Manage and preserve biological	Preserve and manage biological products	Preservation and management of
	products on the construction site to	Keep green roofs and living walls in a healthy state	biological products on site
	stretch the lifetime materials	maximising green / biodiversity impact	Periodic treatment and maintenance of
			wood, straw and other bio-based
			materials used for the building.
18	Collect products and materials for	Source demolition materials for construction of new	Usable and suitable waste products and
	reuse or recycling in roofs, façades or	multifunctional green roofs, façades, or interior elements	materials
	interior elements from the	Select waste products and materials for construction of	Allocation of local demolition materials
	construction industry	new structures	Collection programmes that process
		Prioritise local demolition materials to save resources	materials for reuse or recycling within the
		Use digital marketplaces to collect products and	construction sector
		materials	Closed loop waste streams
19	Transform waste products and	Transform demolition materials into products that can be	Upcycling methods
	materials from multifunctional roofs,	used in new built projects	Closed loop waste streams
	façades or interior elements for reuse,	Conduct activities to clean and restore products back to	Cleaning, documentation, refurbishment
	or as a last resort into lower value	working condition for original or new purposes	or any physical/chemical treatment to
	products in the same industry		allow reuse
			Strategies to clean and restore products
			and materials
20	Use waste products and materials	Reuse demolition materials as a resource for new	Different functions for waste materials in
	from construction demolition	multifunctional green roofs, façades, or interior elements	new roof, façade, or interior element
	projects that have been processed		application
	and recycled		Closed loop waste streams
21	Collect products and materials for	Source demolition materials for construction of new	Usable and suitable waste products and
	reuse or recycling in roofs, façades or	multifunctional green roofs, façades, or interior elements	materials
	interior elements from outside	Select waste products and materials for construction of	Allocation of local demolition materials
	construction	new structures	Collection programmes that process
		Prioritise local materials to save resources	materials for reuse or recycling outside
		Use digital marketplaces to collect products and	the construction sector
		materials	Open loop waste streams
22	Transform waste products and	Transform demolition materials into products that can be	Open loop waste streams
	materials from multifunctional roofs,	used in other ways outside construction	Strategies to clean and restore products
	façades or interior elements for reuse	Separate waste created during construction	and materials
	outside construction, or as a last	Conduct activities to clean and restore products back to	
	resort into lower value products	working condition for original or new purposes	
	outside construction		
23	Use waste products and materials	Reuse materials as a resource for new multifunctional	Open loop waste streams
	from outside construction that have	green roofs, façades, or interior elements	
	been processed and recycled		
24	Enact measures to use and store	Employ batteries for storing renewable electricity	Storage of heat and cold, storage of excess
	energy more efficiently in buildings	produced	power

25	Evaluate and assess life cycle impacts of buildings, construction products and materials on the environment (emissions, soils, water, biodiversity, etc.) Design multifunctional green roofs, façades, and interior elements for prefabrication so that as little waste	Utilise a thermal tank to store excess hot water stored on site Make use of phase change materials to store excess heat or cold. Apply a lifecycle assessment tool to evaluate the embodied energy and carbon footprint of a new building or the renovation upgrade of an existing building Design prefabricated solutions If applicable, 3D print building components Use CNC and/or robotics for prefabrication	e.g. One ClickLCA tool Awareness of new circular economy legislation as is currently passing through Irish parliament Prefabrication (incl. relevant software) Alternative prefabrication methods such as 3D printing (incl. digital rendering)
	as possible is produced during construction		Sustainable insulation materials in prefabricated walls
27	Design products so they use as little materials, water, energy, etc. as possible during use phase	Reduce the consumption of total raw materials needed for construction Consider resource efficiency for design of all life cycle stages (e.g. minimum energy consumption during use phase)	How to minimise raw material use for roof, façade, or inner wall construction project
28	Design modular structures for multifunctional green roofs, façades, and interior elements, so that the components can be disassembled and reused after end of service life	Design modular structures Write and interpret detachable construction details Prioritise standardised solutions and systems to increase possibilities of reuse	Why custom made structures should be avoided (more difficult to reuse after disassembly) Detachable construction details
29	Design multifunctional green roofs, façades, and interior elements to enable reuse and recycling	Design multifunctional green roofs, façades, and interior elements that consist of multiple parts that can be easily disassembled Enable easy recyclability for the designed building component Design with reuse for the same or different purposes in mind 'Legolise' the construction of multifunctional green roofs, façades, and interior elements	Material passports Modularity to enable easy disassembly
30	Design multifunctional green roofs, façades, and interior elements that make repair accessible	Design multifunctional green roofs, façades, and interior elements so that they are easy to repair by home owners or facility managers	Modularity to enable exchange of (parts of) products or materials Design strategies to allow for easy repair Material passports
31	Design multifunctional green roofs, façades, and interior elements that can serve a long and useful life, as well as stay relevant to residents and users	Select materials and technologies that resist damage and wear (e.g. natural slate) Design for flexible use to adapt to changing needs of occupants (e.g. partition walls and systems, change function of multifunctional roof after time)	Design strategies for flexible use of multifunctional green roofs, façades, and interior elements Materials that ensure longevity of buildings

32	Facilitate discussions and meetings	Apply circular strategies within the firm to serve as an	Circular strategies
52	between internal team members to	example	Training strategies
		*	
	identify circular opportunities	Provide internal training about circularity topics (e.g.	(Group) conversation strategies for
	multifunctional roofs and façades	about circular procurement)	circularity
		Facilitate open discussions about circularity	
33	Integrate circular economy thinking	Integrate circular economy thinking into employee	Circular economy thinking for employee
	into employee evaluations that are	evaluations	evaluations
	linked to professional compensation	Link circular employee skills to professional	
		compensation	
34	Collaborate to apply and improve	Evaluate material suppliers on circular economy	Circular procurement/GPP
	circular procurement processes of	principles and guidelines	Energy Performance Contracting and
	multifunctional green roofs, façades,	Setting up purchasing guidelines for procurement	other performance-based servitization
	and interior elements	departments	models
		Improve procurement further by acting regionally	
		Include other lifecycle phases, such as renovation or	
		dismantling works	
35	Collaborate with industry	Engage in discussions with industry stakeholders to	Strategies for promoting greater
	stakeholders to share best practices	share circular roofs and façades best practices	circularity
	in circular multifunctional roofs and	Push stakeholders towards greater circularity	
	façades, and act together	Identify potential synergies	
		Engage in activities or projects that advance circularity	
		together	
		Establish regional construction networks	
36	Make choice of materials between	Require Environmental Product Declarations (EPDs)	Tender options like bio-based (timber)
50	different tender options for	Interpret EPDs	versus secondary (recycled concrete or
	-		steel)
	multifunctional green roofs, façades,		,
	and interior elements		Sustainable or circular tender options for
			roofs and façades
37	Work together with residents and	Organise feedback from consumers in order to improve	Co-creation strategies
		roofs and façades in next applications	
	green roofs, façades, and interior		
	elements fit for them		
38	Engage in discussions with	Educate residents on circular multifunctional green roofs,	Ecolabelling
	construction customers to raise	façades, and interior elements as construction or	Renovation options for roofs and façades
	awareness of the circular economy	renovation solution	Benefits of multifunctional roofs and
	and explore circular opportunities for	Provide consumers with reliable data on the	façades (per function, plus increased
	multifunctional green roofs, façades,	environmental footprint of their choices	benefits when functions are combined)
	and interior elements together	Provide programmes for home owners and users to help	
		people apply more circular principles	

1	1	1	1
39	Engage in discussions with	Establish circular construction and demolition criteria for	Public private partnerships
	government bodies and policy	multifunctional green roofs, façades, and interior	Which government bodies and policy
	makers to push for regulations that	elements	makers are relevant to interact with
	support the application of circular	Open and engage in discussions with government bodies	
	multifunctional green roofs, façades,	and policy makers	
	and interior elements	Connect public (regional innovation bodies) and private	
		parties to deepen knowledge and incentivise practical	
		collaboration on circular applications on multifunctional	
		green roofs, façades, and interior elements	
40	Participate in government	Select relevant government programmes	Government programmes that support
	programmes that support and	Contribute to government programmes for circularity or	and advance circular economy
	advance circular multifunctional	for multifunctional green roofs, façades, and interior	
	green roofs, façades, and interior	elements	
	elements		
41	Work together with the (local)	Develop high-value, circular applications of	Strategies to engage people in local
	community and engaging them in	multifunctional green roofs, façades, and interior	communities with company projects
	the company operations	elements through community collaboration	
		Engage with environmentally conscious inhabitants of	
		buildings to find solutions for installing a	
		multifunctional green roof or façade	
42	Provide building components (e.g.	Set up a product business model for building	Strategies for providing building
	façades, technical installations on	components	components as a service (e.g. installation
	roof, partition walls) as a service	Provide building components as a service	company ensures good indoor climate
	instead of as a product	Provide services through a subscription plan with	and remains owner of installations)
		regular payment schemes	Subscription plans
		Employ take-back schemes	
43	Offer maintenance and repair	Provide maintenance and repair services to buildings as	Service business models
	services for multifunctional green	a service	
	roofs, façades, and interior elements	Emphasise a locally skilled workforce to provide services	
	with help of service business models		
44	Offer different leasing and rental	Provide leasing or rental models for multifunctional	Leasing models
	models to provide access rather than	green roofs, façades, and interior elements	Rental models
	ownership	Recognise and prevent under-use of existing built space	Options for multi-use, sharing of spaces
		Organise multi-use or sharing of spaces (e.g. use office	
		social roof for events during evenings and weekends)	
45	Incentivise the renovation of roofs	Provide reasonable incentives to firms or individuals	What incentives are suitable
	with a potential of applying	who choose to renovate an unused roof	Models for incentivisation
	multifunctionality	Set up projects for incentivisation	
46	Apply digital tracking of materials to	Apply digital tracking of materials used in the	Digital material tracking software
	optimise maintenance, demolition,	construction project	Methods to track materials
	and recovery of multifunctional	Provide and gain insights into the materials used	Use of BIM
1	and recovery of munufulnenonal	i iovide and gam morgins into the materials used	

	green roofs, façades, and interior elements		On site tracking ID's / RFID identification
47	Develop and apply material and building passports	Develop and apply material and building passports Ensure availability of material and building passports to everyone	Material passports Buildings passports Use of BIM Software options (e.g. Cirlinq platform)
48	Employ a regional construction digital marketplace for construction resources	Set up a regional construction digital marketplace Utilise existing online platforms to enable digital marketplace Persuade and incentivise use of digital construction marketplace by stakeholders	Digital marketplaces Methods for setting up a digital marketplace Peer-to-peer exchange of materials and products Use of BIM
49	Incorporate circular strategies, archetypal circular interventions and case studies into educational programmes (in the construction value chain)	Incorporate circular strategies into educational programmes Incorporate archetypal circular interventions into educational programmes Incorporate case studies into educational programmes	Suitable approaches for primary, secondary and tertiary education curricula Suitable approaches for lifelong learning and workplace training Distinguish between types of professions in training
50	Provide internal training about navigating in the value chain for circular multifunctional green roofs, façades, and interior elements	Set up circularity training Provide circular workplace training Provide guidance to trainees Set up a training agreement	Strategies and methods for circularity How to engage trainees with regards to procurement
51	Solidify definitions of circular construction by being consistent and using circularity frameworks	Explain what circularity means in construction	Key Elements of the circular economy Circularity definitions and which to maintain
52	Conduct research about circular construction strategies applied to multifunctional green roofs, façades, and interior elements	Generate knowledge on applied circular strategies by case studies and meta studies Analyse effectivity, barriers and successes of applied circular strategies Give informed advice for future applied strategies	Case studies and meta studies Suitable applied strategies for research
53	Follow developments in the field of environmental costing models and CO2 taxes	Distinguish and interpret environmental costing models and CO2 taxes by following the right sources to remain familiar	Environmental costing models CO2 taxes
54	Integrate multi-functionality into buildings by making use of roofs and façades	Apply functions of multifunctional roofs (e.g. social roofs, green roofs, energy roofs, water roofs) Create vertical gardens as part of façades or interior walls Connect green roofs to sewage systems to avoid flooding them	Types of multifunctional roofs and how to combine functions in design

1	1	I	1
55	Raise awareness about recycled	Raise the awareness of stakeholders about reconstruction	
	construction materials and	of buildings and recycled construction materials	Reconstruction of buildings
	reconstructed buildings	Explain the value of reconstruction of buildings and	
		recycled construction materials	
		Motivate stakeholders and break unwillingness to use	
		new construction materials or build new	
56	Install energy efficiency measures on	Apply smart solutions to installations	Energy efficiency solutions, e.g.
	roofs, façades, and interior elements	Conduct draught-proofing in buildings	ventilated roofs, air quality, insulation,
		Conduct airtightness testing	airtightness.
		Apply suitable method for creating airtightness	Draught-proofing for efficient use of
		Build with passive design techniques	thermal energy
			Passive design techniques (e.g. passive
			solar heating, solar collectors like atriums,
			crossed ventilation, inertia)
57	Employ BIM modelling to get insight	Make use of BIM modelling for upkeep and repair	BIM modelling for repair information
	into the effects and changes affiliated	purposes	
	with upkeep, repair, or improvement		
	of buildings		
58	Reduce waste as much as possible	Reduce waste as much as possible during construction	Strategies to reduce waste
	during production of multifunctional	Incentivise building crew to avoid waste (=don't reward	
	green roofs, façades, and interior	haste)	
	elements	Collect multiple separated waste streams on site	
59	Compile demolition specifications for	Compile clear demolition specifications of the roof,	Demolition specifications / detachable
	multifunctional green roofs, façades,	façade, or inner wall at hand	construction details
	and interior elements and provide		
	them at final commissioning of the		
	building		
60	Assemble modular structures for	Modular construction systems and their procedures for	Modular construction systems and their
	multifunctional green roofs, façades,	assembly	procedures for assembly (incl.
	and interior elements	Apply removable joints	prefabricated modules)
		Apply sealants that allow for disassembly (e.g. not	Removable joints (incl. those made from
		glueing them or using PUR or KIT for mounting)	non-conventional materials, whilst
		Ensure that connections made are accessible	maintaining quality of joints)
			Wall panels, dowels, slot systems etc.
61	Conduct a feasibility study to, if	Conduct a feasibility study to explore possibilities of	Feasibility studies in construction projects
	applicable, prioritise renovation,	renovation in order to avoid building new when	Statutory requirements for feasibility
	minimise used surface, and minimise	buildings can be reused	study
	the total mass of materials to be used	Conduct a feasibility study to scan possibilities to	Multifunctional green roofs as a
		minimise the amount of surface used for new	possibility to reduce surface use of
		built/renovation project	buildings
		built/renovation project Conduct a feasibility study to scan possibilities to	buildings

		Ensure that results of feasibility study comply with	
		statutory requirements	
62	Construct multifunctional green	Assemble multifunctional green roofs, façades, and	Roofs and façades as a service not as a
	roofs, façades, and interior elements	interior elements properly	property
	according to service business model	Ensure that building components are properly assembled	Modular construction systems and
		as components (e.g. not glueing them or using PUR or	prefabricated modules
		KIT for mounting)	
63	Install renewable energy	Install solar PV panels	Renewable energy technologies, such as
	technologies in buildings to generate	Install heat pumps	solar panels, heat pumps, waste water
	power or heat/cold		heat recovery
64	Maintain and repair multifunctional	Maintain and repair multifunctional green roofs, façades,	Repair techniques for buildings and
	green roofs, façades, and interior	and interior elements (incl. installations and	installations
	elements in order to maximise	technologies)	Renovation techniques
	lifetime	Renovate multifunctional green roofs, façades, and	Renovation of bio-based materials and
		interior elements to maximise their lifetime	greenery
65	Disassemble modular structures	Disassemble modular construction systems	Modular construction systems
	from multifunctional green roofs,	Write and interpret detachable construction details	Detachable construction details
	façades, and interior elements for		
	reuse		
66	Rebuild existing (parts of)	Rebuild disassembled buildings	Modular construction systems
	multifunctional green roofs, façades,	Adaptive reuse of existing buildings for a new purpose	
	and interior elements for a new		
	purpose		
67	Install measures to use and store	Connect elements of systems where heat/electricity is	Types of connected elements in systems
	energy more efficiently in buildings	harvested on the roof and stored elsewhere in the	for energy storage
		building	
		Ensure continuity of insulation in building envelope and	
		pipes.	
		1 1	
68	Apply bio-based, non-critical, non-	Apply bio-based, reusable, non-critical and/or non-toxic	Applications and characteristics of
	toxic, and/or reusable products on	materials at the construction site	different bio-based materials, what to
	site whilst maintaining material	Enact measures that optimise material use to strive for	consider while applying them
	efficacy	material efficacy	Alternative forms of concrete
		Collect leftover materials	Applications of reusable and/or
			recyclable materials
			recyclable materials

69	Construct multifunctional groop	Apply techniques for constructing group roofs, forgedes	General knowledge about measures that optimise material use in construction, such as 3D printing Soil-bound vs. non-soil bound facades
69	Construct multifunctional green roofs, façades, or interior elements on site	Apply techniques for constructing green roofs, facades, or interior elements	Types of planting (e.g. sedum)
70	Apply sensor technology to green roofs and façades (e.g. for predicting maintenance, to facilitate water flow from roof when needed)	Apply sensor technology to green roofs and façades design Capture the right information with technology (e.g. local weather patterns, moisture levels)	Sensor technology for buildings Green roof monitoring
71	Explain the benefits of green and/or multifunctional green roofs, façades, and interior elements in different contexts and situations (e.g. public/private, to building users, industry, or local community)	Explain the benefits of green and/or multifunctional green roofs, façades, and interior elements	Benefits of multifunctional roofs and façades (per function, plus increased benefits when functions are combined)
72	Renovate buildings with the use of multifunctional green roofs, façades, or interior elements to extend lifetime of current building stock	Examine opportunities for applying multifunctional green roofs, façades, or interior elements Apply design of multifunctional green roofs, façades, or interior elements to renovation projects	Types of multifunctional roofs and how to combine functions in design
73	Organise logistics and storage of secondary materials, whilst aiming to reduce waste	Collaborate with resource hub(s) Include data and knowledge about materials in passports Prioritise local storage and distribution Prepare detailed planning of materials Order materials just in time Avoid overlong on site storage of materials	Resource hubs/ material banks
74	Source local and lightweight materials for multifunctional green roofs, façades, and interior elements if possible	Source local and lightweight materials	How to work with resource hubs or materials banks
75	Provide documentation as guideline to use the multifunctional green roofs, façades, and interior elements properly in order to stretch its lifetime	Provide information about how and when to maintain the roof, facade, or inner wall Create guide for building users Explain the importance of maintenance of greenery	When and how built structure at hand needs regular checks and repair Any kind of documentation as guideline for users
76	Operate multifunctional roofs in a clever manner that suits the current situation best, looking further than solely the original design to optimise sustainability and circularity	Operate multifunctional roofs while considering post occupancy evaluation, changes in use, and the search for energy and material savings during operation Adapt operation of roof to changes in use and context	Post Occupancy evaluation (incl. evaluation during use phase of building) Options for energy and material savings during operation

77	Conduct post occupancy survey and	Conduct post occupancy survey and analysis	The importance of post occupancy survey
	analysis for building with	- To be specified	and analysis (also during operation)
	multifunctional green roof, façades,	, i i i i i i i i i i i i i i i i i i i	The purpose of post occupancy survey
	or interior element		and analysis (to provide feedback to
	of menor element		design practices of design professions)
78	Assess quality of materials to be	Conduct effective end-of-life assessment about used	If applicable, connect end-of-life
70			
	reused from multifunctional green	materials	assessment to purpose of the building the
	roofs, façades, and interior elements	Make decision about reuse of materials	materials are to be used for
	(audit of waste)	Share feedback about quality to constructor and architect	
		Distinguish between high-quality and lower-quality	
		reuse	
79	Trade secondary materials and	Employ (regional) digital marketplace to trade used	How to use digital marketplaces to sell
	products on digital marketplaces	construction materials that have been selected for reuse	(transformed) used materials
		Use and apply the data and insights from multifunctional	
		green roofs, façades, and interior elements material	
		passports	
80	Redefine building regulations to	Redefine building regulations to incentivise circular	How existing building regulations
	incentivise circular approaches to	approaches to multifunctional green roofs, façades, and	interact with circular approaches
	multifunctional green roofs, façades,	interior elements	
	and interior elements		
81	Comply design of multifunctional	Comply with applicable legal requirements	
	green roofs, façades, and interior		What are the relevant legal requirements
	elements with applicable		(e.g. CPR, functional requirements of
	(national/local/EU) legal		
	(national/local/EU) legal requirements		building walls)
82			building walls) National and regional legal requirements
82	requirements	Organise insurance and guarantees for reused materials	building walls)
82	requirements Organise and provide insurance and guarantees for reused materials to	Organise insurance and guarantees for reused materials Provide insurance and guarantees for reused materials	building walls) National and regional legal requirements Material passports and digital
	requirements Organise and provide insurance and guarantees for reused materials to buyers	Provide insurance and guarantees for reused materials	building walls) National and regional legal requirements Material passports and digital marketplaces
82	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of	building walls) National and regional legal requirements Material passports and digital
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and facades	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and facades Improve tailored solutions for multifunctional roofs and	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and facades	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and facades Improve tailored solutions for multifunctional roofs and	building walls) National and regional legal requirements Material passports and digital marketplaces
	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green roofs, façades, and interior elements	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and facades Improve tailored solutions for multifunctional roofs and facades with the focus on effectivity, multifunctionality	building walls) National and regional legal requirements Material passports and digital marketplaces
83	requirements Organise and provide insurance and guarantees for reused materials to buyers Increase (access to) understanding of biobased construction materials for applications to multifunctional green roofs, façades, and interior elements	Provide insurance and guarantees for reused materials Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements Experiment with materials to innovate and discover new sustainable methods of construction Develop new prototypes of multifunctional roofs and facades Improve tailored solutions for multifunctional roofs and facades with the focus on effectivity, multifunctionality and circularity	building walls) National and regional legal requirements Material passports and digital marketplaces Construction requirements

Appendix C

Table 13: 1	Training Plaı	n 1. Starting	Circularity
			,

STARTING CIRCULARITY	,	TP1		24 hours		
Contents	ULO's	Format for	Training	Minim	Cost	Eval
		contents	methodology	um	qual.	uati
		contents	methodology	Time	quui	on
COMMON MODULE				Time		on
Module 1. INTRODUCTION TO CIRCULAR ECONOMY IN				6 h	€	0
CONSTRUCTION						-
8 Key principles of circular economy	All	Reading material	8 Microlearning			
, , , , , , , , , , , , , , , , , , ,		+ quizzes	courses			
Circularity definition and different flows: Materials, energy, waste	51	Videos /schemes	Information pills	5 min		
and water	01	videos /schemes	mornation phis	0 mm		
PLAN						
MATERIALS & WASTE				6:20 h	€€	
Module 2. STRATEGIES OF CIRCULAR DESIGN IN MATERIALS				5:40 h	€€	
Main strategies related with materials in circular construction	51	Reading material	Information pills			~~~
DESIGN TO CLOSE THE LOOP OF MATERIALS: 1 Case study to	1, 2, 3,	Video	Information pills	5 min		0
choose from renewable materials (bio-based): wood structure, cork	4, 36	video	mornation philo	0 mm		
exterior isolation, straw bricks, rammed earth or bio "concrete" (hemp)	4,00					
DESIGN TO CLOSE THE LOOP OF MATERIALS: 1 Case study :	1, 2, 3,	Video	Information pills	5 min		
recycled aggregates in concrete, recycled cotton isolation, steel,	4, 36	Video	information phils	Jinn		
aluminium windows, etc.	4,00					
DESIGN TO CLOSE THE LOOP OF MATERIALS: 1 Case of study in	1, 2, 3,	Video	Information pills	5 min		
reuse of materials in national level if possible: close loop, high quality	4, 36	Video	information phils	Jinn		
reuse	4,00					
DESIGN TO REDUCE IMPACT: LOCAL, LOW IMPACT AND/OR	1, 2, 3,	Video	Information pills	5 min		
NON-CRITICAL MATERIALS: 1 Case study of low impact materials:	4, 36	Video	information phils	Jinn		
at least one material not repeated and preferably biobased and/or local	4,00					
DESIGN TO REDUCE IMPACT: NON-TOXIC MATERIALS: Types of	4	Video	Information pills	5 min		
non-toxic construction materials (alternatives to anti-flame retardants	Ŧ	Video	information phis	5 1111		
used on wood, low formaldehyde panels, COV's free paints, etc)						
DESIGN TO REDUCE WASTE IN SITE AND IN EOSL: 1 Case of	26	Video	Information pills	5 min		
products demonstrations of modular and/or prefabricated (dry	20	Video	information phils	Jinn		
solutions) to deconstruct						
DESIGN TO REDUCE WASTE IN SITE AND IN EOSL: 1 Case study	45	Video	Information pills	5 min		
of renovation (showing savings versus NB) + Subsides or incentives	40	video	niormation pins	5 11111		
EU or national.						
2 Products demonstration	1 2 2	Visual	Demonstration of	3 h		
	1, 2, 3,			5 ft		
	4, 26,	presentation	circular products			
	36					

Maintenance plan example	11,	Reading material	Information pills	extra ma	terial	
	17,42,					
	64, 68					
1 Visit with detective game to a different case study (from list)	1, 2, 3,	Visit + quiz	Visit + "detective	2 h		ø
	4, 26,		games"			
	36, 45,					
	64, 68			10		()
Module 3. TOOLS TO SUPPORT CIRCULAR DESIGN IN				40 min	€	
MATERIALS	36	V: Jac	In farma tian milla	Emin		<u> </u>
How to read an EPDs		Video	Information pills	5 min		
2 Cases study: two EPD's to compare (one high impact like plastic	36	Reading material	Information pills	10 min		
element and other low impact)	1	Dee din e meeteniel	In farma tian milla	E min		
Material Circularity Indicator	1	Reading material	Information pills	5 min		
How to read material passports and its use	47	Example	Digital / self-led	5 min		
2 Cases study: examples of LCA assessment (one new building, other	25	Videos	Information pills	10 min		
renovation)						
BIM modelling applications to building to aid circular applications	57	Video	Information pills	5 min		0
ENERGY				3:30 h	€€	X
Module 4. DESIGN TO REDUCE ENERGY DEMAND				3:00 h	€€	
1 example with climate consultant analysis of 2 different climates and	9,1	Video	Information pills	10 min		
main strategies of psychometric chart						
1 case study with design strategies for hot climates or hot season (can	9,10,	Video	Information pills	10 min		
be historical examples)	56					
1 case study with design strategies for cold climates or cold season	9,10,	Video	Information pills	10 min		
(can be historical examples)	56					
1 Visit with detective game to a case study with cool and hot	56, 63	Visit + quiz	Visit + "detective	2 h		ø
bioclimatique strategies and PV panels			games"			A
Module 5. TOOLS TO SUPPORT ENERGY EFFICIENT DESIGN /				30 min	€	
DIGITIZATION					1	T
Software for energy simplify models (National energy certifications,	26	Video	Information pills	15 min		
CE3x, etc)	F 4	г. ·		15 .		
1 practice with Tools such as R10 from IVE for renovation, triplea-reno	54	Exercise	Digital tool self- led	15 min		
to get some initial advice				20	C	0
WATER				30 min	€	@ •••
Module 6. DESIGN TO REDUCE WATER CONSUMPTION				10 min	€	
1 Case study (national level) of Harvesting greywater and rainwater	6,7	Video	Information pills	3 min		
1 Case study (national level) of purify water with Plant-based	7	Video	Information pills	2 min		
biofilters			_			
1 Case study (national level) of draining pavements for public spaces	6, 27	Video	Information pills	5 min		1

Module 7. TOOLS TO SUPPORT WATER EFFICIENT DESIGN /				20 min	€	0
DIGITIZATION				20 11111	C	11
1 practice with tool with tips for reducing water consumption (Drive	6,7, 27	Exercise	Digital tool self-	20 min		[
0)			led			
PROCURE						
MATERIALS & WASTE				5 h	€	0
Module 8. BANKS AND CERTIFICATION FOR MATERIALS				40 min		
Green building certification systems (LEED, BREAM, DGNB, VERDE,	80	Video /simplify	Information pills	10 min		
even Level(s)): materials credits/objectives focus		guide				
List of materials with Ecolabels	38	List /web	Digital / self-led	5 min		
How to read material passports	47	Reading material	Information pills	10 min		
How to use digital marketplaces to find or to sell (transformed) used	79	Reading material	Information pills	10 min		
materials		_				
Examples of marketplaces (existing online platforms or physical local	48	List /web	Digital / self-led	5 min		
stores) of reuse materials in national level						
Module 9. BUSINESS MODELS				4:20 h	<u> </u>	
Strategies for providing building components as a service (e.g.,	42	Reading material	Information pills	5 min		
installation company ensures good indoor climate and remains owner						
of installations)						
Leasing models and Rental models	44	Video /manual	Information pills	10 min		
Options for multi-use, sharing of spaces rather than ownership	44	Video	Information pills	10 min		
1 case study of co-housing or multi-use	44	Optional visit + quiz	Visit + "detective games"	2 h		ø
Buildings and product as a service not as a property	42, 43,	Video	Information pills	5 min		
	44					
Strategies for promoting greater circularity in your company	35	Presentation +	Workshop contest	1:30 h		
		contest				
Examples of European regulations requiring it (new circular economy	25	Reading material	Information pills	20 min		
legislation, embodied carbon for GP) and limit values						
EoSL						
MATERIALS & WASTE						
Module 10. USE SECONDARY RESOURCES				2 h		
2 case study: recycled secondary materials/components from other		Video	Information pills	10 min		
industry (1) and from the same (1)						
Collaborate with industry peers to create joint value and identify	34, 35	Video, tool	Information pills,	20 min		
synergies - Industry Symbiosis (best practices or tool from SYMBIOSI)			Digital tool self-			
			led			
1 visit to plant of best practices in transforming recycling materials		Visit	Visit case study	1:30h		Ο
(recycling aggregates for concrete)						

Range of expected module cost, with range from $\varepsilon,$ very low to $\varepsilon\varepsilon\varepsilon,$ higher

cost

€

Individual insignia / rewards when the module is finished (individual)

Conducted visit to a case study (groupal)

Visit a case study with "detective game"(groupal)

Serious game - trivial quiz (groupal)

Author Contributions: M.B. Conceptualization, Formal Analysis, Writing-original draft; L.R. Conceptualization, Methodology, Investigation, Writing-original draft; B.M. Writing-review and editing, Supervision; G.C. Writing-review and editing, Supervision; P.D. Investigation, Writing-review and editing; J.C. Project administration, Funding acquisition; C.P. Formal Analysis, Investigation, Resources, Data curation.

Funding: This research was funded by European Union's Horizon 2020, grant number 101033740.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

- Ellen MacArthur Foundation, What is Circular Economy? Available online: <u>https://ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview</u> (accessed on 30, 6th, 2023)
- 2. European Commission, Internal Market, Industry, Entrepreneurship and SMEs. Available online: <u>https://single-market-economy.ec.europa.eu/industry/sustainability/buildings-and-construction_en</u> (accessed on 30, 6th, 2023)
- 3. European Commission, Environment. Available online: <u>https://environment.ec.europa.eu/topics/waste-and-recycling/construction-and-demolition-waste_en</u> (accessed on 30, 6th, 2023)
- 4. European Commission, Climate Action, 2050 Long-term Strategy. Available online: <u>https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en</u> (accessed on 30, 6th, 2023)
- European Council, Council of the European Union, Fit for 55. Available online: <u>https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/</u> (accessed on 30, 6th, 2023)
- BUS-GoCircular 2022, 'D3.1 Report assessing available training materials', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-content/uploads/D3_1_Report_assessing_available_training_materials.pdf</u> (accessed on 30, 6th, 2023)
- 7. BUS-GoCircular. Available online: https://busgocircular.eu/ (accessed on 30, 6th, 2023)
- BUS-GoCircular 2022, 'D2.3 Circular Construction Skills Qualification Framework', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-content/uploads/D2_3_Circular_construction_skills_qualification_framework.pdf</u> (accessed on 30, 6th, 2023)
- BUS-GoCircular 2022, 'D2.2 Mapping of Required Skills and Skill Gaps', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-content/uploads/D2_2_Mapping_of_required_skills_and_skill_gaps.pdf</u> (accessed on 30, 6th, 2023)
- 10. BUS-GoCircular 2022, 'D2.4_Applied Circular Construction Skills Qualification Framework', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-content/uploads/D2_4_Applied_circular_construction_skills_qualification_framework.pdf</u> (accessed on 30, 6th, 2023)
- BUS-GoCircular 2023, 'D3.2 Programme and materials for training of trainers', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-content/uploads/D3_2_design_of_programme_and_materials_for_TtT.pdf</u> (accessed on 30, 6th, 2023)
- 12. BUS-GoCircular 2023, 'D3.4 BGC Fundamentals Training Packs', BUS-GoCircular. Available on: https://busgocircular.eu/wp-content/uploads/D3_4_BGC_Fundamentals_Training_Packs.pdf (accessed on 30, 6th, 2023)
- BUS-GoCircular 2022, 'D3.3 Mentoring Programme Guidance and Mentoring Program Plan', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-</u> <u>content/uploads/D3_3_Mentoring_Programme_Guidance_and_Mentoring_Program_Plan.pdf</u> (accessed on 30, 6th, 2023)
- 14. PROF/TRAC. Available on: <u>http://proftrac.eu/open-training-platform-for-nzeb-professionals.html</u> (accessed on 30, 6th, 2023)
- 15. Circle Economy, The Key Elements of the Circle Economy. Available on: <u>https://www.circle-economy.com/circular-economy/key-elements</u> (accessed on 30, 6th, 2023)
- BUS-GoCircular 2022, 'D2.3_Circular Construction Skills Qualification Framework', BUS-GoCircular. Available on: <u>https://busgocircular.eu/wp-content/uploads/D2_3_Circular_construction_skills_qualification_framework.pdf</u> (accessed on 30, 6th, 2023)

- 17. Schober, K.S 2021, 'It's time for construction to embrace the circular economy', Roland Berger. Available at: <u>https://www.rolandberger.com/en/Insights/Publications/It%E2%80%99s-time-for-construction-to-embrace-the-circular-economy.html</u> (accessed on 30, 6th, 2023)
- 18. Construction Blueprint. Available online: <u>https://constructionblueprint.eu/</u> (accessed on 30, 6th, 2023)
- 19. Train4Sustain. Available online: https://train4sustain.eu/ (accessed on 30, 6th, 2023)
- 20. BUS-GoCircular Training. Available online: https://busgocircular.eu/training/ (accessed on 30, 6th, 2023)
- 21. H2020 BUSLeague, BUILD UP Skills advisor-ap. Available online: <u>https://busleague.eu/build-up-skills-advisor-app-upskilling-made-easy/</u> (accessed on 30, 6th, 2023)
- 22. Cegid Meta4, 'Fundamentos del aprendizaje digital', Spain, 2020.
- E-learning 'Introduction to Circular Economy in Construction'. Available online: <u>https://new.ozone.nl/</u> (accessed on 30, 6th, 2023)