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Abstract—This paper presents the modeling and closed loop
control of the shape-memory-alloy (SMA)-actuated hip joint of
a flapping-wing flying robot (FWFR). Despite the lightweight
legs/claw mechanism, a strong force of grasping is needed.
The SMAs show high force delivery; however, it is difficult
to control (position and temperature) the actuation due to the
necessity of high currents for warming up, and time for cooling
down process. This paper presents a state-dependent differential
Riccati equation (SDDRE) controller taking into account the
SMA dynamic and the actuator limits to control the leg/claw
system. The use of nonlinear optimal control, specifically, the
SDDRE, has been reported for the first time for bio-inspired
leg/claw control of FWFR. The dynamics of the SMA actuators
and on-off switching of the MOSFETs to provide current for
the system demands switching in the design of the controller
as a constraint for inputs which was considered in the design.
Simulation and experimental results and analysis of different
phases of heating of SMAs were discussed and resulted in
satisfactory control performance.

Index Terms—SDRE, SMA, Closed-loop control, Bio-inspired
claw, Fkapping-wing robots, UAV, Aerial Robot.

I. INTRODUCTION

THE shape memory alloys (SMA) are made of Nickel
Titanium and they are considered as new technology

material or smart material. The main applications of SMAs
are still under investigation; however, their potential usages,
reported in the literature make this material one of the
most important candidates for light-weight actuation. One
interesting example could indicate the application in the
medical domain, implemented in hearing aids transmitting
the vibration to the eardrum [1]. In this case, the transition
temperature is near the temperature of the human body for
recovering the initial shape of the SMA. The main difficulty
in working with SMAs is controlling the force. The exerted
force by the SMA depends on the deformation and temper-
ature [2], [3]. Usually, the mechanism that controls the heat
exchanges is heavy-weight; however, it is interesting to be
used in lightweight applications due to its lightweight/high-
force ratio of smart materials.

The application of SMAs in this work is the motion control
of a very lightweight leg/claw system, installed under a
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Fig. 1: The developed SMA actuated hip joint integrated on E-Flap or-
nithopter [8].

flapping-wing flying robot (FWFR) shown in Fig. 1. The
preliminary design and application were reported in [4]
though there was no control over the force of the SMAs.
Instead, the main objective was to close the claw as tight as
possible. The airflow and environment temperature were used
to open the claw. A system to release environmental sensors
was presented from an unmanned aerial vehicle (UAV) using
smart material [5]. On the contrary, in another example SMAs
were used to launch a flying system, UAV from trees [6]; it
was limited to passive actuation to simplify the workload
and the total onboard weight of the system. The position
control of a joint using SMA was presented employing a
proportional-derivative-integral (PID) design [7]. Two load
cells were used to provide closed-loop feedback that is not
affordable in lightweight systems and flapping-wing flying
platforms.

This work implies the design, manufacturing, modeling,
and control of a hip joint of an ornithopter. It goes through
weight reduction by using SMA actuators. Selecting the
smart material for this task, the implementation was con-
strained by the on-off actuation of the SMAs and adding
complexity to the controller and modeling process. The
closed-loop controller in this work is the state-dependent
differential Riccati equation (SDDRE), reported for the first
time for the actuation of SMA installed under flapping-wing
robots.

The SDDRE is the differential and finite time version of
the state-dependent Riccati equation (SDRE) [9]–[11]. The
finite-time option adds more penalty to the end of the control
process through the final boundary condition of nonlinear
optimal control [12]. The shape memory alloys were used
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Fig. 2: The block diagram of the control problem of the SMA-actuated system dynamics.

in the SDRE research and literature [13]–[18], briefly re-
viewed here. Lima et al. presented the SDRE control for
positioning of flexible link robots, actuated by SMA material
[18]. Simulation results of a three-degree-of-freedom (DoF)
planar robot were illustrated. Barzegari et al. investigated
the aeroelastic characteristics of the cantilever wing with
smart materials employing the SDRE controller [13]. The
effect of the SMA actuators on the flutter condition was
shown and simulation results were presented to demonstrate
the application of smart material in this domain. Naeimifard
et al. applied the SDRE controller on position control of
a benchmark setup in simulation and experiment [14]. All
the valuable mentioned works were solved by an algebraic
Riccati equation (SDRE) to find the gain of the controller.
In this paper, the differential form SDDRE is simulated and
experimented.

Then, the main contributions of this work are 1) Active
bi-directional position control of the leg for a flapping-wing
flying robot using SMA actuators. 2) Implementing the state-
dependent differential Riccati equation for an SMA robotic
leg/claw system.

The first contribution adds the closed-loop feedback and
pushing/retrieving possibility to the actuator as an important
increment advance with respect to Ref. [4], which was
preliminary work in this domain without force and position
control. The second contribution is related to the application
of nonlinear control on smart materials, specifically SMAs.
Here the increment contribution is in solving a differential
Riccati equation experimentally for closed-loop control in
comparison with [13]–[18] where only algebraic SDRE was
considered. One of the advantages of the SDDRE is the finite
time characteristics that could finish the control task sooner
than the SDRE using a weighting matrix of states at the final
time.

The paper is structured as follows. In Section II, the system
dynamics are modeled. Section III presents the SDDRE
control structure. Section IV evaluates the simulation result of
the system including the model of Section II and the control
structure of Section III. Section V shows the experimental
results. Finally, Section VI presents the conclusions of the
work.

II. DYNAMIC MODELING

The dynamics of the ornithopter hip joint system include
several parts such as MOSFETs, current to temperature,

temperature to force, mechanical section, and feedback mea-
surement components. The MATLAB Simulink software is
used to model the system. The control block diagram of
the system dynamics is presented in Fig. 2, which shows
the arrangement of the different elements. To implement the
SDRE nonlinear optimal controller, the first step is to develop
the dynamic equations to model the SMA actuators.

The SMAs are special Nickel and Titanium alloys that
change their phase between martensite and austenite depend-
ing on the temperature. There are two main temperatures
to analyze the behavior of the SMA. The first is the pure
martensite temperature and the second is the pure austenite
temperature. Then the transition is linear from one phase
to another. The SMA behavior was studied in terms of the
stress and the phase [3]. A model was proposed to obtain the
generated force by the alloy as a function of the elongation
and the phase of the alloy was proposed [2].

Concerning the developed SMA system, the actuation
starts in a de-twined martensite state evolving to austenite
with the raise of the temperature. The applied initial force
by the SMA could be modeled as the needed force to
perform a plastic deformation in the martensitic state. That
simplifies the actuation model reducing the discontinuities
and evaluating the evolution of the alloy during the change
of phases.

The application requires a well-developed model of the
alloy that shows the properties during the operations with
the fixed condition. It is proposed to obtain the generated
force by the alloy through:

r(T,x) = FPD +K∆T ∆x, (1)

where FPD is the identified stress to perform a plastic defor-
mation in the martensite phase of the alloy, K is the phase-
change constant, ∆T is the variation of temperature and ∆x is
the elongation of the spring. The proposed method is based
on the antagonist muscles configuration, presented in Fig. 3,
right side. In this configuration, the generated force by one
spring is directly opposed to the other. That makes it possible
to simplify the model assuming that the spring is at least in
the de-twined martensite phase, which is identified by FPD,
adding the generated force to that by the change of phase
and the elongation.

The value of FPD could be found by extending the spring
on the martensite phase against a load cell and discharging
the transition on the force. The gradient of curve K was iden-



Fig. 3: The physical representation of the model.

tified by varying the temperature with different elongations
and analyzing the relationship. The model works between
the plastic deformation in the martensite/austenitic phases.
By evaluating the evolution of FPD, the fatigue of the spring
could be obtained.

To find the dynamics of the heat exchange, the stored
energy in the spring is evaluated:

Espring(I, t,T ) =
∫ t(T )

t(T0)
[Pc(I)−PL(T )]dt, (2)

where Espring(I, t,T ) is the stored energy in the spring, Pc(I)
is the total electrical consumed power by the whole system
in terms of the current, and PL(T ) is the instant power loss
depending on the temperature. The integration limits are
between the time in which the temperature is To and the
unknown time in which the temperature reaches T .

Pc(I) have been estimated from the electrical analysis
of the spring. Several tests were conducted to implement
these equations. The first step was to analyze the power
consumption of the spring by applying different electrical
currents to obtain the equivalent electrical resistor. Fig. 4
shows the electrical behavior of the spring, temperature, and
current. It shows the temperature in terms of the time on the
left and the power consumption on the right.

Analyzing the power consumption in terms of the tem-
perature, it could be observed that the behavior is con-
stant. Consequently, the internal equivalent resistor of the
spring is also constant. The value was obtained from the
relationship between power consumption and the applied
current. Identifying electrically the system. The electrical
power consumption could be expressed as follows:

Pc(I) = I2Rspring, (3)

where I is the electrical current applied to the system, Rspring
is the identified equivalent resistor of the spring.

The thermal and electrical analyses were combined to
calculate the delivered energy to the air. Fig. 4 shows a limit

Fig. 4: Electrical behavior of the SMA in time and terms of energy
consumption. Left side temperature time dependency. Right side power
consumption

Fig. 5: The SMA Spring energy consumption. The graphic shows shaded
in blue limited by a dashed line the useful energy. The continuous lines
represent the consumed energy in different colors in terms of the applied
current.

in the temperature in terms of the current. On the limit, all the
applied power to the spring is transferred to the environment.
That makes it possible to identify the energy losses in terms
of the spring temperature and environment temperature. Fig.
5 evaluates graphically the results.

Analyzing the results, heat transfer is linear in terms of
temperature. Evaluating it in a theoretical way, it could be
modeled as a resistor delivering energy to the environment.
So the energy loss is modeled through the convection mech-
anism of heat transfer as follows:

PL = hA(T −T0), (4)

where h is the heat transfer coefficient and A is the contact
area with the air.

It is difficult to determine the heat transfer coefficient and
the contact area of the system. Regarding the contact area,
the system has a lot of components supporting a high current.



It is impractical to consider all the components theoretically,
therefore, these parameters and the heat transfer coefficient
were identified by using the analytical data. Regarding the
results of the electrical analysis, the wasted energy on the
spring is defined. The graphic shows the total consumed
energy in terms of the current and shaded the useful energy,
Fig. 5. By evaluating these equations the stored energy in
the spring depending on the time, current, and environment
temperature, is obtained, and q(I, t) is defined.

The next step is to obtain the equations that define the
movement of the joint and the relationship with the generated
forces by the SMA springs in the antagonist configuration.
Fig. 3 shows a simplification of the system in which the
main parameter of the system has been highlighted. The
actuation system is composed of two SMA springs in an
antagonist configuration. The generated forces by the SMA
system are transmitted to the hip joint by using tendons and
a pulley to guarantee the moment generation. The pulley is
directly connected to the leg of the system. The mass of the
end-effector (claw) and the leg have been substituted by a
mass in the center of mass of the leg/end-effector system. To
evaluate this system, Euler-Lagrange has been applied using
the general coordinate θ . The displacement of the spring is
obtained regarding that the tensor is always in contact with
the internal surface of the pulley. The friction of the joint
has been considered as well. Equation 5 shows the dynamic
behavior of the system:

(Izz +MeqR2
CoG)θ̈(t)−MeqRCoGgsinθ(t) = ∑FSMA(t)r− cθ̇(t), (5)

where Meq(kg) is the equivalent mass of the system in the
center of gravity (CoG), Izz(kg.m2) is the moment of inertia
of the leg, R(m) is the distance from the rotational point to the
CoG, g = 9.81(m/s2) is the gravity constant, θ(t)(rad) is the
generalized coordinate of the system, ∑F(N) is the resultant
of the forces of the SMA spring in antagonist configuration,
r(m) is the internal radius of the pulley and c(kg.m/s) is
the dynamic friction coefficient. The input parameters to the
system are the input current of the active spring and the
antagonist spring. The output of the evaluated system is the
position of the leg measured by a potentiometer, θ(t). All the
subsystems have been modeled theoretically to proceed with
the design and simulation of the controller before starting the
experimental validation. Considering the state-vector of the
system as x(t) = [θ(t), θ̇(t)]⊤, the state-space representation
of the mechanical part is found:

ẋ(t) =

[
0 1

MeqRCoGgsinx1(t)
(Izz+MeqR2

CoG)x1(t)
−c

Izz+MeqR2
CoG

]
x(t)+[

0
1

Izz+MeqR2
CoG

]
∑FSMA(t)r.

(6)

III. THE SDDRE CONTROL STRUCTURE

Consider a nonlinear time-invariant affine-in-control sys-
tem in the form of:

ẋ(t) = f(x(t))+g(x(t),u(t)), (7)

where x(t) ∈ Rn is the state vector of the system, u(t) ∈ Rm

is the input vector. f(x(t)) : Rn →Rn and g(x(t),u(t)) : Rn ×
Rm → Rn are vector-valued smooth piecewise-continuous
functions that satisfy the Lipschitz condition.

System (7) is transformed to state-dependent coefficient
(SDC) parameterization:

ẋ(t) = A(x(t))x(t)+B(x(t))u(t), (8)

where A(x(t)) : Rn → Rn×n and B(x(t)) : Rn → Rn×m are
held.

Condition 1. The pair of {A(x(t)),B(x(t))} is a control-
lable parameterization of system (7) for all x(t) ∈ Rn in
t ∈ R+ [19].

Considering the state-space (6), the SDC matrices are
defined as:

A(x(t)) =

 0 1
MeqRCoGg

(
1−

x2
1(t)
6 +

x4
1(t)
120 −···

)
Izz+MeqR2

CoG

−c
Izz+MeqR2

CoG

 ,

B =

[
0
1

Izz+MeqR2
CoG

]
,

(9)

in which sinx1(t) is replaced with its Taylor series expansion,
x1(t)−

x3
1(t)
6 +

x5
1(t)
120 −·· ·, to omit the denominator x1(t) in the

SDC matrices and avoid singularity when x1(t) = 0.
The cost function integral of the SDRE (sub-optimal

controller) is defined [20]:

J =
1
2

x⊤(tf)Fx(tf)+
1
2

∫ tf

0
{x⊤(t)Q(x(t))x(t)+u⊤(t)R(x(t))u(t)}dt,

(10)
where Q(x(t)) : Rn →Rn×n is the weighting matrix of states
and R(x(t)) :Rn →Rm×m is the one for the inputs, symmetric
positive semi-definite and definite, respectively. F ∈ Rn×n is
the weighting matrix of states at final time tf(s).

Condition 2. The pair of {A(x(t)),Q1/2(x(t))} is an ob-
servable parameterization of system (7) for all x(t) ∈ Rn in
t ∈ R+ in which Q1/2(x(t)) is the Cholesky decomposition
of Q(x(t)) [9].

The control law of the SDRE is presented as:

u(t) =−R−1(x(t))B⊤(x(t))K(x(t))x(t), (11)

where K(x(t)) :Rn →Rn×n is the symmetric positive-definite
solution to the state-dependent differential Riccati equation
(SDDRE) [21]:

A⊤(x(t))K(x(t))+K(x(t))A(x(t))
−K(x(t))B(x(t))R−1(x(t))B⊤(x(t))K(x(t))+

Q(x(t)) =−K̇(x(t)), (12)



where the final boundary condition of the differential equa-
tion is K(x(tf)) = F. There are several solution methods for
SDDRE (12), studied in Ref. [21]; here to solve the SDDRE,
Lyapunov-based method is used via negative root to Riccati
equation [9]. The first step is to solve the SDRE:

A⊤(x(t))K−
ss(x(t))+K−

ss(x(t))A(x(t))
−K−

ss(x(t))B(x(t))R
−1(x(t))B⊤(x(t))K−

ss(x(t))+
Q(x(t)) = 0, (13)

and find its negative root where K−
ss(x(t)) : Rn →Rn×n is the

negative-definite steady-state solution to (13). The next step
is to define a closed-loop matrix:

Acl(x(t)) = A(x(t))−B(x(t))R−1(x(t))B⊤(x(t))K−
ss(x(t)),

and solving state-dependent differential Lyapunov equation:

Ṗ(x(t)) = Acl(x(t))P(x(t))+P(x(t))A⊤
cl(x(t))−

B(x(t))R−1(x(t))B⊤(x(t)), (14)

with final boundary condition P(x(tf)) = {F−K−
ss(x(t))}−1.

The solution to (14) is found by solving algebraic Lyapunov
equation:

Acl(x(t))E(x(t))+E(x(t))A⊤
cl(x(t)) =
B(x(t))R−1(x(t))B⊤(x(t)),

and substituting E(x(t)) into the closed-form solution:

P(x(t)) = E(x(t))+ exp{Acl(x(t))(t − tf)}[P(x(tf))−
E(x(t))]exp{A⊤

cl(x(t))(t − tf)},

that generates the final answer, a symmetric positive-definite
solution to the SDDRE (12) K(x(t)) =K−

ss(x(t))+P−1(x(t)).
So, by defining the SDC matrices, (8), and replacing them
into the differential Riccati equation (12), the control gain
is found and substituted into the control law (11). Then the
input law will regulate the system (7) to the equilibrium point.
It should be noted that the SDDRE control design is subjected
to on-off actuation, peculiar to the real actuation of SMA and
MOSFETs in this work. The control law is constrained by:

u(t) =

{
umaxsign(u(t)) |u(t)|> uthreshold,

0 |u(t)|< uthreshold,
(15)

in which sign(·) is the signum function, umax is the maximum
limit of the input signal, and uthreshold is the threshold value
that defines the switching between the input bounds.

IV. SIMULATION

The Simulink model has been built based on the presented
equations and dynamics in Section II and Fig. 2. The input of
the model is the supplied voltage to the spring. The electrical
model sets the applied current to each spring. The thermal
model, Eq. (2), receives the provided current to the spring
and emulates the exchanges of energy with the air. The

TABLE I: The parameters of the simulation and the model.

Parameter Value Unit
Environment temperature 298 K
Voltage supply 3 V
Current supply 13.31 A
R Eq.2 0.2253 Ω

FPD Eq.1 0.4286 N
K Eq.1 2.1096 N/m
Gravity constant 9.81 m/s2

Fig. 6: The simulation results of the model in Simulink and regulation from
initial to final condition.

spring dynamic model Eq. (1) generates the applied force by
the spring in terms of elongation and temperature. Finally,
the dynamics of both springs are combined for actuation in
the joint in Eq. (5). The parameters of the simulation are
presented in Table I.

The initial condition of the leg is set at zero degree, θ(0) =
0◦ and the final condition is chosen θ(tf) = 85◦. The final
time of simulation is set tf = 10(s). The maximum voltage of
the input is umax =Vmax = 5(V) and the threshold voltage is
uthreshold =Vthreshold = 0.01(V). The center-of-mass of the leg
is RCoG = 0.0504(m), mass of the leg is Meq = 0.053(kg), the
moment of inertia is Izz = 190.274×10−6(kg.m2), and fric-
tion constant is c = 0.01(kg.m/s). Considering the weighting
matrices as R = 1, Q = diag(10,30), and F = 50×Q, results
in the convergence of the error to zero, which was the
objective of the control design. The generalized coordinate,
error, and error velocity are illustrated in Fig. 6-(a-c). The
on-off input of the SDRE is illustrated in Fig. 6-(d), and
the input signals to MOSFETs are shown in Fig. 6-(e-f),
switching between 0− 5(V). The convergence rate of error
is showing a favorable result.

V. EXPERIMENTS

The experimental setup of the leg/claw system, installed
under a flapping-wing robot is illustrated in Fig. 7a. It is
divided into two parts; the setup for the representation is
shown on the left side and the setup on board is shown



(a) The diagram of the experimental setup with graphical representation.

(b) Control outputs to SMA springs. (c) Control input.

Fig. 7: The experimental setup and control signals.

on the right side. The objective of this configuration is to
avoid possible non-modeled delays of the representation in
the behavior of the system.

The dynamic model is based on the experimental results
to generate comparable data. Also, the electronics to control
the system have been taken into account in Section IV. The
feedback to the control system is the position and velocity of
the joint and the temperature of the spring. The input control
computed by the SDDRE is the applied current to the SMA
spring. The actuation comprises two springs for forward and
backward motions in an antagonistic configuration. The se-
lected SMA spring was custom-made from a wire of 1.5mm
in diameter. Firstly, the wire was deformed in a spring shape
in a local factory. Then a thermal treatment was performed
in the GRVC laboratory maintaining the spring shape for 1
hour at 450ºC. Ultimately, the spring has a coil diameter of
15mm and 4.5g of weight. They can exert forces up to 100N
with an elongation that is 3.5 times bigger than the initial
state and 120ºC of temperature. Another important part of
the setup is the spring installation and the initial elongations.
The initial elongation of the spring set the position of the
joint at 180º or 0º. Spring 1 is compressed at 0º; however,
it still has to exert force to reach this position to balance
with spring 2. Due to that, the initial longitude of spring 1
is 20mm, 30% bigger than the initial longitude of the spring.
At 180º spring 1 has an elongation of 58mm. The movement

of spring 2 is opposed to spring 1 in terms of the angle. The
configuration was also used in sections IV and II.

Kevlar tendons were used to transmit the force of the
SMAs configuration to the joint. This material can support
the temperature of the spring while having great stress
resistance. The force is transmitted to a pulley that connects
the SMA system and the hip joint. The weight of the leg and
friction have been considered in the model in Section IV,
making it possible to test the system’s viability.

The SDDRE controller has been implemented into an
Arduino board to manage the actuation. The control inputs
have fed the SMA springs through MOSFETs to manage the
high current. The electrical diagram to control the actuation
of the spring is shown in Fig. 7b. There are two control
outputs and circuits to manage separately the actuation of
each spring.

Arduino manages to have a digital output of either 0V or
5V. This output is inserted in the gate of the MOSFET that
switches on and off the actuation. This configuration aims to
deliver as much current as possible to the SMA, reducing
the heating time. However, the control is more complex
because of the increased inertia of the system. To control
the temperature of the alloy, a PT-100 sensor was used. The
diagram in Fig. 7c shows the connection of the sensor.

A tension divider was used to measure the variation of
the PT-100 voltage with the temperature. Arduino receives



Fig. 8: Real experimental setup. This figure shows all the systems integrated
into the ornithopter ready for the experiment.

Fig. 9: Experiment summary. The experiments with the same reference have
been represented in the same range of colors. (a) shows in the dashed line
the different references and continuous the actual position. (b) shows the
error between the reference and the actual position.

the voltage consumed by the sensor and calculates the
electrical resistor of the sensor. The temperature is obtained
by evaluating this data in the temperature/electrical curve
of the resistor provided by the manufacturer. As shown in
Section II, knowing the state of the temperature, it is possible
to reduce the fatigue of the alloy. That makes it possible to
improve the number of cycles the SMA can afford without
losing properties.

The last input to the controller is the position, and a poten-
tiometer was used to measure the leg’s position. The resistor
of the potentiometer varies depending on the position given
a voltage to the Arduino input. This voltage is computed
to have the position of the leg. To avoid the cost of the
representation in terms of time, an external Arduino was used
to receive the signal given by the controller and sensors. This
data was used for the representation of the experiments. Fig.
8 shows a picture highlighting the system’s main component.

Figure 8 shows the real integration of the system presented

Fig. 10: Experimental validation reference angle 85◦. (a) shows the repre-
sentation of the position with the time, (b) and (c) show the error and the
derivative error, (d) shows the input signal of the SDRE controller, (e) and
(f) show the control signal to the spring 1 and spring 2 respectively, (g)
shows the temperature of the springs, and (h) shows the elongation of the
spring.

in the schematic view in Fig. 7a. This figure shows the
antagonist SMA configuration of the muscles, having the
distribution of the forces on the pulley. The temperature
sensors are also shown. The contact area of the sensors is
2×5mm. They are surrounded by silver-based glue to guar-
antee thermal conductivity and their position on the spring.
The figure also shows the position of the potentiometer in
the axle of the hip joint, guaranteeing a good measure. The
load cell in the figure was used for the modeling process of
the system. Fig. 9 summarizes the experiments with different
inputs and starting points.

Five references were achieved to test the behavior of
the controller and the system. For each reference, different
starting points were tested. The change in the initial point
makes it reach the equilibrium in the position with different
temperature values. It is important to test this because the
relationship with the temperature is not trivial. That makes
it possible to test whether the system works correctly in
distinct configurations. As shown in Fig. 9, the control system
is working with good behavior, going to the reference and
reducing the error. Also, the response time is similar to the
one exposed in Section IV. Fig. 10 focuses on one experiment
to show all the values given by the data of the experiments.

Fig. 10-(a) shows the system going to the reference. The
time to reach the reference is the same as the one observed
during the system simulation. Fig. 10-(b) and -(c) show the
system reducing the error. Fig. 10-(e), -(f), -(g), and -(h) are
directly related to the behavior of the springs. The disparity
between Figure 6 and Figure 10 is due to the initial conditions



of the experiments. In the model results, the spring’s initial
condition is at the environment temperature, and the initial
position is 0◦. However, the controller demonstrated that it
can respond to varying initial conditions.

When comparing the SDDRE controller with other clas-
sical control methods (such as PD/PID) the overshoot is
smaller. The comparison of the SDDRE with respect to
SDRE also confirmed the effectiveness of the differential
form in finite time control. The SDDRE can properly model
the actuation to reduce the equilibrium temperature and
increase the number of cycles the spring can support. It is
also good for the electronics reducing the switching in the
equilibrium. In terms of efficiency, the SMA also reduces
the consumption of energy. This is important in lightweight
platforms due to the weight of the batteries, which sometimes
is a great part of the total weight of the platform. On
the FWFR platform, weight is one of the most important
properties. It is different to have maneuverability during the
flight or not. For that reason, the miniaturization of the
systems in this paper plays an important role.

VI. CONCLUSIONS

This work presented the application of smart material in
building a robotic leg/claw for a very lightweight platform,
a flapping-wing flying robot. This robot has a very limited
load-carrying capacity, and any weight reduction adds value
to the design and the method. The shape memory alloys are a
good choice for actuating the bio-inspired setups and produce
significant force comparing the weight of the actuator. The
difficulty in SMA control is controlling the temperature,
force, and position to carry out the task. Here the model
of the system was presented, and the state-dependent differ-
ential Riccati equation was used to control the robotic bio-
inspired leg/claw system. The results, temperature analysis,
and experimental outputs validated the proposed controller’s
performance and showed the SDDRE’s compatibility for
onboard computations.
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