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The phenomenon of Vibrational Resonance (VR) is explored in the presence of an
amplitude-modulated (AM) signal comprising a low-frequency component (ω) and two high-
frequency components (Ω+ ω) and (Ω− ω), where Ω >> ω. This investigation is conducted
within the framework of certain one-dimensional nonlinear maps, specifically the Bellows
map and the Bountis map. These maps are of particular interest due to their appearance in
diverse physical contexts and their complex dynamical behaviors. In both the Bellows and
Bountis maps, VR manifests at the low-frequency (ω) of the amplitude-modulated signal as
we vary the amplitude (g) of the high-frequency signal. By carefully selecting suitable values
for the high-frequency signal’s amplitude (g), it becomes possible to significantly enhance the
response to a weak signal. Furthermore, the maximum resonance peak is contingent upon
the amplitude (g) of the amplitude-modulated signal. We characterize the VR phenomenon
through the analysis of response amplitude and trajectory plots. Additionally, we explore the
impact of the AM signal on various attractors within these maps, accompanied by appropriate
bifurcation diagrams and Lyapunov exponent diagrams.
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1. Introduction

The phenomenon known as Vibrational
Resonance (VR) occurs when a nonlinear system
is exposed to two distinct periodic signals
of significantly different frequencies, denoted
as ω and Ω, where Ω >> ω. In VR, a
weak low-frequency signal can be amplified by
increasing the amplitude of a strong high-
frequency signal. The analysis of VR has garnered
considerable attention in recent years due to
its wide range of applications in the fields of
science and engineering. Following the pioneering
work by Landa and McClintock [1], VR has
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been investigated in various types of systems,
including neural network systems [2-4], noise-
induced structures [5], optical systems [6,7],
monostable systems [8], bistable systems [9-
11], spatially periodic potential systems [12],
excitable systems [13], time-delayed systems
[14,15], groundwater-dependent ecosystems [16],
coupled systems [17,18], harmonically trapped
potential systems [19], and discrete dynamical
systems [20,21].

Motivated by prior research findings, this
paper presents a numerical investigation into
the occurrence of Vibrational Resonance (VR)
within specific one-dimensional nonlinear maps,
namely the Bellows map and the Bountis map,
when subjected to an amplitude-modulated
(AM) signal. Discrete-time systems, described
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by nonlinear difference equations, are often
preferred for their practicality and reliability
over continuous-time differential equations.
They yield efficient computational results for
numerical simulations and offer a richer dynamic
range compared to continuous systems. The
use of amplitude-modulated signals finds wide
application across engineering and scientific
domains [22-27], making it an essential topic for
enhancing weak signals in modulated form. Given
our objective to analyze the VR phenomenon in
two one-dimensional maps under the influence
of an amplitude-modulated signal, we express
the AM signal as follows:The equation for the
amplitude-modulated (AM) signal is given by:

S(n) = [f + 2 g cosωn] sinωn, (1.1)

which can also be written as

S(n) = f sinωn+ g sin(Ω + ω)n+ g sin(Ω− ω)n,
(1.2)

where f and g denote the amplitudes of the AM
signal, and ω and Ω represent the two frequencies
of the AM signal with ω << Ω. In Equation
(1), f sinωn represents the carrier signal, which is
modulated by the other harmonic signal g cosΩn.
Furthermore, it is important to note that the
signal satisfies f << 1 and ω << Ω.

The remainder of this paper is structured
as follows: Firstly, in Section 2, we provide
introductions to both maps, namely the Bellows
map and the Bountis map. In Section 3, we
conduct a numerical analysis to investigate the
occurrence of Vibrational Resonance (VR) within
the Bellows map when driven by the AM signal.
Next, in Section 4, we extend our analysis to
explore the occurrence of VR within the Bountis
map under the influence of the AM signal. Finally,
our concluding remarks are presented in Section
5.

2. One Dimensional Maps

The general form of a one-dimensional map
is expressed as:

Xn+1 = f(Xn) (2.1)
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FIG. 1. (a) Return map of the Bellows map for r = 5.0
and b = 6.0 (b) Bifurcation diagram of the Bellows
map for r = 2.0 and b = 6.0.

Here, Xn+1 is a function of the discrete variable
X at the previous (nth) iteration, influenced
by certain parameters. Historically [28,29], Xn

has been employed to represent the population
density of an organism at the nth generation.
When the function f(Xn) exhibits the tendency
to increase monotonically as X is small and
decrease monotonically as X becomes large, often
due to density-dependent processes, it assumes a
characteristic “hump”-like shape characterized by
a unique maximum. In our current research, we
select two specific one-dimensional maps featuring
such hump functions.
(i) Bellows Map

First, we examine the Bellows map [30-32],
described by the following difference equation:

Xn+1 = f(Xn) =
rXn

1 +Xb
n

(2.2)

This map serves as a model for the evolution
of population density within an organism, where
the parameter r is associated with environmental
factors. The equilibrium points of this map are
at 0 and (r − 1)b. The critical point, denoted as
the point where f ′(X) = 0, occurs at ( 1

b−1)
1/b.

Specifically, for b = 2, Equation (4) possesses
only one fixed point, X∗ = 0, for values of r
between 0 and 1. However, for r > 1, it exhibits
three fixed points, with X∗

0 = 0 being unstable
and X∗

± = ±
√
r − 1 being stable. In other

words, the Bellows map assumes a monostable
state when 0 < r ≤ 1 and transitions to a
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FIG. 2. xn versus xn+1 plot of Bountis map for ξ =
20.0 and µ = 5.0. The other parameters values are
fixed as l = m = 4.0, a = 3.0, r = 0.6, s1 = 1.5, s2 =
0.12 and c = 7.0 respectively.

bistable state when r > 1. Figures 1(a) and
1(b) depict the return map (Xn versus Xn+1)
and the bifurcation diagram as r increases for
the Bellows map. Figure 1(a) vividly illustrates
the characteristic “inverted U-shape” or hump-
like nature of the nonlinear function f(X) in the
return map. In Fig. 1(b), the Bellows map exhibits
various dynamic behaviors, including transcritical
bifurcation, period-doubling leading to chaotic
behavior, periodic windows, and intermittent
behavior.
(i) Bountis Map The difference equation
defining the Bountis map is as follows [33]:

xn+1 = a+
(ξ − µ) + r(x− c)l

s1 + s2µ(x− c)m
, m ≥ l, a > 0.

(2.3)
Here, µ, ξ, l,m, a, r, s1, s2, and c represent various
parameters. Raghavan et al. [33] conducted
a numerical study to explore the existence
of reversal in period-doubling sequences and
antimonotonic behavior within the Bountis map.

First, let’s analyze the important features of
this map. Figure 2 displays the return map (xn
versus xn+1 plot) of the Bountis map with ξ =
20.0 and µ = 5.0. This figure vividly illustrates
the distinctive “inverted U shape” (hump) nature
of the f(x) nonlinear function in the return map.
From the return map of the Bountis map, we
can observe the following key features: (i) A non-
zero origin. (ii) A unique smooth maximum point

with inflection points on either side of it. (iii) An
asymptotic long tail to the right of the maximum.
(iv) For small values of ξ and an appropriate
choice of a, there are no fixed points in the interval
[0, c]. (v) When ξ = 20, the map has only one
fixed point, denoted as P , which falls within the
interval [c, f(c)]. However, for large values of ξ,
multiple fixed points appear within the interval
[0, c].
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FIG. 3. Bifurcation diagrams of Bountis map for
certain values of ξ (a) Bubble structure at ξ = 10.5 (b)
Cascading of period-doubling with bubble structure at
ξ = 11.395 (c) Chaotic states with bubble structure
at ξ = 11.5 (d) Period adding sequences with reversal
of period doubling sequences at ξ = 12.5. The other
parameters values are fixed as l = m = 4.0, a =
3.0, r = 0.6, s1 = 1.5, s2 = 0.12 and c = 7.0
respectively.

Next, we conduct a numerical analysis
to investigate the presence of various dynamic
behaviors, such as antimonotonicity and chaos,
in the Bountis map. For our numerical study, we
maintain the parameter values at l = m = 4.0,
a = 3.0, r = 0.6, s1 = 1.5, s2 = 0.12, c = 7.0,
while allowing µ and ξ to be control parameters.
The bifurcation diagram of the Bountis map,
where we vary the control parameter µ while
keeping a few values of ξ constant, is presented
in Fig. 3. Specifically, Fig. 3(a) illustrates the
bifurcation diagram of µ versus x for ξ = 10.5.
As µ increases, the system described by Eq. (2)
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remains in a periodic state, following the pattern:
Period-1 → Period-2 → Period-1, thus forming
a primary bubble structure. With a further
increase in ξ, the number of nested bubbles grows
exponentially as 2n with n = 1, 2, 3, .... This
exponential growth is clearly evident in Fig. 3(b)
for ξ = 11.395. As µ continues to increase,
chaotic states begin to emerge. This is clearly
observed in Figs. 3(c) and 3(d), which depict the
bifurcation diagram of µ versus x for ξ = 11.5
and ξ = 12.5 respectively. The once-structured
bubble pattern now exhibits chaotic behavior, and
as µ increases further, these chaotic states become
more pronounced. As we raise the values of ξ
we can observe period-adding sequences with fold
bifurcations at the accumulation point of periodic
windows.

3. Resonance in the Bellows map
with AM signal

The Bellows map, driven by an AM
(Amplitude Modulated) signal, is described by
the following equation:

Xn+1 = f(Xn) =
rXn

1 +Xb
n

+ S(n) (3.1)

Here, S(n) represents the AM signal. We conduct
an analysis of this map (Eq. 6) under specific
parameter settings that place the system within
a bistable regime. We keep the parameters fixed
at b = 2.0, r = 2.0, f = 0.1, ω = 0.1, and
Ω = 1.0. The amplitude g of the high-frequency
signal serves as the control parameter. Since this
is a discrete-time system, the maximum frequency
we can apply is limited to Ω = π. Initially,
when g = 0, the system exhibits two coexisting
attractors, one centered around the fixed point
X∗

+ and another around X∗
−. Moreover, at this

value of g, there is no interplay or motion between
these two attractors. We perform iterations of the
map, starting with an initial value X0, discarding
the first 104 iterations as transient. The solution
of the map inherently comprises both a slow
motion with frequency ω and a fast motion with
frequency Ω.

We concentrate our analysis on the low-
frequency component of the output signal, which
exhibits resonance. From the numerical solution
of xn, the response amplitude Q is computed
through Q =

√
Q2

s +Q2
c/f , at the signal

frequency (ω), where

Qs =
2

NT

NT∑
n=1

xn sinωn, (3.2)

Qc =
2

NT

NT∑
n=1

xn cosωn, (3.3)

where T = 2π/ω and N is very large. In our
numerical calculation of Q, N is chosen as 103.

In Figure 4(a), we depict the variation
of numerically calculated Q with respect to
g for four values of r: r = 0.75, 1.0, 1.5, and
r = 2.0. The other parameters are held constant
at ω = 0.1, Ω = 1.0, b = 2.0, and f = 0.1.
Notably, for r ≤ 1, no resonance is observed,
and in such cases, the response amplitude Q
exhibits a monotonically decreasing behavior
with respect to g. It’s worth noting that for
r ≤ 1, the map possesses only one fixed point
at x∗ = 0. For r = 1.5, two resonances emerge.
The first resonance occurs at g = 0.22757
with Qmax = 8.260, and the second resonance
manifests at g = 0.96024 with Qmax = 2.2323,
as clearly shown in Figure 4(a). Similarly, for
r = 2.0, we observe two resonances. The first
resonance materializes at g = 0.38029 with
Qmax = 11.7123, while the second resonance
occurs at g = 1.2553 with Qmax = 3.6249. When
the map is subjected to a biharmonic signal, a
single resonance peak is observed for all values
of r. Interestingly, in contrast to this result,
when the map is subjected to an AM signal, two
resonance peaks emerge for r > 1. Furthermore,
as the control parameter r increases, both
Qmax and the positions of the resonance peaks
shift towards higher values of g, as indicated
by the increasing values of r. In Figure 4(b),
we analyze the resonance pattern for different
values of Ω (the frequency of the high-frequency
signal), specifically Ω = 1.0, 1.5, and 2.0, while
keeping r = 2.0 constant. For all values of Ω,
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FIG. 4. The variation of the response amplitude Q as
a function of the control parameter g (a) with ω =
0.1,Ω = 1.0, f = 0.1 and four values of r. The values
of the solid, dashed, dotted and dashed dot curves are
0.5,1.0,1.5 and 2.0 (b) with f = 0.1, r = 2.0, ω = 0.1
and three values of Ω such as Ω = 1.0 (solid curve),
Ω = 1.5 (dashed curve) and Ω = 2.0(dotted curve.

we observe double resonances. However, the
maximum of the response amplitude Qmax

decreases as Ω increases, and the positions
of the resonance peaks shift towards higher
values of g with increasing Ω. For instance,
in Figure 4(b), for Ω = 1.0, 1.5, 2.0, the first
resonances occur at g = 0.38029, 0.49525, 0.6691,
with corresponding Qmax values of
11.7123, 10.6999, 9.5983. The second resonances
occur at g = 1.2553, 1.1775, 1.4063, with Qmax

values of 3.6249, 2.8508, 2.2888.
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FIG. 5. The variation of the response amplitude Q as a
function of the control parameter g with r = 2.0, ω =
0.1,Ω = 1.0 and three values of f . The values of the
solid, dashed and dotted curves are 0.1,0.2 and 0.3.

In Figure 5, we present the variation of Q
with respect to g for three values of f : f =
0.1, 0.2, 0.3, while keeping r = 2.0 constant.
Double resonances occur for f = 0.1 (solid curve)

and 0.2 (dashed curve), and three resonances are
observed for f = 0.3 (dotted curve), as clearly
depicted in Figure 5. Notably, Qmax decreases
with an increase in the value of f . Specifically:
For f = 0.1, resonances occur at g = 0.38029
with Qmax = 11.7123 and at g = 1.2553 with
Qmax = 3.6249. For f = 0.2, resonances manifest
at g = 0.26939 with Qmax = 6.1777 and at g =
1.31029 with Qmax = 2.1325. For f = 0.3, three
resonances occur at g = 0.16502 with Qmax =
4.19746, g = 0.51363 with Qmax = 4.0542, and
g = 1.3554 with Qmax = 1.76023. Additionally,
the positions of the resonance peaks shift towards
lower values of g with increasing f .

Moving on, we present the bifurcation
diagram of the Bellows map (Eq. 6) in Figure
6(a) and the corresponding maximal Lyapunov
exponent diagram in Figure 6(b) for r = 2.0. The
values of the other parameters are set to b = 2.0,
f = 0.1, ω = 0.1, and Ω = 1.0. The Lyapunov
exponent λ is defined as:

λ = lim
N→∞

1

NT

NT∑
n=1

ln | f ′(Xn) | . (3.4)

Figure 6 shows that the Lyapunov exponent λ
remains negative across the entire range of g
values, implying that the time series of the map
is periodic. However, it is noteworthy that the
Bellows map exhibits a variety of bifurcations
without the AM signal, as evident in Figure 1(b).
This observation suggests that chaos is suppressed
due to the presence of the AM signal in the
Bellows map. In Figure 4(a), with parameters set
to r = 2, f = 0.1, Ω = 1.0, and ω = 0.1,
the first resonance occurs at g = 0.38029, and
the second resonance occurs at g = 1.2553. To
better understand the mechanism behind these
resonances, we examine the time series plots.
Figure 7 illustrates the behavior of xn for four
different values of g while keeping r = 2 constant.
For g = 0.0 (Figure 7(a)), two coexisting
oscillating solutions are evident, with one near x+
and the other near x−. As g deviates from zero,
even for small values, two oscillating solutions
persist. However, these solutions are modulated
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FIG. 6. (a) Bifurcation diagram (xn versus g) of
Bellows map driven by an AM signal and (b) the
variation of Lyapunov exponent λ for r = 2.0. The
values of the other parameters are b = 2.0, ω =
0.1,Ω = 1.0 and f = 0.1.

0 100 200 300 400 500
-1.5

0.0

1.5

0 50 100 150 200
-2

0

2 (c)g=0.38029

x n

n

0 100 200 300 400 500

-1.5

-1.0

-0.5

0.0

0.5
(b)g=0.3

x n

n

0 25 50 75 100
-3

0

3
(d)g=1.0

x n

n

(a)g=0.0

x n

n

FIG. 7. xn versus n (continuous curve) for a few
values of g with r = 2.0. The dashed curve represents
the periodic signal f sinωn. Resonance curve occurs
at g = 0.38029. The simulation parameters are b =
2.0, f = 0.1,Ω = 1.0 and ω = 0.1.

by the high-frequency signal f cos(Ωn). This type
of behavior is observed for g < 0.3. At g = 0.3
(Figure 7(b)), xn switches between regions x < 0
and x > 0 around the two fixed points, but the
residence times of the trajectories in these regions
differ. Periodic switching between the two fixed
points occurs precisely at g = 0.38029, as clearly
shown in Figure 7(c). At this value of g, the
response amplitude Q reaches its maximum. The
crossing of xn from x < 0 to x > 0 occurs when
the input signal f sin(ωn) reaches its maximum.
At g = 1.0 (which is far from resonance), the
mean residence times in the regions x < 0 and x >
0 decrease, leading to rapid switching between
these regions around the two fixed points, as
depicted in Figure 7(d).

4. Vibrational Resonance in the
Bountis Map

In the previous section, we explored the
occurrence of Vibrational Resonance (VR) in the
Bellows map when driven by an AM signal. In this
section, we turn our attention to the investigation
of VR in the Bountis map when subjected to an
AM signal. The difference equation describing the
Bountis map with an AM signal is as follows:

xn+1 = f(xn;µ, ξ) = a+
(ξ − µ) + r(x− c)l

s1 + s2µ(x− c)m
+S(n) ,

(4.1)
We analyze the response amplitude Q by
employing Eqs. (7) and (8) while varying the
amplitude g for several values of a,Ω, and f .
The following parameters are held constant: l =
m = 4.0, r = 0.6, s1 = 1.5, s2 = 0.12, c =
7.0, µ = 4.0, and ξ = 7.99. The evolution of
the response amplitude Q concerning the high-
frequency signal amplitude g is presented in
Figure 8 for four values of a: a = 1.0, 2.0, 3.0,
and 4.0, while maintaining ω = 0.1,Ω = 1.0,
and f = 0.1. In Figure 8(a), for a = 1.0 (solid
line), no resonance is observed, and in this case,
Q increases monotonically with increasing g. A
single resonance is evident for a = 2.0 (dashed
line) at g = 1.3732 with Qmax = 1.4646. Double
resonances occur for a = 3.0 (dotted line) and a =
4.0 (dashed dot line), as clearly shown in Figure
8(a). Specifically, for a = 3.0, the first and second
resonances occur at g = 0.7297 with Qmax =
1.7524 and g = 1.2534 with Qmax = 1.3438.
For a = 4.0, the first and second resonances
materialize at g = 0.42089 with Qmax = 1.988
and g = 1.19589 with Qmax = 1.385. Notably, the
maximum of the resonance curve increases as the
control parameter a increases, while its location
shifts toward lower values of the higher frequency
amplitude g.

Figure 8(b) presents the variation of
numerically computed Q against the control
parameter g for several values of Ω: Ω = 1.0, 2.0,
and 3.0, while keeping a = 3.0, f = 0.1, and
ω = 0.1. In Figure 8(b), for Ω = 1.0 (solid line),
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resonances occur at two places: g = 0.7297 with
Qmax = 1.7524 and g = 1.2534 with Qmax =
1.3438. However, for Ω = 2.0 and Ω = 3.0,
only one resonance is observed at g = 1.0455
with Qmax = 1.5694 and g = 0.9585 with
Qmax = 1.4061. From Figure 8(b), it is observed
that the maximum of the response amplitude
decreases with an increase in Ω, and its location
shifts toward higher values of g. The bifurcation
pattern for the Bountis map with an AM signal
described by Eq. (10) is depicted in Figure 9(a).
The corresponding Lyapunov exponent diagram
is shown in Figure 9(b). It is clearly evident that
with the inclusion of the AM signal, attractors
disappear, and the system exhibits periodic and
chaotic behaviors, instead of following a reverse
period doubling route to chaos.
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FIG. 8. The variation of the response amplitude Q as
a function of the control parameter g (a) with ω =
0.1,Ω = 1.0, f = 0.1 and four values of a. The values
of the solid, dashed, dotted and dashed dot curves are
1.0,2.0,3.0 and 4.0 (b) with f = 0.1, a = 3.0, ω = 0.1
and three values of Ω such as Ω = 1.0 (solid curve),
Ω = 2.0 (dashed curve) and Ω = 3.0(dotted curve).

Figure 10 illustrates the variation of
numerically computed Q with respect to the
amplitude g of the high-frequency signal for three
values of f : f = 0.1, 0.2, 0.3, while keeping a =
3.0. For all values of f , as g increases from 0,
the value of Q also increases until reaching a
maximum value, after which it decreases with
further increases in g. Interestingly, the maximum
value of the peak is detected at two positions for
f = 0.1, whereas only a single peak is observed for
f > 0.1, as clearly shown in Figure 10. It’s worth
noting that for all values of f , the first resonance
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FIG. 9. (a) Bifurcation diagram (xn versus g) of
Bountis map driven by an AM signal and (b) the
variation of Lyapunov exponent λ for a = 3.0. The
values of the other parameters are b = 2.0, ω =
0.1,Ω = 3.0 and f = 0.1.

occurs at nearly the same value of g, specifically
at g = 1.7524. However, the maximum of the
resonance curve, denoted as Qmax, decreases as
f increases, as evident in Figure 10. In addition,
we analyzed the motion of xn corresponding to
the resonance shown in Figure 10 for f = 0.1
(solid line). We accomplished this by plotting time
series plots for four values of g. The simulation
parameters used for this analysis are a = 3.0, ω =
0.1,Ω = 1.0, and f = 0.1. When g = 0.0, the
map is driven by a pure sinusoidal signal, resulting
in a sinusoidal pattern observed in Figure 11(a).
However, as g increases, the modulation of xn
by the high-frequency signal grows, leading to an
amplitude-modulated pattern, as clearly seen in
Figures 11(b) to 11(d).
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FIG. 10. The variation of the response amplitude Q
as a function of the control parameter g with ω =
0.1,Ω = 1.0, f = 0.1 and three values of f . The values
of the solid, dashed and dotted curves are f = 0.1, 0.2
and 0.3.
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FIG. 11. xn versus n plot for a few values of g. The
simulation parameters are a = 3.0, f = 0.1,Ω = 1.0
and ω = 0.1.

5. Conclusion

In this study, we conducted numerical
investigations into the occurrence of vibrational
resonance (VR) in two nonlinear maps: the
Bellows map and the Bountis map, when
subjected to the influence of an amplitude-
modulated signal with ω << Ω. In both
maps, resonance at the low-frequency ω is
induced by the high-frequency component of
the amplitude-modulated signal, leading to a

significant enhancement of the weak signal. Our
numerical analysis revealed the presence of VR
in both maps within certain ranges of parameter
values. In the Bellows map, resonance results
in periodic switching between two coexisting
states. Beyond the resonance, the mean residence
times in regions x < 0 and x > 0 decrease,
leading to rapid switching between these regions.
In the Bountis map, for small values of g, xn
oscillates around the fixed point regardless of
g. As g increases, the modulation of xn by the
high-frequency signal evolves into a modulated
wave pattern. In the absence of an amplitude-
modulated signal, both maps exhibit a variety of
bifurcations, including periodic doubling, reverse
period-doubling, antimonotonicity, period-adding
sequences, flip bifurcation, and more. However,
the presence of the AM signal causes the Bellows
map to display quasiperiodic behavior and the
Bountis map to exhibit periodic and chaotic
behaviors within specific ranges of parameter
values. Exploring other types of resonances in
these maps with amplitude-modulated signals, as
described by Eqs. (6) and (10), may yield further
intriguing results.
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