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In this article, we present our global QCD analysis of leading neutron production in deep inelas-
tic scattering at H1 and ZEUS collaborations. The analysis is performed in the framework of a
perturbative QCD description for semi-inclusive processes which is based on the fracture functions
approach. Modeling the non-perturbative part of the fragmentation process at the input scale Q2

0,
we analyze the Q2-dependence of the leading neutron structure functions and obtain the neutron
fracture functions (neutron FFs) from next-to-leading order (NLO) global QCD fit to data. We
have also performed a careful estimation of the uncertainties using the “Hessian method” for the
neutron FFs and corresponding observables originating from experimental errors. The predictions
based on the obtained neutron FFs are in good agreement with all data analyzed, at small and large
longitudinal momentum fraction xL as well as the scaled fractional momentum variable β.

PACS numbers: 12.38.Bx, 12.39.-x, 14.65.Bt

CONTENTS

I. Introduction 1

II. Theoretical framework 2

III. NLO QCD analysis of neutron FFs and
parameterization 3

IV. Leading neutron production data 4
A. H1 data 4
B. ZEUS data 5

V. The method of χ2 minimization and neutron
FFs uncertainties 5
A. χ2 minimization 5
B. Neutron FFs uncertainties 6

VI. Results and discussions 8
A. SKTJ17 neutron FFs and their

uncertainties 8
B. Comparison to leading neutron data 9

VII. Leading-baryons production at the LHC 12

VIII. Summary and Conclusion 12

Acknowledgments 14

References 15

∗ Samira.Shoeibimohsenabadi@mail.um.ac.ir
† Hamzeh.Khanpour@mail.ipm.ir
‡ Taghavishahri@um.ac.ir
§ Javidan@um.ac.ir

I. INTRODUCTION

Over the past decade, our knowledge of the quark and
gluon substructure of the nucleon has been extensively
improved due to the high-energy scattering data from
fixed target experiments, the precise data from electron-
proton collider HERA [1–8], the data from high energy
proton-proton scattering at the Tevatron [9–18] and up-
to-date data from LHC [19–30]. Deep inelastic scatter-
ing (DIS) data as well as data from hadron colliders
has been successfully used in many Global QCD anal-
yses to extract the unpolarized parton distribution func-
tions (PDFs) [31–37], polarized PDFs [38–44], nuclear
PDFs [45–50], and related studies [51–71]. Beside the
mentioned data sets, the production of leading neutron
and proton in deep inelastic scattering (DIS) opens a new
window for the theory of strong interaction in the soft
region and provides a probe of the relationship between
QCD of quarks and gluons and the strong interaction
of hadrons [72, 73]. Consequently, in the framework of
perturbative QCD (pQCD), the study of leading-baryon
production represents an important field of investigation.
In the leading-baryon productions, ep → e′BX , the en-
ergetic neutron or proton which are produced in the frag-
mentation of the proton remnant, carry a large fraction
xL of the longitudinal momentum of the incoming proton
[72–82]. These events are measured at small polar angle
with respect to the collision axis.

However, due to difficulty of detecting the leading-
baryon in high energy physics experiment, the data avail-
able are scarce. More recently the H1 and ZEUS col-
laborations at HERA have measured events, in which
neutron is produced in the forward region, obtain siz-
able contributions of leading neutrons to the DIS cross
sections, ∼ 8 − 10% [72, 73]. These kinds of processes
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open a new window to study hard processes in a new
kinematical region to obtain information on soft quan-
tum chromodynamics (QCD) dynamics. In that case,
the measurements of leading-baryon structure functions
can be used as a test of new aspects of QCD. Along with
these experimental developments, the fracture functions
approach has been developed in the framework of pertur-
bative QCD in order to deal with such kind of forward
processes [83–85].

Fracture functions provides a QCD-based description
of semi-inclusive DIS in the target fragmentation region.
The formalism of fracture functions, where the leading
particles production is described in terms of structure
functions of the fragmented nucleon, has been success-
fully used to describe forward neutron data from the H1
and ZEUS collaborations [86–88]. As for DIS structure
function, QCD can not predicted the shape of fracture
functions. As for parton distribution functions (PDFs),
the non-perturbative neutron fracture function (neutron
FFs) can be parameterized at a given initial scale Q2

0.
Fracture functions, the probabilities of finding a parton
and a hadron in the target, can be related to the parton
distributions of the object exchanged between the initial
and final states. In the production of the leading neutron
in the target fragmentation region this object is π+ in the
ep → enX process. In the target fragmentation region,
the corresponding cross sections is expressed as a convo-
lution of the fracture functions, Mh/p, with the point like
partonic cross sections. In this paper, we present the re-
sults of our QCD global analysis of recent and up-to-date
experimental data for the production of neutrons in the
forward direction in DIS. As we mentioned, the results
obtained in this analysis, is in the framework of fracture
functions by modeling the neutron FFs at the input scale,
Q2

0. We propose a standard parametric form for the neu-
tron FFs at a given initial scale Q2

0 = 1 GeV2 and obtain
their parameters by next-to-leading order (NLO) global
QCD fit to forward neutron production data measured by
H1 and ZEUS collaboration at HERA. We find that our
theory predictions are in satisfactory agreements with all
data analyzed.

The outline of the present paper is the following. First,
in Section II we present the theoretical settings of the
analysis. The details of the fitting methodology applied
in this work and the functional forms used to extract neu-
tron FFs are presented in Section III. The details of the
forward neutron production data from H1 and ZEUS col-
laboration are discussed in Section IV. Section V provides
the method of the χ2 minimization, uncertainties estima-
tion and error calculations. The results of present NLO
neutron FFs fits and detailed comparison with available
observables are discussed in Section VI. In Section VII,
we briefly discuss the present and upcoming experimen-
tal data on the production of leading-baryons at LHC
and at Jefferson Lab. Finally Section VIII contains the
summary and conclusions.

II. THEORETICAL FRAMEWORK

We can now specify the theory settings used for the
neutron FFs fits presented in this work. We will restrict
ourselves to a brief summary of the theoretical framework
relevant for our global QCD analysis of leading neutron
structure functions in which we closely follow Ref. [86].

We use the NLO theory with αs(M
2
Z) = 0.1184 in vari-

able flavour number scheme (VFNS) with charm and bot-
tom masses of mc = 1.41 and mb = 4.50 GeV. In order
to describe the hard scattering DIS process, we use the
usual kinematic variables x, Q2, y in which are defined
as

Q2 = −q2, x =
Q2

2p.q
, y =

p.q

p.k
, (1)

where in the DIS process, p is the four-momenta of the
incident proton, k is the four-momenta of the incident
positron and q is the four-momenta of the virtual photon.
The four-fold differential cross section to describe the
baryon production processes ep → e′BX can be obtained
by semi-inclusive leading-baryon transverse and longitu-

dinal structure functions, F
LB(4)
2 and F

LB(4)
L , which is

defined as [72, 73]

d4σ(ep → e′BX)

dβ dQ2 dxL dt
=

4πα2

βQ4
(1− y +

y2

2
)F

LB(4)
2 (β,Q2, xL, t)

+ F
LB(4)
L (β,Q2, xL, t) . (2)

The longitudinal momentum fraction xL and the scaled
fractional momentum variable β are defined by

xL ≃ EB

Ep
, β =

x

1− xL
, (3)

where x is the Bjorken variable, Ep is the proton beam
energy and EB is the energy of final-state baryon. In
Eq. (2), t is the squared four-momentum transfer between
the incident proton and the final state neutron. The t
integrated differential cross section can be obtained by

d3σ(ep → e′BX)

dβ dQ2 dxL
=

ˆ tmin

t0

d4σ(ep → e′BX)

dβ dQ2 dxL dt
dt

=
4πα2

βQ4
(1− y +

y2

2
)F

LB(3)
2 (β,Q2, xL)

+ F
LB(3)
L (β,Q2, xL) , (4)

where the integration limits are

tmin = −(1− xL)(
m2

N

xL
−m2

p) ,

t0 = tmin − (pmax
T )2

xL
. (5)

mN is the mass of final-state baryon, mp is the proton
mass, and pmax

T is the upper limit of the neutron trans-

verse momentum used for the F
LB(3)
2 measurement. For



3

the semi-inclusive processes which have final-state pro-

ton and neutron, the structure function F
LB(3)
2,L , is de-

noted by F
LP(3)
2,L and F

LN(3)
2,L respectively. In this paper

which is correspond to a QCD analysis of forward neu-
tron production, we define the reduced e+p cross section

σ
LN(3)
r in term of leading neutron transverse F

LN(3)
2 and

the longitudinal structure functions F
LN(3)
L as [72, 73]

σLN(3)
r = F

LN(3)
2 (β,Q2, xL)

− y2

1 + (1− y)2
F

LN(3)
L (β,Q2, xL) . (6)

It is noteworthy to mention here that the leading neu-
tron structure functions in above equations can be writ-
ten in terms of neutron FFs and hard-scattering coeffi-
cients [86]. The Wilson coefficient functions are the same
as in fully inclusive DIS [89].

The well-known DGLAP evolution equations [90–93]
which are a set of an integro-differential equations can
be used to evolve the polarized and unpolarized parton
distributions functions to an arbitrary energy scale, Q2.
The solutions of these evolution equations will provide
us the valance, gluon, and sea quark distributions in-
side the nucleon. These equations widely can be used
as fundamental tools to extract the deep inelastic scat-
tering (DIS) structure functions of proton, neutron and
deuteron which enrich our current information about the
structure of the hadrons. Since the scale dependence of
the cross section in forward particle production in DIS
can be calculated within perturbative quantum chromo-
dynamics (pQCD) [83], consequently the neutron frac-
ture functions also obey the standard DGLAP evolution
equations [86, 94].

In Refs. [87, 94–98] have been shown that, in the phe-
nomenological level, the fracture functions well reproduce
the leading proton data, thus one can use the common
perturbative QCD approach to these particular classes of
semi-inclusive processes. So, like for the case of parton
distributions functions (PDFs), one can use phenomeno-
logical model to describe forward neutron production and
extract the neutron FFs from QCD fit to the data [84, 86].
The evolution equations of neutron FFs are easily ob-
tained by DGLAP evolution equations [83] as

Q2
∂MB

Σ/P (β,Q
2, xL)

∂Q2
=

αs(Q
2)

2π
ˆ 1

β

du

u
P j
Σ(u)M

B
Σ/P (

β

u
,Q2, xL) ,

Q2
∂MB

g/P (β,Q
2, xL)

∂Q2
=

αs(Q
2)

2π
ˆ 1

β

du

u
P j
g (u)M

B
g/P (

β

u
,Q2, xL) ,

(7)

where MB
Σ/P (β,Q

2, xL) and MB
g/P (β,Q

2, xL) corre-

spond to the singlet and gluon distributions, respec-

tively [84]. These non-perturbative distributions in
which hereafter indicated by “neutron FFs” need to be
parametrize at an input scale, Q2

0. Their evolution to
higher scale, Q2 > Q2

0, can be described by using the
evolution equation given above. PΣ and Pg in Eq. (7) are
the common NLO contributions to the splitting functions
governing the evolution of unpolarized singlet and non-
singlet combinations of quark densities in perturbative
QCD. Splitting functions are perturbatively calculable
as a power expansion in the strong coupling constant αs.
The splitting functions PΣ and Pg in Eq. (7) are the same
as in fully inclusive DIS [99–103]

In the next sections, we give a detailed account of
the first global analysis of neutron FFs performed in
this study which in the following will be referred to as
“SKTJ17”. We first discuss in details the parameteriza-
tion of neutron FFs and then we will present data se-
lection and the determination of the best fit, which we
compare to the fitted data. We then focus on the studies
of uncertainties using the standard Hessian error matrix
approach.

III. NLO QCD ANALYSIS OF NEUTRON FFS

AND PARAMETERIZATION

In order to obtain a parametrization for the neutron
FFs, βMN

i/P (β,Q
2
0, xL) with i = Σ and g, at a given

initial scale Q2
0, we select a relatively simple functional

dependence in the variables β and xL with enough flex-
ibility as to reproduce the data accurately. We assume
the following general initial functional form at Q2

0 = 1
GeV2

βMN
Σ/P (β,Q

2
0, xL) = Aq(xL)β

aq (1− β)bq (1 + cq β) ,

βMN
g/P (β,Q

2
0, xL) = Ag(xL)β

ag (1 − β)bg (1 + cg β) ,

(8)

where Aq(xL) and Ag(xL) define as

Aq(xL) = Nq x
Aq

L (1− xL)
Bq (1 + Cq x

Dq

L ) ,

Ag(xL) = Ng x
Ag

L (1− xL)
Bg (1 + Cg x

Dg

L ) . (9)

The label of Σ/P and g/P correspond to the singlet
and gluon distributions, respectively. The xL depen-
dence of the neutron FFs is encoded in Ai(xL). Since
the present leading neutron data are not yet sufficient
to distinguish q(= u, d, s) from q̄(= ū, d̄, s̄), we assume
symmetric sea distributions throughout. We will show
that these kinds of parametrizations give relatively good
initial approximations to the description of the H1 and
ZEUS leading neutron data sets [72, 73], however, their
survival seems unlikely in a more precise analysis. The
available forward neutron production data are not accu-
rate enough to determine all the shape parameters with
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sufficient accuracy. Eq. (8) includes 18 free parameters
in total in which we further reduce the number of free
parameters in the final minimization.

The parameters {pi} representing our best global QCD
fit of neutron FFs in Eq. (8), henceforth denoted as
SKTJ17 are given in Table III. A few additional remarks
will be presented in Sec VI. As we mentioned, the cur-
rently available leading neutron data do not fully con-
strain the entire β and xL dependence of βMN

Σ/P and

βMN
g/P imposed in Eq. (8). Consequently we are forced

to make some restrictions on the parameter space {pi}.
We will return to this issue in a separate section.

Rather than determining also the strong coupling
αs(Q

2
0) in the global QCD fit along with the neutron FFs

parameters, we fixed αs(M
2
Z) value close to the updated

Particle Data Group (PDG) average. The scale depen-
dence of αs is normally computed by numerically solv-
ing its renormalization group equation at next-to-leading
order accuracy. For the evolution we take αs(M

2
Z) =

0.1184 [104, 105], and we choose to work in the variable
flavor number scheme (VFNS) where charm and bottom
quark distributions are radiatively generated from their
corresponding thresholds [34, 35]. In the present analy-
sis, all quarks are treated as massless and we fixed the
heavy quark masses at mc = 1.41 GeV, mb = 4.50 GeV
and mb = 175.0 GeV. Our choice for the VFNS scheme
is due to that for all presently available leading neutron
observables, heavy quarks play a negligible role. The
scale evolution equations for the neutron FFs are solved
in x-space at next-to-leading order. Likewise, all leading
neutron observables used in our QCD fit are computed
consistently at next-to-leading order accuracy in the MS
factorization scheme.

IV. LEADING NEUTRON PRODUCTION DATA

Our first physics objective is to establish the set of neu-
tron FFs that gives the optimum theoretical description
of the available hard scattering leading neutron produc-
tion data. In this section, we will present the data sets
used in the present analysis. The data sets that we will
use is the following: The H1 data on the leading neutron
production in DIS scattering [72] as well as the data from
leading neutron production in e+p collision from ZEUS
collaboration [73]. The detail of the data sets will be
presented in the next section.

A. H1 data

The semi-inclusive cross sections data for the produc-
tion of leading neutron are taken during the years of
2006 and 2007 by the H1 collaboration at HERA in DIS
positron-proton scattering [72] which is correspond to an
integrate luminosity of L = 122 pb−1, much larger than
the previous H1 measurement [74]. Better experimental

capabilities in this measurement lead to the extension of
the kinematical coverage of x and Q2 to higher values.

This leading neutron structure function F
LN(3)
2 in which

has been measured by H1 experiment at HERA covers a
large range of kinematics of Q2, 6 ≤ Q2 ≤ 100 GeV2, and
x, 1.5 × 10−4 ≤ x ≤ 3 × 10−2, for average y values be-
tween 0.05 and 0.68, and the upper limit of the neutron
transverse momentum of pmax

T < 200 MeV. The value
of longitudinal momentum fraction xL covers the range
from 0.365 to 0.905. In order to enhance the relative con-
tribution of pion exchange [106, 107] for these selected of
DIS events, the value of pmax

T in which used for the mea-

surement of F
LN(3)
2 is set to 200 MeV. Considering that

the pion exchange mechanism dominates leading neutron
production, these data sets can provide constraints on the
shape of the pion structure function [108]. In Fig 1, we
plot the nominal coverage of H1 data sets used in our
QCD fits. The plot nicely summarizes the universal β,
xL and Q2 dependence of the forward neutron production
at HERA.

0.0001 0.001 0.01 0.1 1
 β

10

100

Q
2

x
L
=0.365

x
L
=0.455

x
L
=0.545

x
L
=0.635

x
L
=0.725

x
L
=0.815

x
L
=0.905

H1

Figure 1: (Color online) Nominal coverage of the H1 data
sets used in our global QCD fits. The plot nicely

summarizes the universal β, xL and Q2 dependence of the
forward neutron production at HERA [72]. For

interpretation of the references to color in the figure legend,
the reader is referred to the web version of this article.
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B. ZEUS data

The semi inclusive cross section for production of lead-
ing neutron measured by ZEUS collaboration are also
used in our global QCD analysis. The ZEUS collab-
oration presented the leading neutron production cross
sections for xL > 0.2 in neutral current electron-proton
collisions at HERA [73]. Positron and proton energies
are Ee = 27.5 GeV and Ep = 820 GeV, respectively, cor-
respond to a center of mass energy of

√
s = 300 GeV.

Similarly to H1 experiment, extensive range of kinemat-
ics was covered by the ZEUS data, for 1.1 × 10−4 ≤
x ≤ 3.2 × 10−2 from photoproduction up to Q2 ∼ 104

GeV2, with 0 < y < 0.8 and neutron scattering an-
gle θn < 0.8 mrad. The HERA magnet apertures limit
the FNC (Forward Neutron Calorimeter) acceptance to
neutron with the production angle less than θmax

n = 0.8
mrad, which is corresponding to the transverse momenta
of pmax

T = Enθ
max
n = 0.656xL GeV. As we already men-

tioned in the previous section, the distribution of the
neutron for H1 data is integrated only up to pmax

T = 200
MeV, so the H1 and ZEUS data can only be used in
the analysis for the longitudinal momentum fraction of
xL = 0.3, which is correspond to pmax

T = 197 MeV. For
higher values of xL, the ZEUS data should be scaled to
account for the smaller pT range measured by H1 collab-
oration. Of course, in general we would like to maximize
the β, xL and Q2 coverages included in the analysis in
order to increase the statistics of our fit. Therefore, we
have scaled down the ZEUS data to the H1 pT -range by
using the form of p2T distribution for the fixed values of
xL as [73]:

dσγ∗p→Xn

dp2T
∝ e−b(xL) p2

T , (10)

where σγ∗p→Xn is the the virtual photon-proton cross
section for the process γ∗p → Xn. The slope b(xL) can
be parameterised as b(xL) = (16.3 xL − 4.25) GeV−2

which is in reasonable accord with the data [73, 81]. In
order to reduce the systematic uncertainties, ZEUS col-
laboration is measured the neutron-tagged cross section
ep → e′Xn relative to the inclusive DIS cross section
ep → e′X . Considering this ratio as well as proton struc-

ture function, one can obtain the F
LN(3)
2 values for var-

ious bin of x, Q2 and y. The kinematic range of ZEUS
forward neutron data are shown in Fig. 2. We should
notice here that the H1 leading neutron data were col-
lected during the 2006-2007 run by an integrated lumi-
nosity about 3 times that of the ZEUS data in the DIS
region. In consequence, the statistical uncertainties of
the H1 data are much smaller than those for the ZEUS
leading neutron spectra.

The measured leading neutron production data points
above Q2 = 1.0 GeV2 used in the SKTJ17 global analysis
are listed in Table I. For each data set we provide the
corresponding references, the kinematical coverage of xL,

0.0001 0.001 0.01 0.1 1

 β

10

100

1000

Q
2

x
L
=0.24

x
L
=0.31

x
L
=0.37

x
L
=0.43

x
L
=0.49

x
L
=0.55

x
L
=0.61

x
L
=0.67

x
L
=0.73

x
L
=0.79

x
L
=0.85

x
L
=0.92

ZEUS

Figure 2: (Color online) Nominal coverage of the ZEUS
data sets used in our global fits [73]. For interpretation of
the references to color in the figure legend, the reader is

referred to the web version of this article.

xB and Q2, the number of data points and the fitted
normalization shifts Nn.

V. THE METHOD OF χ2 MINIMIZATION AND

NEUTRON FFS UNCERTAINTIES

In this Section, we outline the details of SKTJ17 anal-
ysis. More specifically, we discuss the selection of data
sets, treatment of experimental normalization uncertain-
ties, as well as the determination of the parameters by
global χ2 minimization. We also briefly present the de-
tails of the Hessian matrix method for estimating un-
certainties. As we noted before, we have performed a
careful estimation of the uncertainties using the “Hessian
method”. An advantage of the Hessian technique is that
it allows us to produce sets of eigenvector PDFs, which
can be straightforwardly used in computations of other

observables such as reduced e+p cross section σ
LN(3)
r as

well as leading neutron structure function F
LN(3)
2 .

A. χ2 minimization

Global QCD extractions of PDFs, nuclear PDFs as well
as polarized PDFs are implemented around an effective
χ2 function that quantifies the goodness of the fit to data
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Table I: List of all the leading neutron production data points above Q2 = 1.0 GeV2 used in SKTJ17 global analysis. For each
dataset we provide the corresponding references, the kinematical coverage of xL, xB and Q2, the number of data points and

the fitted normalization shifts Nn.

Experiments [xmin
L , xmax

L ] [xmin
B , xmax

B ] Q2 GeV2 Number of data points Nn

H1 [72] [0.365–0.905] [1.5× 10−4 – 3.0× 10−2] 7.3–82 203 0.9922
ZEUS [73] [0.240–0.920] [1.1× 10−4 – 3.2× 10−2] 7–1000 300 1.0033

Total data 503

for a given set of theoretical parameters in which deter-
mines the PDFs at some input scale Q2

0. In order to
search for optimum PDFs by minimization, the simplest
χ2 function is usually given by

χ2({pi}) =
Nexp

∑

n=1

Ndata
n
∑

j=1

wj

(Dataj − Theoryj({pi}) )2
δDataj

,

(11)
The simple form of χ2({pi}) presented above is appro-

priate only in the ideal case of data sets with uncorre-
lated errors. Since most experiments come with addi-
tional information on the fully correlated normalization
uncertainty ∆Nn, Eq. (11) need to be modified in order
to account for such normalization uncertainties. In order
to determine the best fit parameters of Eq. (8), we need
to minimize the χ2

global function with the free unknown

parameters. χ2
global({pi}) quantifies the goodness of fit

to the data for a set of independent parameters ({pi})
that specifies the neutron FFs at the input scale Q2

0 = 1
GeV2. This function is expressed as,

χ2
global({pi}) =

Nexp

∑

n=1

wnχ
2
n , (12)

where wn is a weight factor for the nth experiment and

χ2
n({pi}) =

(

1−Nn

∆Nn

)2

+

Ndata
n
∑

j=1

(

(Nn Dataj − Theoryj({pi})
Nn δDataj

)2

,

(13)

where N exp correspond to the individual experimental
data sets and Ndata

n correspond to the number of data
points in each data set. The normalization factors ∆Nn

in Eq. (13) can be fitted along with the fitted parameters
({pi}).

The χ2
global(p) function is minimized by the CERN pro-

gram library MINUIT [109]. From the χ2
global({pi}) anal-

ysis, an error matrix that is the inverse of a Hessian ma-
trix is obtained. In order to determine the sensitivity of
the fit to different values of xL collected by H1 and ZEUS
collaborations at HERA, we compute the χ2 values for
each data sets. The data sets included in SKTJ17 anal-
ysis are listed in Table II, together with the χ2 values,

defined in Eq.(11), corresponding to each individual data
set for each of xL. This suggests that reasonable fits to
the leading neutron cross sections can be obtained within
most of the xL values. More detailed discussion of the
description of the individual data sets has been given in
Section IV.

Experiment Data set χ
2 Npts

xL = 0.365 24.13 29

xL = 0.455 25.62 29

xL = 0.545 19.36 29

H1 xL = 0.635 19.28 29

xL = 0.725 17.33 29

xL = 0.815 13.23 29

xL = 0.905 10.15 29

All data sets 130.05 203

xL = 0.240 24.84 25

xL = 0.310 9.68 25

xL = 0.370 11.68 25

xL = 0.430 48.45 25

ZEUS xL = 0.490 21.11 25

xL = 0.550 24.84 25

xL = 0.610 17.74 25

xL = 0.670 28.18 25

xL = 0.730 6.61 25

xL = 0.790 3.02 25

xL = 0.850 7.88 25

xL = 0.920 15.02 25

All data sets 219.10 300

Table II: The values of χ2/Npts. for the data sets included
in the SKTJ17 global QCD analysis. More detailed discussion

of the description of the individual data sets and the
definitions of χ2 are contained in the text.

B. Neutron FFs uncertainties

As in the case of standard PDFs, the evolved leading
neutron fracture functions are linear functions of the in-
put densities. Let M(β,Q2, xL; pi|ki=1) be the evolved
neutron FFs at Q2 depending on the parameters pi|ki=1.
Then its correlated error as given by Gaussian error prop-
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agation as [110]

∆βM(β,Q2, xL) =

{

k
∑

i=1

(

∂βM

∂pi

)2

C(pi, pi)

+

k
∑

i6=j=1

(

∂βM

∂pi

∂βM

∂pj

)

C(pi, pj)







1
2

,

(14)

where C(pi, pj) are the elements of the covariance ma-
trix obtained in the QCD fit procedure at the input scale
Q2

0. The covariance matrix can be used at any scale of
Q2 > Q2

0. The gradients ∂βM/∂pi at this scale can be
calculated analytically. Their value at Q2 is then calcu-
lated by evolution in x space and are used according to
Eq. (14).

In addition to the method presented above, one can
also determine the uncertainties of obtained neutron FFs
via well-known Hessian method and diagonalize the co-
variance matrix and work in terms of the eigenvectors
and eigenvalues. Here, we briefly review the important
points for studying the neighborhood of χ2

0. The basic
procedure is provided in Refs. [35, 45, 50, 111–115].

As we have mentioned earlier, one can find the ap-
propriate parameter set in which minimize the χ2

global
function. We call this neutron FFs set S0. The parame-
ters value of S0, i.e. {p01 . . . p

0
n}, in which extracted from

QCD fit to H1 and ZEUS leading neutron data, will be
presented in Sec. VI. As we will mention latter, we simply
fix some of the parameters of our input functional from
presented in Eq. (8) at their best-fit values, so that the
Hessian matrix only depends on a subset of parameters.

By moving away the parameters from their obtained
values, χ2 increases by the amount of ∆χ2

∆χ2
global = χ2

global({p})− χ2
0({p0})

=

n
∑

i,j=1

(pi − p0i )Hij(pj − p0j) , (15)

where Hij is the Hessian matrix which defined as

Hij =
1

2

∂2χ2
global

∂pi ∂pj

∣

∣

∣

∣

∣

0

. (16)

Now it is convenient to work in term of the eigenval-
ues and their corresponding orthogonal eigenvectors of
covariance matrix. It is given by

n
∑

j=1

Cijυjk = λkυik , (17)

and we should notice here that Cij ≡ H−1
ij is the error (or

covariance) matrix. The displacement of the parameter
{pi} from its obtained minimum p0i can be expressed in
terms of the rescaled eigenvectors eik =

√
λk vik, that is

pi − p0i =

n
∑

k=1

eik zk . (18)

Considering the orthogonality of eigenvectors υik and
putting Eq. (18) in (15), one can write

∆χ2
global = χ2

global({p})− χ2
0({p0}) =

n
∑

k=1

z2k . (19)

The relevant neighborhood of χ2 is the interior of hyper-
sphere with radius T . This means that

n
∑

k=1

z2k ≤ T 2 . (20)

Finally the neighborhood parameters can be written as

pi(s
±
k ) = p0i ± t

√

λk vik , (21)

with sk is the kth set of neutron FFs, t adapted to make
the desired T 2 = ∆χ2

global which is the tolerance for the

required confidence interval (C.L.) and t = T in the
quadratic approximation.

Using the method we mentioned above, we accompany
the construction of the QCD fit by reliable estimation of
uncertainty. Finally uncertainties of any observables O,
which can be the neutron FFs or reduced cross sections
in our case, in the Hessian method can calculate as [35,
114, 115]

∆O =
1

2

[

n
∑

k=1

(O(s+k )−O(s−k ))
2

]
1
2

. (22)

In above equation, O(s+k ) and O(s−k ) are the value of O
extracted from the input set of parameters pi(s

±
k ) ob-

tained from Eq. (21). In this paper, we follow the stan-
dard Hessian method to calculate the neutron FFs error
band as well as the corresponding observables such as
the reduced cross sections. The evolved neutron FFs are
attributive functions of the input parameters obtained in
the QCD fit procedure at the scale Q2

0, then their un-
certainty can be written applying the standard Hessian
method

∆O =



∆χ2
global

k
∑

i,j=1

∂O
∂pi

Cij
∂O
∂pj





1
2

. (23)

The ∆χ2 values determine the confidence region, and it is
calculated so that the confidence level (C.L.) P becomes
the one-σ-error range (P = 0.68) for a given number
of parameters (pi=N ) by assuming the normal distribu-
tion in the multi-parameter space. Since the neutron FFs
are provided with many parameters, so that the ∆χ2

global
value should be calculated.

Assuming correspondence between the confidence level
(C.L.) of a normal distribution in multi-parameter space
and the one of a χ2 distribution with N degree of free-
dom, one can define the probability density function as
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PN (χ2) =
(χ2)

N
2
−1

2
N
2 Γ(N2 )

e
−χ2

2 , (24)

then the confidence level P can be obtain as

ˆ ∆χ2

0

PN (χ2)dχ2 = P (≈ 0.68) , (25)

and similarly for the 90th percentile we have P = 0.90.
The parameter number in our analysis is eight (N = 8),
and it leads to ∆χ2 = 9.27. The uncertainty of a neu-
tron FFs with respect to the optimized parameters pi=N

is then calculated using Eq. (23) by using Hessian ma-
trices and assuming mentioned linear error propagation.
For the neutron FFs uncertainty estimation, one can an-
alytically calculate the gradient terms in Eq. (23) at the
initial scale Q2

0 = 1 GeV2. For the estimation at arbitrary
Q2, each gradient term is evolved by the DGLAP evolu-
tion kernel, and then the neutron FFs uncertainties as
well as the uncertainties for any other observables such
as cross sections are calculated. Here we calculate the
neutron FFs uncertainty with ∆χ2 = 1 and 9.27 which
is the most appropriate choice. The Hessian method dis-
cussed in the present analysis has been used for estimat-
ing TKAA16 NNLO polarized PDFs [38] as well as KA15

nuclear PDFs analysis [45]. The details of the uncertainty
analysis are discussed in details in Refs. [35, 114, 115].

VI. RESULTS AND DISCUSSIONS

We are in a position to describe the details and all
techniques we used for the parametrizations of neutron
FFs in SKTJ17 global analysis. The minimization is car-
ried out with respect to the set of parameters in Eq. (8),
{pi} = {ai, bi, ci,Ni, Ai, Bi, Ci, Di}. The neutron FFs
are evolved to the scales Q2 > Q2

0 relevant in experi-
ment. Like for the case of PDFs parameterization, par-
ticular functional form and the value for Q2

0 are not too
crucial. The parameterization at the input scale should
be flexible enough to accommodate all DIS data within
their ranges of uncertainties. As we mentioned, our input
distributions in Eq. (8) follow the standard form used in
fits to DIS data. In addition to our much more flexi-
ble input parametrization presented in Eq. (8), we have
repeated our QCD fit with alternative parametrizations,
some of them even more flexible than the one we choose.
For example, we have also included

√
x terms, both for

the singlet and gluon distributions, even allowing the fit
to vary them. We have found no significant improve-
ment in the quality of the fit to data or changes of the
uncertainty bands. This indicates that the present H1
and ZEUS leading neutron production data is not really
able to discriminate between various forms of the input
distributions.

As will be seen from our results presented in this sec-
tion, we found that our input distributions in Eq. (8)
could be considered as good parametrizations to the lead-
ing neutron production experimental data.

The parameter values {pi} of the next-to-leading order
input neutron FFs at Q2

0 = 1 GeV2 obtained from the best
fit to the combined H1 and ZEUS leading neutron data
sets are presented in Table III.

Parameters marked with (∗) are fixed. This is due to
that these parameters are only very weakly determined
by the fit, consequently we fixed them to their preferred
values. For the sea quark density we set Aq to 0 and for
the gluon density we set ag to 0 in Eq. (8). These only
marginally limit the freedom in the functional form. We
found that singlet small-xL coefficient Aq as well as gluon
small-β coefficient ag is determined with rather large er-
ror and also compatible with zero, so that we fixed them
to these values. These are because there are no enough
data sensitive to smaller values of β and xL. Moreover we
found that the factor (1 + ci β) in SKTJ17 parametriza-
tion provides flexibility to obtain a good description of
the data. Thus, we will make use of the ci coefficients
for the sea quark and gluon densities. The parameters
Bq and Dq always came out close to Bg and Dg, so one
can set them equal. In order to let enough flexibility to
the sea quark and gluon densities, we prefer them to vary
differently in the QCD fit. In total this leaves us with 8
free parameters in the SKTJ17 QCD fit, (5 for sea quarks
and 3 for the gluon density), which we include later on
also in our uncertainty estimates. We also tried to relax
the imposed constraints discussed above, but found that
present leading neutron data are not really sensitive to
them. We find χ2/d.o.f. = 349.16/495 = 0.705 which
yields an acceptable fit to the experimental data.

A. SKTJ17 neutron FFs and their uncertainties

Our newly obtained singlet and gluon momentum dis-
tributions at the input scale Q2

0 = 1 GeV2 are shown in
Figs. 3 and 4 along with estimates of their uncertainties
using the Hessian methods for a tolerance of ∆χ2 = 1
and 9.27. The results presented for three representative
bins of xL = 0.24, 0.55 and 0.92. The inner error band is
obtained with the standard “parameter-fitting” criterion,
by the choice of tolerance T = ∆χ2 = 1 for the 68% (one-
sigma) confidence level (C.L.) limit while the outer one
is obtained with the choice of tolerance T = ∆χ2 = 9.27
using Eq. 25. The main conclusion that can be drawn
about the gluon and singlet distributions from SKTJ17

analysis is that the distributions are important at large
β. As was stated earlier in Sec.VI, their behavior cannot
be precisely determined yet from the available leading
neutron production data. In particular, the behavior of
the exponent of the (1−β) factors in the parametrization,
bq and bg.
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Figure 3: (Color online) The singlet momentum distribution as a function of β at the input scale Q2
0 = 1 GeV2 and for three

representative bins of xL = 0.24, 0.55 and 0.92. The error bands are obtained with the Hessian methods (see the text).

Table III: Parameter values {pi} for SKTJ17 QCD analysis at the input scale Q2
0 = 1 GeV2 from the combined H1 and ZEUS

data sets. The values without errors have been fixed after the first minimization since the data do not constrain these
unknown parameters well enough. The details of the χ2 analysis and the constraints applied to control the neutron FFs

parameters are contained in the text.

Parameters βMN
Σ/P (β,Q

2
0, xL) pi ± δpi βMN

g/P (β,Q
2
0, xL) pi ± δpi

a aq 0.116 ± 0.031 ag 0.0∗

b bq 0.260∗ bg 4.884∗

c cq 0.523∗ cg 9.969∗

N Nq 0.245 ± 0.023 Ng 0.130 ± 0.027
A Aq 0.0∗ Ag 0.201∗

B Bq 1.430 ± 0.092 Bg 1.740 ± 0.117
C Cq 12.071 ± 2.270 Cg 29.865∗

D Dq 5.307 ± 0.390 Dg 6.733 ± 0.646

B. Comparison to leading neutron data

In order to check the reliability of the distributions ob-
tained in our analysis, in the following we compare results

obtained using our best parametrization in Eq. (8) with
the leading neutron production data sets presented by the
H1 and ZEUS collaboration in which have been included
in the SKTJ17 fit. In Figs. 5, SKTJ17 theory predictions

for the reduced cross section σ
LN(3)
r (β,Q2, xL) are plotted
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Figure 4: (Color online) The gluon momentum distribution as a function of β at the input scale Q2
0 = 1 GeV2 and for three

representative bins of xL = 0.24, 0.55 and 0.92. The error bands are obtained with the Hessian methods (see the text).

as a function of β for some selected values of Q2. For bet-
ter description of the fit quality for different region of xL,
three representative bins of xL = 0.365, 0.55 and 0.725

are shown. The reduced cross section σ
LN(3)
r (β,Q2, xL)

is scaled by a factor of 3i for better visibility in the plots.
In order to see the fit quality, the leading neutron pro-
duction data from H1 and ZEUS collaborations [72, 73]
also added to these plots. From the figures it is clear
that SKTJ17 QCD fit based on hard-scattering formula
in Eq. (6) together with the neutron FFs initial condi-
tions in Eq. (8) are in acceptable agreement with the H1
and ZEUS data. The plots also show that our results de-
scribe the data well, down to the lowest accessible value
of Q2 as well as for different region of xL.

In order to study the scale dependence of H1 and ZEUS
leading neutron data, we have plotted the reduced cross

sections σ
LN(3)
r (β,Q2, xL) as a function of Q2 in Fig. 6

for some selected values of β and for three representative
bins of xL = 0.365, 0.550 and 0.725. The reduced cross

section σ
LN(3)
r (β,Q2, xL) is scaled by a factor of 0.08i

for better visibility in the plots. One can conclude our
results show that the scale dependence induced by the
evolution equations of Eq. (7) is perfectly consistent with
the leading neutron production data. The results clearly
show that one can use the fracture functions approach
to describe semi-inclusive hard processes in perturbative
QCD at the kinematic region covered by electron-proton
collider HERA and hadron colliders.

In Fig. 7, our theory predictions for the reduced cross

sections σ
LN(3)
r (β,Q2, xL) shown as a function of β. The

H1 (ZEUS) data correspond to Q2 = 7.3 (7.0) GeV2,
and xL= 0.365 (0.370) in the left panel and xL= 0.725
(0.730) in the right panel. As shown in the plots, we ob-
tain remarkable agreement with the data in the common
xL and β range. The plots also clearly show that our ap-
proach based on the fracture functions formalism allow a
unified description of leading neutron deep inelastic cross
sections.
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Figure 5: (Color online) The reduced cross sections σ
LN(3)
r (β, xL, Q

2) as a function of β for some selected values of Q2 (in
GeV2 units) and for three representative bins of xL = 0.365, 0.550 and 0.725. To facilitate the graphical presentation we have

plotted σ
LN(3)
r (β, xL, Q

2)× 3i.
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For completeness, we finally show SKTJ17 theory pre-
dictions as a function of Q2 for the reduced cross sec-

tions σ
LN(3)
r (β,Q2, xL) with a representative selection of

H1 and ZEUS data in Fig. 8. In the right panel, the
H1 (ZEUS) data corresponds to β = 7.29 (7.77)× 10−3

and xL = 0.365 (0.370). The H1 (ZEUS) data in the
left panel corresponds to β = 1.02 (1.08) × 10−2 and
xL = 0.545 (0.550). The results demonstrate that SKTJ17
theory predictions can provide good description of the
HERA leading neutron spectra at all kinematics.

In this section, we turned to present our perturba-
tive predictions for the reduced cross section and detail
comparison with the available leading neutron produc-
tion data. Summarizing, our analysis provided a good
description of H1 and ZEUS data for leading neutron
production in DIS, as a function of β, Q2 and xL. The
analysis results presented in this section enabled us to es-
tablished the models and parameters which are best able
to well describe the existing leading neutron production
data from H1 and ZEUS collaborations. In spite of the
fact that excellent descriptions of the H1 and ZEUS lead-
ing neutron spectra are obtained over the entire range
of β, xL and Q2 covered by the data, new data could
enable further constraints on the extracted neutron FFs.
The success of the SKTJ17 global analysis performed here,
stands for an explicit check of the pQCD framework in
the fracture functions approach for the description of the
leading neutron production processes.

VII. LEADING-BARYONS PRODUCTION AT

THE LHC

Let us here conclude by listing some further possible
developments of the present framework as well as exper-
imental efforts. One of the important goals in high en-
ergy particle physics is to understand the production of
leading-baryons which have large fractional longitudinal
momentum xL ≥ 0.3. Recent measurements of leading
proton and neutron spectra in electron-proton collisions
by H1 and ZEUS collaborations at HERA have open a
new window on this subject. Very recently, H1 collab-
oration at HERA has been measured for the first time
the photoproduction cross section for exclusive ρ0 pro-
duction associated with a leading neutron [116]. Since
there is no hard scale presented in exclusive ρ0 produc-
tion, one can use a phenomenological approach such as
Regge theory or color dipole formalism, to describe these
kind of reactions [117–119].

Nowadays, our understanding of the hadron structure
as well as the QCD dynamics have advanced with the
successful operation and precise data at HERA collider.
In addition to the HERA collider, the next generation of
high energy and high luminosity electron-proton collid-
ers, such as Large Hadron Electron Collider (LHeC) [120–
122] as well as Future Circular Hadron-Electron Collider
(FCC-he) [123] which are proposed to build on the same
site with LHC, could help to study the leading-baryon

processes.

Another possibility is the use of the hadronic collid-
ers. One of the important issue which have strong im-
plications in the forward physics at hadron colliders, is
the understanding of the leading neutron processes. A
very rich program at the Large Hadron Collider (LHC)
is being pursued in forward physics with sufficient ex-
perimental information [124, 125]. Finally, the upcoming
experiment at Jefferson Lab (JLAB) plans to take data
on the production of leading protons in the en → epX
process [126–128]. With the help of more and precise up-
coming experimental data on such processes, a new era
for theoretical understanding of strong interactions in the
soft, non-perturbative regime will be open [126].

VIII. SUMMARY AND CONCLUSION

In the recent years, several dedicated experiments at
the electron-proton collider HERA have collected high-
precision data on the spectrum of leading-baryons car-
rying a large fraction of the proton’s energy. However
the experimental information on leading-baryons produc-
tion in lepton DIS, ep → e′BX , is still rather scarce. In
addition to these experimental efforts, much successful
phenomenology has been developed in understanding the
mechanism of leading-baryon productions. The presence
of a leading-baryon in the final state of lepton DIS pro-
vides valuable information on the relationship between
the soft and hard aspects of the strong interaction.

In this work we have presented SKTJ17 NLO QCD
analysis of neutron FFs using available and up-to-date
data from forward neutron production at HERA [72,
73]. It is shown that an approach based on the frac-
ture functions formalism allows us phenomenologically
parametrize the neutron FFs. We also have shown that a
standard simple parametric form for this function gives
a very accurate description of the available leading neu-
tron production data. Finally, one can conclude that our
obtained results based on the fracture function approach
agree well with the scale dependence of the leading neu-
tron production data. Completing such a picture is cru-
cial as hadron colliders enter an era of new-generation of
experimental data capable of testing this formalism. In
order to asses the uncertainties in the resulting neutron
FFs and the corresponding observables, associated with
the uncertainties in the data, we have made an extensive
use of the Hessian method.

A FORTRAN package containing SKTJ17 neutron FFs pa-
rameterization as well as the corresponding error set can
be obtained via Email from the authors upon request.
This FORTRAN package also includes an example program
to illustrate the use of the routines.



13

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

=1.74 10-4 

=3.33 10-4 

=6.66 10-4 

=1.34 10-3 

=2.69 10-3 

=7.77 10-3 

=5.07 10-2 

=3.53 10-4 

=7.53 10-4 

=1.60 10-3 

=3.42 10-3 

=7.29 10-3 

=3.31 10-2 

xL = 0.365

LN
(3

)  (
, Q

2 , x
L)+

0.
08

 i

Q2

 SKTJ17
 H1 10
 ZEUS 02

=1.55 10-2 

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

=2.44 10-4 

=4.66 10-4 

=9.33 10-4 

=1.88 10-3 

=3.77 10-3 

=7.11 10-2 

=1.08 10-2 

=4.93 10-4 

=1.05 10-3 

=2.24 10-3 

=4.77 10-3 

=1.02 10-2 

=2.17 10-2 

=4.62 10-2

LN
(3

)  (
, Q

2 , x
L)+

0.
08

 i

Q2

xL = 0.55

 SKTJ17
 H1 10
 ZEUS 02

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

=4.07 10-4 

=7.77 10-4 

=8.16 10-4 

=1.55 10-3 

=1.74 10-3 

=3.14 10-3 

=3.71 10-3 

=6.29 10-3 

=7.90 10-3 

=1.68 10-2 

=1.81 10-2 

=3.59 10-2 

=7.65 10-2 

=1.18 10-1 

xL = 0.725

LN
(3

)  (
, Q

2 , x
L)+

0.
08

 i

Q2

 SKTJ17
 H1 10
 ZEUS 02

Figure 6: (Color online) The reduced cross section σ
LN(3)
r (β, xL, Q

2) as a function of Q2 for some selected values of β and for
three representative bins of xL = 0.365, 0.550 and 0.725. To facilitate the graphical presentation we have plotted

σ
LN(3)
r (β, xL, Q

2) + 0.08i.
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Figure 7: (Color online) SKTJ17 theory predictions for the reduced cross sections σ
LN(3)
r (β,Q2, xL) as a function of β. The

H1 (ZEUS) data correspond to Q2 = 7.3 (7.0) GeV2, and xL= 0.365 (0.370) in the left panel and xL= 0.725 (0.730) in the
right panel. The error bars associated with the H1 and ZEUS data points include systematic and statistical uncertainties,

being the total experimental error evaluated in quadrature.
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Figure 8: (Color online) SKTJ17 theory predictions as a function of Q2 (in GeV2 units). The error bars associated with the
H1 and ZEUS data points include systematic and statistical uncertainties, being the total experimental error evaluated in
quadrature. In the right panel, the H1 (ZEUS) data correspond to β = 7.29 (7.77) × 10−3 and xL = 0.365 (0.370). The H1

(ZEUS) data in the left panel correspond to β = 1.02 (1.08) × 10−2 and xL = 0.545 (0.550).
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