
Paths, Proofs, and Perfection:
Developing a Human-Interpretable Proof System for Constrained Shortest Paths

Konstantin Sidorov,1 Gonçalo Homem de Almeida Correia, 2

Mathijs de Weerdt, 1 Emir Demirović 1

1 Algorithmics Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology
2 Faculty of Civil Engineering and Geosciences, Delft University of Technology

{k.sidorov, g.correia, m.m.deweerdt, e.demirovic}@tudelft.nl

Abstract

People want to rely on optimization algorithms for complex
decisions but verifying the optimality of the solutions can
then become a valid concern, particularly for critical deci-
sions taken by non-experts in optimization. One example is
the shortest-path problem on a network, occurring in many
contexts from transportation to logistics to telecommunica-
tions. While the standard shortest-path problem is both solv-
able in polynomial time and certifiable by duality, introduc-
ing side constraints makes solving and certifying the solu-
tions much harder. We propose a proof system for constrained
shortest-path problems, which gives a set of logical rules to
derive new facts about feasible solutions. The key trait of the
proposed proof system is that it specifically includes high-
level graph concepts within its reasoning steps (such as con-
nectivity or path structure), in contrast to using linear combi-
nations of model constraints. Using our proof system, we can
provide a step-by-step, human-auditable explanation showing
that the path given by an external solver cannot be improved.
Additionally, to maximize the advantages of this setup, we
propose a proof search procedure that specifically aims to
find small proofs of this form using a procedure similar to A*
search. We evaluate our proof system on constrained short-
est path instances generated from real-world road networks
and experimentally show that we may indeed derive more in-
tepretable proofs compared to an integer programming ap-
proach, in some cases leading to much smaller proofs.

1 Introduction
Combinatorial optimization has achieved remarkable suc-
cess in various practical domains, including supply chain
management, network design, and logistics. Despite most
of such problems being NP-complete, many approaches can
efficiently solve them in practice (Korte and Vygen 2000).
The downside of this success is that the software for solv-
ing these problems is typically very sophisticated, and test-
ing such software is a non-trivial task (Gillard, Schaus, and
Deville 2019). Even modern optimization software may oc-
casionally produce incorrect output, e.g., by falsely claiming
infeasibility (Gocht, McCreesh, and Nordström 2022; Che-
ung, Gleixner, and Steffy 2017).

One way to address this issue is to augment the software
output with a certificate – a logical derivation supporting the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimality/infeasibility claim. One of the most celebrated
examples of this idea is proof logging in Boolean SAT solv-
ing, achieving major successes in, among other domains,
software verification and combinatorial designs (Biere,
Heule, and van Maaren 2021). Related approaches are
known for mixed-integer programming (Cheung, Gleixner,
and Steffy 2017) and pseudo-Boolean solving (Gocht, Mc-
Creesh, and Nordström 2020).

Proof systems of this type are generic enough to support
various application domains. This ends up being not only
the key strength of this approach but also its main weak-
ness: proofs produced by such means, while exhaustive, also
tend to be exhausting, meaning that such proofs may contain
lengthy sequences of inferences not obvious to a human ob-
server. In particular, the work (Heule, Kullmann, and Marek
2016) that resolves the Boolean Pythagorean triples prob-
lem was billed as the ”largest proof ever” shortly after its
publication (Lamb 2016), referring to the fact that the proof
exceeds 200 terabytes in disk space.

For a simple example supporting this concern, consider a
problem of finding the shortest path from vertex 1 to vertex 9
through the graph shown in Figure 1 that goes through either
vertex 3 or vertex 5, therefore adding an extra constraint to
the classical shortest-path problem.

Figure 1: Running example of a constrained shortest path
problem. Orange edges constitute the optimal path 1→ 3→
4→ 6→ 7→ 9.

1

2
1

33

4
2

5

3 (to 5)

1 (to 4)
2

6

6

7

7
1

82

9
2

3

This problem can be successfully modeled with, for ex-
ample, an integer programming paradigm, giving a path 13
units long highlighted in the figure. Additionally, given the
optimal path, we can build its optimality certificate with re-
spect to the integer programming model. However, by in-
specting such proof one may rightfully notice that this prob-
lem has much more ”graph” intuition than the underlying in-
teger programming model – e.g., the concepts of distance or

connectivity get ”lost in translation”. This leads to a hypoth-
esis that choosing a more specific problem class can lead to
more succinct and maybe even more interpretable proof.

In this work, we address this concern for a more general
version of the problem, namely constrained shortest path
problems in which the path must satisfy some arbitrary set of
conditions (in the example above such condition would read
”go through some vertex from the set {3, 5}”). While this
problem domain is relatively simple to describe, it is com-
pelling for evaluation due to (a) its practical relevance and
(b) its computational hardness (this is an NP-complete prob-
lem as a generalization of the traveling salesman problem).
By keeping a degree of freedom in the choice of the feasi-
ble set, we obtain a problem class that is more narrowly de-
fined than for typical certification approaches while also be-
ing representative of more nuanced optimization problems.

We design a proof system for the constrained shortest
path problems that exploits knowledge specific to the graph-
theory domain. One example is the distance reasoning which
reduces the search space substantially by discarding vertices
that are ”too far” from the start and finish vertices. We also
show that the proof structure that we propose satisfies the
standard requirements for a proof system, i.e., soundness (no
suboptimal solution can be proven) and completeness (any
optimal solution can be proven).

This results in proofs that are easier to understand for hu-
mans, which has an important added benefit: it may increase
trust in the optimization software. For example, when hu-
man operators receive the output of the combinatorial solver,
they may either doubt some particular decisions (e.g., pecu-
liar edge choices) or not believe the results outright. Having
a more understandable proof may help in these situations.

Next, we propose an algorithm for proof search and eval-
uate it against the state-of-the-art implementation for inte-
ger programming (Cheung, Gleixner, and Steffy 2017), a
more general-purpose proof system. The key outcome of
our evaluation is that searching for proofs in the proposed
system results in proofs that (1) consist of building blocks
related to the graph theory domain and are therefore more
interpretable to humans, and (2) are in some cases much
shorter. Our explanation for that is the fact that individual
proof steps contain more powerful reasoning rules for this
problem class.

To summarize, the main contributions of this paper are a
proof system for constrained shortest path problems and an
approach for constructing optimality proofs for this problem
class that produces concise proofs on a pool of road net-
work instances with different constraint types. The rest of
the paper is structured as follows. In Section 2, we introduce
the prior work in certificate generation relevant to our re-
search. We formally introduce the constrained shortest path
problem in Section 3. Section 4 introduces the main con-
tributions of this paper, viz. a proof system for such prob-
lem instances and an algorithm for constructing proofs in it.
Further, we conduct an experimental evaluation of this ap-
proach in Section 5, showing that the resulting algorithm is
consistently able to outperform the proof generation for in-
teger programming in terms of the proof size. Finally, we
conclude from the demonstrated results and outline the po-

tential future work directions in Section 6.

2 Related work
We start with an introduction to the current approaches to
proving the optimality of a solution given a problem in-
stance. We review techniques used for generating proofs
for integer programs, their connection to solving algorithms,
and discuss domain-specific approaches oriented toward in-
terpretability by human viewers.
Certificate generation for integer programming. The key
idea behind optimality certification is to introduce a proof
system which would be sound and complete while still being
tractable to verify. To bring this idea closer to the develop-
ments in this paper, we introduce an example showing how
it may look like in practice.

Example 1. Consider the following integer program:

2x+ 3y → max

(1)x+ 2y ≤ 3

(2) 4x+ 5y ≤ 10

x, y ∈ Z≥0.

The optimal solution (x, y) = (1, 1) has the objective value
of 5. Optimality is typically confirmed by claiming an upper
bound on the objective. However, this information alone is
not sufficient – we require proof that the upper bound is 5.

This problem can be remedied by doing a few linear op-
erations on inequalities and rounding off the results where
needed, as illustrated by the example certificate below.

Example 1 (certificate). The certificate can be represented
by the following sequence of operations:

• (3) = 1
3 × (1) + 2

3 × (2) = 3x+ 4y ≤ 7 1
3 ,

• (4) = ⌊(3)⌋ = 3x + 4y ≤ 7 – which is valid since the
left-hand side in (3) is always integral,

• (5) = 1
2 × (1) + 1

2 × (4) = 2x+ 3y︸ ︷︷ ︸
objective

≤ 5.

The observations invoked in this example can be general-
ized to make a cutting-plane proof system (Cook, Coullard,
and Turán 1987), which is both sound and complete for this
problem class. This result, while reassuring, does not give
much in the way of finding the necessary proof. Fortunately,
this can be done while solving the problem instance, since
the cutting-plane method (Gilmore and Gomory 1961), one
of the earliest approaches to solving integer programming
instances, can be seen as a systematic way of applying cut-
ting plane steps until an optimal solution can be recovered
purely by linear programming.

Modern integer programming solvers, however, largely
follow branch-and-cut scheme which embeds cutting plane
generation in the branch-and-bound framework (Conforti,
Cornuéjols, and Zambelli 2014). To handle the challenge
of expressing branch-and-bound steps via cutting-plane rea-
soning, Cheung et al. introduce a more elaborate proof sys-
tem in (Cheung, Gleixner, and Steffy 2017) that subsumes
cutting-plane reasoning while also supporting tree search
reasoning. Other related works include pseudo-Boolean

certificates (Gocht, McCreesh, and Nordström 2020) and
propositional logic (Wetzler, Heule, and Hunt 2014).
Explaining the solutions of satisfaction problems. One
shortcoming of using the cutting-plane method for certify-
ing the optimality is that the individual steps found in the re-
sulting proof could be seen by a human observer as lengthy
and unobvious. We review approaches striving to output cer-
tificates understandable to a human observer.
Approaches based on unsatisfiable sets. A common ap-
proach to analyzing unsatisfiable instances is to find a subset
of constraints that comprise the unsatisfiable instance. Such
sets are also known as minimal unsatisfiable sets (MUS);
a common problem-independent way to find one such set
is QuickXplain, as described by Junker in (Junker 2001).
Senthooran et al. (Senthooran et al. 2021) have developed
a framework for generating MUSes more flexibly, e.g., by
generating multiple MUSes or restoring feasibility.

These approaches work well if the model constraints are
(a) simple enough to admit meaningful decomposition and
(b) complex enough to encode meaningful domain concepts.
While there are examples of applied domains where both
of these assumptions hold (e.g., plant location), these ap-
proaches tend to have trivial/incomprehensible output when
either of these conditions fails. For instance, applying this
approach to the problem from Figure 1 would yield a re-
sponse that amounts to solving the same problem on the
same graph with a few edges removed.
Sequential explanations. In (Bogaerts, Gamba, and Guns
2021), Bogaerts et al. has considered the problem of walk-
ing a user through the solution of a logical puzzle. The main
objective of this study is to deliver a complete yet simple
explanation of the solution process. The explanations are
modeled with sequences of inference steps equipped with
a complexity measure. For evaluation, the paper defines one
such measure by assigning complexity to individual steps
and defining a sequence complexity by aggregating them,
e.g., by averaging. Aside from the greedy construction of
the explanation, the algorithm also attempts to make nested
explanations, i.e., sequences of inferences that prove a sin-
gle fact by contradiction. To this end, it searches the nested
explanations of facts and adds them as soon as they score
better than the ”parent” explanation.

This scheme is shown to work well for puzzle-like satis-
faction problems. However, one distinct trait of this problem
class is that puzzles (by design) do not require heavy case
enumeration – which is important for our setup since com-
binatorial optimization problems typically require extensive
branching to be solved. While the concept of nested expla-
nations addresses this concern for the few cases when the
branching is indeed required, it is not clear whether this idea
can scale to more ”branched” reasoning processes.

To conclude, the existing research concerning the certifi-
cation of optimality/infeasibility claims can be largely parti-
tioned into (a) approaches working in general-purpose mod-
eling setups (e.g., integer programming) but providing little
from the ”interpretability” point of view, and (b) approaches
having ”explainability-preserving” mechanisms but working
for specific domains, which oftentimes lack the solving com-
plexity typical of industrial decision-making problems. In

this work, we produce an approach attempting to bridge the
gap between proof completeness and domain complexity. To
this end, we design a certification approach for a constrained
shortest path problem, a problem class that is wide enough to
expose patterns typical for more nuanced problem types but
narrow enough to have a meaningful, high-level description.

3 Constrained shortest path problem
The shortest path problem is a well-known problem in graph
theory that can be formulated as finding a path in a directed
weighted graph G between vertices s and t such that the
sum of edge weights is minimized. Despite having a combi-
natorial structure, this particular problem can be solved effi-
ciently using Dijkstra’s algorithm (Dijkstra 1959).

However, for some important practical scenarios this op-
timization problem is not adequate – for example, when
not every path in G is feasible according to some exter-
nal constraints. These variations are commonly known as
constrained shortest path problems, such as in (Lozano and
Medaglia 2013), meaning that there are some additional re-
quirements for the path to be feasible. For many practical
variations, such as resource constraints on paths (Lozano
and Medaglia 2013) or enforcing usage of some vertices (de
Uña et al. 2016), finding the shortest path under this set of
restrictions is known to be an NP-complete problem.

In this work we define the class of constrained shortest
path problems as follows:
Definition 1. Let G = (V, E) be a directed graph with
weight function w : E → R≥0 and s, t be some fixed ver-
tices of G. Also, let ϕ : 2V × 2E → {0, 1} be a side con-
straint predicate that defines which paths in G are feasible.
The constrained shortest path problem given by (G, s, t, ϕ) is
a problem that requires finding a subgraph G = (V,E) ⊆ G
with smallest total weight

∑
e∈E w(e) such that G is a sim-

ple path satisfying the side constraint ϕ(V,E).

4 Proof system for constrained shortest paths
Proof system structure. Considering that the optimization
problem has a graph structure, we can make a hypothesis
that optimality proofs for the shortest path problems become
more concise by using knowledge specific to graph theory.
In the next example, we expand upon the sample problem to
demonstrate what this reasoning may look like.
Example 2. Consider the problem in Figure 1 and observe
the following:
1. No path of length less than 13 can go through vertex 8 –

since it would have to cover at least the distance from 1 to
8 (which is 11) and the distance from 8 to 9 (which is 3),
and adding the distance bounds gives 13 ≥ 12. Thus, the
problem instance remains equivalent even if we remove
vertex 8 from consideration.

2. Any path between vertices 1 and 9 must include ver-
tex 6 since removing it disconnects the graph. Thus, the
problem instance remains equivalent if we only consider
paths with vertex 6.

To generalize this, we use graph-theoretic reasoning to
progressively ”narrow down” the graph by either removing

its vertices or edges or by enforcing them to be in the path.
We formalize this idea by the following definition.

Definition 2. An interval I = [G⊥, G
⊤] is a set of graphs

that are bounded (in a set-theoretical sense) between graphs
G⊥ and G⊤, i.e., I = {G : G⊥ ⊆ G ⊆ G⊤}. The graphs
G⊥ and G⊤ are called the bottom graph and top graph.

Continuing the Example 2, suppose that we maintain an
interval [G⊥, G

⊤] as a proof state – starting from the interval
with G⊥ being an empty graph and G⊤ being the original
graph G. In that case:

• the reasoning from step 1 can be reflected by removing
vertex 8 from G⊤ – narrowing the feasible set to a set of
paths not going (among others) to the vertex 8,

• the reasoning from step 2 can be reflected by adding a
vertex 6 to G⊥ – narrowing the feasible set to a set of
paths going through (among others) the vertex 6.

Thus, the graphs G⊥ and G⊤ in the interval [G⊥, G
⊤] can be

interpreted as the graph that must be included in any feasible
path and the graph that contains all feasible paths.

Note, however, that any correct reasoning of this form
cannot exclude short infeasible paths, i.e., if the path G is
shorter than some path G∗ = (V ∗, E∗) claimed to be opti-
mal and G ∈ I for the current interval I then it should stay
in any interval J ⊆ I that we get by ”narrowing” reasoning.
We reflect this insight using the following definition.

Definition 3. A graph G = (V,E) is called a candidate path
with respect to G, s, t and optimal solution G∗ if it satisfies
the following conditions: (1) it is a subgraph of G, (2) it is a
simple path from s to t, and (3) its length

∑
e∈E w(e) is less

than the length of G∗.

Now, keeping in mind the link between proving optimality
and solving problem instances, we consider how to develop
an algorithm for solving constrained shortest-path problem
instances. For instance, we could suggest the following:

(i) At the start, we need to consider all feasible paths from
s to t – which in our notation corresponds to the interval
spanning from an empty graph to the original graph G.

(ii) If we at some point consider the paths from an interval I ,
we may ”simplify” I by removing some graph elements
and enforcing others – resulting in a new interval J such
that J ⊆ I . (We have introduced earlier some procedures
for doing that in polynomial time, such as removing dis-
connected vertices – the main point here is that these pro-
cedures should be correct and efficient.)

(iii) If there is no valid procedure that can reduce an inter-
val I further, we can choose an arbitrary vertex or edge
and branch on it, i.e., solving two new problems, one for
inclusion and one for exclusion of the element. For ex-
ample, branching on vertex v creates two child intervals
J+, J− such that J+ differs from I by adding v to the
bottom graph while J− differs from I by removing v
from the top graph. Note that this procedure can be ap-
plied regardless of the actual interval (as long as it does
not collapse to a single graph) and yields two child inter-
vals that cover the original interval, i.e., J+ ∪ J− = I .

(iv) Finally, if we have an interval I such that every path
in it is infeasible (e.g., I does not contain any of the
mandatory vertices), we can safely dispose of it. Here
we assume that there is a polynomial-time procedure for
checking infeasibility – e.g., for a mandatory vertex con-
straint this may be a procedure that reports infeasibility
if there is a mandatory set V + such that V ∩ G⊤ = ∅.
In particular, we do not need the full resolution proce-
dure for that problem – if the problem is infeasible but
our procedure does not report it that simply implies that
the proof would have to enumerate a few more cases.

The next definition puts all of these points together to pro-
duce a formal definition of the proof that we use further on:
Definition 4. Let (G, s, t, ϕ) a constrained shortest path
problem and G∗ = (V ∗, E∗) be a path claimed to be op-
timal. Suppose that there is a predicate Φ(I) on intervals
I that can be computed in polynomial time such that Φ(I)
being false implies that there is no path G ∈ I such that
ϕ(G) (while the converse may not necessarily hold) and
Φ([G,G]) = ϕ(G) for any path G. Then a proof P is a
rooted tree (I,A) where each vertex in I is associated with
an interval,A is the set of directed edges between them and:

(i) its root is an interval Iroot = [G0,G] where G0 is a graph
with vertices {s, t} and no edges, called trivial root;

(ii) child intervals contract with respect to their parents, i.e.,
if interval I ∈ I then all of its children J are its subsets:⋃

J:(I,J)∈A

J ⊆ I;

(iii) candidate paths (as understood in Definition 3) are re-
tained in child intervals, i.e., for any path G{
G is a candidate path
G ∈ I ∈ I =⇒ ∃J : (I, J) ∈ A, G ∈ J.

(iv) leaf intervals are Φ-infeasible: if I is a leaf of P then
Φ(I) is false.

Soundness and completeness of the proof system. We
show that the previously defined proofs are complete, i.e.,
that if the claimed solution G∗ is indeed optimal then there
is a proof of this fact in the sense of Definition 4.
Lemma 1. Let (G, s, t, ϕ) be a constrained shortest path
problem with an optimal solution G∗. Then there exists a
proof P satisfying all requirements of Definition 4.

Conversely, the proof system we introduced is sound,
meaning that the existence of proof implies optimality.
Lemma 2. Let (G, s, t, ϕ) be a constrained shortest path
problem and G∗ be a feasible path. Suppose that there is a
proof P compliant with Definition 4. Then G∗ is an optimal
solution of a constrained shortest path problem.

The proofs of both lemmas can be found in Appendix A;
the intuition is that the proof system is expressive enough
to admit proof by exhaustion – a proof that systematically
goes over each feasible path – but not expressive enough to
construct a ”bogus” proof, since the true optimal path should
find its way to a leaf node.

Thus we can conclude that Definition 4 indeed encodes a
concept of proof for the domain of constrained shortest path
problems. However, this definition gives little in the way of
constructing the proofs – in particular, it is not clear how can
the proof graph be ”grown” out of the fixed source interval.
On the other hand, we know that proving the optimality is of-
ten tightly connected with the search – in fact, it can be seen
as a problem of constructing a valid and succinct search tree.
Thus we introduce next the building blocks of a search tree
(as imagined in Example 2) into our proof system concept.
Reasoning steps. A proof in our system consists of two rea-
soning types: linear reasoning, which narrows down an in-
terval by adding components to its bottom graph or remov-
ing components from its top graph, and case-based reason-
ing, which takes a vertex/edge, constructs two proofs for it
being present/absent, and merges them into a new proof tree.

Now, we formally introduce each of the reasoning types,
starting with the linear reasoning part.

Definition 5. Given a constrained shortest path problem
(G, s, t, ϕ) and an optimal solution G∗, a reasoning rule is
a mapping between intervals of G that is (1) contracting: if
interval I is mapped to interval J then J ⊆ I , (2) retaining
candidate paths: if interval I is mapped to interval J and G
is a candidate path such that G ∈ I then G ∈ J .

This definition allows some freedom in choosing the con-
crete set of reasoning rules. As an example, our out-of-range
reasoning removes vertices v if every path that includes ver-
tex v going from the starting vertex to the end vertex has a
greater or equal cost to the optimal distance – for the list of
rules used during the proof generation, see Appendix B.

As for the case-based reasoning, that can be done by
branching on vertices and edges of the original graph – this
gives two procedures for ”growing” a tree of intervals from
a leaf [G⊥, G

⊤], viz. branch on vertex and branch on edge.
Formally, branching on the vertex (edges are handled

symmetrically) starts with an interval I = [G⊥, G
⊤] and,

given a vertex v ∈ G⊤, connects two new (child) intervals
to I . One of them enforces a vertex, i.e., I → [G⊥+v,G⊤],
while the other one removes it, that is, I → [G⊥, G

⊤ − v].
Thus, we have a ”restricted” version of the proof system

from Definition 4 where proofs have the same properties but
can be constructed from Iroot by either applying reasoning
steps or executing branching. Soundness in this setup is ob-
vious, while completeness depends on the particular choice
of reasoning steps; for further details, see Appendix A.
Proof generation. The proof structure that we have dis-
cussed so far largely follows the typical solving procedure:
we start with an original problem, simplify it, split it into
two new problems (or less), and repeat until all of the cases
were accounted for. However, there is a notable difference
between these two processes: the shape of the search tree is
irrelevant when solving the problem but is very important for
certification since the more compact proof tree shape leads
to a faster certification.

One corollary of that is that in our setup we can assume
that (a) we already have an optimal path G∗ and (b) we need
to show that fact in the most succinct way possible. To ad-
dress these points, we use the search strategy similar to A*

search on graphs as shown in Algorithm 1. In short, this
procedure repeatedly walks the graph of intervals (as imple-
mented in Algorithm 2) – favoring the ones leading to proofs
with the smallest number of leaves – until the first new inter-
val is encountered when it extends the ”known” part of the
graph and starts a new walk. The procedure terminates as
soon as the complete proof can be reconstructed. Note that
this does not necessarily produce the smallest proof, how-
ever in experimentation we show this works reasonable well.

Algorithm 1: A proof search procedure
Data: Constrained shortest path problem instance

Q = (G, s, t, ϕ)
Data: Claimed optimal path G∗ or ∅ if the instance is

claimed to be infeasible
Result: Proof tree P certifying the

optimality/unsatisfiability
// See also Definition 6
r ← (R,Simplify(R));
T ← ({r}, ∅);
while ¬Proven(T , r) do
T ←Walk(T , Q,G∗);

end
return Extract(T);

Algorithm 2: Transition walk procedure
Data: Transition DAG T with root node r
Data: Constrained shortest path problem instance

Q = (G, s, t, ϕ)
Data: Claimed optimal path G∗ or ∅ if the instance is

claimed to be infeasible
Result: Transition DAG T ′ ⊃ T with additional

interval pair vertices
v ← r;
while v is not a leaf do

t← argmint:(v,t)∈T Bound(v′) + Bound(v′′);
v ← argmaxv:(t,v)∈T Bound(v);

end
// Create all valid transitions
for t← vertices and edges not fixed in v do
T ← T ∪ ({t}, (v, t));

end
return T ;

The search procedure maintains a special data structure
for keeping track of visited graph intervals – we introduce
its key properties in the following definition.

Definition 6. A transition DAG T is a directed acyclic
graph with the following structure:

• vertices are composed of interval pairs (Iorig, Ired) and
transition vertices t = V ∪E corresponding to branching
on vertices and edges;

• in each interval pair vertex, the reduced interval can be
constructed from the original one with reasoning rules;

• the source vertex is an interval pair containing Iroot,
• all edges go either from interval vertices to transition

vertices or in the opposite direction;
• for each interval pair there are either no outgoing edges

or there is an outgoing edge for each graph vertex v in
G⊤ \G⊥ and for each edge e in G⊤ \G⊥, where Ired =
[G⊥, G

⊤];
• for each transition node there are exactly two children

obtained by branching on the corresponding vertex/edge.

As with the A* search scheme, one of the key ingredi-
ents here is the bounding procedure. The bounding function
Bound(I) is implemented by the following proposition:
Proposition 1. Given a interval pair I = [G⊥, G

⊤] and P
any valid proof tree with I being one of its vertices, the sub-
tree of P rooted at I has at most Bound(I) = 2|E

⊤|−|E⊥|,
where E⊥ and E⊤ are the edge sets of G⊥ and G⊤.

If additionally a transition t is chosen with J ′ and J ′′ are
the two children of I (we simplify here the interval pair to
Ired), then the bound I is at most Bound(J ′) + Bound(J ′′).

The naı̈ve implementation of this procedure requires
adding very large numbers while evaluating the available
transitions. To alleviate the numeric issues arising from that,
we use the log-sum-exp trick. In our context, this means us-
ing the binary logarithms of width bounds rather than the
bounds themselves and, if the log-bounds for child intervals
are n and m with n > m, evaluating the log-bound for the
parent interval as log2(2

n+2m) = n+log2(1+2−(n−m)).
Finally, the termination criterion is defined as follows: an

interval pair vertex v in a transition DAG T is considered
proven if it has a transition with two proven children or it is
itself a terminal vertex (either if ϕ is false for any feasible
graph or if the bounds are inconsistent):

Proven(v) = Terminal(v) ∨ (Proven(v′) ∧ Proven(v′′))

for some v′, v′′, t such that v → t, t→ v′, t→ v′′ in T .
Bounding heuristics. One notable feature of the descrip-
tion above is that the side constraint ϕ is treated as a black
box, i.e., it is only used to check whether the interval I can
be considered a leaf node in the proof. This leads to a hy-
pothesis that the proof generation process could be aided by
tracing the ”progress” with respect to the side constraint sat-
isfaction in the bounding function.

One way in which we can estimate such progress is by
considering how many cases do we still have to consider –
for example, the condition that can be simplified to ϕ(G) =
[v ∈ G] can be treated as a simpler one than ϕ(G) = [v ∈
G ∧ (u ∈ G ∨ w ∈ G)]. For the former side constraint, we
have to evaluate two distinct cases – v ∈ G and v /∈ G, while
for the latter one we have to consider four distinct cases:
v /∈ G, {u, v} ⊆ G, {w, v} ⊆ G and v ∈ G ∧ {w, v} /∈ G.

To formalize that intuition, let BoundSide(I;ϕ) be a func-
tion that gives a number of cases to consider for some rep-
resentation of ϕ. (See Appendix E for the implementation of
BoundSide functions for different side constraint types.) We
have considered the following modification of our approach:
• Pure approach uses Bound(I) as its upper bound, com-

pletely ignoring the side constraint.

• Lex approach uses a pair of BoundSide(I;ϕ) and
Bound(I) as its upper bound, meaning that the search
algorithm first resolves the side constraint and then
switches to proving the optimality knowing that the side
constraint has been proven.

• Weighted approach uses (2K)BoundSide(I;ϕ) ×
Bound(I) in the leaf nodes (or K logBoundSide(I;ϕ)+
logBound(I) in log-space) and adds up these numbers
while going up from the leaves. This prioritizes the side
constraint resolution by assigning higher weights to the
leaves that have not yet resolved their side constraint.

5 Experimental results
We evaluate how often our approach is able to construct op-
timality certificates and compare the size of the resulting
certificates with the state-of-the-art certified MIP approach
(Cheung, Gleixner, and Steffy 2017). The full source code
bundle for this section can be found at (Sidorov et al. 2023b).

We evaluate our proofs with respect to the width, i.e., the
number of leaves in the proof tree. We also considered depth,
however, we found a strong correlation between the two.
Note that the time to produce proofs is not our focus. Nev-
ertheless, our approach is comparable to the baseline – see
Appendix H for more details.
Experimental setup. For the purposes of this section we use
two different types of side constraints:

1. Mandatory vertices (de Uña et al. 2016). All side con-
straints have form V + ∩ G ̸= ∅, i.e., the path should go
through one of the vertices in V + = {v1, . . . , vk}.

2. Resource constraints (Lozano and Medaglia 2013). All
side constraints have form

∑
e∈E r(e) ≤ R for some

R ∈ R≥0 and vector r : E → R≥0.

Existing benchmarks fall into one of two categories: (1)
real-world networks, with network sizes far beyond the
reach of the optimal methods (e.g., (Leskovec and Krevl
2014)), and (2) artificial benchmarks which generate graphs
according to some predefined distribution (such as those
used in (Lozano and Medaglia 2013)), typically missing the
structure of the real-world graphs. We therefore decided to
generate our own instances based on real-world road net-
work data using OpenStreetMap data (Boeing 2017). The
main idea is to extract a city road network graph, then sam-
ple start and end vertices uniformly among those reachable
within some time frame; for the full description of the pro-
cess, see Appendix C. This procedure generates realistic net-
works, i.e., obtained from actual road network data rather
than from a synthetic process (in contrast to procedures from
(Lozano and Medaglia 2013) or (Beasley and Christofides
1989)). On the other hand, graphs in the output have control-
lable size, i.e., can become large or small enough by vary-
ing data generation parameters (in contrast to datasets like
(Leskovec and Krevl 2014)).

We solve each instance with the baseline approach (see
further) and retain only those for which we were able to ob-
tain an optimal solution within a time limit of 60 seconds,
chosen as to create non-trivial instances that are practically
feasible to evaluate. This left us with a pool of instances

having 1,105 samples for mandatory vertex constraint (55%
feasible) and 1,145 instances for resource constraint (72%
feasible). The resulting graphs have on average 217.5 ver-
tices and 488.7 edges, with the mean edge/vertex ratio being
2.23; the ranges for these values are up to 661 vertices, 1,386
for edges and 2.75 ratio vertex/edge. The full dataset can be
found in (Sidorov et al. 2023a).
Baseline approach. Modeling and solving the problems us-
ing off-the-shelf solvers (MIP, pseudo-Boolean, and SAT)
was unsuccessful – the approaches could not scale past very
small instances and proof certificates were enormous even
after trimming (Heule, Hunt, and Wetzler 2013). To rec-
tify this, we use the integer programming model with sub-
tour elimination constraints (Dantzig, Fulkerson, and John-
son 1954), leading to the following iterative approach: (1)
Solve the model with all sub-tour elimination constraints de-
rived earlier (initially there are none), and (2) For each set
of vertices that forms a cycle in the intermediate solution,
add the corresponding subtour elimination constraint, and
return to step 1. The approach terminates once an optimal
path is found. The optimality certificate (Cheung, Gleixner,
and Steffy 2017) from the last iteration is the certificate for
the original problem, from which we extract the binary tree
corresponding to the proof having the smallest width from
the certificate. See Appendix D for full specification.
Computational results. To address the first goal of our ex-
periments, Table 1 shows the success rates (percentages of
proofs constructed with our approach) per side constraint
type, per bounding mode. The results suggest that the pro-
posed approach is able to keep up with the baseline. Sur-
prisingly, the success rates suggest that employing the side
constraint information turns out to be counterproductive for
the task of producing proof within an allotted time limit.

Table 1: Success rates on different side constraint types and
bounding modes.

Mandatory Resource
Pure 96.29% 92.40%
Lex 93.57% 42.88%
Weighted 95.93% 72.93%

For the second goal, we compare the metric values for
instances solved both by the baseline and by the proposed
approach. A summary is given in Figure 2.
Mandatory vertex instances. The pure version of our ap-
proach is able to consistently produce shorter proofs for fea-
sible instances – the proof is smaller in 72.8% of the cases.
This is a large reduction compared to the baseline. A possi-
ble explanation for this is that out-of-range reasoning step is
very efficient in this setting, accounting for at least half of
the reasoning steps in 93% of the instances.

For the infeasible instances, our approach manages to also
provide shorter proofs in 22% cases, however, this is due to
the fact that the baseline is often able to provide a refuta-
tion close to the root. Out-of-range reasoning here is less
efficient, with the median percentage being 37% of used in-
ference steps.
Resource constraint instances. Resource constraint does not

exhibit improvement in the proof size, which is caused by
the fact that the baseline solves most (> 95%) of such in-
stances with at most one level of branching. This is some-
what expected, since these instances contain a knapsack-like
structure, which are better dealt with using integer program-
ming techniques. Nevertheless, the proof found by our ap-
proach are reasonably sized that could be used for human
inspection. For more details, see Appendix G.

Figure 2: Distribution of the ratio of produced proof depth
and baseline proof depth; lower is better, red dashed line cor-
responds to parity between our approach and the baseline.

Resource constraint

Feasible instances

Resource constraint

Infeasible instances

Mandatory vertices

Feasible instances

Mandatory vertices

Infeasible instances

1.00 8.00 64.00 4.00 32.00256.00

0.25 4.00 64.00 0.25 2.00 16.00
0

100

200

0
10
20
30
40

0

50

100

150

0

50

100

150

Resulting width / baseline width

N
um

be
ro

fs
am

pl
es

6 Conclusions
We propose an approach for generating proofs of optimal-
ity for constrained shortest-path problem instances. The pro-
posed approach produces proofs that are based on graph con-
cepts that may be easier to audit from a human perspective
and are in some cases much more compact compared to their
integer programming counterparts. This is largely due to our
reasoning steps encapsulating more powerful reasoning.

One way of improving this scheme is to optimize the
proofs – currently, our search terminates on finding a valid
proof, however, it is easy to imagine that some unfortunate
sequence of decisions may lead to an unnecessarily long
proof. The challenge is to design branching rules that focus
on producing short proofs rather. While conventional solvers
benefit from decades of continuous improvement, most of
that research has been focused on efficiency rather than in-
terpretability or the proof size.

Another promising idea is to expand our approach to other
settings by designing individual reasoning rules should be
(1) interpretable, (2) non-trivial, and (3) efficiently discover-
able. Global constraints from constraint programming have
similar characteristics and may serve as an initial inspiration.

7 Acknowledgements
Konstantin Sidorov is supported by the TU Delft AI Labs
programme as part of the XAIT lab.

References
Beasley, J. E.; and Christofides, N. 1989. An Algorithm for
the Resource Constrained Shortest Path Problem. Networks,
19(4): 379–394.
Biere, A.; Heule, M.; and van Maaren, H., eds. 2021. Hand-
book of Satisfiability. Number volume 336 in Frontiers in
Artificial Intelligence and Applications. Amsterdam ; Wash-
ington, DC: IOS Press, second edition edition. ISBN 978-1-
64368-160-3.
Boeing, G. 2017. OSMnx: New Methods for Acquiring,
Constructing, Analyzing, and Visualizing Complex Street
Networks. Computers, Environment and Urban Systems, 65:
126–139.
Bogaerts, B.; Gamba, E.; and Guns, T. 2021. A Framework
for Step-Wise Explaining How to Solve Constraint Satisfac-
tion Problems. Artificial Intelligence, 300: 103550.
Cheung, K. K. H.; Gleixner, A.; and Steffy, D. E. 2017. Ver-
ifying Integer Programming Results. In Eisenbrand, F.; and
Koenemann, J., eds., Integer Programming and Combinato-
rial Optimization, volume 10328, 148–160. Cham: Springer
International Publishing. ISBN 978-3-319-59249-7 978-3-
319-59250-3.
Conforti, M.; Cornuéjols, G.; and Zambelli, G. 2014. Inte-
ger Programming, volume 271 of Graduate Texts in Math-
ematics. Cham: Springer International Publishing. ISBN
978-3-319-11007-3 978-3-319-11008-0.
Cook, W.; Coullard, C. R.; and Turán, G. 1987. On the Com-
plexity of Cutting-Plane Proofs. Discrete Applied Mathe-
matics, 18(1): 25–38.
Dantzig, G.; Fulkerson, R.; and Johnson, S. 1954. Solution
of a Large-Scale Traveling-Salesman Problem. Journal of
the Operations Research Society of America, 2(4): 393–410.
de Uña, D.; Gange, G.; Schachte, P.; and Stuckey, P. J. 2016.
A Bounded Path Propagator on Directed Graphs. In Rue-
her, M., ed., Principles and Practice of Constraint Program-
ming, volume 9892, 189–206. Cham: Springer International
Publishing. ISBN 978-3-319-44952-4 978-3-319-44953-1.
Dijkstra, E. W. 1959. A Note on Two Problems in Connex-
ion with Graphs. Numerische Mathematik, 1(1): 269–271.
Gillard, X.; Schaus, P.; and Deville, Y. 2019. SolverCheck:
Declarative Testing of Constraints. In Schiex, T.; and de
Givry, S., eds., Principles and Practice of Constraint Pro-
gramming, volume 11802, 565–582. Cham: Springer Inter-
national Publishing. ISBN 978-3-030-30047-0 978-3-030-
30048-7.
Gilmore, P. C.; and Gomory, R. E. 1961. A Linear Program-
ming Approach to the Cutting-Stock Problem. Operations
Research, 9(6): 849–859.
Gocht, S.; McCreesh, C.; and Nordström, J. 2020. VeriPB:
The Easy Way to Make Your Combinatorial Search Algo-
rithm Trustworthy. In Workshop From Constraint Program-
ming to Trustworthy AI at the 26th International Confer-

ence on Principles and Practice of Constraint Program-
ming (CP’20). Paper Available at http://www. Cs. Ucc.
Ie/Bg6/Cptai/2020/Papers/CPTAI 2020 paper 2. Pdf.
Gocht, S.; McCreesh, C.; and Nordström, J. 2022. An Au-
ditable Constraint Programming Solver. In Solnon, C., ed.,
28th International Conference on Principles and Practice of
Constraint Programming (CP 2022), volume 235 of Leib-
niz International Proceedings in Informatics (LIPIcs), 25:1–
25:18. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-240-2.
Heule, M. J. H.; Hunt, W. A.; and Wetzler, N. 2013. Trim-
ming While Checking Clausal Proofs. In 2013 Formal Meth-
ods in Computer-Aided Design, 181–188. Portland, OR:
IEEE. ISBN 978-0-9835678-3-7.
Heule, M. J. H.; Kullmann, O.; and Marek, V. W. 2016.
Solving and Verifying the Boolean Pythagorean Triples
Problem via Cube-and-Conquer. In Creignou, N.; and
Le Berre, D., eds., Theory and Applications of Satisfiability
Testing – SAT 2016, volume 9710, 228–245. Cham: Springer
International Publishing. ISBN 978-3-319-40969-6 978-3-
319-40970-2.
Junker, U. 2001. Quickxplain: Conflict Detection for Arbi-
trary Constraint Propagation Algorithms. In IJCAI’01 Work-
shop on Modelling and Solving Problems with Constraints,
volume 4. Citeseer.
Korte, B.; and Vygen, J. 2000. Combinatorial Optimiza-
tion, volume 21 of Algorithms and Combinatorics. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-
21708-5.
Lamb, E. 2016. Two-Hundred-Terabyte Maths Proof Is
Largest Ever. Nature, 534(7605): 17–18.
Leskovec, J.; and Krevl, A. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection.
Lozano, L.; and Medaglia, A. L. 2013. On an Exact Method
for the Constrained Shortest Path Problem. Computers &
Operations Research, 40(1): 378–384.
Senthooran, I.; Klapperstueck, M.; Belov, G.; Czauderna,
T.; Leo, K.; Wallace, M.; Wybrow, M.; and de la Banda,
M. G. 2021. Human-Centred Feasibility Restoration. In
Michel, L. D., ed., 27th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2021),
volume 210 of Leibniz International Proceedings in Infor-
matics (LIPIcs), 49:1–49:18. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-
95977-211-2.
Sidorov, K.; Correia, G.; de Weerdt, M.; and Demirović, E.
2023a. Constrained shortest path instance dataset. https:
//doi.org/10.5281/zenodo.10402259.
Sidorov, K.; Correia, G.; de Weerdt, M.; and Demirović, E.
2023b. Paths, Proofs and Perfection source code bundle.
https://doi.org/10.5281/zenodo.10402563.
Simplemaps. 2023. World Cities Database. https://
simplemaps.com/data/world-cities. Accessed: 2023-08-15.
Wetzler, N.; Heule, M. J. H.; and Hunt, W. A. 2014. DRAT-
trim: Efficient Checking and Trimming Using Expressive
Clausal Proofs. In Hutchison, D.; Kanade, T.; Kittler, J.;

Kleinberg, J. M.; Kobsa, A.; Mattern, F.; Mitchell, J. C.;
Naor, M.; Nierstrasz, O.; Pandu Rangan, C.; Steffen, B.; Ter-
zopoulos, D.; Tygar, D.; Weikum, G.; Sinz, C.; and Egly, U.,
eds., Theory and Applications of Satisfiability Testing – SAT
2014, volume 8561, 422–429. Cham: Springer International
Publishing. ISBN 978-3-319-09283-6 978-3-319-09284-3.

A Soundness and completeness proofs
Proof of Lemma 1. Let CAND(G, s, t) be a set of all candi-
date paths through G from s to t and consider the following
proof:

P = (I,A),
I = {R} ∪ {[P, P] : P ∈ CAND(G, s, t)},
A = {(R, [P, P]) : P ∈ CAND(G, s, t)},

where R is the trivial source. (In other words, the proof P
considers all possible candidate paths and shows their infea-
sibility, one path at a time.)

This proof satisfies all four requirements: it is a tree with
a proper root, a set of all paths is a subset of the root interval
and all candidate paths are kept in proof interval by construc-
tion. Finally, for every leaf interval L = [P, P] the condition
Φ(L) does not hold because otherwise ϕ(P) = Φ(L) would
be true, contradicting the optimality of G∗.

Proof of Lemma 2. For a proof by contradiction, suppose
that there is a feasible path G+ shorter than G∗. That would,
in particular, mean that G+ is a candidate path with respect
to G∗. Since G+ is included in the root (Definition 4.(i)) and
gets preserved in some of its descendants (Definition 4.(iii)),
then in some of the descendants of that descendant, etc., we
can find a leaf interval [I, J] such that G+ ∈ [I, J]. Since
P is a proof and [I, J] is a leaf interval, no graph belonging
to it should satisfy the condition ϕ – otherwise Φ(I) would
have to be true by Definition 4.(iv). That, however, contra-
dicts the fact that G+ is a feasible solution of the constrained
shortest path problem.

B Reasoning rules used for proof generation
In the following list, each of the rules maps an interval
[G⊥, G

⊤] to an interval [H⊥, H
⊤]:

• Unique incoming edge. Let e = (u, v) ∈ G⊥. Then any
other edge e′ = (w, v) ∈ G⊤ entering v should be re-
moved from G⊤.

• Unique outgoing edge. Defined symmetrically.
• Out-of-range vertex removal. Let v is a vertex in an in-

stance such that d(s, v) + d(v, t) ≥ L∗, where d(u, v) is
the shortest distance from u to v over G⊤, and L∗ is the
distance bound from the instance definition. In that case,
exclude v from G⊤.

• Cycle prevention. Let (u, v) be an edge in G⊤ such that
u is reachable from v in G⊥. In that case, exclude (u, v)
from G⊤.

• Bridge inclusion. Let v be a vertex in G⊥. Suppose that
an edge e = (u, v) ∈ G⊤ is the only incoming edge to
the vertex v. Then G⊥ can be extended to include v.

In the next lemma, we show that this system (or, rather,
its strict subset) is enough to enforce completeness.
Lemma 3. Let (G, s, t, ϕ) be a constrained shortest path
problem with an optimal solution G∗. Then there exists a
proof P satisfying all requirements of Definition 4 con-
structed using only the following procedures:
• branching on edge,

• unique incoming/outgoing reasoning steps,
• out-of-range vertex removal reasoning step.

Proof. Similarly to Lemma 1, we can start the construction
by building a tree having Iroot as its root interval and repeat-
ing the following steps:

• Find a leaf interval I = [G⊥, G
⊤] such that G⊥ ̸= G⊤

and Φ(I) is true. Terminate if no such interval exists.
• Remove all available edges in child intervals by invok-

ing unique incoming/outgoing reasoning steps to each of
them independently.

• Remove all available vertices in child intervals by invok-
ing out-of-range vertex removal,

• Branch from I on some of the edges e ∈ G.

This proof satisfies Definition 4.(i) and 4.(ii) by construc-
tion. Definition 4.(iii) also holds since reasoning steps do not
remove candidate paths while branching steps do not remove
any paths, since the child intervals cover the parent interval.

Finally, to prove Definition 4.(iv) by contradiction, sup-
pose that I = [G⊥, G

⊤] such that Φ(I) is true. Now G⊥ ̸=
G⊤ would contradict the termination condition in the proof
construction, so we assume that G⊥ = G⊤. In that case,
G⊥ is a simple path. Indeed, s and t must be connected –
otherwise the out-of-range step makes the interval empty.
Also, for each vertex in G⊥, there is only one incoming
and one outgoing edge (except for start and finish vertices,
which only have an outgoing and an incoming edge respec-
tively) – any other possibility is ruled out by unique incom-
ing/outgoing rules. But in that case we have ϕ(G⊥) = Φ(I),
implying that G⊥ is a feasible simple path shorter than G∗,
contradicting its optimality.

It should be noted, however, that having ”additional”
rules, while not influencing completeness, can be beneficial
for generating more compact proofs.

C Dataset generation
We obtain the graphs G with marked start/finish vertices
(s, t) using the following procedure:

1. Sample all cities in the Netherlands mentioned in World
Cities Database (Simplemaps 2023) and extract the road
network for each of them using OSMnx library (Boeing
2017).

2. For each of the edges, evaluate its travel time by car in
seconds and store it as edge weight.

3. In the resulting network, sample starting vertex s uni-
formly, then sample finish node t uniformly among ver-
tices {v : A ≤ d(s, v) ≤ B} for some fixed range
[A..B]. (This work uses [A..B] = [120..180].)

4. Retain only vertices v for which the bound d(s, v) +
d(v, t) ≤ Md(s, t) holds for some fixed M . (This work
uses M = 1.5.)

After that, we build the side constraint G as follows:

• For mandatory vertices domain the mandatory sets are
chosen among the vertices not on the (unconstrained)
shortest path. For every instance, at least one set is cho-
sen; the number of additional sets follows a geometric
distribution with p = 2/3. For each set, its size is chosen
uniformly between 1 and 3 vertices; after the set cardi-
nality is chosen the set itself is constructed by uniformly
sampling a random subset with the required size.

• For resource constraint domain the resource values r(e)
are sampled uniformly from range [50, 100] for edges e
on the unconstrained shortest path G0 and from range
[10, 20] elsewhere. The resource bound R is then fixed to
1
2

∑
e∈G0 r(e). Finally, for each instance, we use 4 dis-

tinct resource constraints.

D Integer programming model for solving
the constraint shortest path problem

Given a constrained shortest path problem (G, s, t, ϕ), the
optimal solution G∗ can be recovered from the following
0—1 linear program:

∑
e∈E

w(e)xE(e)→ min∑
u:(u,v)∈E

xE(u, v)−
∑

u:(v,u)∈E

xE(v, u) = 0∀v ∈ V \ {s, t}

∑
u:(u,s)∈E

xE(u, s)−
∑

u:(s,u)∈E

xE(s, u) = −1

∑
u:(u,t)∈E

xE(u, t)−
∑

u:(t,u)∈E

xE(t, u) = 1

∑
u:(v,u)∈E

xE(v, u) = xV (v) ∀v ∈ V

∑
e=(u,v):u,v∈S

xE(e) ≤ |S| − 1 ∀S ⊆ V

ϕ(xV , xE)

xE(e), xV (v) ∈ {0, 1} ∀v ∈ V, e ∈ E .

E Side constraint bounding
Mandatory vertices
Let ϕ be defined by sets V1, . . . , Vm of mandatory sets and
I = [G⊥, G

⊤] be the current interval. Without loss of gen-
erality, assume that all sets Vk ⊆ G⊤ (all other vertices can
be removed) but none of the sets Vk intersects with G⊥ (oth-
erwise, the set Vk is guaranteed to be visited and thus can be
eliminated). Then the side constraint is bounded by the fol-
lowing recursive procedure: bound is 1 if Vk = ∅ for some
k or if m = 0, otherwise

BoundSide(I;V1, . . . , Vm) =

BoundSide(I+v ;V1, . . . , Vm) + BoundSide(I−v ;V1, . . . , Vm)

where v is the vertex occurring the most in sets Vk and I±v
are the intervals obtained by adding and removing the vertex
v.

Table 2: Distribution of differences between produced proof
depth and baseline proof depth (mandatory vertices, feasible
instances)

Min 25% Median 75% Max
Pure -15 -3 -2 0 18
Lex -15 -3 -2 0 2
Weighted -15 -3 -2 0 18

Resource constraints
Given a resource constraint

∑
e∈E r(e) ≤ R, the

bound is estimated by a recursive procedure in which
BoundSide(I;R) = 1 if R ≥

∑
e∈E r(e), R ≤ 0 or E = ∅;

otherwise,

BoundSide(I;R) =

BoundSide(I+e ;R− r(e)) + BoundSide(I−e ;R)

for the edge e with the largest resource consumption r(e).
Similar to the dynamic programming algorithm for the

knapsack problem, this recurrence is problematic for larger
values of R. We remedy this with a trick used to solve the
knapsack problem approximately, viz. we choose a prede-
fined number of buckets B (we use B = 16) and divide
the resource consumptions from range [0..R] into B equally
sized buckets.

F Experimental infrastructure
We have run our experiments on Dell Precision T5820 with
the following configuration:

• CPU: Intel® Xeon® processor W-2223 3.6GHz 3,9GHz
Turbo, 4C, 8.25M Cache, HT, (120W) DDR4-2666.

• Operating system: Ubuntu 22.04.2 LTS.
• Memory: 16GB (2 x 8 GB) 2933 MHz DDR4 ECC

RDIMM.

Aside from the dependencies listed in the code appendix,
we have also used the version of SCIP 8.0.0.1 from (Cheung,
Gleixner, and Steffy 2017).

G Proof size comparison
Mandatory vertices
Tables 2 and 3 contain information about the feasible runs
– here and in the further tables, we include the mini-
mum/maximum values, median as well as the first and third
quartiles. As can be seen, the proofs that were found for
the feasible runs are typically more concise than the base-
line proofs. That being said, lex-bounding is able to handle
outliers better despite being the worst-performing method in
terms of its success rate.

The infeasible runs are mentioned in Tables 4 and 5. The
comparison is more consistent in this set of runs, differing
only in the ”upper” outlier – as before, lex-bounding has the
most solid guarantees, followed by weighted bounding and
then by pure bounding.

Table 3: Distribution of relative differences between pro-
duced proof widths and baseline proof widths (mandatory
vertices, feasible instances)

Min 25% Median 75% Max
Pure 0.37 1 3 8 124.5
Lex 0.5 1 1 1.5 4
Weighted 0.37 1 2 4 19

Table 4: Distribution of differences between produced proof
depth and baseline proof depth (mandatory vertices, infeasi-
ble instances)

Min 25% Median 75% Max
Pure -9 0 1 1 13
Lex -9 0 1 1 2
Weighted -9 0 1 1 9

Resource constraints
Tables 6 and 7 tackle the feasible instances for resource con-
straints. While here, as expected from the plot in the main
text, the differences are more favoring to the baseline, the
earlier patterns regarding the bounding approaches hold here
as well.

Finally, Tables 6 and 7 address the infeasible instances for
resource constraints.

Evaluation of lex-bounding
The experimental results suggest that the lex-bounding, de-
spite being the least successful in finding a proof, turns out
to bound the proof size relatively well. Figure 3 repeats the
evaluation from the main text for lex-bounding.

H Search duration comparison
Though the focus of the work was on the proof size, the pro-
posed approach also happens to find proofs for an amount of
time comparable to the baseline. Table 10 lists the percent-
age of instances (per constraint type, per bounding mode)
where our approach finds the proof faster than the baseline.
Instances with mandatory vertex constraints exhibit uniform
performance across the bounding modes. On the other hand,
the elapsed time on resource-constrained instances is sub-
stantially influenced by the bounding type. In particular, lex-
bounding ends up not only bounding the proof size better
than the others but also does a much better job at matching
the baseline duration than the other bounding types.

Table 5: Distribution of relative differences between pro-
duced proof widths and baseline proof widths (mandatory
vertices, infeasible instances)

Min 25% Median 75% Max
Pure -10 0 2 5 19
Lex -1 0 0 1 3
Weighted -11 0 1 3 9

Table 6: Distribution of differences between produced proof
depth and baseline proof depth (resource constraint, feasible
instances)

Min 25% Median 75% Max
Pure -10 0 2 5 19
Lex -1 0 0 1 3
Weighted -11 0 1 3 9

Table 7: Distribution of relative differences between pro-
duced proof widths and baseline proof widths (resource con-
straint, feasible instances)

Min 25% Median 75% Max
Pure 0.37 1 3 8 124
Lex 0.5 1 1 1.5 4
Weighted 0.37 1 2 4 19

Table 8: Distribution of differences between produced proof
depth and baseline proof depth (resource constraint, infeasi-
ble instances)

Min 25% Median 75% Max
Pure 0 1 3 8 23
Lex 0 0 1 2 3
Weighted 0 1 2 3 9

Table 9: Distribution of relative differences between pro-
duced proof widths and baseline proof widths (resource con-
straint, infeasible instances)

Min 25% Median 75% Max
Pure 1 2 4 18.25 380
Lex 1 1 2 3 5
Weighted 1 2 3 5 21

Figure 3: Distribution of the ratio of produced proof depth
and baseline proof depth for lex-bounding; lower is better,
red dashed line corresponds to parity between our approach
and the baseline.

Resource constraint

Feasible instances

Resource constraint

Infeasible instances

Mandatory vertices

Feasible instances

Mandatory vertices

Infeasible instances

0.50 1.00 2.00 4.00 1.00 2.00 4.00

0.06 0.25 1.00 4.00 0.25 1.00 4.00
0

100

200

0
10
20
30
40
50

0
25
50
75

100
125

0

50

100

150

Resulting width / baseline width

N
um

be
ro

fs
am

pl
es

Table 10: Percentage of instances with lower proof produc-
tion times

Mandatory Resource
Pure 50.15% 34.09%
Lex 50.61% 46.63%
Weighted 49.19% 25.79%

Figure 4 shows the distribution for the duration of our ap-
proach relative to the baseline. One of the striking features
of this histogram is that there are quite a few instances where
our approach was not only better than the baseline but bet-
ter by orders of magnitude. On the other hand, the converse
behavior – our approach taking orders of magnitude more
time – is much rarer, with the ”typical” slow-down factors
peaking around 2× to 3×.

In all of the comparisons in this section, we only consider
the instances that took more than a second to solve by either
of the approaches. Table 11 lists the remaining number of in-
stances per each of the cases. It is worth mentioning that the
resource constraint comparisons are done on much smaller
samples, which is caused by the fact that many resource-
constrained instances are solved in the root node by both the
baseline and our approach, making any substantial compari-
son on them impossible.

Figure 4: Distribution of the ratio of search time of our ap-
proach and the baseline.

0

25

50

75

100

125

0.001 0.01 0.1 1 10 100
Resulting duration / baseline duration

N
um

be
ro

fs
am

pl
es

Table 11: Number of instances used for the duration com-
parisons

Mandatory Resource
Pure 678 572
Lex 652 208
Weighted 681 477

