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Abstract. Blockchain (BC) systems are highly distributed peer-to-peer
networks that offer an alternative to centralized services and promise
robustness to coordinated attacks. However, the resilience and overall
security of a BC system rests heavily on the structural properties of
its underlying peer-to-peer overlay. Despite their success, critical design
aspects, connectivity properties, and interdependencies of BC overlay
networks are still poorly understood. In this work, our aim was to fill this
gap by analyzing the topological resilience of seven distinct BC networks.
In particular, we probed and crawled these BC networks for 28 days.
We constructed, at frequent intervals, connectivity graphs for each BC
network consisting of all potential connections between peers. We analyze
the structural graph properties of these networks and their topological
resilience. We show that by targeting fewer than 10 highly connected
peers, major BCs such as Bitcoin can be partitioned into disconnected
components. Finally, we uncover a hidden overlap between different BC
networks, where certain peers participate in more than one BC network.
Our findings have serious implications for the robustness of the overall
ecosystem of the BC network.
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1 Introduction

The success of Bitcoin has resulted in the emergence of numerous blockchains and
cryptocurrencies, with more than 20,000 cryptocurrencies in existence as of 2023.
The distinctive features of blockchain technology have enhanced its visibility
and are expected to disrupt various sectors that traditionally rely on trusted
centralized third parties. Due to their ability to decentralize trust and improve
asset management [13], numerous blockchain solutions have been proposed for
a wide range of use cases, including healthcare, advertising, insurance, copyright
protection, energy, cybersecurity, and government [6,62,15,14].

Blockchains (BC) rely on decentralized peer-to-peer (P2P) networks for their
operation. Peers need to constantly maintain a local copy of all transactions and
blocks, so the availability of the P2P overlay is essential for blockchain-data
propagation. Generally, the security and resilience of networks depend on the
structure of the underlying topology. Despite the significant amount of research
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on BC systems, the design and connectivity properties, as well as the interde-
pendencies of BC networks, are not fully understood.

To develop secure and robust blockchain-based tools and infrastructure, it
is crucial to examine the underlying P2P network of blockchains to identify
potential limitations and vulnerabilities. Despite the security provided by proof-
of-work consensus, attacks on the P2P network could weaken consensus in spe-
cific parts of the BC network. By analyzing and understanding the resilience of
these networks, we can mitigate damage from both natural failures and targeted
attacks.

Blockchains are already being used to process large amounts of money; con-
sidering their potential application in other aspects of everyday life, they become
an attractive target for ill-intentioned attacks by malicious actors. Attackers can
exploit network vulnerabilities to carry out various attacks on BC consensus and
fairness [32]. Therefore, it is important to investigate whether small-scale attacks
against a few nodes could provide attackers with a significant advantage.

Despite the rich literature on network resilience [43,2,7,47,2], the research
community has not yet investigated the robustness properties of blockchain net-
works. In this paper, our aim is to fill this gap by providing a first look at the
resilience of seven distinct blockchain overlays. In particular, we are interested in
the partition tolerance of these networks. We present and discuss the results of
our analysis based on the connectivity graphs that we have collected. Our analy-
sis focused on several key aspects of blockchain overlays, including their resilience
against random failures and targeted attacks, their spatial centralization within
Autonomous Systems, and their interdependencies. We first present the results
of our analysis on the partition tolerance of blockchain overlays against random
failures and targeted attacks, examining how these types of disruption can af-
fect the stability and reliability of the network. Next, we delve into the issue
of spatial centralization in Autonomous Systems and its impact on network re-
silience, exploring the concentration of nodes within the same AS and its impact
on network stability. Finally, we discuss their interdependencies, examining the
interconnections among blockchain overlays through common peers and links.

2 Background and Related Work

Although the Bitcoin and Ethereum overlay networks have been thoroughly
studied, their resilience against attacks has not been adequately assessed. We
believe that this omission in the literature is mainly due to a lack of accurate
knowledge of the underlying topology.

2.1 Selected overlay networks

In this section, we provide background information on the blockchain networks
under study. Seven networks were chosen, all of which are consistently included
in the top 50 cryptocurrencies by market capitalization, according to [16] for
the past few years. We list them alphabetically: Bitcoin, BitcoinCash, Dash,
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Dogecoin, Ethereum, Litecoin, and ZCash. With the exception of Ethereum,
the aforementioned BCs are descendants of Bitcoin using very similar overlay
implementations and node discovery protocols.

Bitcoin Overlay Network In the Bitcoin overlay network, nodes communi-
cate through non-TLS TCP connections to form an unstructured P2P network.
Bitcoin’s security heavily depends on the global consistent state of the BC,
which relies on its Proof-of-Work based consensus protocol. The communication
protocol is briefly documented in [23], but there is no formal specification. To
understand its subtleties, we looked into previous studies [9,48,36] and Bitcoin’s
official source code [22] (reference client). When a node joins the network for
the first time, it queries a set of DNS seeds that are hardcoded in the reference
client. The response to this lookup query includes one or more IP addresses of
full nodes that can accept new incoming connections. Once connected to the
network, a node receives unsolicited addr messages from its connected peers
that contain IP addresses of other peers in the network. In addition, the client
can send to peers getaddr messages to gather additional peers. The reply to a
getaddr message may contain up to 1000 peer addresses. All known addresses
are maintained in an in-memory data structure managed by the address man-
ager(ADDRMAN), and are periodically dumped to disk, in the peers.dat file. This
allows the client to connect directly to those peers on subsequent starts without
having to use DNS seeds. When node A initiates a connection with peer B, it
is considered an outbound connection for A and an inbound for B. The default
Bitcoin parameters dictate 8 outbound connections and up to 117 inbound.

Ethereum Overlay network Ethereum’s network communication comprises
three distinct protocols, described in Ethereum’s official documentation [27].
Node discovery in Ethereum is based on the Kademlia routing algorithm, a
distributed hash table (DHT) [45]. In Ethereum, each peer has a unique 512-
bit node ID. A bitwise XOR is used to compute the distance between two Node
IDs. Nodes maintain 256 buckets, each containing a number of entries. Each node
assigns known peers to a bucket, according to the XOR distance from itself. To
find peers, a new node first adds a hard-coded set of bootstrap node IDs to
its routing table. Then sends to these bootstrapping nodes a FIND NODE message
that specifies a random target node ID. Each peer responds with a list of 16 nodes
from its own routing table that are closest to the requested target. Subsequently,
the node tries to establish a number of connections (typically between 25 and
50) with other peers in the network and performs the node discovery procedure
continuously.

2.2 Related Work

Arguably, the aspects of the network layer of blockchain systems have received
much less attention than security and consensus [32]. Dotan et al. [26] recognize
that blockchain overlay networks have different requirements than traditional
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communication networks and observe that their fundamental design aspects are
not well understood. Their work identifies differences and commonalities between
blockchains and traditional networks and highlights open research challenges in
network design for distributed decentralized systems.

Network measurements by Decker and Wattenhofer [19] have revealed that
propagation delay is a critical parameter positively correlated with the appear-
ance of blockchain forks. However, more recent studies indicate that Bitcoin’s
network infrastructure shows signs of improvement [28].

Gencer et al. where the first to point out that major cryptocurrencies face
centralization issues [33]. A large fraction of reachable nodes are located in a
handful of Autonomous Systems (AS). This opens the door for adversaries to
launch network attacks at the Internet level by hijacking the BGP protocol [5].
Such attacks can isolate a large group of nodes from the rest of the network
and introduce delays in message propagation. In fact, such attacks are becoming
more sophisticated and are not easy to detect [55]. Additionally, less than five
mining pools control the majority of hashing power. Furthermore, by combining
knowledge of network topology and message distribution, researchers were able
to identify highly influential nodes that have an advantage in block production
and dissemination, strengthening centralization indications [8,34,25,29].

A large percentage of nodes that participate in the Bitcoin network are un-
reachable, making it difficult to accurately analyze their behavior and character-
istics. However, previous research has shown that these unreachable nodes still
play a significant role in the network. Wang and Pustogarov [58] found that a
significant number of unreachable nodes propagate a large number of transac-
tions and initiate a small number of connections to the reachable part of the
network. The number of unreachable nodes is estimated to be between 10 and
100 times the number of reachable nodes [35]. These nodes have been found to
have less secure wallets and initiate fewer connections to the reachable part of
the network than the default bitcoin client. In general, understanding the behav-
ior and characteristics of unreachable nodes in the Bitcoin network is important
to improve our understanding of the network as a whole.

Numerous attack vectors, or methods that can compromise blockchain sys-
tems, have been proposed and analyzed in the literature [38,60,5,44,55,54]. Re-
view articles have analyzed these attack vectors, highlighting how network at-
tacks can be related to other types of attack and how the state of the network
can facilitate the success of an attack. Such reviews [32] provide important in-
formation on the various ways networks can be targeted and the factors that
can increase the probability of a successful attack. Understanding these attack
vectors and their relationships to network conditions is crucial for developing
effective defenses and countermeasures.

Accurate inference of the topology, or the arrangement and interconnection
of nodes, in peer-to-peer (P2P) network overlays is a challenging problem that
has yet to be fully solved. Although some research has successfully developed
methodologies to accurately uncover the topology of Bitcoin and Ethereum net-
works [46,49,20,36,42], these approaches are often no longer applicable due to
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changes in the protocol or the official Bitcoin client [21,51,59]. Additionally,
some of these methods [20,42] have an prohibitive cost to execute due to trans-
action fees imposed by the network. Furthermore, very few of these works present
network metrics, which could provide insights into the characteristics and prop-
erties of the network. Recently, the study by Paphitis et al. [52] has shed more
light on the structural properties of blockchain overlay networks. Their findings
suggest that major blockchains exhibit dissimilar structural characteristics and
show signs of vulnerability to malicious attacks due to the presence of highly
central nodes. In this work, we are specifically investigating the topological ro-
bustness of such networks and their tolerance against partitioning due to random
failures and targeted attacks. Moreover, we investigate whether their spatial cen-
tralization in various Autonomous Systems, and their hidden interdependencies,
could further facilitate such attacks.

3 Methodology
In order to study the resilience of blockchain P2P overlays, information on the
structure of the networks is needed. This section explains our main idea, which
bypasses the need for an accurate topology mapping of the network. We prove
that this idea is well founded and we proceed to describe the methods we used
to collect and validate data.

Topology inference in blockchain overlays is a challenging problem that has
not yet been solved. Our approach is to solve a simpler problem while still being
able to measure the structural robustness of these networks. Instead of trying to
accurately capture existing connections between online nodes, which is almost
impossible due to the design of blockchain networks, we focus on collecting all
possible connections that may exist over a period of time. A connection between
two nodes is considered possible if one node includes the other in its list of known
addresses. Using this strategy, we trade accuracy for completeness and are able
to synthesize connectivity graphs that include the vast majority of potential links
between nodes. This method also captures actual connections, that is, all active
links between nodes. Our main aim is to identify structural deficiencies in the
overlays, and we believe that if the synthesized graph of all possible connections
can be partitioned, then the actual realized topology of the overlay is likely to
be partitionable as well. In our data collection, we do not differentiate between
mining nodes or full nodes. We view all nodes as important contributors to the
health of the system and as vital in the dissemination of transactions and blocks.
If most of these nodes were partitioned, the blocks would not propagate in the
P2P network, thus preventing network synchronization.

The goal of our data collection process is to capture the contents of peer.dat
of every reachable peer in the network. This consists of the peer’s view of the
network, which contains all available peers to which it can connect. This is easily
achieved by repeatedly asking peers for addresses they know of. To discover the
nodes (peers) of the overlay networks, we modified the crawler maintained by the
popular site bitnodes.io to meet our needs [10,61]. We added features that enable:
a) crawling multiple chains using distinct processes; b) storing the mapping of
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each node to its known-peers; c) and synchronizing the processes to dump the
collected data for each blockchain at the same timestamp. Implementing an
Ethereum crawler is substantially different since it uses a different protocol.
The Ethereum crawler was built on the open source Trinity client [56] and all
blockchain-related processing was disabled. We only implemented those parts
of the protocols necessary to instantiate connections to Ethereum peers and
participate in the discovery process.

3.1 Validation

A simple proof that the actual connection graph is not likely to be resilient
when the synthesized one already is not, is provided here to further support
our argument. As already described in the previous paragraphs, a synthesized
graph G consists of all possible connections that could exist in the network. In
this case, the actual graph R, which contains only the real links (active links
between nodes), would be a spanning subgraph of G. A spanning subgraph is a
subgraph that contains all the vertices (nodes) of the original graph but not all
the edges (links). Our proposition is trivially proved considering Lemma 1 by
Harary [37] which states the following: if R is a spanning subgraph of G, then the
connectivity of R cannot be greater than the connectivity of G: k(R) ≤ k(G).
That is, if G is disconnected i.e., k(G) = 0, then R is also disconnected. Thus,
if the measured graph of possible connections can be partitioned by removing
some nodes, then the actual graph will be partitioned as well.

Validation against controlled monitor To assess the viability of our goal, we set
up an unmodified Bitcoin monitoring node using the official implementation [17].
We allowed the monitoring node to perform its initial bootstrap of the blockchain
for one week. Subsequently, every ten minutes we retrieve the following informa-
tion from the monitor: a) all inbound and outbound connections, b) a snapshot
of the peers.dat file, and c) the addr reply to a getaddr probing message. We
observe that by issuing enough getaddr messages, we are able to reconstruct
the peers.dat file almost to its entirety.

During our validation period, the monitoring node created a total of 12,241
connections with other peers, 466 were outbound and 11,775 inbound. We ob-
served 994 unique IP addresses, 368 corresponding to outbound connections,
and 634 to inbound connections. Four of these addresses were in both sets.
The crawler did not capture 444 of the 944 connected IP addresses. Looking
at this weakness, we found that the missing IP addresses were not included in
the peers.dat file. As expected, these were inbound connections from unreach-
able peers on the network. Further inspection revealed that most of these peers
created short-lived connections that were dropped after the initial handshake.
Only 30 of these peers (6% of inbound) created long-lasting connections of more
than 40 minutes (a similar duration was used in [20]). Interestingly, the client
version strings of these 30 nodes indicate that they were either network monitor-
ing nodes (like bitnodes.io), experimental wallets, or client applications under
development. We also observed a few client strings that have appeared in the

bitnodes.io
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past and were identified as non-contributing nodes [31] by the community. If we
exclude these non-contributing peers, the total number of unique IP addresses
that the monitoring node connected to is 570 and our crawler missed 10 of them.
The ten missing nodes correspond to a percentage of 1.75%. Furthermore, we
analyzed the messages sent from these missing nodes to the monitoring node
and noticed that all these nodes were far behind on their blockchain. Their most
recent block was several days behind the latest block observed by the monitor.

Validation against against external data sources To further validate the cover-
age of our crawler against external data sources, we compared our results with
the DSN Bitcoin Monitoring infrastructure in https://www.dsn.kastel.kit.

edu/bitcoin, originally presented in [49]. Since the IP addresses of [49] are
anonymized, we compare the number of reachable nodes we capture with the
number of nodes scanned by the DSN Monitor. Counting only the reachable
peers, we found that our crawler was able to retrieve a few hundred more nodes
on a daily basis. Similarly, we compare the node counts with the historical data
collected by a Bitcoin core developer [39] and the bitnodes.io crawler with sim-
ilar results. We also note that although our data set is not very recent, comparing
the number of peers collected to recent captures of the DSN Bitcoin Monitoring,
we see that the size of the network has not changed significantly.

The previous paragraphs indicate that our method is adequate to
create a network snapshot, capable of capturing all active connections
that exist in the network, along with any potential connections that
could be realized among the participating peers.

3.2 Datasets & Experiments

Using the methodology mentioned above, we crawled the selected BC networks
from the datacenter of a European University. The monitoring server has an
8-core/3.2GHz CPU, 64GB RAM, and 2.1TB of HDD storage. The crawling
operations were carried out for a period of about one month (26/06-22/07/2020).
Previous work [18,19,41,46] used a similar duration for their analyzes. At the
end of the crawling period, we had collected 335 network snapshots for each BC
network; 2345 graphs in total. The collected data set is anonymously available
for review at [4]. Our ethical considerations are outlined in App. A.

We denote by C the set of the 7 BC networks crawled. At the end of every
two hours period, we have seven different edge sets, one per BC c ∈ C. At
the end of each day, all edge sets belonging to the same network are merged
into a 24-hour set. All sets are annotated with the date t of their crawl. Each
set of edges corresponds to a graph, denoted St

c, representing a snapshot of the
blockchain network c, on date t.

The following analysis uses the established procedure for the exploration of
the resilience of a network [1,40]. The procedure starts by ranking the nodes by a
network metric and subsequently removing the element in the network with the
highest ranking. At each removal, the network is analyzed to calculate its remain-

https://www.dsn.kastel.kit.edu/bitcoin
https://www.dsn.kastel.kit.edu/bitcoin
bitnodes.io


8 A. Paphitis et al.

ing size and the number of connected components. The most common node-level
network metrics used are node degree and betweenness centrality [2,43].

4 Results

This section presents and discusses the results of the analysis performed on the
synthesized graphs that were collected, focusing on several key aspects of BC
overlays. The first aspect is the structural robustness of BC overlays to random
failures and targeted attacks. The study examines the impact of these types of
disruptions on the stability and reliability of the network. The next aspect is the
issue of spatial centralization in Autonomous Systems and how it affects the net-
work’s resilience. This exploration includes an examination of the concentration
of nodes within the same AS and how it impacts the network’s stability. The
study also investigates the interdependencies between BC networks, analyzing
how these networks connected to other networks through peers and links.

4.1 Network Resilience to Attacks

This section answers the following question: To what extent are blockchain over-
lays prone to random failures and targeted attacks? We start this investigation
by first describing the attack model. Then, we define three strategies that an
attacker could employ to partition a BC network and evaluate the efficacy of
each strategy. The practicality of the attack is beyond the scope of this work.

Attack Model. An adversary may have various incentives to attack a blockchain
system. In this work, we specifically study attacks on the underlying topology
of BC networks with the goal of impairing the main functions of the network.
Specifically, we define the following two goals of an attacker:

1. Network partitioning: to force the overlay into two or more network parti-
tions. A network partition is the decomposition of a network into indepen-
dent subnets, so that no information flow between the partitions is possible
due to the absence of links between nodes.

2. Disturb the information propagation mechanisms by introducing intolerable
delays. Such delays can typically increase the time to reach consensus among
all participants and create a split in the application layer of a BC system. In
fact, propagation delays are known to be a key contributor to BC forks [19].

Such attacks would impair the main functions of a BC network, potentially caus-
ing a decrease in users’ trust in the system. Attackers with external incentives
would be highly motivated to carry out such attacks. To measure the effective-
ness of each goal, we use the following three metrics: a) the size of the largest
weakly connected component, b) the number of connected components, and c)
the network diameter. To this end, we consider the following attack strategies:

1. Targeted attacks on unique nodes, based on a selected network metric. We
test out-degree, betweenness centrality, and page-rank.
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2. Random attacks using random node removal emulate failures that can occur
in the network in a random fashion and are used as a baseline.

3. Attack minimum-cut edges, in order to partition the network by removing
edges that are positioned in key places in the graph.

Targeted Node Attacks The removal of a node simultaneously cuts all its
adjacent links, therefore, it is more efficient for an attacker compared to the
removal of targeted links. We focus on how to remove nodes in the most efficient
way to minimize the number of node removals necessary to cause a disruption.
A node can be removed from the network by various means, including DoS
attacks. We follow a static procedure in the sense that each node is given a
static priority of removal, based on a chosen metric. For example, when using
the out-degree metric, the higher the degree, the greater the importance of the
node to be attacked. After removing a node, the priorities are not recalculated.
We remove only reachable nodes from the network one by one, following the
given priority. After each removal, we calculate the size of the largest connected
component and the approximate diameter of the resulting graph. We report
the effectiveness of the three node ranking metrics (betweenness centrality, out-
degree, and page-rank), and compare with the baseline random removal strategy.
We performed the procedure described on all 24-hour snapshots per BC. Due to
the high number of graphs collected, we stopped execution after removing 12%
of nodes per snapshot.

As can be seen in Figure 1, in Bitcoin and Bitcoin Cash, the betweenness
and out-degree strategies have roughly the same shape. The size of the largest
connected component decreases significantly after the removal of only a few
nodes. Further removal of nodes gradually shrinks the size to a threshold where
the connected component abruptly falls to 1% of its initial size. This occurs after
the removal of 6% and 4% of the nodes, respectively. Similar behavior has also
been found on the Internet [43]. This finding may not seem very worrisome, since
the reported percentages correspond to a few thousand nodes. However, closer
inspection (shown in Figure 3) of these two networks indicates that removal of
the first five nodes reduces the size of the largest connected component by 60%,
which is rather alarming. Unlike the size of the largest component, the diameter
of the network starts to increase earlier in this process. This is more pronounced
in Bitcoin Cash.

In Ethereum, the out-degree strategy is more potent. Unlike Bitcoin and
Bitcoin Cash, the size of the largest component does not drop initially. After
removing 2% of the nodes, the size gradually drops to a threshold, close to 5%,
where its size abruptly drops to 1%. The diameter of the network starts to
increase early, but not as quickly as in Bitcoin Cash.

When targeting high-betweenness nodes in Zcash, the largest component
initially falls abruptly. Similarly to Bitcoin, the first removal of nodes reduces
the largest component by 40%. When 4% of the nodes are removed, the largest
component drops to 50% of its initial size and then shrinks almost linearly.
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Fig. 1: Evolution of the approximate diameter (upper part) and size of largest
weakly connected component (lower part) when the network in under targeted
attack. The X-axis reports percentage of nodes removed. The lines correspond to
the median value across all snapshots. The shaded area indicates values between
1st-3rd quartile. Orange x: Out-degree of unique nodes; Beige +: Random unique
nodes; Green *: Betweenness of unique nodes; Red o: Betweenness of overlapping
nodes;

Targeting high out-degree nodes is less damaging in Zcash. More than 5% of the
nodes must be removed to observe a 20% reduction in the largest component.

The number of connected components for Bitcoin, BitcoinCash, and Ethereum
during the same experiment is plotted in Figure 2. We cannot observe a notable
rise in the number of components until the networks are significantly diminished.

Dash, Dogecoin, and Litecoin seem equally resilient to random and targeted
attacks (plots omitted due to space limitations). The size of their largest com-
ponent decreases linearly with the number of nodes removed, and their diameter
is not significantly affected.

4.2 Attack minimum-cut edges

Targeting minimum cut edges does not have a significant effect in the networks’
state and requires the removal (or disruption) of a considerable number of net-
work links. To compute the minimum edge cuts, we used the algebraic connectiv-
ity of the derived graphs. The algebraic connectivity of a graph is defined as the
second smallest eigenvalue of its Laplacian matrix L, λ2(L), and is a lower bound
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Fig. 2: Evolution of number of connected components during the same experi-
ment as with Fig. 1

Fig. 3: Evolution of the largest weakly connected component when the network
is under targeted attack. The difference with Fig. 1 is that this plot X-axis
reports number of nodes removed. Orange x: Out-degree of unique nodes; Green
*: Betweenness of unique nodes;

on node/edge connectivity [30]. Since calculating the algebraic connectivity of a
graph is computationally very expensive (i.e., more than 3 compute hours per
snapshot), we analyzed one snapshot per network. Using the computed eigenvec-
tor, we count how many edges are required to be removed to split the network
in two parts, and compute their sizes and ratio of the two subnets (cut-ratio,
computed as largest subnet over the total). The results are presented in Table 2.
Most cuts are highly unbalanced. Bitcoin Cash has an almost perfect cut, al-
though a large fraction of edges have to be removed (6.5% of edges or 10k edges).
Bitcoin and Zcash are somewhat affected, by removing less than 0.5% of their
network edges. Overall, targeting minimum cut edges does not have a significant
effect on the networks’ state and would require the removal (or disruption) of a
considerable number of edges connecting nodes.

4.3 Spatial centralization of blockchain nodes

As already pointed out by previous works [5,54], BGP routing attacks can be
mounted against Bitcoin by taking advantage of the fact that a high percentage
of Bitcoin nodes reside in only a small number of Autonomous Systems (AS). We
also verify this node centralization by mapping the collected IP address to ASes
using the https://ip-api.com API. Furthermore, we were able to identify a
single AS that hosts 20% of highly connected Bitcoin nodes in all timestamps,

https://ip-api.com
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Table 1: Resilience of graphs to targeted node attacks. We report the number
and percentage of nodes that, when removed, reduce the largest component to
0.5 and 0.01 of its initial size, respectively.
Network Bitcoin Bitcoin

Cash
Dash Dogecoin Ethereum Litecoin Zcash

# of Nodes
(50% reduc-
tion)

10 10 - - 300 - 6

% of Nodes
(99% reduc-
tion)

6.5% 4% >12% >12% 5.5% >12% >12%

Table 2: Resilience of synthesized graphs in edge and node removal when attack-
ing minimum-cut edges.

Bitcoin Bitcoin
Cash

Dash Dogecoin Ethereum Litecoin Zcash

Edges 5545 10603 1451 581 2220 544 363
Removed (0.1%) (6.5%) (0.02%) (0.44%) (2.71%) (0.08%) (0.33%)

Network 9964/ 11367/ 46/ 11/ 436/ 37/ 258/
Split 43949 11895 8556 1069 15345 6576 1231

Cut Ratio 0.815 0.511 0.995 0.990 0.972 0.994 0.827

making it a strong candidate for such attacks. In more detail, we identify the
100 highest connected nodes in each snapshot. We then look at the distribution
of these nodes in ASes. Our results are summarized below.

1. 20% of the top Bitcoin nodes are located in a single AS.
2. A single AS hosts a significant number of highly connected nodes in all BCs

(see Sec. 4.4).
3. Ethereum’s top clients are spread over more than 550 ASes and have the

most wide distribution. Bitcoin nodes are spread in 200 ASes, BitcoinCash,
Dash, Dogecoin in 160 and Zcash and Litecoin in 65.

To measure the effect of targeted attacks against Autonomous Systems, we
performed the following test. For each snapshot, we identified the top 10 ASes
with the highest geometric mean of out-degree. Then we simulated the effect of
an attack against these ASes by removing all collocated nodes. The results are
plotted in Figure 4. The blue dots correspond to the relative size of the largest
connected component, on the left y-axis (median values across snapshots). The
shaded area indicates values between the 1st and 3rd quartile. The yellow bars
indicate the percentage of nodes removed (averaged) and correspond to the scale
on the right y-axis.

Notably, these plots reveal the high centralization of BC nodes in the same
Autonomous Systems, an observation made by previous works as well. Interest-
ingly, all networks are sensitive to such attacks, mainly due to the centralization
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Fig. 4: Targeting selected ASed. X-axis reports number of ASes removed. The
Y-axis on the left reports the size of the Largest Connected Component (blue
dots). Right Y-axis reports the (average) percentage of nodes removed (yellow
bars).

of nodes. This is true for DASH, Dogecoin, and Litecoin, where a single AS
hosts 20% of each network’s nodes. On the contrary, Bitcoin is less affected by
this strategy (compared to attacking individual nodes), indicating that high-
degree nodes are scattered in different ASes. Note that results may differ using
a different selection strategy.

4.4 Dependency in Blockchain Overlays

In this section, we address the following questions: Are there network entities
(peers, links) that participate in more than one BC network, concurrently? How
do these common entities affect the resilience of overlay networks?

Chatzigiannis et al. [12] showed that miners can distribute their computa-
tional power over multiple pools and PoW cryptocurrencies to reduce risk and
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Table 3: Edge and Node overlaps (aggregated). ON : number of networks where
a unique entity (node or edge) was found to be overlapping, regardless of time

ON=2 ON=3 ON=4 ON >= 5

Nodes 34814 3909 1489 779
Edges 143577 11034 1958 222

increase profits. Despite [12], there are no other indications that peers in BC sys-
tems participate in more than one cryptocurrencies at the same time. It would
not come as a surprise to find that end users are present in multiple networks,
however, this has not been observed or reported for participating peers so far.

We define as overlapping nodes those nodes that participate in more than
one network at the same timestamp. The intuition of our analysis is as follows.
In each snapshot, we compare the set of overlapping nodes with all other nodes,
in order to draw insights on overlapping nodes’ properties. Before describing the
details of our study, we outline our mathematical notation to help explain our
analysis. As mentioned above (cf. Section 3.2), C is the set of BCs. The notation
St
c represents a snapshot of a blockchain network c, at t timestamp.

We define the set S as our collected data set, which consists of all snapshots
St
c. We denote as St the subset of S that contains all networks at timestamp

t. Subsequently, for each snapshot St
c ∈ St we define two groups, Gt

c and G
′t
c ,

such that Gt
c = St

c − G
′t
c . The first set, Gt

c, is constructed so that ∀ nodes
n ∈ Gt

c, n /∈ St
C\c. That is, the set Gt

c contains the nodes that participate only in

blockchain c at timestamp t. On the contrary, the set G
′t
c contains the overlapping

nodes; those that participate in blockchain c and at least another blockchain
c
′ ∈ C \ c, at the same timestamp t.

A first approach to finding network overlaps is to look at our aggregated data
set, S, and count how many nodes and edges (i.e., pairs of endpoints), appear in
more than one network, regardless of time. Table 3 shows the summary of these
results. Evidently, there exists a significant number of network entities (both
nodes and edges) that reside in more than one BC network.

A second step is to investigate whether overlapping entities occur frequently
or sporadically over time. For this, we count all overlapping peers in each St

c.
In Figure 5 (left), for each BC network c, we plot the ratio of |G′t

c | over |St
c|,

i.e., the number of overlapping peers in snapshot c over the total number of
nodes in the snapshot. Our observations show that in all networks, there is a
consistently high percentage of nodes that overlap and belong to more than one
BC network. Based on this and previous results, we can conclude that there is
significant overlap between BC overlays and that this overlap occurs consistently
over time.

Attacking Overlapping Network Entities To examine how overlapping
nodes could impact the resilience of blockchain overlays to targeted attacks,
we repeat the test of the previous Section (4.1) with a small variation. From
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each set St
c∈C , we remove all Gt

c sets. This new set, S
′t
c∈C , contains all nodes

that participate in more than one network at the same timestamp. We then
sort the unique elements of S

′t
c∈C in descending order based on their maximum

normalized betweenness centrality. Since a node can participate in more than
one network, we sort the nodes based on the highest value they have across all
networks at time t. We use the Min-Max method to normalize the betweenness
centrality values for each snapshot. After sorting the nodes, we proceed to re-
move them from each snapshot St

c at the same time. The nodes are removed in
the same order from all snapshots.

The results of targeting overlapping nodes first are plotted in Fig. 1 with
red circles. The plot reports the average change in the largest connected com-
ponent over all snapshots St

c. Clearly, this strategy is less effective compared to
the strategies used earlier, which target the top central nodes within a specific
network. However, it provides the benefit of attacking multiple networks simul-
taneously. An interesting finding is that Litecoin is more susceptible to this kind
of attack compared to attacks focused on single BC node metrics (not shown in
figure). This is partly explained by the fact that Litecoin has one of the highest
percentages of overlapping nodes (see Fig. 5).

Closer inspection of the data at hand shows that an attacker is able to shrink
the largest connected component of Bitcoin Cash, Bitcoin, Zcash, and Litecoin
networks by 70%, 40%, 25% and 20% respectively. This demonstrates that by
targeting overlapping nodes, a powerful adversary can still mount a successful
partitioning attack in 4 different networks at the same time.

Another effect of overlapping nodes is shown in the strategy described next.
Similarly to the selection performed in Section 4.3, we calculated the geometric
mean of the out-degree of all networks, for each AS, across all timestamps. That
is, for each Autonomous System we took into consideration all nodes from all
chains and calculated the geometric mean of their out-degree. We then remove
each AS, simulating an attack against the AS, and calculate the effect on each
network. Removal of an AS simultaneously removes all nodes (from all networks)
that reside on that particular AS. The results of this selection strategy are plotted
in Figure 5. The significance of overlapping nodes is profound. A disruption in
just 6 ASes could have considerable effects in five networks at the same time. In
fact, ASes do not need to be broken down; as demonstrated by Apostolakiet al. [5]
they could be manipulated by false BGP routing advertisements (BGP hijacks).
Notably, a different selection strategy would produce different results.

5 Discussion

Our results suggest that BC overlay networks are robust against random fail-
ures but weak against targeted attacks, a known characteristic of scale-free net-
works [2]. This further suggests that BC overlay networks are not random, con-
trary to their intended design [19]. These results are in line with those obtained
by Miller et al. [46] and Delgado et al. [20]. Our analysis supports the findings of
Paphitis et al. [52], which suggest that larger BC networks are more susceptible
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Fig. 5: Left : Percentage of nodes that were found in more than one BC network
at the same timestamp. X-axis indicates the timestamp. Right : Size of the largest
connected component of all networks when selected ASes are attacked.

to targeted attacks as a result of the presence of highly connected and centrally
positioned peers.

Implications of partitioning the connectivity graph Peer-to-peer net-
works are known for their dynamic nature, allowing them to adapt to changing
conditions. However, our research reveals that even this inherent dynamicity is
insufficient in countering targeted attacks. The connectivity graphs we construct
serve as representations of all potential connections that could exist in the actual
network. Each edge in the connectivity graph signifies that two nodes are aware
of each other’s presence and have the ability to establish a connection.

Conversely, the absence of an edge in the connectivity graph indicates that
two nodes are unaware of each other’s existence and are highly unlikely to es-
tablish a connection. Partitioning of the connectivity graph has significant im-
plications. Nodes within a specific partition not only become disconnected from
other network partitions but also lack the knowledge required to establish links
with nodes in different partitions. In essence, the nodes are confined to their
own partition and remain unaware that a portion of the network has become
disconnected.

Limitations Measurement errors in network analysis are not infrequent [50]
and our approach is not an exception. In fact, the proposed method introduces
a number of false edges in the graph. Second, it is possible, albeit rare, that
certain edges may be overlooked (see Section 3.1). To understand how much the
calculated network properties are affected by these errors, we looked into related
studies that investigate the effect of measurement errors in network data. In [52],
we provide an in-depth analysis of these limitations and examine the impact of
false-positive edges. Our findings suggest that the observed connectivity graphs
demonstrate greater resilience compared to the actual connections in the real
network.
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Wang et al. [57] studied the effect of measurement errors on node-level net-
work measures and found that networks are relatively robust to false positive
edges. Booker [11] measures the effects of measurement errors on the attack
vulnerability of networks. Similarly to [57], Booker also finds that false positive
edges have the least impact on the effectiveness of random and targeted attacks.
From the same work, it is also evident that an error rate of 5% in missing links
is acceptable, when analyzing the impact of different targeting strategies on the
network structure. We believe that the error rate observed in our study is small
enough to allow us to draw meaningful conclusions.

We readily admit that it is possible to miss connections from unreachable
peers towards reachable peers. This resilience assessment relies on the assump-
tion that these links constitute a small minority of all possible links. Our vali-
dation results in Section 3.1 support this assumption. This assumption is also
supported by [35], which estimates an average degree of 9.8 for unreachable peers
on the Bitcoin network. Our measurements estimate an average degree of 37 for
unreachable peers. Furthermore, in [58] Wang and Pustogarov estimate that
unreachable peers establish only 3.5 connections to the network, on average. In-
terestingly, they also find that such unreachable peers are not merely disposable
nodes of the network. Instead, they are involved in the propagation of 43% of
Bitcoin transactions. Our resilience study demonstrates that attacking a handful
of key peers can disconnect a large number of unreachable peers and thus can
severely affect message propagation in the network.

Moreover, transient disruptions of the network would increase the likelihood
of forks and could facilitate attacks against consensus. DDoS attacks or BGP
hijacks against a carefully selected AS could partition 10% to 50% nodes from
a network, while a disruption in a handful of ASes has the potential to remove
almost half of all BC nodes in most systems simultaneously.

6 Summary

Our results raise alarm about the resilience of the studied blockchains against
partitioning and message propagation delay attacks. We demonstrate that by us-
ing our methodology, a deliberate and methodical attacker can uncover a small
set of entities central to the topology and target them to substantially suppress
message propagation in more than one BC network simultaneously. Importantly,
all networks seem vulnerable to at least one type of attack strategy. This high-
lights the need to employ measures to enhance network robustness or employ
open topology protocols, rather than relying on topology hiding techniques to
secure the overlay network.
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A Ethics

In this work we followed standard ethical guidelines [24,53,3] for the collection
and sharing of measurement data. We only collect and process publicly available
data, make no attempt to deanonymize users or link people and/or organizations
to their IP address. No personally identifiable information was collected.

While crawling the networks we only take part in the peer discovery mech-
anism of each network and gather IP addresses known to each node. Those ad-
dresses were only used to synthesize connectivity graphs on which our research
was based. We did not try to identify any user by her IP address and no informa-
tion was redistributed. In fact, our crawler created short lived connections to any
discovered peer in the network and did not respond to any other requests except
the expected initial handshake. We do not respond to any other messages or
requests. In addition, we employed low bandwidth utilization to avoid resource
exhaustion. Our measurements did not cause any disruption or exposure of the
BC networks under study.

Our results unveil particular nodes whose targeting has the potential to dis-
rupt the overlay’s operation. To prevent misuse of this portion of the results, we
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do not publish the IP address of any node in our dataset. We instead replace
the IP address with a persistent random identifier and we privately maintain
a private map of IPs to random identifiers for verification and reproducibility
purposes.
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