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Abstract—When using adaptive streaming, the content needs to be 

segmented so that clients can seamlessly switch to different rates 

depending on network conditions. On the video server each 

segment is stored in various bitrate representations, which are in 

practice provided by very fast encoders. Such encoders rely on 

parallelisation strategies to limit the encoder complexity. 

Parallelisation strongly affects the performance of rate-control 

(RC) algorithms, since different segments and parts of segments 

are encoded independently from each other. A new approach is 

proposed in this paper to tackle these issues, based on the 

optimisation of the initial parameters of a state-of-the-art RC 

model for inter-predicted frames in an HEVC/H.265 codec. The 

model makes use of an estimate of the texture complexity of the 

first frame in the segment to efficiently tune the parameters 

depending on the target rate. The approach is consistently 

improving the accuracy of RC schemes as well as the visual 

quality, with negligible impact on the encoding efficiency. 

Index Terms— Rate-control, HEVC, video streaming, DASH 

I. INTRODUCTION 

The state-of-the-art H.265/High Efficiency Video Coding 

(HEVC) standard was developed to provide remarkable 

compression efficiency, necessary to enable new services such 

as delivery of content in Ultra High Definition (UHD) format 

[1][2]. HEVC provides high efficiency thanks to a variety of 

possible coding modes that can be adaptively selected to match 

underlying content. Hence, HEVC encoding can potentially be 

extremely complex, especially for UHD content, and therefore 

low complexity HEVC implementations are needed. To reduce 

complexity, many encoding processes are performed in parallel, 

either at a frame, or even at Coding Tree Unit (CTU, a square 

block of pixels of fixed size) level. 

For the transmission of content over the internet, appropriate 

streaming technology is required. Dynamic Adaptive 

Streaming over HTTP (DASH) is an increasingly popular 

standard to enable adaptive streaming over HTTP [4]. The 

media content is segmented, encoded at different bitrates and 

resolutions, and stored on a server. The client adapts to dynamic 

network conditions and can switch to different versions of the 

same content at different bitrates. In order to meet the 

requirements of adaptive streaming technology as well as 

respond to constraints of storage space and transmission 

bandwidth, very high compression efficiency is required, as 

well as accurate rate-control (RC) schemes to allow the encoder 

 

to efficiently exploit the available resources [5]. However, 

processes to speed up the encoding such as parallel encoding of 

segments, frames and CTUs, can drastically affect the accuracy 

of an RC algorithm, as they prevent the encoder from collecting 

information for adaptation in case of inaccurate spending of bits. 

Moreover, the adaptive streaming framework imposes that no 

frame within a segment can be processed using information 

from other segments, and parameters cannot be adjusted from 

segment to segment. This can greatly affect the accuracy of an 

RC algorithm. 

A novel approach is proposed in this paper to tackle these 

issues, based on the optimisation of the initial parameters of a 

state-of-the-art RC model for inter-coding using HEVC. The 

texture complexity is measured and used together with the 

target bitrate to model the initial values of RC parameters. This 

method was tested on a set of sequences at various bitrates 

under constraints dictated by adaptive streaming. The tests, 

show that the accuracy in reaching the target bitrate improves 

consistently with respect to RC schemes designed without 

considering parallelisation, reaching a satisfactory difference of 

6.73 % of the target bitrate. 

The rest of the paper is organized as follows. Section II 

presents the background and related work; the proposed 

adaptive RC model is described in Section III, and the 

experimental results are presented in Section IV. Finally, 

Section V concludes the paper. 

II. BACKGROUND AND RELATED WORK 

RC theory is a well-studied problem, with numerous 

solutions proposed in the literature and successfully applied in 

practice. With wider availability of reliable network 

connections, higher bitrates can transmit large resolution 

content in high quality. Modern RC algorithms have to adapt to 

this changing landscape, while also performing the necessary 

decisions (in terms of setting the appropriate coding parameters 

to meet the target rate) with limited computational complexity.  

In order to meet the given target bitrate, RC schemes must 

first perform an appropriate distribution of target bits, to 

correctly allocate target bitrates at a frame and CTU level. Then, 

given the target bits for a given CTU or frame, the RC scheme 

must tune the encoding parameters to meet the target. Many 

algorithms have been proposed based on the relationship 

between the rate and Quantisation Parameter (QP), referred to 

as R-Q models [6][7]. Other approaches investigate the 

relationship between rate and the percentage of zeros in 

quantised coefficients [8]. The utilisation of various encoding 

decisions in fast and efficient video coders, however, affect the 

reliability of models. For that reason, more accurate models 
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have been proposed which take into account the rate-distortion 

(RD) decisions performed while encoding. In order to 

achievehigh compression efficiency, many encoder 

implementations select the optimal option based on RD 

optimisation. A cost J is computed for each option, typically as:  

RDJ    (1) 

where D is the distortion between the original and reconstructed 

content when using the currently tested option, R is the 

corresponding rate needed to encode that option, and λ is the 

Lagrangian multiplier used in the optimisation process. Higher 

values of λ assign a larger weight to the rate component, which 

means options which result in smaller rates (at the cost of lower 

qualities) may be selected more often [9]. 

The correlation between rate and λ is robust, as shown in [5] 

and can be expressed as: 

 R  (2) 

where 𝛼 and 𝛽 are model parameters which are dependent on 

visual characteristics of the content and are updated online 

during the encoding. The update uses information on the actual 

rate that was spent on given CTUs or frames, to adapt to 

changing visual characteristics of the sequence. The optimal 

quantization parameter QP to meet the target bits can then be 

computed using a fixed relationship with  as in [10]: 

  7122.13ln2005.4  QP  (3) 

The R-λ model proposed in [5] considers fixed initial values 

for α and β. The authors suggest that these values are not 

decisive, as both parameters are updated during the encoding. 

Unfortunately, this is not the case when dealing with practical 

constraints such as segmentation or parallel processing. Under 

these challenging conditions, less information is available to 

update the parameters while encoding. Additionally, 

parameters must be initialised when starting each new segment. 

The importance of determining optimal initial parameters in 

RC has already been investigated. In the context of R-Q models, 

an algorithm [11] was presented using spatial frame complexity 

to determine a content-dependent initial QP for real-time 

applications. Temporal complexity was also used [12]. In the 

context of R-λ models, a two-pass RC scheme was proposed 

[13], highlighting the importance of having content-dependent 

initial parameters. Unfortunately, two-pass approaches may not 

be suitable for some applications in which low complexity is 

crucial. In [14], the R-λ model is extended by using a content-

dependent value of α. This method, however, is only applied to 

intra frames. 

III. RC PARAMETER SCHEME 

Various distribution scenarios use coding of segments, 

typically a few seconds in length [4]. There must be no 

interdependency between frames of different segments, so that 

each segment can be encoded in parallel. When parallelisation 

is used within a segment, the information that can be collected 

and used by the RC algorithm is restricted. For example, when 

starting the encoding of a frame, it may not be possible to know 

how many bits were spent on previous frames (as they may not 

have finished encoding). Similarly, as a CTU can start encoding 

as soon as the necessary portion of the reference frame has been 

encoded, it may not be possible to extract information on the 

bits spent in neighbouring CTUs. Therefore, the initial values 

required for RC to be efficient (α and β from (2)) have a 

stronger impact, as the encoder is slower to adapt. 

Common HEVC implementations make use of a fixed 

Structure of Pictures (SOP), periodically used throughout the 

encoded sequence. The SOP specifies the hierarchical 

relationship among frames and their encoding order (which 

may be different to the display order, identified in HEVC by 

the Picture Order Count, POC), as shown in Fig. 1. For each 

frame, α and β are updated, making use of information extracted 

from previously encoded frames at the same hierarchical layer. 

However, when parallel processing is used, the initial α and β 

cannot be updated during a single SOP encoding (with the 

 

Fig. 1 SOP structure commonly used in HEVC codecs 

exception of the initial intra-frame, which is treated 

separately). In order to evaluate the effects of parallelisation 

and segmentation on the accuracy of the RC scheme, a number 

of sequences with different visual characteristics were encoded, 

all in the UHD format (with 3840 × 2160 luma samples), 4:2:0 

chroma subsampling, 8 bit-depth and 50 or 60 frames per 

second (fps) [15]. The algorithm in [5] was used for RC, where 

initial values of 3.2001 and -1.3670 were used for α and β, 

respectively. For the purpose of this test, the open-source 

Turing codec [3], an HEVC implementation specifically 

designed for speed, quality, and usability, was used. In tests 

parallelisation at both frame and CTU level were used. 

The RC scheme was designed without consideration for 

parallelisation and segmentation and accurately reaches the 

target bitrate in that context. However the accuracy drops 

significantly when the encoder is constrained with 

parallelisation and segmentation. Table I shows some results 

comparing the accuracy in meeting the target bitrate of this RC 

scheme, by first disabling and then enabling parallelisation and 

segmentation. The overall difference between the target bitrate 

and the achieved bitrate is 5.2 % when parallelisation and 

segmentation are disabled, compared to 11.9 % when enabled 

(figures obtained by averaging the difference in percentage 

between the target bitrate and actual bitrate achieved by the 

coder, for several target bitrate points). These results show that 

these RC algorithms are not ideal when enabling parallelisation 

and segmentation. Table I also shows that the encoder time is 
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significantly shorter when parallelisation is enabled (an average 

speed up of 4 times), which motivates this work. 

TABLE I 

DIFFERENCE IN TARGET BITRATE, AND PSNR FOR A TARGET OF 10 MBPS, 

PARALLELISATION AND SEGMENTATION DISABLED, AND ENABLED. 

Sequences (Parallel. + seg.) disabled (Parallel. + seg.) enabled 

diff 

[%] 

PSNR 

[dB] 

Encode 

time (s) 

diff 

[%] 

PSNR 

[dB] 

Encode 

time (s) 

Boxing 8.51 41.97 7159 25.70 40.27 1703 

ParkDancers 1.57 35.50 5027 10.01 35.55 1224 

Sedof 2.26 29.42 4060 13.72 28.48 1165 

TapeBlackRed 9.39 44.42 7106 29.31 44.40 1685 

 

The central parameter in RC is λ [5]. Due to the fact that β 

has a higher impact on the selection of λ, it has been used to 

further research a content-dependent initialisation for the R-λ 

RC model. A training set consisting of 16 sequences were 

encoded with a set of initial values for β, hardcoded 

between -0.2 and -2.0 in steps of 0.1. Four target bitrates were 

tested: 3, 10, 18 and 25 Mbps. For each test point (each 

sequence at each target bitrate), initial values of β were 

discarded if the sequence presented too abrupt a variation in 

PSNR, (over 15% difference in PSNR between two segments) 

or if jumps in visual quality could be observed between the 

segments. From the remaining initial values of β, the best value 

was identified, for which the target bitrate is most accurately 

reached. 
Optimised initial values for β, shown in Table II, were 

observed to be dependent on the content, particularly on the 

texture of the sequence. Sedof, for instance is spatially very 

complex and requires a low initial β of -2 at 3 Mbps, and 

TapeBlackRed is spatially smoother and requires for the same 

target bitrate a much higher initial β of -0.7.  

A measure of the texture complexity of the first intra-frame 

can be computed following the approach from [16] which uses 

the Sum of Absolute Transformed Differences (SATD) on 

8 × 8 blocks of pixels. SATD is defined as the sum of the 

absolute values of coefficients obtained after applying the 

Hadamard transform to the original block of pixels. This metric 

was first proposed to estimate the bits to spend on intra- 

TABLE II 

SELECTED INITIAL BETA VALUE AND CPP 

Sequence Selected β value CPP 

3Mbps 10Mbps 18Mbps 25Mbps 

Boxing -1.1 -0.7 -0.7 -0.6 5.0 

CandleSmoke -0.7 -0.7 -0.7 -0.7 4.8 

Discus -1.4 -1.0 -1.0 -0.9 8.0 

Hurdles -1.1 -0.9 -0.7 -0.7 6.6 

LongJump -1.4 -0.9 -0.9 -0.8 9.1 

Manege -2.0 -1.2 -1.2 -1.1 16.7 

Netball -1.1 -0.8 -0.8 -0.7 4.8 

NingyoPompoms -1.1 -0.8 -0.8 -0.8 4.5 

ParkAndBuildings -1.4 -0.9 -0.9 -0.9 8.1 

ParkDancers -1.8 -1.1 -0.9 -0.9 9.7 

Petitbato -1.4 -0.9 -0.9 -0.8 9.1 

Sedof -2.0 -1.1 -1.1 -1.1 16.1 

ShowDrummer -0.8 -0.7 -0.7 -0.7 5.9 

Somersault -0.6 -0.5 -0.5 -0.5 3.4 

TableCar -1.8 -1.1 -1.0 -0.9 11.0 

TapeBlackRed -0.7 -0.4 -0.4 -0.3 2.4 

predicted frames, and is therefore suitable for application in 

scenarios with parallelised encoding where the complexity 

needs to be measured on the first frame (an intra frame). For 

each sequence, a cost measure C is assigned to be the SATD of 

the first I-frame of the sequence and a Cost Per Pixel (CPP) 

value is obtained by dividing C by the number of luma samples 

within the frame, or: 

 HWCCPP   (5) 

where W and H are width and height of the frame, respectively. 

The values of CPP for the sequences in Table II are shown on 

the right-most column. It can be observed that generally, the 

higher the CPP, the lower the value of the selected initial β 

value. Additionally, for each sequence, it can be observed that 

the higher the target bitrate, the higher the initial β. For these 

reasons, both CPP and target bitrate RT are used to determine 

the best initial β value. Therefore, by studying the selected 

values for the initial β against CPP in Table II, a relationship 

between β and CPP can be built, modelled by fitting a curve. 

 20
1 PCPPP

P

init   (6) 

where 𝑃𝑖  (i = 0, 1, 2) can be expressed as  

i

V

Tii KRUP i    (7) 

and Ui, Vi and Ki (i = 0, 1, 2) are determined by fitting a curve 

through the selected βinit  points, for each RT. 

By using Eq. (7) for (i = 0, 1, 2) with Eq. (6), it is possible to 

determine a content-dependent and target bitrate dependent 

initial β value, by using RT and the CPP of the first I-frame of 

the segment. The predicted initial β using the method described 

is plotted in Fig 2. 
 

 

Fig. 2 Predicted initial β using proposed model (full curve) and manually 
selected initial β (dots), against average CPP. 

IV. EXPERIMENTAL RESULTS 

The proposed method was implemented in the context of the 

state-of-the-art algorithm in [5] within the HEVC Turing codec 

and compared to using fixed initial RC parameters. Full 

parallelisation was used to achieve the highest compression 

speed, and sequences were segmented at intervals of two 

seconds. Tests were performed using the 16 training sequences 

from Section III and on additional 8 test sequences in the UHD 

format at target bitrates of 3, 8, 10, 14, 18, 22, 25 and 30 Mbps. 

The tests were run on Linux machines with Intel Xeon X3450, 
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2.67 GHz clock frequency and 8 GB of RAM. For each test 

point, from both the training sequences and the new set of 8 

sequences, the difference between the target and actual bitrate 

was calculated. Finally, the average accuracy among all tested 

bitrates was computed and compared with the method in [5].  

On average, the proposed method achieves a difference of 

6.45 % between target and actual bitrate on the training 

sequences, against 11.92 % when using the RC in [5]. Similar 

results are obtained on the test sequences. Table III presents 

overall accuracy for the test sequences. Clearly, accuracy 

improves considerably; overall a 6.73 % difference is obtained, 

against 12.45 % in [5]. Table IV shows a selection of results at 

three representative bitrates where the quality of the encoded 

sequences is also presented in terms of average PSNR. The 

table shows that the proposed approach consistently increases 

the accuracy of the RC algorithm across most of the sequences 

in the test set, with virtually no impact on the quality in terms 

of average PSNRs. Informal subjective viewings suggest that 

the visual quality is also improved particularly between two 

segments, whereas common RC algorithms may result in 

quality jumps. 
TABLE III 

AVERAGE DIFFERENCE BETWEEN TARGET RATE AND ACTUAL RATE 

Sequence Difference [%], 

β = -1.367 [5]  

Difference [%], 

adaptive initial β 

Badminton 17.13 2.07 

CentralLineCrossing 23.58  16.37 

MenAndPlants 14.26  4.83 

Oban 11.57  5.72 

Parakeet 5.36  10.29 

SpinningObjects 5.29  5.59 

TruckCyclist 4.43  2.27 

YoungDancers1 17.99  6.71 

Average 12.45  6.73 

V. CONCLUSIONS 

The use of fast parallelisation and segmentation present 

difficulties for RC algorithms to accurately reach a target 

bitrate. Under these constraints, we presented a content and 

bitrate dependent adaptive β initialisation for a R-λ model RC, 

using the complexity of the first I-frame of the segment. 

This adaptive initial β algorithm demonstrated a consistent 

improvement in reaching the target bitrate for a set of training 

and test sequences over a range of different target bitrates, 

compared to using a fixed initial value for β. On average, the 

proposed model reaches a much better accuracy, with a 

difference of 6.73 % between the target bitrate and the bitrate 

reached by the encoder on the test sequences, compared to a 

difference of 12.45 % for a fixed initial value of β. 
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TABLE IV 

SELECTION OF RESULT:  DIFFERENCE BETWEEN TARGET RATE AND ACTUAL RATE AND PSNR 

 

 Target bitrate = 10 Mbps Target bitrate = 22 Mbps Target bitrate = 30 Mbps 

 β = -1.367 [5]  Adaptive init. β  β = -1.367 [5]  Adaptive init. β  β = -1.367 [5]  Adaptive init. β  

 diff [%] PSNR diff [%] PSNR diff [%] PSNR  diff [%] PSNR diff [%] PSNR  diff [%] PSNR 

Badminton 18.21 38.03 1.54 37.82 18.98 39.73 2.94 39.39 18.31 40.31 0.21 39.95 

CentralLineCrossing 11.83 34.13 5.44 34.05 7.45 35.25 4.42 34.95 5.17 35.57 5.45 35.51 

MenAndPlants 16.74 40.66 4.89 40.86 14.05 43.14 4.64 42.36 14.78 43.73 2.50 43.16 

Oban 7.46 37.56 6.48 37.44 15.02 38.69 5.29 38.51 11.84 38.82 2.58 38.89 

Parakeet 1.62 38.73 14.89 38.82 0.29 38.96 0.07 38.99 1.39 39.04 0.87 39.02 

SpinningObjects 8.01 41.44 5.81 41.28 3.96 44.01 4.18 43.41 3.02 44.50 1.40 44.17 

TruckCyclist 5.67 40.42 0.98 40.11 4.63 41.83 3.29 41.58 0.80 42.15 2.52 42.10 

YoungDancers1 19.65 40.05 8.16 39.79 10.92 40.52 5.45 40.28 14.50 40.82 5.99 40.60 


