
Securing the Flow: Security and Privacy Tools
for Flow-based Programming

Thodoris Ioannidis
InQbit Innovations SRL.
Bucharest, Romania

thodoris.ioannidis@inqbit.io

Vaios Bolgouras
Department of Digital Systems

University of Piraeus
Attica, Piraeus, Greece

vaios.bolgouras@ssl-unipi.gr

Ilias Politis
InQbit Innovations SRL.
Bucharest, Romania
ilias.politis@inqbit.io

Christos Xenakis
Department of Digital Systems

University of Piraeus
Attica, Piraeus, Greece

xenakis@unipi.gr

ABSTRACT
This paper presents a comprehensive collection of reusable artifacts
for addressing security and privacy issues in the context of flow-
based programming in Function-as-a-Service (FaaS) environments.
With the rapid adoption of FaaS platforms, it becomes important to
guarantee the security and privacy of applications. The presented
artifacts incorporate a wide variety of nodes and techniques into
the popular Node-RED architecture. They intend to improve the
security and privacy of applications by addressing critical aspects
such as secure data flow management, code authenticity and vali-
dation, access control mechanisms, and runtime monitoring and
anomaly detection. Using these artifacts, developers can construct
more robust and resilient applications in FaaS environments while
mitigating potential security and privacy risks.

CCS CONCEPTS
•Cloud Security Tools→ Security and Privacy; •Privacy Preserv-
ing Security→ Anonymization Techniques; • Flow Programming
→ Node-RED.

KEYWORDS
flow-programming, security & privacy tools, Node-RED

1 INTRODUCTION
In recent times, the emergence of cloud computing and Function-
as-a-Service (FaaS) platforms has brought about a revolutionary
change in the manner in which software applications are conceived
and implemented [1]. FaaS platforms provide numerous benefits,
including scalability, cost efficiency, and decreased infrastructure
management [2]. Embracing this groundbreaking methodology,
flow-based programming perceives an application as an amalgama-
tion of independent processes operating asynchronously. Instead
of communicating via a stream of structured data chunks, these
processes commence at a specific juncture and execute a series of
sequential operations, handling one task at a time until the entire
process is completed. This paradigm shift in application develop-
ment enables enhanced flexibility and efficiency in utilizing FaaS
platforms and cloud computing resources [3].

Node-RED is an open-source, flow-based programming tool and
an execution platform that wraps the Node.js runtime environment
into a visual asynchronous process representation 1. The asynchro-
nous processes built in Node-RED are referred to as nodes and
define the building blocks for developing flow-based applications.
Each node defines its own way of receiving data and performing
an operation on that data, it then passes the data on to the next
node. The collection of these asynchronous processes, referred to
as a flow, facilitate a black-box network which manages the data
exchange between nodes. This programming approach makes it
simpler for users to access multiple layers and utilize the visual
nature of this platform.

However, as the adoption of FaaS services increases, so does the
concern for security and privacy. Developers today face numerous
challenges and issues in ensuring the security and privacy of their
applications. Traditional development approaches often struggle to
address the unique requirements of FaaS services. These challenges
include but are not limited to:

• Data Privacy: FaaS services typically operate on shared in-
frastructure, raising concerns about data confidentiality and
integrity. Unauthorized access to sensitive data can lead to
severe consequences, such as data breaches and privacy vio-
lations.

• Code Integrity: The dynamic and distributed nature of FaaS
services makes it challenging to maintain code integrity.
Ensuring that the executed code is unaltered and free from
malicious modifications is crucial to prevent unauthorized
access or tampering.

• Access Control: Managing access to functions and resources
within a FaaS environment can be complex. Developers need
effective mechanisms to control access permissions, authen-
ticate users, and enforce fine-grained authorization policies.

• Runtime Monitoring: Real-time monitoring and anomaly
detection are essential to detect and respond to security
incidents promptly. Traditional monitoring approaches may
not be suitable for the event-driven and distributed nature
of FaaS services.

1https://nodered.org
1



Conference’17, July 2017, Washington, DC, USA Ioannidis, et al.

To mitigate these challenges and address the security and pri-
vacy concerns in flow-based programming for FaaS services, we
propose the utilization of NodeRED, which offers a visual interface
for building event-driven applications. Its inherent design charac-
teristics align well with the requirements of FaaS services, enabling
developers to create secure and privacy-aware applications more
efficiently.

In this paper, we present several reusable artifacts developed
within the framework of the H2020 PHYSICS Project. These arti-
facts provide security and privacy services tailored specifically for
flow-based programming in FaaS environments. Our contributions
include:

• Secure Data Flow Management: We introduce a set of nodes
and techniques that enable secure and encrypted data flow
between functions, ensuring the confidentiality and integrity
of sensitive information.

• Code Verification and Validation: We propose a novel ap-
proach for verifying the integrity of function code at runtime,
mitigating the risk of code tampering and unauthorized mod-
ifications.

• Access Control Mechanisms: We present a comprehensive
access control framework that allows developers to define
and enforce fine-grained access policies within a FaaS envi-
ronment, ensuring proper authentication and authorization.

• Runtime Monitoring and Anomaly Detection: We develop
monitoring mechanisms specifically designed for flow-based
programming in FaaS services, enabling real-time detection
and response to security incidents.

By incorporating these artifacts into the NodeRED ecosystem,
developers can enhance the security and privacy posture of their
applications, enabling them to confidently leverage the benefits of
flow-based programming in FaaS services.

In the subsequent sections of this paper, we provide detailed
descriptions, implementation guidelines, and evaluation results
of each artifact. We also discuss potential future research direc-
tions and conclude by emphasizing the significance of security and
privacy considerations in the evolving landscape of FaaS-based
applications.

2 RELATEDWORK
The emergence of new FaaS (Function-as-a-Service) models and
serverless architectures has significantly altered the landscape of
software development, delegating system management responsi-
bilities to cloud providers and leaving application-level security
needs to developers [4]. To address the challenges of workflow
design and management in this context, several tools have been
developed, offering unique features and capabilities. Apache Air-
flow serves as a powerful workflow design and management tool,
specifically tailored for diverse data flow scenarios [5]. It utilizes
Directed Acyclic Graphs (DAGs) to define the flow of data, ensuring
a unidirectional movement between nodes (tasks). With Python
as its primary language, Airflow enables the dynamic creation of
pipelines and provides extensibility options through custom op-
erator creation. Furthermore, it seamlessly integrates with major

cloud service providers such as AWS 2, Google Cloud 3, and Mi-
crosoft Azure 4, offering additional functionalities to the workflow
environment. In contrast, Apache Taverna [6] focuses on scientific
workflows, providing a set of components including the Taverna
Engine, the Taverna Workbench, and the Taverna Server. It caters
to scientists with limited programming knowledge, enabling them
to construct complex data streams for analysis. Researchers from
various domains can leverage Taverna to integrate data from multi-
ple sources and perform analyses in fields like geography, medicine,
and sports. The tool prioritizes simplicity and usability to empower
domain experts in their workflow design process. Camunda is an
open-source workflowmanagement tool, which emphasizes stream-
lined and efficient workflow design [7]. Its architecture revolves
around three core principles: design, automation, and improvement.
Camunda offers continuous optimization of workflow processes,
making it particularly suitable for complex organizations that re-
quire maximum information visibility for users. With a lightweight
Java API stack, Camunda ensures reliability and scalability, and it
seamlessly integrates into cloud environments accessible from var-
ious platforms. Cflow is a cloud-based and open-source workflow
management software available on AWS [8]. It simplifies workflow
design and maintenance by providing a vast library of components
and predefined workflows, minimizing the need for extensive cod-
ing. Cflow’s flexibility and ease of integration with third-party
applications like SAP make it suitable for organizations of different
sizes, enabling efficient workflow management. Knime primarily
focuses on data science workflows, offering an intuitive, drag-and-
drop graphical interface for building complex pipelines [9]. It allows
users to seamlessly combine tools from different domains, such as
machine learning, R & Python scripting, and connectors to Apache
Spark. Knime’s strength lies in its versatility and the ability to
visually create workflows without the need for extensive coding.

Considering the various workflow tools available, NodeRED
was chosen for our project due to its specific characteristics and
alignment with our objectives. NodeRED provides a visual inter-
face for flow-based programming, allowing developers to create
secure and privacy-aware applications efficiently. Its integration
capabilities with FaaS services, such as AWS, Google Cloud, and
Microsoft Azure, make it well-suited for our needs. Additionally,
NodeRED’s extensibility and the availability of a vast ecosystem
of nodes and contributed modules further enhance its appeal for
developing secure and privacy-focused applications in the FaaS
environment. While each workflow tool discussed has its unique
features and areas of specialization, NodeRED’s visual interface, in-
tegration capabilities, and extensibility make it a valuable choice for
our project focused on security and privacy in flow-based program-
ming for FaaS services. By leveraging NodeRED, we aim to provide
reusable artifacts that address the challenges faced by developers
in the context of FaaS and enhance the security and privacy of their
applications.

2https://aws.amazon.com
3https://cloud.google.com
4https://azure.microsoft.com

2



Securing the Flow: Security and Privacy Tools
for Flow-based Programming Conference’17, July 2017, Washington, DC, USA

2.1 VISUAL FLOW PROGRAMMING
Node-RED offers a visual programming environment that allows
users to create and manage their programming flows through a
drag-and-drop node palette interface. Flows can visually represent
the data and the internal logic followed, making this programming
approach easier for developers to comprehend, design and build
flows, without extensive coding requirements, enabling rapid pro-
totyping and speeding up the development process.

Despite the user-friendly interface, developing secure intricate
flows can be difficult compared to conventional coding approaches.
Multiple interconnected nodes in a flow may require extensive test-
ing and logging, in order to identify the operational issues and how
to resolve them. Proper error handling and exception management
within flows can be crucial for robustness and reliability. Recogniz-
ing potential failure points, implementing error handling nodes, and
effectively managing exceptions can be challenging, particularly in
larger flows. The programming environment provides utilities for
debugging, monitoring and identifying problems, but there is still
a learning curve associated with grasping the principles and con-
cepts of flow-based programming and how the nodes work. Proper
documentation of flows, including the purpose, functionality, and
usage instructions of nodes, is important for sharing knowledge
and engaging new users. Keeping documentation up-to-date and
providing clear explanations can be time-consuming, but they are
essential for effective collaboration.

Node-RED has a broad range of pre-built nodes and services,
facilitating easy connectivity solutions and interactions with other
infrastructure components. As flows increase in size and complexity,
performance optimization becomes important. It can be difficult to
manage resources and comprehend the numerous interconnections
between the nodes. Keeping track of data flow, logic, and dependen-
cies within a complex flow can require meticulous documentation
and organization. Identifying and mitigating performance bottle-
necks, such as excessive computation, inefficient data processing,
or network delays, requires careful analysis and optimization tech-
niques, while also larger flows can consume more system resources
impacting the scalability of these applications.

2.2 SECURE FLOW DEVELOPMENT
When it comes to the development of secure processes in flow-
based programming (FBP), there are several challenges to consider
and address:

• Secure Data Handling: FBP involves the flow of data be-
tween nodes, services and external components.Validating
incoming data and ensuring its security within a flow is vital.
Implementing data validation mechanisms, sanitizing inputs,
and applying security practices, such as encryption and ac-
cess control, is essential to implement measures to protect
the privacy and security of the data throughout its journey
within the flow. This includes encryption, secure storage,
and secure communication channels to prevent unauthorized
access or data leakage.

• Integrating External Systems: FBP environments often
interact with external systems, APIs, and services, where it
is essential to ensure secure integration, including validating
and sanitizing inputs, implementing secure communication

protocols, and securely managing authentication credentials
for accessing external resources.

• Privacy Compliance Regulations: Depending on the in-
dustry or region, there might be specific security and pri-
vacy regulations that need to be adhered to. It is important
to understand and comply with relevant standards (such
as GDPR, HIPAA, or ISO 27001) when designing security
and privacy requirements in Node-RED. Ensuring compli-
ance with these regulations requires implementing privacy-
preserving techniques, obtaining necessary user consent,
and adopting privacy-by-design principles throughout the
flow development process.

• Authentication and Authorization: FBP environments
need to incorporate mechanisms for authenticating and au-
thorizing users and components within the flow. Ensuring
that only authorized users and components can access and
manipulate sensitive data is necessary for maintaining secu-
rity and preserving privacy.

• Logging and Auditing: Implementing comprehensive log-
ging and auditing mechanisms within the FBP environment
is quite important for security and privacy compliance. Logs
can help track events, detect anomalies and potential security
risks, and provide an audit trail for investigating potential
security incidents or privacy breaches.

• Vulnerability Management: FBP environments may rely
on various third-party components and libraries. It is crucial
to monitor and address security vulnerabilities in these com-
ponents through patching and updates. Regular vulnerability
assessments and penetration testing could help identify and
mitigate potential security risks.

• Education and Awareness: Flow-based programming in-
troduces its own unique security and privacy considerations.
Developers and users need to be educated and aware of these
considerations to ensure they understand the potential risks,
best practices, and how to implement security and privacy
measures effectively.

Addressing these challenges requires a combination of security
and privacy best practices, adherence to relevant regulations, and
a thorough understanding of the specific security requirements
within the context of the FBP environment.

3 SECURITY AND PRIVACY TOOLS
In this paper, we present a collection of reusable Node-RED nodes,
with their corresponding subflows, for addressing the security needs
and privacy requirements of FaaS services in flow-based program-
ming. The nodes implement cryptographic and privacy preserving
operations that provide fundamental security building blocks for
building secure flows.

3.1 GENERATING ENCRYPTION KEYS
Generating strong and secure encryption keys using Password-Key
Derivation (PKD) functions, organizations and individuals can en-
hance the security of their encryption keys, making it significantly
more challenging for adversaries to compromise sensitive informa-
tion. These PKD functions serve as a critical defense mechanism

3



Conference’17, July 2017, Washington, DC, USA Ioannidis, et al.

against various password-related attacks, ensuring the confiden-
tiality and integrity of data.

Figure 1: Password Key Derivation Function Subflow

The subflow of the figure utilizes the Password-Key Derivation
Function Node-RED node that is used for generating and recreating
encryption keys. It can be utilized for password-based encryption
and decryption, ensuring that only authorized users with the cor-
rect password can access the protected data. Cryptographic PKD
functions allow for flexible and adaptable key derivation schemes.
They can be adjusted to balance security requirements with the
computational resources available on the system. By tuning param-
eters like iteration count, memory usage, and parallelization factor,
the key derivation function can be customized to match the desired
security level without compromising the system’s performance.
The node can be configured for creating keys, along with their cor-
responding salt, of 128 bit,192 bit and 256 bit size and configuring
the number of iterations the PKD function is going to be performed
on the password.

3.2 ENCRYPTING DATA IN TRANSIT
Encrypting and decrypting data travelling in a flow using the Ad-
vanced Encryption Standard (AES). Employed in FaaS services, AES
helps protect sensitive data, ensures compliance with regulatory
requirements, and allows for efficient and secure data exchange. It
is an essential security measure to safeguard sensitive information
in the dynamic and distributed environment of FaaS architectures.

Figure 2: Cipher Subflow

In this figure the Cipher Node-RED node is utilized, along with
Password-Key Derivation Function node, to generate secure en-
cryption keys and use the generated keys to encrypt the message
payloads of the flow. AES is a widely adopted and trusted symmet-
ric encryption algorithm. It provides strong encryption, ensuring
that sensitive data remains confidential even if it is stored or trans-
mitted through FaaS services. By encrypting the data with AES,
you can protect it from unauthorized access by anyone who does
not possess the encryption key. Supported key and IV sizes include
128 bit,192 bit and 256 bit, while the node also offers several AES
modes (CBC, ECB, CFB, OFB, CTR,GCM) to be used in the ciphering
operation.

3.3 HASHING DATA IN TRANSIT
Generating hashes and hash-based message authentication code by
utilizing the Secure Hash Algorithm (SHA). This can enhance data
integrity, protect sensitive information, detect data tampering, and
enable secure authentication mechanisms. SHA algorithms provide
a reliable and efficient means to verify the integrity of data, making
them an important component of secure data processing in FaaS
environments.

Figure 3: Hasher Subflow

The subflow of the figure makes use of the developed Hasher
Node-RED node that generates SHA payload hashes and Hashed
Message Authentication Codes (HMAC).SHA hashing ensures the
integrity of data by generating a unique hash value for a given input.
Even a minor change in the input data will produce a significantly
different hash value. By storing and comparing the hash values,
you can verify if the data has been tampered with or modified.
This is particularly important in FaaS services where data may be
processed and passed between different functions or services. The
node allows configuring the size of the produced hash, the hash to
check to verify against and, if the HMAC option is chosen, the key
to use in the hashing operation.

3.4 AUTHENTICATING DATA IN TRANSIT
Key-pairs creation for data signing and verification that leverages
the Public Key Infrastructure (PKI ) model. Organizations can es-
tablish data authenticity, non-repudiation, secure communication
channels and trust relationships. The node can enable secure data
exchange, compliance with regulations, protection against unau-
thorized access or tampering, enhancing the overall security and
reliability of the FaaS service.

Figure 4: Public Key Infrastructure Subflow

In this subflow the PKI node is used to generate Ed25519 key-
pairs, sign message payloads and verify payload signatures.PKI
signing and verification ensure the authenticity of data. With PKI,
data can be signed using a private key, which can only be gen-
erated by the owner. The signature is unique to the data and the
private key, providing a strong indication that the data has not
been tampered with and that it originated from the expected sender.
Verifying the signature using the corresponding public key estab-
lishes the authenticity of the data. The properties of the node can be

4



Securing the Flow: Security and Privacy Tools
for Flow-based Programming Conference’17, July 2017, Washington, DC, USA

configured to generate new key-pairs, sign data payloads provided
the private key, and verifying data payloads provided the public
key. Both keys provided must be in hex format.

3.5 PRESERVING PRIVACY OF DATA
Preserving the privacy of data in FaaS services is vital for protecting
sensitive information, complying with regulations, fostering user
trust, mitigating security risks, safeguarding intellectual property,
and adhering to ethical principles. It ensures that data remains con-
fidential, secure, and used in a manner consistent with individuals’
expectations and legal requirements.

Figure 5: Presidio Subflow

The subflow of the figure integrates the external Microsoft Pre-
sidio5 service through API calls, providing fast identification and
anonymization of private data in text and images such as credit
card numbers, names, locations, social security numbers, financial
data and more [10]. FaaS services often process and store sensitive
data, referred to as personally identifiable information (PII), finan-
cial records, health data, or trade secrets. Preserving the privacy of
this data ensures that it remains confidential and inaccessible to
unauthorized parties. It helps prevent identity theft, fraud, unau-
thorized disclosure, or misuse of sensitive information. The node
allows configuring the Presidio Service endpoints for identifying
sensitive payload data (Presidio Analyzer) and anonymization and
deanonymization processes (Presidio Anonymizer) for the flow.

4 USE CASES
The nodes developed offer a range of security and privacy capabili-
ties within the Node-RED environment, empowering developers
to implement secure and privacy-preserving functionality in their
applications. These use cases demonstrate how these nodes can be
employed to protect sensitive information, ensure data integrity,
enable secure communication, establish trust, and comply with
privacy regulations.

The PKDF (Password Key Derivation Function) Node is valuable
for securely deriving encryption keys from passwords. This can
be crucial for securing user credentials, sensitive documents, or
private communication channels.

The Cipher Node can be used for secure encryption and decryp-
tion of sensitive data, including encrypting and decrypting files or
messages for secure transmission or storage, encrypting passwords
or sensitive information in databases, or encrypting data in transit
between FaaS services.
5https://microsoft.github.io/presidio/

The Hasher Node can be useful for generating cryptographic
hash values of data. This can be applied in scenarios such as data
integrity verification, password storage (by hashing passwords
instead of storing them in plaintext), verifying the integrity of
software packages or code, or generating unique identifiers for
anonymization purposes.

The Public Key Infrastructure (PKI ) Node enables operations
related to digital certificates, public and private key pairs, and sign-
ing/verification processes. It can be employed for secure communi-
cation between FaaS services by encrypting data with recipient’s
public keys, verifying digital signatures for authenticity and in-
tegrity, or establishing trust relationships based on trusted certifi-
cate authorities.

The Presidio Anonymization Service Node provides functionali-
ties for preserving privacy by identifying and anonymizing sensitive
data. It can be used in use cases such as data anonymization for
compliance with privacy regulations, generating synthetic datasets
for research or analysis while protecting individuals’ identities,
or transforming personal data into pseudonymous identifiers to
ensure privacy in data processing operations.

5 DISCUSSION
This collection’s security-focused nodes introduces advanced cryp-
tographic techniques, enabling secure data transmission, storage,
and verification. The privacy-focused node integrates privacy en-
hancing technologies in addition to security measures. The incorpo-
ration of secure key management mechanisms could enable users
to securely store and regulate access to their cryptographic keys,
ensuring that only authorized parties could use and interact with
them. The incorporation of web3 technologies into Node-RED could
enable developers to enhance their flow-based application into
through smart contract interactions. Smart contract nodes could
enable interaction with blockchain networks in a seamless manner,
allowing developers to create, deploy, and manage smart contracts
directly within the Node-RED environment. These nodes could facil-
itate the automation of contractual agreements, removing the need
for intermediaries and providing the application’s logic and data
with transparency and immutability. By integrating blockchain tech-
nologies and smart contract interactions using Node-RED nodes,
developers can harness the power of decentralized networks while
maintaining the highest levels of security and user privacy.

6 CONCLUSION
In conclusion, this paper has presented a comprehensive collection
of reusable artifacts that address security and privacy challenges
in flow-based programming for Function-as-a-Service (FaaS) en-
vironments. These artifacts, seamlessly integrated into the Node-
RED framework, enhance the security and privacy posture of FaaS
applications by focusing on secure data flow management, code
verification and validation, access control mechanisms, and runtime
monitoring and anomaly detection. By leveraging these artifacts,
developers can build more robust and resilient applications while
mitigating security and privacy risks in FaaS environments. The
presented artifacts contribute to the ongoing efforts in ensuring the
secure and privacy-aware adoption of FaaS platforms and provide
valuable resources for future research and development in this area.

5



Conference’17, July 2017, Washington, DC, USA Ioannidis, et al.

ACKNOWLEDGMENTS
This research has received funding from European Commission’s
Horizon Europe and Horizon 2020 research and innovation pro-
grams under grant agreements No. 824015 (INCOGNITO), No. 101017047
(PHYSICS)

REFERENCES
[1] J. Spillner, Serverless computing and cloud function-based applications, in: Pro-

ceedings of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, 2019, pp. 177–178.

[2] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, Y. Cheng, Faasnet:
Scalable and fast provisioning of custom serverless container runtimes at alibaba
cloud function compute, in: 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 2021.

[3] E. Paraskevoulakou, D. Kyriazis, Ml-faas: Towards exploiting the serverless para-
digm to facilitate machine learning functions as a service, IEEE Transactions on
Network and Service Management (2023).

[4] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese, E. Ge-
lenbe, B. Javadi, L. M. Vaquero, M. A. Netto, et al., A manifesto for future genera-
tion cloud computing: Research directions for the next decade, ACM computing
surveys (CSUR) 51 (5) (2018) 1–38.

[5] B. P. Harenslak, J. de Ruiter, Data Pipelines with Apache Airflow, Simon and
Schuster, 2021.

[6] S. Soiland-Reyes, I. Dunlop, A. R. Williams, Apache taverna: Sustaining research
software at the apache software foundation, in: Bioinformatics Open Source
Conference, 2015.

[7] J. Freund, B. Rücker, Real-life BPMN, Camunda, 2012.
[8] M. Li, C. Chen, C. Hua, X. Guan, Cflow: A learning-based compressive flow statis-

tics collection scheme for sdns, in: ICC 2019-2019 IEEE International Conference
on Communications (ICC), IEEE, 2019, pp. 1–6.

[9] S. Beisken, T. Meinl, B. Wiswedel, L. F. de Figueiredo, M. Berthold, C. Steinbeck,
Knime-cdk: Workflow-driven cheminformatics, BMC bioinformatics 14 (2013)
1–4.

[10] I. Pilán, P. Lison, L. Øvrelid, A. Papadopoulou, D. Sánchez, M. Batet, The text
anonymization benchmark (tab): A dedicated corpus and evaluation framework
for text anonymization, Computational Linguistics 48 (4) (2022) 1053–1101.

Received XX June 2023; revised XX June 2023; accepted XX June 2023

6


	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 VISUAL FLOW PROGRAMMING
	2.2 SECURE FLOW DEVELOPMENT

	3 SECURITY AND PRIVACY TOOLS
	3.1 GENERATING ENCRYPTION KEYS
	3.2 ENCRYPTING DATA IN TRANSIT
	3.3 HASHING DATA IN TRANSIT
	3.4 AUTHENTICATING DATA IN TRANSIT
	3.5 PRESERVING PRIVACY OF DATA

	4 USE CASES
	5 DISCUSSION
	6 CONCLUSION
	Acknowledgments
	References

