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ABSTRACT
The ability to split applications across different locations in the con-
tinuum (edge/cloud) creates needs for application break down into
smaller and more distributed chunks. In this realm the Function as
a Service approach appears as a significant enabler in this process.
The paper presents a visual function and workflow development
environment for complex FaaS (Apache OpenwhisK) applications.
The environment offers a library of pattern based and reusable
nodes and flows while mitigating function orchestration limita-
tions in the domain. Generation of the deployable artefacts, i.e. the
functions, is performed through embedded DevOps pipelines. A
range of annotations are available for dictating diverse options in-
cluding QoS needs, function or data locality requirements, function
affinity considerations etc. These are propagated to the deployment
and operation stacks for supporting the cloud/edge interplay. The
mechanism is evaluated functionally through creating, registering
and executing functions and orchestrating workflows, adapting
typical parallelization patterns and an edge data collection process.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering → Software product lines.
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1 INTRODUCTION
Function as a Service[16](FaaS) enables much more efficient man-
agement of service components, executed on demand as functions.
It typically offers functionalities such as service gateway manage-
ment, queue based load levelling architecture for function execution,
function packaging and management, automated fine-grained scal-
ing and link with back-end container orchestration systems for
execution of the functions. Thus it can significantly alleviate the
management of services and applications, adhering more closely to
cloud native application design considerations[3] however it comes
also with a set of challenges, including maintainable composition
models for serverless workflows, function reuse, easy embedding
of legacy code and CI/CD processes[4].

To abstract the use of the continuum, application development
should combine functions and services in one environment, pat-
tern prototype implementations offered as reusable components,
use annotations to indicate dictations and managerial approaches
to the underlying management layers and benefit from abstrac-
tions and visual development tools for building non-trivial FaaS
applications[14].

The purpose of this paper is to present a novel cloud Design
Environment for FaaS that is based on these principles.The environ-
ment encapsulates the widely used (in the IoT domain) Node-RED1

web based function framework for event driven applications. It
extends its usage for acting as a generic function and workflow
creator for FaaS.A preprint description of our work is included in
[12]. In this paper we present more details as well as the evolution
of the framework and the new features included.

The environment provides the following contributions:

1https://nodered.org/
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• Visual environment for abstracted function and workflow
creation, enriched with a palette of implemented functional-
ities in the form of patterns (parametric subflows).The latter
aid the developer in the adaptation to the FaaS paradigm,
used directly in a drag and drop manner in the workflow,
and aiming to address aspects such as parallelization of input
load, context management, edge data collection, error cap-
turing, performance monitoring and helper functionalities
such as asynchronous API calls management

• Inclusion of diverse annotations as guidelines for aspects
such as function placement across the cloud/edge continuum,
preferences in function locality, scheduling, optimization
goals for placement etc.

• Packaging of the created function or workflow into a deploy-
able artefact (i.e. docker image) through pluggable DevOps
pipelines including function registration and performance
profiling on the target FaaS platform (Apache Openwhisk).

The overall effect is to reduce the learning curve and develop-
ment time needed, as well as bypass current FaaS limitations in
terms of workflow orchestration and definition. The paper proceeds
as follows. Section 2 presents related work while Section 3 the main
architecture and building blocks of the system. Section 4 presents a
set of example case studies while Section 5 concludes the paper.

2 RELATEDWORK
A major drawback of current Function as a Service platforms is the
availability of tools related to deployment and function reuse[15]
as well as function orchestration abilities[7]. The effect of the dis-
advantages of the available development tools for FaaS is evident
on the current FaaS landscape. According to [9], 82% of serverless
applications use 5 or fewer functions and only 31% of them include
workflows.

From a workflow perpsective, the only open source platform that
has a native workflow functionality[6] is Openwhisk2, although it
only supports simple sequences of function chains. Code or Text-
based plugin orchestrators with more orchestration primitives in-
clude the IBM Composer3 (javascript library form[7]), FaaSflow4)
for OpenFaaS and the Google Cloud Functions5 YAML based syntax.
The latter appears in Fig. 1, as a comparison between this form (left)
and an equivalent Node-RED flow (right) implementing the same
functionality. It is evident that when scaling to larger workflows,
this type of definition does not serve well simplicity and design.

The most advanced is the AWS Step functions which also in-
cludes a visual programming style and extended operators (includ-
ing state management). On the other hand, it is an option that
increases vendor lock-in. Kubeflow[8] is used primarily for AI
pipelines and includes a relevant definition language as well as
an editor extension (Elyra) for visual creation. However due to its
pipeline nature, it refers more to a static sequence of operations
while inputs and outputs between nodes of the workflow are passed
through the defined object storage files. Thus it does not portray the

2https://openwhisk.apache.org/
3https://github.com/apache/openwhisk-composer
4https://github.com/s8sg/faas-flow
5https://cloud.google.com/functions/docs/tutorials/workflows

abilities of an actual runtime environment for merging messages
and calls between functions.

Apache Airflow is a workflow design and management tool that
can be used to create Directed Acyclic Graphs (DAGs) of operations
across components. Airflow has complex operators, however it can
not be used as a generic function editor, the components need to pre-
exist. Similarly, TriggerFlow[5] offers diverse workflow primitives
and eventing mechanisms for orchestration. The main difference
of our work, except for the dual function creation and workflow
orchestration, is the ability to import ready-made functionality
in the form of reusable subflows and Node-RED nodes as well as
the visual support for the workflow creation. The same applies for
customly created user flows that can be easily shared and reused.
Furthermore, the ability to decide at development time how to group
functions,and potentially groupmany of them in the same container
runtime, creates significant advantages in terms of minimizing
orchestration overheads[13].

3 CLOUD DESIGN ENVIRONMENT
ARCHITECTURE

3.1 Design Environment Overview and
Architecture

The overview of the proposed Design and Development Environ-
ment appears in Fig. 2 and is a part of the PHYSICS platform6 based
on Apache Openwhisk FaaS. The UI environment is an embed-
ded container of a Node-RED server coupled with a Control UI.
The Node-RED container as well as the SFG one run locally on the
developer side, and contact the remaining cloud-based components.

Node-RED extensions[2] provided by this work include:
• Ready-made pattern subflows (see section 3.2 for details),
dealing with parallelization, context management, data col-
lection, workflow primitives etc. One significant feature used
is the ability to group many functions into subflows, that
then appear as regular nodes in the palette. This helps creat-
ing groups of functions that serve a specific purpose, reusing
function logic as well as abstracting from the specific imple-
mentation details.

• Helper subflows that aim to address a specific issue (e.g. con-
tacting asynchronous APIs and converting a polling process
for the result to a pushing one)

• Semantic annotation nodes (see section 3.3 for details) for
giving directives to the deployment layers.

The first two cases can be dragged and dropped directly in an
arbitrary workflow, wired together and used to create a functional
flow. The third one adds metadata in the created Node-RED flow
specification. Any other node or flow from the Node-RED reposi-
tory7 can be imported if needed.

Once a flow has been created, it can be packaged and tested
within the Control UI of the environment. From then on, the pro-
cess contacts the Serverless Function Generator for extracting the
code/flows and settings from the Node-RED environment. This
is fed as an input to a Jenkins pipeline. The latter starts from a

6https://physics-faas.eu/
7http://flows.nodered.org
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Figure 1: Example workflow definition code snippet in Google Cloud Functions compared to equivalent Node-RED definition

Figure 2: Architecture of the PHYSICS Design and Development Environment

(customizable) baseline template docker image, it injects the case-
specific flows and settings and pushes the image to a docker registry.
It also registers the image to an available Openwhisk installation
as a docker function. Now the function has been created and it is
ready to be invoked for final testing.

Once the final testing is finished, the developer can deploy the
selected set of flows into the production cluster. In this case, the
flows pass through the Semantic Extractor component, which ex-
tracts declared semantic annotations, maps them to triples based
on ontological concepts, converts them to JSON-LD and creates
the application graph including the application structure, location

of the images for each function etc. This is then forwarded to the
PHYSICS platform management layer for the deployment. This
layer is responsible for respecting user requirements and converts
the annotations to Kubernetes keywords or Openwhisk parameters
(e.g. for hardware deployment needs, function affinity, sizing etc.).

3.2 Pattern-based Flow creation
A pattern is defined as “a proven series of activities which are sup-
posed to overcome a recurring problem in a certain context, particular
objective, and specific initial condition”[18]. Patterns have been a
very useful tool for dictating design principles as well as driving
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abstract implementations for a specific domain [10]. For the cloud
domain, a detailed catalogue can be found in [3] while for FaaS
a relevant list can be found in [17]. In general a pattern may be
driven from specific problems of a domain (e.g. networking and re-
liability faults in distributed systems, state handling in FaaS etc.) or
even more basic primitives migration to a new model (e.g. moving
MPI-style concepts to the FaaS execution model).

From an implementaion point of view, the pattern scope aligns
well with the ability of Node-RED to create subflow nodes that
group entire internal workflows with properties and configurations
on top of them. This enables their usage in a general and repeat-
ing context, while hiding underlying complexity. This is especially
important during migration to the FaaS model. The latter is based
heavily on event driven, function oriented programming which
produces difficulties for developers accustomed to more stream-
lined paradigms like object oriented. Furthermore, in many cases
the developers/end users of such a mechanism are data scientists
or scientific engineers more used to scripting languages and not
experienced software developers. Finally, because functions in FaaS
are more fine-grained, a FaaS application can result in potentially
large numbers of them in a project repository. Thus grouping them
can ease their management.

3.2.1 Parallelization Pattern Example. As part of the environment,
a set of such patterns has been created[2] and is included in the
extended Node-RED palette embedded in the editor. The Single
Process Multiple Data (SPMD) or Split-Join is presented in Fig. 3.
These types of parallelization were commonly based on typical
parallel technologies like MPI.

In a function programming style, the parallelization can be per-
formed by splitting an initial array message in individual messages,
upon which the same computation will be applied. Each split mes-
sage then triggers a respective execution. A Join node waits for all
the respective partial messages to complete. In our case, different
options are available for the execution such as external function ex-
ecution (intercontainer parallelization similar to MPI for exploiting
multiple nodes) or multiprocess/multithread execution inside the
same container (intracontainer parallelization similar to OpenMP
for parallelization in the same node). In both cases the provisioning
of containers for the execution is performed by the FaaS platform
itself.

The split size (how many rows in the initial array will be in-
cluded in each execution) is a parameter to be configured. A too
fine grained value can spawn too many containers and result in
extreme inter-process overheads on the computational resources.

It is not necessary for a pattern flow to be only deployed in a func-
tion oriented style. For example, the aforementioned SplitJoin flow
can reside on a Node-RED server at the edge, responsible for col-
lecting the data and then triggering the parallelized computational
step. The latter can target a large scale Openwhisk installation on
a more central cloud location that can spawn multiple function
containers for an effective computation.

Another example of a service pattern is the batch request aggre-
gator in [11]. From a developer point of view, the mean of devel-
opment is the same inside the environment, the only aspect that

changes is the use of a relevant annotation (see next section on an-
notations) to indicate that the specific artefact should be deployed
as a service and not a function.

3.2.2 Unreliable IoT Edge Data Collection Pattern. For the case of
data collection, especially in resource constrained environments
such as Smart Agriculture greenhouses, the edge device (typically a
Raspberry Pi) may be too constrained to run a FaaS platform, even
a light version of it such as OWL8. For this reason, the inclusion
of flows as simple services in a Node-RED server may be the best
way to utilize the resource.

However, in these cases, other problems may exist (e.g. volatil-
ity of networking conditions), which results in frequent network
failures and missing values. Completeness of these data are key in
order to run agronomic simulations and calculate the necessary
management of the plants. To this end, a reliable Edge Extract-
Transform-Load (ETL) pattern has been developed (Fig. 4). It con-
sists of approximately 23 inner javascript functions that are hidden
in the subflow. The pattern receives the data item through an incom-
ing message. The input layer can use whatever available Node-RED
node to interact with the main IoT system. Node-RED originates
from the IoT world so it has extensive node support for many sensor
protocols. The flow tries initially to send the data item to the central
service for a limited and configurable number of consecutive times
based on the retry pattern. If these attempts fail, the data item is
stored locally. Periodically, a cron job (e.g. every hour) is set to try
to resend all failed items up to this point.

3.3 Semantic annotations inclusion
Semantic annotations can dictate specific developer needs and ex-
pose the capabilities of the baseline management stacks. With rela-
tion to the cloud/edge continuum, they can be used to dictate the
needed deployment location of a given artefact like the aforemen-
tioned SplitJoin flow. Therefore during development, the compu-
tational function that is intended to run on the central cloud can
be annotated as such, whereas the orchestrating flow on the edge
as a service. Other considerations may include different types of
scheduling, affinity rules between functions, memory sizing allo-
cations for the needed containers etc. In the case of the PHYSICS
platform, two different scheduling capabilities exist, one for the
typical Kubernetes scheduler and one taking into consideration
container layer locality. Furthermore, a placement optimization
takes place for the functions, therefore affinity rules can aid in
putting constraints in the respective placement process.

A special set of nodes (semantic annotators) is available in the
palette. The instantiation of such a subflow is processed by the
Semantic Extractor component mentioned in Section 3 and the key
value pairs of the node properties get passed to the application
description. An example of such nodes appears in Fig. 5, to indicate
scheduling, execution type (service or function), function sizing
or locality requirements. While some of the semantic nodes can
be simple key-value pairs, others can also embed logic as in the
case of the Locality annotator. This retrieves the updated list of
the available clusters in the continuum from a relevant platform

8https://github.com/kpavel/openwhisk-light
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Figure 3: Example Split(Fork)-Join Pattern Implementation Hidden Inside the Subflow

Figure 4: Edge ETL Service Subflow Implementation

endpoint and then updates the respective node definition drop
down options.

3.4 Helper Functional and Non Functional
Flows

Other functionalities can also prove helpful in reducing the com-
plexity of a FaaS environment. For example, typically FaaS (as well
as many other APIs) relies on asynchronous API calls for triggering
a function execution. The client must trigger initially the execution
and can not block waiting for the response. An activation ID is
returned instead, based on which the client can poll afterwards for
the result. Although it seems a straightforward operation, details

Figure 5: Examples of Semantic Annotators with static or
dynamic behaviour

of the calls like repetitions, checking error codes etc. can insert sig-
nificant complexity. For this reason, an abstracted mechanism has
been created (Poll2PushConverter). The mechanism also supports
function chains[17], a bypass pattern for the typical FaaS timeout
of a function.
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From a performance point of view, it is also important to moni-
tor the execution of functions on the platform, as well as to easily
retrieve error logs or statistics. For this reason, a relevant mon-
itoring node has been created (Fig. 11). The node is based on a
configurable sliding window and can be configured to filter needed
function monitoring as well as fetch logs from erroneous function
executions.

Figure 6: Monitoring Node Overview and Implementation

4 EXAMPLE CASE STUDIES
For experimenting with the environment, a number of case studies
have been implemented. A demo video for the usage of the envi-
ronment can be found in [1], including the creation and annotation
of a flow, building of the relevant function, testing its deployment
and execution as well as applying the parallelization pattern.

4.1 Simple Hello World Function
For the main use case, the developer starts from a skeleton subflow
(Fig. 7) that implements the Openwhisk custom docker function
specification (a POST /init for initialization and a POST /run for
the actual execution). Any Docker container that includes such an
endpoint can be registered as an Openwhisk function. Inside this
flow, any node-RED packaged node as well as npm-based library
can be imported and exploited. The developer can create any wiring,
since their execution is performed within the Node-RED runtime
of the Openwhisk action, not limited by any workflow language
specification limitation of the FaaS platform. They can also invoke
other external actions as part of the logic. A key point is to capture
errors that occur in the flow. If that does not happen, then the
flow inside the action will stall and only be detected as a function
timeout error. This leads to increased costs for the execution, larger
overheads for the back-end as well as misleading error reporting.

Once the flow is finished, building the function image can begin.
Build times do not depend on the flow size or complexity. They
may depend on the number of extra npm/Node-RED nodes that
need to be installed to the baseline template but also on the baseline
template itself and the size its external dependencies. The statistics
of 100 builds based on the default Node-RED template appear in
8. The average is about 3 minutes needed. The peaks and red lines
indicate builds that have been aborted due to temporary network

unavailabilities of the testbed. For more complicated templates, e.g.
with Tensorflow dependencies, the according build time is around
10 minutes.

Figure 7: OW Skeleton Interface Flow

One advantage of this inclusion of many functions inside the
same flow runtime is that if for example this flow is sequential then
there are significantly less container overheads[13], since we do
not need a separate container for each individual and potentially
small function. On the other hand, the Node-RED runtime is more
heavyweight (487MB) than a typical nodeJS one (356MB). Abstrac-
tion always comes with a penalty in performance so the question
is to quantify this. To this end a hello world implementation was
compared in both runtimes.

Figure 8: Function Image Build Times

For each case, 100 executions were conducted on each target
function for cold and warm starts. Cold starts need to spawn a new
container whereas warm ones reuse an existing one. The cold start
time ((Fig. 9)) for the Node-RED runtime is considerably higher
(with an average of 7.6 seconds compared to 2.5 seconds in the
case of nodejs). This is due to the larger container, as well as the
start-up time of the Node-RED environment). This can be dealt
with through the usage of prewarm containers in Openwhisk, i.e.
containers that are spawned proactively. In the hot execution case,
the two execution modes are very similar (227 compared to 252
milliseconds).
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4.2 Abstract Use and Test of the Fork-Join
Pattern

The Fork-Join pattern of Fig. 3 is hidden behind a subflow node
in the palette and used in any Node-RED flow. It can be executed
both as as a service as well as a function mode. For this it needs to
be wrapped around the Openwhisk Skeleton interface. The needed
arguments include the name of the worker Openwhisk action to
invoke (the function responsible for processing each input chunk)
or the process script inside the container, and the initial array of
input data to be split. The resulting flow appears in Fig. 10.

Figure 9: Hello World Function Comparison

Figure 10: Orchestrator Function with the Split Join Pattern

One benefit of the environment Node-RED server is that one
can create testing flows to be executed within that development
server. Thus there is no need for building and debugging deploy-
ments on the FaaS platform. During the tests for the creation of
this flow, approximately 10 errors were encountered, with 70% of
them fixed locally. The remaining ones refered to the input and
output format from Openwhisk to the function. These needed a
FaaS deployment to detect errors, at least for an inexperienced user.
The total debugging savings for the specific flow appear in Table 1.

4.3 Dashboard Monitoring
Through the exploitation of the monitoring subflow, the user can
also embed into their local Node-RED environment a dashboard
monitoring the main parts of the remote Openwhisk statistics. The
node has been configured in this case to get the moving average of
the last 5 minutes for all executed functions with a polling period

Table 1: Testing Time Saved Through Environment

Case Measured Quantity
Number of errors 10

Errors solved with Node-RED test 7
Errors needing FaaS deployment 3

Local Node-RED test 1-2 seconds
Image, FaaS deployment and test 3-4 minutes

Time saved 21-28 minutes

of 10 seconds. An indicative view of the user monitoring appears
in Fig. 11

Figure 11: Openwhisk Monitoring from the Environment

4.4 Edge Data Collection Experimentation
The usage of the pattern is as abstract as seen in Fig. 12. Only the
data input layer needs to be created, for obtaining the data items
and pushing them to the subflow. The specific flow uses also the
Executor Mode semantic node for indicating the deployment as a
service.

Figure 12: Usage of Edge ETL Subflow in Data Collection

From a functional point of view, it needs to send all data, without
duplicates or missing values, as well as handle large periods of
outages (i.e. large number of local points for resending). In order
to simulate the outage, the target URL for the cloud storage was
set to change every 5 minutes to an existing endpoint and every 3
minutes to a non-existent one.

An indicative value for a new data item in real life is 1 new data
item per 10 minutes. In order to speed up the experiment, client
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data generation was set to 2 calls per second. The periodic cron
job, for past failed data resubmission was 2 minutes. Experiment
duration was set to 2 hours. Each call was documented through a
unique ID both at the edge and cloud side. Both logs were joined at
the end in order to detect missing or duplicate values. None was
detected from an overall 18500 samples. Indicatively the specific
application before the pattern resulted in 50% lost points.

The edge database size across the experiment appears in Fig. 13,
fluctuating due to the difference in the simulated outage intervals.
The maximum number of unsent points reaches about 1400 values.
During the cron job triggering, the pattern tries to send these. Thus
they will create a burst, which however was manageable and results
in an empty local database at the end of each cycle.

Figure 13: Evolution of Failed Data Edge DB size

5 CONCLUSIONS
Concluding, the presented Design and Development Environment
offers features improving the currently limited functionality of FaaS
workflows. It enables better manageability and faster development
of functions due to the pattern based approach. Minimal knowledge
is needed on the inner workings of each pattern, thus reducing the
learning curve.

The environment builds upon Node-RED capabilities and trans-
forms it to a generic function and workflow creator. Function or-
chestration from the Node-RED runtime enables the usage of more
complex workflow primitives and elevates from the text based work-
flow means of other platforms. The embedded DevOps processes
generate the deployable artefacts, including all necessary depen-
dencies and giving the ability to start from customized dockerfiles.
Versatile annotations are introduced that can forward developer
options to the underlying management stacks.

For the future, the aim is to extend the collection of patterns and
annotations, while linking them to runtime modelling mechanisms
(as in the case of [11]. For example, a key parameter to determine
is the split size of the Fork-Join parallelization, in order not to
overstress the back-end.
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