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ABSTRACT

The latest advancements in Machine Learning have led to impres-
sive capabilities in distinguishing emotions from facial expressions,
allowing computers and smart devices to accurately detect and
interpret human emotions through computer vision. While a lot
of work has been conducted on understanding human expressions
by utilizing visual information, most of them assume that the faces
are fully exposed. In this work, we present the implementation of a
lightweight mood estimation deep learning model in the presence
of partial occlusion where the user is wearing eyewear equipment
that completely covers the area around their eyes. Examples of such
eyewear are glasses for visually impaired people or a head-mounted
display in a virtual reality setting. Rather than collecting a new
dataset of images illustrating individuals wearing such eyewear or
virtual reality equipment, we utilized a dataset based on a previous
work of ours, where the occlusion arising from such headsets was
obtained through simulation. That way, we were able to make use
of the transfer learning approach by fine-tuning an efficient model
that was pre-trained on a typical Facial Expression Recognition
task.
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1 INTRODUCTION

Facial emotion Recognition (FER) technologies are becoming more
and more significant in various fields and industries. The emotional
state of individuals is a significant indicator of their well-being,
especially in cases of elder individuals or people suffering from
chronic health conditions or impairments. In addition, monitoring
an individual’s mood over a period of time can reveal shifts and
irregularities in their actions and behaviour. These variations could
be indicative of a substantial decline in their functioning before the
onset of clinical symptoms. Therefore, it is important to monitor
the emotional status to identify any potential problems early on.
Furthermore, emotional tracking of patients can play a significant
role in healthcare, since it could provide assistance to clinicians,
to easily monitor the progress of their patients, even remotely.
With the use of low-cost smart devices, sensors, and data analysis,
meaningful insights related to the users’ health conditions can be
collected and sent to doctors for further investigation. [21].

While commonly linked to gaming, the cutting-edge technol-
ogy of Virtual Reality (VR) has the potential to transform various
industries. Specifically, the healthcare sector is currently explor-
ing promising ways in which VR can aid patients and healthcare
providers in achieving improved treatments and outcomes. These
applications include surgical procedures [20], pain management
[1, 26], physical [8] and cognitive rehabilitation [28], mental health
[9], and other areas.

The latest developments in Machine Learning (ML) have led to
formidable FER capabilities, allowing computers and smart devices
to accurately detect and interpret human emotions from facial ex-
pressions, and therefore revolutionizing the way we benefit from
technology. These sophisticated algorithms have immense potential
for improving human-computer interaction in fields such as serious
games [3], health, and well-being in general. While lots of applica-
tions and studies have been conducted on automatically inferring
human expressions by utilizing visual information, most of them
assume that the users’ faces are uncovered. Moreover, although
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state-of-the-art FER methods are highly effective for controlled
laboratory environments, the existing approaches do not achieve
similar performances when applied to groups with visual impair-
ments (e.g. people wearing smart glasses for virtual assistance) or
applications like VR environments in which severe occlusion con-
ditions exist. Recently, the research community has identified this
issue and proposed promising methods for handling severe system-
atic occlusion like VR setting where features of the upper half of
the face are completely missing [17, 23]. However, the necessity
of lightweight models is critical for FER applications under partial
occlusion, in order to be employed smoothly on mobile devices
and other resource-constrained platforms, without compromising
accuracy and performance.
In this work, our key contributions are the following:

o We investigate the task of FER on facial images that have the
upper face region covered, and show how occlusion causes
certain emotions to be less distinguishable.

e We re-purpose our previous computationally efficient mood
estimation model [5] on images that do not include the upper
face region, exploring in that way the possibility of employ-
ing such application on users that wear VR headsets or smart
glasses.

e We demonstrate that with the transfer learning technique
and appropriate fine-tuning, a lightweight baseline model is
obtained, which achieves a sufficient performance for FER
tasks under occlusion. Due to its low-overhead, the devel-
oped model can be easily deployed to many applications and
devices.

2 RELATED WORK

Numerous studies in the academic literature have attempted to
recognize emotions through analysing image data, utilizing both
traditional ML methods and advanced deep learning techniques. In
order to accurately estimate emotions, researchers have focused on
extracting features based on facial landmarks and using training
models like Support Vector Machines (SVM) and Gradient Boosting
Trees as classifiers, based on extracted features [25]. Since the recent
advances in deep learning, Convolutional Neural Networks (CNNs)
have been proven to achieve superior performance when compared
with conventional Machine Learning models and hand-extracted
features. Some of the recently hypertrophied and commonly ex-
ploited techniques for mood estimation are based on Convolutional
Neural Networks (CNN). In [7], a video-based emotion recognition
approach is proposed, where a MobileNet feature extractor is used
in combination with an SVM classifier. Regarding the Healthcare
domain, authors have previously implemented a 3D CNN model for
capturing and analysing video frames obtained remotely from the
house of patients and reporting back to the clinicians their detected
emotional status [16].

Previous studies have shown the significance of stimulating
user’s emotional stage through VR environments. Particularly, a
recent study has shown that VR was seen to have the highest com-
mon usage for emotion classification among other stimuli used [24].
Despite its significance, there is a lack of available image datasets
that could be directly utilized in FER under partial occlusion. Hick-
son et al. proposed an algorithm that can detect facial expressions
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by utilizing information obtained only from a person’s eyes, which
were captured through an infrared gaze-tracking camera in a VR
head-mounted display [15].

As not all VR devices have embedded eye-tracking sensors, a
widely applicable approach, which was also proven to be less costly,
was followed by Georgescu and Ionescu [10]. In their research,
Georgescu and Ionescu introduced a method for detecting the facial
expressions of individuals who wear a VR headset while exploiting
the use of an external camera. To do so, Georgescu and Ionescu
focused on training VGG-like models, based on modified training
images in which the upper half of the face was completely occluded.
This has proven that the neural network was forced to find distin-
guishing patterns in the lower half of the face. In their work, they
followed a fine-tuning procedure that consisted of two phases. Dur-
ing the first stage, the model was fine-tuned based on the original
images that included full-face images, while in the second phase,
the model was further tuned based on images in which the area
around the eyes was occluded. In another deep learning approach
for occluded targets, Cheng et al. simulated the occlusion by drawl-
ing graphic masks on the images of FER datasets, since datasets
with natural partial occlusion facial images were not available [4].
However, that approach had a considerable limitation, since it does
not account for realistic occlusion resulting from particular devices
with specific dimensions. Recent studies aimed to address this is-
sue by defining certain algorithms for simulating under partial
occlusion [17, 23].

The work presented in this paper expands on previous studies
that investigate how occlusion resulting from VR goggles affects
the recognition of facial expressions. We concentrated on exploiting
our previously constructed dataset and pre-trained model, which
was trained for unoccluded patients’ mood estimation (initially pre-
sented in [5]). Grounded on the data collected during our previous
work, a simulation of the occlusion is performed, by generating
rectangles that are applied on the upper region of the faces based
on the methodology proposed in [23]. Then, a transfer learning
approach was deployed for fine-tuning the pre-trained model. We
provide a comparison regarding different transfer learning method-
ologies we applied and we present the results of our experiments.
Concluding, we briefly describe the future directions that we plan
to follow in order to expand and further improve our work.

3 METHODOLOGY
3.1 Dataset & Simulated Occlusion

Based on the task’s requirements, a model for facial expression
classification should be developed, trained, and validated, on faces
occluded by VR headsets. Specifically, the proposed model should
be lightweight, fast during inference, and demonstrate good perfor-
mance on classification tasks for partially occluded faces.
However, for deep learning networks training, a large amount
of training data (in the order of thousands) is required so that the
model learns to conduct a classification task successfully. In our
dataset, which was firstly collected and employed for [5], we in-
cluded multiple and various facial expressions within each emotion
category, in order to create a dataset that well-represents the differ-
ent human facial expressions. Facial images are hard to be found
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(a) Original image

(b) Image with applied occlusion

Figure 1: Example of the simulated occlusion

available online, due to the strict copyright licenses. For that rea-
son, our images were gathered from online resources that provided
copyright-free images, such as Kaggle (FER 2013 dataset!, Jafar Hus-
sain Human emotions dataset®) and other open source databases
such as Unsplash? , Pexels* and Pixabay’.

Our original image collection consists of roughly 50,000 images
of facial expressions, which are categorized into seven emotion
classes (‘angry’, ‘disgusted’, ‘scared’, ‘happy’, ‘sad’, ‘surprised’, ‘neu-
tral’). The categories have unequal amounts of instances, making
the dataset imbalanced. Due to this work’s and MuselT’s © pur-
poses, we decided to focus on the three most basic emotions, i.e.
‘happy’, ‘sad’, and ‘neutral’, and for that reason, we grouped the
rest categories into a fourth class, named ‘other’.

In order to obtain representative image instances which are
identical to occluded faces, a preprocessing procedure was per-
formed. Analytically, the collected images were adjusted to our
new task, by occluding the upper part of the face (i.e. the eyes
and parts of the forehead and nose), inspired by the methodology
originally proposed in [23]. Initially, the preprocessing algorithm
uses a Multi-task Cascade Convolutional Neural Network (MTCNN)
[27] to detect five facial landmarks (two for the center of each eye,
one for the nose center and two for the right and left side of the
mouth). Based on the detected eye and nose landmarks, as well as
the distances specified by the algorithm suggested by Rodrigues
et al. [23] a rectangle is drawn on top of each image. Therefore,
the upper part of the faces is hidden, simulating in such way the
inclusion of VR headsets. An example of a pair that consists of an
image and its occluded version is elucidated in Figure 1.

As it was also indicated in [23], the MTCNN is not always able to
identify the facial landmarks, and therefore it is not feasible to draw
the artificial rectangle for some instances based on the proposed
methodology. In their work, Rodrigues et al. included the original
images for the cases where the facial landmarks were not detected
[23]. Instead, in our work, we did not include such instances in our
occluded dataset, as we wanted to directly compare and study the
impact of occlusion. Therefore, it was decided to avoid including

!https://www.kaggle.com/datasets/msambare/fer2013
https://www.kaggle.com/jafarhussain786/datasets
3https://unsplash.com/
“https://www.pexels.com/search/face/
Shttps://pixabay.com/vectors/
Shttps://www.muse-it.eu/
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Table 1: Experimental settings & Results for different model

CLAss | NO- TRAINING | NO. VALIDATION [ NO. TEST

INSTANCES INSTANCES INSTANCES
Sad 8234 680 935
Neutral 9249 985 749
Happy 12196 1247 830
Other 15065 1630 1378
TOTAL 44744 4542 3892

not representative observations, and due to that choice, the size of
the resultant dataset decreased by approximately 10%. Ultimately,
the class distribution and number of classes are shown in Table 1.

3.2 Model Architecture

As already mentioned, our application demands a lightweight
model, that would be able to run fast the inference process (ideally
in real-time) and demonstrate good performance on the task of FER.
Moreover, the model must be easily deployed on smart devices,
without the need to sacrifice much of the device’s memory and
computational resources.

After studying the state-of-the-Art works, we found out that the
most recently developed model which fits the requirements and is
appropriate for this task is the mini-Xception deep learning model
[2]. Mini-Xception is the successor of the original Xception model
[6], and it is proved that it demonstrates high accuracy rates on
emotion recognition tasks. The success of the mini-Xception archi-
tecture lies mostly in the fact that they use residual modules [14],
and depth-wise separable convolutions [18]. Residual connections
are speeding up the convergence of the model, both in terms of
speed and final classification performance [6]. Also, depth-wise
separable convolutions demand significantly fewer computations
compared to normal convolutions, resulting in a network that de-
mands less computational power for both training and inference.

Another characteristic of the mini-Xception is the elimination
of fully-connected layers and their replacement by the Global Av-
erage Pooling operation. In that way, mini-Xception’s number of
parameters is significantly reduced, ending up with an overall of
58,000 parameters. Lastly, the final model’s size is less than 1MB,
so it can seamlessly be deployed and run on hardware-constrained
devices.

The architecture of mini-Xception includes two Convolution
layers (which are followed by Batch Normalization [19] and ReLU
[12]) that are followed by four residual blocks. Each block contains
a convolution layer on the skip connection side, and the other side
consists of two separable convolutions followed by a Max Pooling
layer. Lastly, the Global Average Pooling operation takes place, and
the results go through the softmax function, which gives the final
result.

3.3 Experimental settings

In general, convolutional networks extract low-level features that
are common for various datasets during the convolution process.
Training a CNN from scratch can be expensive, particularly for
large datasets. To address this, a different approach is to transfer
the parameters from pre-existing models and fine-tune them based
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Table 2: Experimental settings & Results

MINI-XCEPTION TRAINABLE TEST TEST TEST
D MODEL SETTINGS | PARAMETERS DESCRIPTION ACCURACY | F1-MACRO | F1-WEIGHTED

MODEL_1 Pre-trained for [5] 0 No additional training involved 0.49 0.46 0.49
Pre-trained for [5] All parameters apart from the last convolutional layer

MODEL 2 & Unfreeze Last Layer 4612 were frozen during training on the occluded dataset 0.63 0.61 0.63
Pre-trained for [5] Parameters initialized based on [5] and

MODEL_3 & Unfreeze All Layers 23,636 continued training on the occluded dataset 0.69 0.68 0.69

MODEL_4 | Trained from Scratch 53,636 Parameters were reinitialized 0.68 0.67 0.68

on the new dataset. Hence, for classifying facial expressions un-
der occlusion we chose to utilize the mini-Xception model of our
previous work, pre-trained for a non-occluded FER task. Therefore,
the process aimed in utilizing the already learned knowledge of the
pre-trained network, in order to reduce the training time as well as
to improve the overall classification performance for the occluded
scenario.

In order to provide a fruitful comparison and applicable empirical
results during our experiments, we focused on the experimentation
and evaluation of four different settings for the occluded dataset: 1)
For the first scenario, the mini-Xception network pre-trained on
the non-occluded dataset of [5] was evaluated for baseline results.
Next, the values of the parameters of that same network were used
in two different transfer learning settings. 2) In order to use the
first convolutional layers of the pre-trained network as feature
extractors, the network was trained on the occluded dataset by
freezing all the parameters except the ones which belong to the
last convolutional layer. 3) In the third setting, the values of the
network’s parameters were initialized based on the first setting, but
this time none of them were left frozen during the training on the
occluded dataset. 4) Lastly, for the final setting, the mini-Xception
architecture was trained from scratch on the occluded dataset, and
the parameters of the network were initialized based on Xavier
uniform initializer [11].

A brief summarization of the above-mentioned model settings is
available in Table 2. Our input images were 3-channel RGB images
of size 64 x 64. Regarding the choice of hyperparameters and other
training options, a procedure similar to work [5] was followed.
Specifically, for all the trained models, the Adam optimizer was used,
with the initial learning rate hyperparameter tuned individually for
each scenario based on a validation set. In addition, the learning
rate was gradually reduced based on the Reduce Learning Rate on
Plateau technique. Furthermore, for regularization, we applied the
L2 regularization method with A = 0.01. A batch size of 64 was
used for all the models, as it was also used in our previous work.
Finally, for the class imbalance problem handling, we applied class
weights to the loss function, and during the training process, the
best model was saved based on the F1-macro average score [13] of
the validation dataset.

4 EXPERIMENTAL RESULTS

In order to demonstrate the mini-Xception’s performance for differ-
ent settings for the specific application, Table 2 provides a compari-
son between the best version of each model for the occluded test
set, that makes up roughly 7% of the observations. As expected, the
classification results of the model that was pre-trained solely on

non-occluded images (MODEL_1) is inferior compared to the rest.
The model which performed the best with respect to all three eval-
uation metrics was the pretrained model that was further trained
and fine-tuned for the occluded task (MODEL_3).

Even though the difference in performance between MODEL_3
and the version which was trained from scratch for the occluded
dataset (MODEL_4) was approximately 1%, there are more advan-
tages in utilizing the MODEL_3’s training scheme. Specifically, as
Figure 2 illustrates, MODEL_3’s initialization was more ideal since
the loss and accuracy were satisfactory even after only a few epochs
of training. On the contrary, it was required for MODEL _4 to be
trained approximately for 40 to 50 epochs in order to achieve a
performance similar to the one that MODEL_3 achieved after 5 to
10 epochs.

To obtain an assessment of the diminishment in performance
by using occlusion, we also conducted an evaluation of the classi-
fication capabilities of MODEL_1 for the non-occluded version of
the test-set. The F1-weighted average score for the non-occluded
test-set was 0.73, while the F1-macro average score was 0.72 (Fig
3). By examining the evaluation results of the non-occluded and
occluded scenarios for the pre-trained MODEL _1, the diminish-
ment in performance is immense, as in the non-occluded case, the
model achieved a F1-macro average score of 0.46. However, com-
paring the performance between the results of MODEL_1 for the
non-occluded version of the test-set as well as the results of our
best model (MODEL_3) for the occluded version of the test-set,
it is noticed that the overall performance is only decreased by a
small amount of 4%, when occlusion is introduced. Furthermore, by
comparing the performance diminishment between the two above-
mentioned scenarios for the different classes, it was observed that
a large amount of misclassifications has risen for the classes “Sad”
and “Neutral”. It is believed that this is due to the fact that apart
from having the lip corners pulled down, people often express
their sadness by crying or by raising their inner corners of eye-
brows raised and eyelids loose [22]. Therefore, this information is
hard to be utilized under partial or severe occlusion. The confu-
sion matrix which shows the inference results of MODEL _1 for the
non-occluded version of the test-set as well as the results of our
best model (MODEL_3) for the occluded version of the test-set are
illustrated in Fig 3.

5 CONCLUSIONS & FUTURE WORK

In this work, we developed a computationally efficient transfer
learning-based model for addressing facial expression recognition
in the presence of occlusion where the user is assumed to be wearing
head-mounted equipment that covers a large part of the area around
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Figure 2: Learning curves for MODEL_4 and MODEL_3
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Figure 3: Confusion Matrices for non-occluded and occluded test set

their eyes. We altered our existing dataset, which consists of roughly
50,000 images, to artificially mimic a VR occlusion by utilizing a

geometric simulation method based on the work of Rodrigues et al.

[23]. We employed in different settings our pre-trained model which
was trained on our original non-occluded database and further

fine-tuned the parameters on the occluded images. Comparing
the performance between our best models for the non-occluded
and occluded cases, it was noticed that the overall performance
was only reduced by a small amount of 4% when occlusion was
introduced. This fact indicates that FER under occlusion is still
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possible. Furthermore, the results confirm that the exploitation of
transfer learning as well as the simulation techniques for synthetic
occlusion can lead to a respectable model that produces results
that keep pace with frameworks that utilize information from the
periocular area and eyes.

As part of the European-funded project, MuselT, the final model
will be integrated into multisensory technologies, with the purpose
of extracting insights regarding the emotional state of users during
their engagement with cultural assets and music. The technologies
developed, and the mood predictions extracted, aim to improve the
inclusion, accessibility as well as the whole experience of cultural
assets for all, with a particular focus on the needs of people with
disabilities.

Concluding, the developed lightweight model and formulated
methodology can serve as a tool to monitor the emotional status of
individuals through mobile devices. Additionally, we anticipate that
both healthcare and serious-games sectors can be greatly benefited
when employing such models in VR environments or for visually
impaired users that wear certain optic equipment. For future work,
we aim to further improve our model as well as to evaluate its
effectiveness in actual real-life scenarios. Finally, we also intend to
implement and make experiments for a fused model that could be
efficaciously exploited for both occluded and non-occluded settings.
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