
688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 1 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Symbiosis of smart objects across IoT

environments

688156 - symbIoTe - H2020-ICT-2015

Report on symbIoTe Domain-Specific Enablers

and Tools

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučilisteu ZagrebuFakultetelektrotehnikeiračunarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
NextworksSrl, NXW, Italy
ConsorzioNazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
UnidataS.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
InstytutChemiiBioorganicznejPolskiejAkademiiNauk, PSNC, Poland

© Copyright 2017, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 2 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Document Control

Title: Report on symbIoTe Domain-Specific Enablers and Tools

Type: Public

Editor(s): Pavle Skočir

E-mail: pavle.skocir@fer.hr

Author(s): Pavle Skočir (UniZG-FER), Mario Kušek (UniZG-FER), Vasilis Glykantzis
(ICOM), Joao Garcia (UW), Gerhard Dünnebeil (AIT), Matteo Pardi (NXW), Tilemachos
Pechlivanoglou (ICOM), Elena Garrido Ostermann (ATOS), Petar Krivić (UniZG-FER),
Konstantinos Katsaros (ICOM), Ivana Podnar Žarko (UniZG-FER)

Doc ID: D2.3-v2.4

Amendment History

Version Date Author Description/Comments

v0.1 5/12/2016 Pavle Skočir (UniZG-FER) ToC

v0.2 19/12/2016 Mario Kušek (UniZG-FER), Vasileios
Glykantzis (ICOM)

Initial responsibilities put into document, added content into Section 4

v0.3 5/1/2017 Pavle Skočir Update of Sections 2, 3

v0.4 12/1/2017 Joao Garcia (UW), Gerhard Dünnebeil
(AIT), Matteo Pardi (NXW)

Added content into Sections 6 and 7

v0.5 20/1/2017 Pavle Skočir, Vasileios Glykantzis,
Tilemachos Pechlivanoglou (ICOM),
Elena Garrido Ostermann (ATOS),
Matteo Pardi, Petar Krivić (UniZG-FER),
Mario Kušek

Update of Sections 2, 3, added content into Sections 5.1, 5.2

v1.0 23/1/2017 Pavle Skočir Update of all sections

v1.1 26/1/2017 Joao Garcia, Matteo Pardi Update of Sections 6, 7

v2.0 26/1/2017 Konstantinos Katsaros, Elena Garrido
Ostermann, Mario Kušek,PavleSkočir

Update of all Sections after the internal review

v2.1 27/1/2017 Mario Kušek, Ivana Podnar Žarko
(UniZG-FER)

Update of Sections 5, 6; Executive summary and Section 2

v2.2 31/1/2017 Konstantinos Katsaros, Elena Garrido

Ostermann, Mario Kušek

Minor updates in sections: 1, 2, 3, 5, 6

v2.3 31/1/2017 Konstantinos Katsaros, Mario Kušek Minor updates in section 3

v2.4 6/2/2017 Sergios Soursos Submission ready version

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 3 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Table of Contents

1 Executive Summary 5

2 Introduction 6
2.1 Purpose of this document 8
2.2 Relation to other deliverables 8
2.3 Document structure 8

3 Domain-Specific Enablers 9

4 System Requirements for Enablers 12

5 Generic Architecture for symbIoTe Enablers 15
5.1 Enabler-specific Interface 16
5.2 Enablers’ Components 16
5.3 Sequence diagrams 22

5.3.1 Enabler registration 23

5.3.2 Enabler resource registration 24

5.3.3 Enabler resource unregistration 27

5.3.4 Enabler resource update 30

5.3.5 Enabler resource availability reporting 32

5.3.6 Availability reporting for Underlying resources 35

5.3.7 Scheduled Enabler resource monitoring 36

5.3.8 Search 37

5.3.9 Enabler resource accessby using RAP 39

5.3.10 Enabler resource access by using Domain-specific Interface 42

5.3.11 Using Underlying resource from an application using Enabler RAP 43

5.3.12 Using Underlying resource from an application using Domain-specific
Interface 44

5.3.13 Enabler resource usage monitoring 46

6 symbIoTe Use Case Enablers 49
6.1 Smart Mobility & Ecological Routing Use Case 49
6.2 SMER workflows and Enabler Architecture 49
6.3 Data Acquisition 51
6.4 Data Interpolation 51

6.4.1 Interface for measurement data access 51

6.4.2 Interface for providing Interpolated Data 52

6.4.3 Implementation architecture and environment 52
6.5 Calculation of Green Route 53

6.5.1 Obtaining Data 53

6.5.2 Obtaining Route 55
6.6 Point of Interest Search 57

7 Technologies for Enabler Implementation 58
7.1 Spring Cloud 58
7.2 OData 58
7.3 SensorThings API 58
7.4 Apache Jena 58
7.5 JSON Web Tokens 58

8 Conclusion and Future Steps 60

9 References 61

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 4 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

10 Glossary 61

11 Abbreviations 62

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 5 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

1 Executive Summary

The aim of Deliverable 2.3, entitled “Report on symbIoTe Domain-Specific Enablers and
Tools”, is to document the generic architecture of symbIoTe Enablers. Enablers are
envisionedas domain-specific back-end services,which are placed within the symbIoTe
Application Domain (APP).They are designed to ease the process ofcross-platform and
domain-specific application development, and even cross-domain application
development (specifically for mobile and web applications).

The deliverable briefly presents the symbIoTe ecosystem and its layered architecture to
explain how Domain-Specific Enablers fit into the symbIoTe ecosystem. Since symbIoTe
applications access directly to resources from IoT platforms, applications need to be
interacting with multiple platforms and perform data processing and aggregation on the
application side. This may not be favorable for some domains where applications require
e.g. higher-level aggregated and processed data, and would like to be freed of the burden
of complex processing tasks.Enablers are envisioned as entities providing such domain-
specific functionality to facilitate development of cross-platform and cross-domain
applications. They can conceal the complexity of the symbIoTe system from applications
and be used as a single access point to symbIoTe environment.

For example,an enabler for “air quality monitoring” could collect air quality readings
fromappropriate sensors being managed by different platforms within the samecity,
perform certain processing techniques so as to analyzethe collected data and provide the
output in an as-a-Servicemanner to applications. This way, the application does not need
to interact with multiple platforms and does not need to have domain-specific knowledge
to process air quality data. In addition, cross-domain applications using multiple enablers
can leverage and combine services offered by different domainenablers.Thus, application
developers can easily create innovativeapplications by focusing only on the cross-domain
logic,without having to care for the domain-specific details or direct interactions with
multiple IoT platforms.

Enablers have a dual role in the symbIoTe architecture:1) they act as applications, since
they connect to the CoreServices, search for resources and then access directly
theinvolved IoT platforms; 2) they also appear as platformsfor third-party applications:
applications use the CoreServices to search for enablers, and after getting appropriately
authorized, can access directly the enabler services.

The document presents the System Requirements based on which Enablers are specified
and their generic architecture. Enablers’architecture is composed of 1) generic
components for communication with symbIoTe Core where it reuses the symbIoTe Cloud
components which extend IoT platforms, and 2) domain-specific components providing
added value on top of IoT platform resources to provide domain-specific services.This
domain-specificfunctionality can be considered as the backend service of adomain-
specific service: it performs all the necessary datatransformations and processing to
create and offer therespective domain knowledge to third-party applications.

Within the symbIoTe project, Enablers will be designed in domains covered by symbIoTe-
defined use cases to facilitate the development of use-case specific applications. We
present a selected use case (Smart Mobility and Ecological Routing)and the
corresponding Enabler in this deliverable, along with the corresponding functionalities
planned to be implemented within an Enabler. Finally, we review the technologies that are
planned to be used for Enabler implementation.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 6 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

2 Introduction

In light of a highly fragmented IoT ecosystem faced with an increasing number of IoT
platforms, their interoperability and collaboration is quite challenging to achieve. However,
platform interoperability is an indispensable prerequisite for the emergence of novel cross-
platform IoT applications and business opportunities.The symbIoTe project steps into this
landscape by providing the means to create and manage virtual IoT environments across
variousIoT platforms. Domain-specific Enablers, pointed out in Figure 1, leverage such
virtual environments to offer specialized, value-added services. They can be regarded as
“domain-specific virtual IoT platforms” since enablers do notmanage and offer services on
top of actual physical resources but rather provide domain-specific functionality and
services by abstracting and aggregatingresources belonging to different IoT platforms.

For example,an enabler on “air quality monitoring” could collect data fromappropriate
sensors from different platforms within the samecity, perform certain processing
techniques so as analyzethe collected data and provide the output in an as-a-
Servicemanner to applications. This way, cross-domain applications can leverage and
combine higher-level services offered by different domainenablers, while application
developers can easily create innovativeapplications by focusing only on the cross-domain
logic,without having to care for the domain-specific details.

Figure 1 symbIoTe Architecture

Let us briefly reviewthe layered symbIoTe architecture to analyzethe placement of
Enablers within this architecture. IoT platforms connect various devices (sensors,
actuators, IoT gateways) within Smart Spaces with the Cloud. Nevertheless, the sharing of
sensor data and interaction between devices from various platforms is difficult to achieve,
even if devices aresituated in the same space and belongto the same domain (e.g.,
healthcarewearablesor home automation devices within the same apartment where their
interaction could be used for development of new services). symbIoTe adds an open
interface over such platforms (Interworking Interface shown in Figure 1), enabling different
IoT platforms to decide which resources will be exposed and advertised to third parties
through symbIoTe Core Services.This open interfacefacilitates application developers to

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 7 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

access resources from different platforms in the same way to create cross-platform
applications.

The symbIoTe architecture, shown in Figure 1, is built around the aforementioned layered
IoT stack connecting various devices within Smart Spaces with the Cloud. The
architecture comprises four layered domains: 1) Application Domain, 2) Cloud Domain, 3)
Smart Space Domain, and 4) Smart Device Domain.

1. Application Domain (APP):enables platforms to register resources they want to
advertise and make accessible via symbIoTe to third parties. symbIoTe provides
Core Services as the means for discovery of those resources across platforms.
Domain-Specific Enablers, the focus of this Deliverable, also reside within APP.
Enablers are specific back-end services designed to ease the process of cross-
platform and domain-specific application development.

2. Cloud Domain (CLD): provides a uniform and authenticated access to virtualized
IoT devices exposed by platforms to third parties through an open Interworking
Interface. In addition, it builds services for IoT Platform Federations enabling close
platform collaboration, in accordance with platform-specific business rules.

3. Smart Space Domain (SSP): provides services for discovery and registration of new
IoT devices in dynamic local Smart Spaces, dynamic configuration of devices in
accordance with predefined policies in those environments, and the ability to
connect user applications with Smart Space.These functionalities are a prerequisite
for Smart Space-specific services (e.g. switching the lights on or off in the room
user is currently in by using a smartphone application).

4. Smart Device Domain (SDEV): relates to smart devices and their roaming
capabilities. We assume that devices have the capabilities to blend with a
surrounding Smart Space while they are on the move. In other words, smart
devices can interact with devices in a visited smart space, which are managed by a
visited platform, in accordance with predefined access policies (e.g. an IoT device
on yacht entering a marina can interact with the marina administration to find a
desirable mooring).

symbIoTe allows for flexible interoperability mechanisms which can be achieved by
introducing an incremental deployment of symbIoTe functionality across the listed
architectural domains (APP, CLD, SSP and SDEV). Four Compliance Levels for IoT
platforms are defined (Level1 – Level4):

 Level1 symbIoTe Compliant Platform indicates opening up platform interface to
third parties in order to advertise and offer its resources through symbIoTe Core
Services.

 Level2 symbIoTe Compliant Platform assumes that platforms federate, thus adding
additional functionalities within their CLD.

 Level3 symbIoTe Compliant Platform assumes that platforms can share their IoT
devices situated within the same space, i.e. within the symbIoTe-defined Smart
Space.

 Level4 symbIoTe Compliant Platform offers support for device roaming, i.e.
enabling interaction of smart objects within visited Smart Spaces.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 8 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Within this Deliverable, the focus is on Application Domain (APP) where Enablers are
situated, and on the interaction of Enablers with symbIoTe Core components. Only
symbIoTe Level 1 Compliance is considered.

2.1 Purpose of this document

This deliverable reports the features and design of Domain-Specific Enablers identified
and specified in T1.3, and paves the way for simplified development of cross-platform IoT
applications. It identifies the necessary technologies that can further simplify IoT
application design and implementation.

2.2 Relation to other deliverables

System Requirements reported in this document based on which Enablers are defined are
primarily derived from deliverable D1.2 “Initial Report on System Requirements and
Architecture”. The progress in the specification of System Requirements, made after the
submission of D1.2, is also captured. The generic Architecture for symbIoTe Enablers is
built upon the symbIoTe Core Services presented in the D1.2 since symbIoTe Enablers
reuse components from the symbIoTe Core Services, presented in deliverable D2.2
“symbIoTe Virtual IoT Environment Implementation.” symbIoTe will design and implement
Domain-Specific Enablers within the domains framed by the symbIoTe use cases which
are reported in D1.3 “Final Specification of Use Cases and Initial Report on Business
Models.” The technologies planned to be used for the implementation of symbIoTe system
are specified in D5.1: “Implementation Framework,” and will be considered in this
document to be used for Enabler implementation.

This deliverable presents an initial specification related to symbIoTe Domain-Specific
Enablers.The final report containing Domain-Specific features and implementation details
will be reported in D2.6 “symbIoTe Domain-Specific Enablers and Tools.”

2.3 Document structure

Section 3 describes Enablers in more detail, introducing their main features and the
benefits of their usage in an IoT ecosystem. System requirements relating to enablers are
presented in Section 4. Even though symbIoTe Enablers are planned to be domain-
specific, generic components existfor each of theseEnablers, which are proposed in
Section 5. A Domain-Specific Enabler for aselected symbIoTe usecaseis presented in
Section 6. Technologies for Enablers’ implementation are considered in Section 7.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 9 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

3 Domain-Specific Enablers

In the telecommunications context, the term enablerisused to describe entities,which offer
service interoperability across devices, geographies, service providers, operators, and
networks, while allowing businesses to compete through innovation and differentiation [1].
Enablers are also used in the context of platforms providing easy to use,“menu” services
to customers [2], for example, generic enablers are listed within the well-known FIWARE
Catalogue1. In symbIoTe,we envision Enablers as domain-specific back-end services
facilitating simplified development of third-party IoT applications within the symbIoTe
ecosystem, thus creating an opportunity for a wider adoption of the ecosystem.
Enablers,on the one hand, usethe symbIoTe system to access the actual IoT resources
managed by various IoT platforms, while on the other hand add value on top of those
resources to develop functionalities relevant to aspecific domain. Therefore, they are
being referred to as Domain-Specific Enablers.

Let us first review how a third-party application can use resourcesoffered by symbIoTe-
complaint platforms. Firstly, an application queries the symbIoTe Core Services to find the
desired resources. Since symbIoTe Core Services storeonly the resource metadata, i.e.
they onlystore resource description with information on how to access the resources, an
application gets a response containing access points to “native” IoT platforms exposing
the discovered resources. Secondly, the application sends requests to acquire sensor
data or access actuator primitives directly on the IoT platform side, and handles the
responses on its own.

In accordance with the previous scenario, Enablers, as shown in Figure 2,also act as third-
party applications when using resources from different IoT platforms and handle all
communication with symbIoTe Core Services and the underlying IoT platforms. However,
they add value on top of these resourcesoffering enabler-specific services to
applications.With Enabler support, an application thus gains access to processed data
from various IoT platformsthrougha single interface, the Enabler-specificInterface exposed
by that Enabler.If it were not for Enablers, each applicationwouldneed tohandle access to
multiple IoT platforms and acquired data on its own.

1https://catalogue.fiware.org/enablers

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 10 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 2 Cross-platform application development using Enablers

In addition to acting as third-party applications, Enablers can store data and provide data
analytics on top of the data set acquired from various sources and administrative domains.
They offer value-added services on top of IoT services, which are managed and offered
by “native” IoT platforms. In principle, an Enabler is a software component that can be
regarded as a virtual IoT platform since it does not possess the actual hardware, but
rather offers value-added services on top of the IoT services and devices being accessed
through the Interworking Interface. For symbIoTe Core Services an enabler thus plays a
dual role: 1) it is an application that uses symbIoTe Core Services to find adequate IoT
resources, and 2) it acts as another IoT platform offering domain-specific IoT resources to
applications.

In their role as applications, they access resources from actual IoT platforms and
transform, combine and store them (e.g. air sensor data from European capitals). In their
role as platforms, Enablers provide virtual resources to third-party applications from initial
data (e.g. air quality indexes based on for example wind, temperature and traffic data).
Additionally, as platforms, Enablers also register their services with the symbIoTe Core
Services, so that they can be discovered by other applications wanting to make use of
them to find and access data from underlying IoT platforms. The search functionality is
depicted by dashed arrows in Figure 2.

Applications can also use different Domain-Specific Enablers to create cross-domain
applications. This way, a wider range of value-added services can be developed. Without
Enablers, applications would need to send multiple queries to symbIoTe Core Services to
identifyneeded resources in different domains, and then would need to handle access to
those resources residing in multiple IoT platforms.

The main features of the Enablers are the following:

 They facilitate the usage of symbIoTe system to third-party applications.

Enabler-specific Interface

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 11 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

When Enablers are available to symbIoTe applications, applications can simply
interface them, specifying the resources they would like to access. An Enabler
returns the corresponding data. This is enabled by internal Enabler processes and
components, which are responsible for searching and accessing the underlying IoT
platform resources necessary for the application. In this process, an enabler can
firstly contact symbIoTe Core to find specified resources, then access the
discovered resources through the Interworking Interface of one or more IoT
platforms, process the retrieved data and store it locally. Enablers thus offer the
possibility to use symbIoTe Core Services and IoT platforms through only one
interface, Enabler-specific Interface. Application developers do not even have to
know the existence of the underlying IoT platforms.

It is important to emphasize that Enablers act as a single access point for
applications during their execution time. In order to find the Enabler (if the location
and functionalities of the Enabler are not known beforehand), an application
developer can execute a query by using symbIoTe Core Services, in the same way
as he/she would search for underlying resources from “native” IoT platforms.

 They can store intermediate data.

Data storage is an important functionality for use-cases where historic data needs
to be taken into account, where statistical operations need to be performed over
gathered data or where historic data needs to be presented in the applications.
Without Enablers, applications would be responsible for storing data gathered from
multiple IoT platforms. As previously commented, symbIoTe Core Services do not
store values of registered resources, they only store the location where the
resources can be acquired. Handling data from IoT platforms, and performing
further operations on this data would cause much additional work to application
developers, and by having this functionality, Enablers expedite application
development.

 They offer out-of-the-box logic functionality.

Out-of-the-box logic includes specific services, such as data aggregation, and more
complex data analysis tasks (e.g. outlier detection) that can be performed within
Enablers after acquiring data from the desired resources residing at multiple IoT
platforms, thus relieving the application developers of the additional work of
implementing such functionalities that are considered important in a certain domain.

 They enable usage of external services to create added-value IoT services

External services are services that can originally be thought of as outside the IoT
domain, but able to be used with symbIoTe-provided data. Enablers offer
integration of those services with symbIoTe-provided data. Examples are
emergency response service, which can be triggered based on data from health
sensors, or routing service that can route the users based on data from air quality
sensors. By integrating these services with symbIoTe-provided data, Enablers can
create new added-value IoT services.Enabler developers should manage these
external services integrated with symbIoTe.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 12 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

4 System Requirements for Enablers

The following table lists the set of symbIoTe system requirements applicable in the
Enablers’ domain. These include requirements presented in deliverable D1.2 but also
additional ones specified past the submission of this deliverable. The requirements were
specified within T1.3 and act as the starting point for defining main functionalities of the
Enablers and to identify the required components in Enablers’ Architecture.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 13 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Table 1 System Requirements for Enablers

Index Domain Type Category Importance Description Use Cases

6 Application,
Cloud

Functional Monitoring SHOULD The system SHOULD monitor the load on the registered IoT
services. Related information can be directly retrieved by IoT
platforms (if supported). Additionally, the system can keep track
of the IoT services assigned to applications/enablers during the
mediation process e.g., when an application developer has
identified, requested and has been granted access to IoT services
for the intended application. The retrieved information can be
used to estimate service load, service popularity (useful for
ranking).

2,3,4

20 Application Functional Management MUST The system MUST offer domain-specific enablers that hide from
application developers the existence of multiple IoT platforms and
resources targeted to a specific domain. The system must
manage all the underlying resources, include the required logic,
ensure the required quality, performance, etc (see Requirements
2, 5-12)

1,2,3,4,5

21 Application Functional Management SHOULD The system SHOULD allow application developers to create their
own enablers (focusing on a single domain or be cross-domain),
defining their own logic, etc. These "user-owned enablers" should
be available at least to their creators.

1,2,3,4,5

22 Application Functional Management MAY The system MAY allow application developers to share their
custom enablers with other application developers. Trading
mechanisms may be in place to govern the use of custom
enablers.

1,2,3,4

29 Application,
Cloud

Non-Functional Performance SHOULD Number of IoT platform instances/enablers: the system SHOULD
scale in the order of thousands of instances.

2,3,4

30 Application,
Cloud

Non-Functional Performance SHOULD Number of applications/enablers: it SHOULD scale in the order of
thousands of instances.

2,3,4

34 Application,
Cloud

Functional Management SHOULD The system SHOULD enable IoT platforms to control whether
their IoT services appear in search results, subject to the access
rights of the query issued to these services i.e., whether the
application developer or enabler is registered with the respective
IoT platform.

1,2,3,4,5

35 Application,
Cloud

Functional Management,
Interface

MAY The system MAY enable IoT platforms to define access rules to
their IoT services during the registration process. Such access

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.4 Page 14 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

rules refer to the intended availability of the IoT services to
applications/enablers e.g., maximum 10 times per day, only from
7p.m. to 7a.m..

37 Application,
Cloud

Functional Management MAY The system MAY support the registration of applications/enablers
to underlying IoT platforms. This requirement pertains to cases
where the search results contain IoT services that the query
issuer does not currently have access rights for. An example
mechanism for the intended symbIoTe support, is the redirection
to the IoT platform registration interface.

1,4

39 Application,
Cloud

Functional Management SHOULD The system SHOULD support registration updates i.e., IoT
platform operators/enablers should be able to update their
registered IoT serviceswith symbIoTe. For example, updating
provided information upon sensor/actuator upgrades.

1,2,3,4,5

45 Application,
Cloud

Functional Interface SHOULD Enablers SHOULD be regarded as high-level IoT platforms that
can register their domain-specific services to the system, similar
to native IoT platforms.

1,2,3,4,5

67 Smart Space Functional Management /
Interface

SHOULD An app/enabler SHOULD be able to receive a notification
whenever an L4-Compliant resource it is using changes Smart
Space association

1,2,3

81 Application Functional Monitoring MUST The system MUST monitor the quality of the offered services so
as to make sure that the advertised quality of service is met e.g.,
number of aggregated sensors, accuracy of reported values, etc.

1,2,3,4,5

82 Application Functional Management MUST The system MUST manage all the underlying resources so as to
ensure the required quality, performance. For instance, an
enabler that aggregates sensor readings throughout a country
can search for new/alternative sensors in a certain area, if it
experiences failures with already aggregated sensors there.

1,2,3,4,5

83 Application Functional Management MUST The system MUST present a minimum application domain logic.
In the simplest case this corresponds to the mere aggregation of
IoT resources from multiple IoT services. More advances
processing can be applied for the support of added value
services.

1,2,3,4,5

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 15 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

5 Generic Architecture for symbIoTe Enablers

The main purpose of Enablers is to provide functionalities needed in specific domains.
Examples of such functionalities are data aggregation, forwarding data based on
predefined thresholds, forwarding data in certain periods of time, analyzing data,
forwarding certain outliers etc. However, each of the Domain-Specific Enablers with the
aforementioned functionalities have generic functionalities that enable interaction with
symbIoTe components from other domains in the symbIoTe ecosystem. This generic
architecture, with the necessary components, is shown in Figure 3.

Figure 3 Enablers’ Generic Architecture

Enablers’ Generic Architecture is composed of two types of components: components in
common with Cloud Domain (marked in orange), and Enabler-specific components
(marked in green). Each Enabler handles two types of resources, because of the fact it
acts both as symbIoTe application and as IoT platform. Enabler Resources are resources
that the Enabler offers to applications (in its role of IoT platform), and Underlying
Resources are defined as resources that the Enabler uses from underlying IoT platforms.
Enabler Resources are created based on Underlying Resources.

Components in common with Cloud Domain are generic components for each Enabler.
These are: Resource Access Proxy (RAP), Authentication & Authorization (AAM), Security
Handler (SH), Registration Handler (RH), and Monitoring. RAP serves as access point for
application to acquire resources exposed by Enabler. AAM is responsible for
authenticating and authorizing applications and Enabler components. SH provides a set of
libraries implementing security functionalities, RH registers resources exposed by Enabler
to symbIoTe Core, while Monitoring monitors the availability and usage of the exposed
resources.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 16 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Enabler-specific components contain domain-specific functionalities. These components
are Resource Manager, Platform Proxy and Enabler Logic. Developers wanting to
facilitate usage of symbIoTe system for their domain-specific applications should be able
to create those components according to their requirements.

Resource Manager is a component with the main goal tofind through symbIoTe Core the
required resources that will be processed and made available by theEnabler. Domain-
specific functionality of this component could be handling logic for finding Underlying
resources through symbIoTe Core (e.g. when a resource is not available for a certain
amount of time, a replacing resource will be searched for).

Platform proxyhas a main functionality to access Underlying resources found by
Resource Manager from IoT platforms. Domain-specific functionality of this component
could be interaction logic for retrieving resources from underlying IoT Platforms (e.g. every
10 seconds).

Enabler Logic is an Enabler-specific component responsible for specifying the type of
resources that will be found by Resource Manager, accessed by Platform Proxy and
offered to applications.It also contains domain-specific logic, functions for processing the
retrieved data(e.g.data aggregation), statistical operations and similar. These
functionalities should be customized for each specific domain.

The following parts of this Section describe Enabler architecture in more detail. Section
5.1 presents Enabler-specific Interface exposed to applications. The Enabler components
are described in Section 5.2. Sequence diagrams showing the interaction between these
components, as well as interaction with components from other domains, are presented in
Section 5.3.

5.1 Enabler-specific Interface

For communication with Applications, Enabler-specific Interface is specified, composed of
RAP and a Domain-Specific Interface. RAP has the same functionality as the component
with the same name in the CLD domain, it allows applications to access the wanted
resources. When accessing Enabler resources through RAP, the communication goes
through symbIoTe Core (as in L1 Compliance). In that way, symbIoTe Core is informed of
the usage of Enabler resources. Domain-specific Interface enables additional domain-
dependent functionalities, mainly for accessing Enabler Logic and data store. When using
Domain-specific Interface, communication between application and Enabler is
direct.Enabler-specificInterface should be exposed to application developers so that they
can use it within their applications. Accessing Enablers in these two ways, by using RAP
and by using Domain-specific Interface will be presented in Sequence diagrams in
Sections 5.3.9, 5.3.10, 5.3.11, and 5.3.12.

5.2 Enablers’ Components

Components in common with Cloud Domain are presented first. These are:

 Registration Handler (RH),

 Authentication and Authorization Manager (AAM),

 Resource Access Proxy (RAP),

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 17 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Monitoring, and

 Security Handler (SH).

Afterwards, Enabler-specific components are described:

 Resource Manager,

 Enabler Logic, and

 Platform Proxy.

Table 2 Registration Handler

Component Registration Handler

Description This component provides similar functionalities to the platform-side Registration Handler
(CLD), apart from the support for IoT federations. Federations between enablers or
enablers and platforms are not considered. The component allows sharing IoT resources
published by Enablers with other application developers by registering them at symbIoTe
Core. Trading mechanisms may be in place to govern the use of the Enablers.
Furthermore, the component enables registration updates.

Provided
functionalities

 Registers resources to the symbIoTe Core using the symbIoTe Core Information
Model

 Updates resource status and unregisters resources

 Registers pricing of a resource

 Registers security info

 Handles configuration of the exposed resource

 Synchronizes the information with symbIoTe Core

Relation to other
components

Registry (at symbIoTe Core level): To register the resources in the Registry

Security Handler (Enabler): To retrieve the necessary core tokens and communicate
securely with the symbIoTe Core

Resource Access Proxy (Enabler):To register the resource on the Resource Access
Proxy, along with the access policy to access it

Related use
cases

ALL

Related
requirements

22, 34, 39, 45

Table 3 Authentication and Authorization Manager

Component Authentication and Authorization Manager

Description This component provides similar functionalities to the platform-side Authentication and
Authorization Manager component (CLD).

Provided
functionalities

 Authenticates native applications registered in the Enabler's space, and
provides Home Tokens containing attributes in the enabler's space

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 18 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Enables sign out functionality for applications registered in the Enabler's space

 Checks any asynchronous revocation of home tokens when polled by external
AAMs, by managing a "Token Revocation List"

 Checks the validity of foreign tokens or core tokens provided by applications
that are not natively registered in the enabler's space

 Performs the "Attributes Mapping Function" for applications that are not natively
registered in the enabler's space and would like to access resources in the
enabler's space

 Generates "foreign tokens" for applications that are not natively registered in the
enabler's space

Relation to other
components

Security Handler (Enabler): To check home tokens revocation in place of other enabler's
components (e.g., Registration Handler, Resource Access Proxy) and to authenticate
applications registered in the Enabler's space

Core Authentication & Authorization Manager (APP): To check home tokens revocation
in place of other enabler's components (e.g., Registration Handler, Resource Access
Proxy)

Platform Authentication & Authorization Manager (CLD): To check home tokens
revocation in place of other enabler's components (e.g., Registration Handler, Resource
Access Proxy)

Related use cases ALL

Related
requirements

35, 37

Table 4 Resource Access Proxy

Component Resource Access Proxy

Description This component provides similar functionalities to the platform-side Resource Access
Proxy component (CLD). The component acts as a mediator between Enabler Logic and
the application. The presence of this component is necessary to make the Enabler
symbIoTe-compliant, by allowing the applications to access the resources of the Enablers
and platforms uniformly.

Provided
functionalities

 Access to the resource or service exposed by the Enabler

 Registers when an application starts or stops using resources

Relation to other
components

symbIoTe-enabled Application: It accesses Resource Access Proxy to acquire resources

Registration Handler (Enabler): Informs Resource Access Proxy of the registered
resources that it should provide access to

Security Handler (Enabler): Verifies tokens

Monitoring (Enabler): Resource Access Proxy notifies Monitoring when applications start
or stop using resources

Core Resource Monitor: Contacts Resource Access Proxy to check the availability/status
of resources

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 19 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Core Resource Access Monitor: Resource Access Proxy emits resource usage and
notifies the Core Access Resource Monitor when the resource is released

Related use
cases

ALL

Related
requirements

Table 5 Monitoring

Component Monitoring

Description Similar to the platform-side Monitoring component (Cloud Domain). It monitors the
load on the IoT services offered by Enabler and the usage of the registered
services by the applications. The retrieved information can be used to estimate
service popularity (useful for ranking).
The component must monitor the quality of the offered services so as to make
sure that the advertised quality of service is met e.g., number of aggregated
sensors, accuracy of reported values, etc.

Provided functionalities
 Checks load/availability of the resources registered by Enabler

 Record of start and end of the access to a resource

Relation to other
components

Security Handler (Enabler): To request core token

Resource Manager (Enabler): To notify about the status/availability/performance
of the resources

Core Resource Access Monitor: To send usage report

Related use cases ALL

Related requirements 6, 81

Table 6 Security Handler

Component Security Handler

Description This component combines functionality from the platform-sideSecurity Handler(CLD) and
the Application Security Handler (APP).

Provided
functionalities

 Authenticates with the core AAM or foreign AAM on behalf of the entity that uses
its functionalities.

 Manages core tokens and foreign tokens assigned to the entity that uses its
functionalities.

 Performs the “validate access tokens” procedure when one or more core tokens
are provided to the entity that uses its functionalities.

 Performs the “check revocation procedure” with the Core AAM when one or more
core tokens are provided to the entity that uses its functionalities.

 Initiates the “Challenge-Response Procedure” to verify that the component or
application using the core tokens is effectively the component or application for
which they have been released by the Core AAM, in case one or more core
tokens are provided to the entity that uses its functionalities.

 Manages cryptography operations on behalf of a component using its

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 20 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

functionalities, when such component or application provides a set of tokens to a
component in a given IoT platform federated with symbIoTe.

 Performs the “Check Access Policy” procedure to verify that the tokens supplied
by the applications satisfy the access policies of the resources when the Search
Engine is used by an application.

 Performs the “Validate Certificate” procedure on behalf of the component or
application that uses its functionalities.

Relation to other
components

Registration Handler (Enabler): The Registration Handler requests a core token or wants
to validate a certificate

Resource Access Proxy (Enabler): The Resource Access Proxy requests a core token or
wants to validate a certificate

Authentication and Authorization Manager (Enabler): To retrieve home tokens

Core Authentication and Authorization Manager: To retrieve core tokens for other
components (e.g. Registration Handler, Resource Access Proxy)

Core Security Handler: To validate tokens

Related use
cases

ALL

Related
requirements

Table 7 Resource Manager

Component Resource Manager

Description This component manages underlying IoT resources used by Enabler. It receives input
from Monitoring component about the status/availability/performance of the resources
offered by the Enabler. If the advertised quality of service is not met (e.g., some sensors
go offline), this component is responsible for automatically discovering and registering to
new resources.
The component queries symbIoTe Core Search Engine to discover new resources which
match certain criteria related to the Enabler's services. Furthermore, it ranks the results
returned by the Search Engine according to the enabler's domain-specific requirements
and registers to new resources in order to meet the advertised quality of service.
Additionally, the component keeps track of the IoT resources assigned to Enablers during
the mediation process e.g., when an enabler has identified, requested and has been
granted access to IoT resources for the intended application.

The usage of new resources may also be facilitated by an automated payment system to
support access to private resources that are not exposed to everyone. The Resource
Manager should also periodically search for resources matching its needs and if it finds
more suitable ones (e.g. cheaper or more accurate), it should replace the old ones with
the newfound ones.

Provided
functionalities

 Supports resource discovery

 Ranks resources relevant to the Enabler's needs. The Enabler might have
different criteria compared to the symbIoTe ranking engine

 Supports automated registration to new resources

 Periodically checks for more suitable resources in the symbIoTe Core Registry

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 21 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Relation to other
components

Enabler's Logic: The Enabler's Logic provides information about the required resources to
the Resource Manager

Monitoring: The monitoring notifies the Resource Manager about the
status/availability/performance of the resources

Related use
cases

ALL

Related
requirements

6, 20, 21, 82

Example 1:
An Enabler claims to provide temperature sensors in all the European capitals. However,
the temperature sensors used to provide temperature information in Zagreb suddenly
become unavailable. The Resource Manager should be notified about this incident in
order to automatically search and subscribe to temperature sensors offered by other
platforms in Zagreb.

Table 8 Enabler Logic

Component Enabler Logic

Description This component presents a minimum application domain logic. In the simplest case this
corresponds to the mere aggregation of IoT resources from multiple IoT services. More
advanced processing can be applied for the support of value-added services
corresponding to the requirements of a specific domain. The component is domain-
specific and its additional functionalities should be implemented by the developers of the
Enabler.
It is responsible for notifying the Resource Manager about the required resources as well
as for accessing and storing the resources data. Furthermore, it groups the platform
resources in virtual resources (if necessary), processes the data and offer more
specialized services (e.g. weather forecast, providing historical data, statistical results,
etc...). Finally, it notifies the Enabler's Registration Handler about which resources should
be registered in symbIoTe Core, and initiates the update of registered resources.

Provided
functionalities

 Defines the kind and amount of resources

 Groups the platforms resources in virtual resources

 Provides data storage

 Processes the data and offers the possibility to develop specialized services

Relation to other
components

Resource Manager (Enabler): The Resource Manager gets the description of the required
resources

Registration Handler (Enabler): The Enabler Logic specifies what kind of resources
should be registered in symbIoTe Core

Resource Access Proxy (IoT Platforms): Requirements by applications are forwarded
through Resource Access Proxy

Related use
cases

ALL

Related
requirements

20, 21, 39, 45, 83

Example 2:

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 22 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

An Enabler claims to provide temperature sensors in all the European capitals. In the
application, a user wants to access average temperature in Zagreb for each of the last
three days. Enabler logic should gather data from selected temperature sensors in Zagreb
(found by Resource Manager), calculate the average, and send the response to
application.Table 9 Platform Proxy

Component Platform Proxy

Description This component is responsible for accessing IoT Platforms to gather data specified by
Enabler Logic, and found by Resource Manager. Access to platform data is initiated by
Enabler Logic. Data can be acquired by using a push or pull mechanism. Gathered data
is forwarded to Enabler Logic where it can be stored.

Provided
functionalities

 Accesses IoT Platforms to acquire resources

 Forwards acquired resources to Enabler Logic

 Offers the possibility to develop mechanisms for accessing IoT Platforms based on
domain-specific needs

Relation to other
components

Resource Manager (Enabler): The Resource Manager contains the description of the
required resources

Enabler Logic: specifies when and how should resources from IoT platform be acquired

Related use
cases

ALL

Related
requirements

20, 21

Example 3:
An Enabler claims to provide temperature sensors in all the European capitals. In the
application, a user wants to receive updated values every minute from two nearest
sensors. Platform Proxy should acquire these measurements from sensors specified by
Enabler Logic, and found by Resource Manager.

5.3 Sequence diagrams

The functionalities defined for symbIoTe Enablers are the following:

 Enabler registration

 Enabler resource registration

 Enabler resource unregistration

 Enabler resource update

 Enabler resource availability reporting

 Availability Reporting for Underlying resources

 Scheduled Enabler resource monitoring

 Search

 Enabler resource access by using RAP

 Enabler resource access by using Domain-specific Interface

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 23 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Using Underlying resource from an application using Enabler RAP

 Using Underlying resource from an application using Domain-specific Interface

 Enabler resource usage monitoring

Hereafter all functionalities are presented in the form of UML sequence diagrams, with
detailed description of the exchanged messages. Figure 4 shows the legend for messages
used in the diagrams. The arrow showing a “mandatory interaction”is in description of
diagrams referred to as “Procedure”because it presents a sequence of messages being
exchanged between components. These “Procedures” are mainly related to security
mechanisms.

Figure 4Legend – messages used in the following diagrams

Components in the sequence diagrams are color-coded so that each color signifies a
block in symbIoTe architecture:

 Green: Enablers

 Yellow: Application / other Enabler

 Blue: symbIoTe Core Services

 Orange: IoT Platform Cloud

5.3.1 Enabler registration

Before entering the symbIoTe ecosystem, each Enabler is obliged to register to symbIoTe
Core. The process is handled by Enabler owner through symbIoTe Administration
application.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 24 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 5 Enabler registration

Description:

 Message 1: Enabler owner sends a registration request to symbIoTe by using the
Administration web application. The request is either for a trail or normal
registration.

 Message 2: Administration sends request to the Core Authentication and
Authorization Manager, which requests credentials for the Enabler.

 Message 3: Core Authentication and Authorization Manager returns the generated
certificate and applicationId to Administration.

 Message 4: Administration web application returns certificate and applicationIdto
Enabler owner. The Enabler owner can subsequently configure the Enabler to
become L1 Compliant.

5.3.2 Enabler resource registration

Enabler registers its resources in symbIoTe Core so that they can be found by other
applications.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 25 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 6 Enabler resource registration

Description:

 Message 1: Registration is initiated by Enabler Logic.

 Message 2: generated by the Registration Handler and sent to the Resource
Access Proxy in the same Enabler. It is used to register the resource on the
Resource Access Proxy, along with the access policy to access it;

 Message 3 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, this step is not needed.

 Message 4 (optional): generated by the Security Handler and sent to the home
(enabler) AAM in which the Registration Handler is registered. It is used to
authenticate the Registration Handler. If the Registration Handler is already logged
in, this step is not needed.

 Message 5 (optional): generated by the home (enabler) AAM in the Enabler and
sent to the Security Handler. It is used to provide the home token(s) with attributes
included. If the Registration Handler is already logged in, it is not necessary.

 Message 6 (optional) (PlatformAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 26 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Procedure 7 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

 Procedure 8 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

 Procedure 9 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

 Procedure 10 (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the home Enabler in a new set of attributes that
it has in the core layer. If attributes are the same or the Registration Handler
already has valid core token(s), it is not necessary.

 Message 11 (optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

 Message 12 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

 Message 13 (RegPlatformInterface): generated by the Registration Handler and
sent to the Registry. Its main purpose is to provide the metadata describing a
resource or a set of resources which the enabler exposes to the Registry. In
addition to the registration message, it also provides the core token(s) containing
the attributes assigned to the Registration Handler.

 Message 14: generated by the Registry and sent to the Core Security Handler. It is
used to ask the security handler to verify the complete validity of the token.

 Procedure 15 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

 Procedure 16: verification of the time validity, authenticity and integrity of the
provided token(s).

 Procedure 17: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

 Message 18: generated by the Security Handler in the core layer and sent to the
Registry. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

 Procedure 19: stores registrations to database and generates ID for that resource

 Message 20: Registry sends a message to Core Resource Monitor to add a
schedule task for checking availability of registered resources. Core Resource

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 27 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Monitor will in the future check availability (messages 26-30) and asynchronously
inform Resource Handler about availability with updated status list (message 33).

 Message 21: Registry returns: IDs of registered resources, status list and a
certificate (used to demonstrate the identity of the entity generating the message,
for authentication purposes, the certificate must be validated by the Security
Handler of the component)

 Message 22: Registration Handler forwards the certificate to Security Handler for
validation

 Procedure 23: Security Handler validates the certificate

 Message 24: Security Handler returns status of validation

 Message 25: Registration Handler forwards status of validation to Enabler Logic.

 Messages 26-30 is checking of availability of each resource

 Message 26 (AccessResourceInterface): Core Resource Monitor sends message
to Resource Access Proxy in order to check availability. It includes the certificate as
well (used to demonstrate the identity of the entity generating the message, for
authentication purposes, the certificate must be validated by the Security Handler
of the component).

 Message 27: Resource Access Proxy sends the certificate to Security Handler for
validation

 Procedure 28: Security Handler validates the certificate

 Message 29: Security Handler returns status of validation

 Message 30: Resource Access Proxy returns availability status

 Message 31: Core Resource Monitor collects all availability status, makes a status
list and sends it to Registry

 Procedure 32: Updates availability in database

 Message 33 (optional): Registry sends asynchronous message with availability list
and the certificate to Registration Handler

 Message 34 (triggered by 33) (RegistrationHandlerInterface): Registration Handler
forwards the certificate to Security Handler for validation

 Procedure 35: Security Handler validates certificate

 Message 36: Security Handler returns status of validation

5.3.3 Enabler resource unregistration

Enabler unregisters its resource in symbIoTe Core that will no longer be offered to
applications.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 28 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 7 Enabler resource unregistration

Description:

 Message 1: Unregistration is initiated by Enabler Logic.

 Message 2: generated by the Registration Handler and sent to the Resource
Access Proxy in the same Enabler. It is used to unregister the resource on the
Resource Access Proxy;

 Message 3 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

 Message 4 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

 Message 5 (optional): generated by the home AAM in the Enabler and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

 Message 6 (optional) (Enabler AAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

 Procedure 7 (optional) (Security Interface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 29 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Procedure 8 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

 Procedure 9 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

 Procedure 10 (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the Enabler in a new set of attributes that it has
in the core layer. If attributes are the same or the Registration Handler already has
valid core token(s), it is not necessary.

 Message 11(optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

 Message 12 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

 Message 13 (RegEnablerInterface): generated by the Registration Handler and
sent to the Registry. It is used to provide, along with the unregistration message,
the core token(s) containing the attributes assigned to the Registration Handler.

 Message 14: generated by the Registry and sent to the Core Security Handler. It is
used to ask to the security handler to verify the complete validity of the token.

 Procedure 15 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

 Procedure 16: verification of the time validity, authenticity and integrity of the
provided token(s).

 Procedure 17: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

 Message 18: generated by the Core Security Handler and sent to the Registry. It is
used to communicate the outcome of the token validation procedures performed by
the Core Security Handler.

 Procedure 19: Registry deletes resource in database

 Message 20: Registry sends message to Core Resource Monitor to delete
availability and cancel scheduled monitoring tasks

 Message 21: returns call

 Message 22: Registry informs Core Resource Access Monitor that specific source
is unregistered and that the users of that resource need to be informed

 Message 23 (optional) (ApplicationInterface): Core Resource Access Monitor
informs each reachable (open connection or registered endpoint)
Application/Enabler that uses specific resource about deletion of resource

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 30 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 24 returns call

 Message 25 returns call

 Message 26: Registry returns deleted IDs and certificate to Registration Handler
(certificate is used to demonstrate the identity of the entity generating the message,
for authentication purposes, certificate must be validated by the Security Handler of
the component)

 Message 27: Registration Handler forwards certificate to Security Handler for
validation

 Procedure 28: Security Handler validates certificate

 Message 29: Security Handler returns status of validation

 Message 30: Registration Handler forwards status of validation to Enabler Logic.

5.3.4 Enabler resource update

Enabler updates the resource exposed through symbIoTe Core. By doing that, it can be
ensured that resource descriptions at the symbIoTe Core are up-to-date.

Figure 8 Enabler resource update

Description:

 Message 1: Update is initiated by Enabler Logic.

 Message 2: generated by the Registration Handler and sent to the Resource
Access Proxy in the same Enabler. It is used to update the resource on the
Resource Access Proxy;

 Message 3 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 31 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 4 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

 Message 5 (optional): generated by the home AAM in the Enabler and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

 Message 6 (optional) (EnablerAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

 Message 7 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

 Procedure 8 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

 Message 9 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

 Procedure 10 (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the Enabler in a new set of attributes that it has
in the core layer. If attributes are the same or the Registration Handler already has
valid core token(s), it is not necessary.

 Message 11 (optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

 Message 12 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

 Message 13 (RegEnablerInterface): generated by the Registration Handler and
sent to the Registry. It is used to provide, along with the update message, the core
token(s) containing the attributes assigned to the Registration Handler.

 Message 14: generated by the Registry and sent to the Security Handler in the core
layer. It is used to ask to the security handler to verify the complete validity of the
token.

 Message 15 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

 Procedure 16: verification of the time validity, authenticity and integrity of the
provided token(s).

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 32 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Procedure 17: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

 Message 18: generated by the Security Handler in the core layer and sent to the
Registry. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

 Procedure 19: Registry updates resource in database

 Message 20: Registry ends request to Core Resource Monitor to update availability
and to schedule availability check

 Message 21: Core Resource Monitor schedules task for checking availability for
specified resources

 Message 22: returns call

 Message 23: Registry sends message to Core Access Resource Access Monitor to
inform current user of updated resources

 Message 24 (optional) (ApplicationInterface): Core Resource Access Monitor
informs each reachable (open connection or registered endpoint)
Application/Enabler that uses specific resource about resource update

 Message 25 returns call

 Message 26 returns call

 Message 27: Registry returns updated IDs including a certificate

 Message 28: Registration Handler forwards certificate to Security Handler for
validation

 Procedure 29: Security Handler validates certificate

 Message 30: Security Handler returns status of validation

 Message 31: Registration Handler forwards status of validation to Enabler Logic.

5.3.5 Enabler resource availability reporting

Enabler registers Enabler resources to Core Resource Monitor. Availability check will be
initiated by Core Resource Monitor (described in 5.3.7Scheduled Enabler resource
monitoring).

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 33 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 9 Enabler Resource availability reporting

Description:

 Message 1 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

 Message 2 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

 Message 3 (optional): generated by the home AAM in the Enabler and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

 Message 4 (optional) (EnablerAAInterface): generated by the Security Handler and
sent to the Core AAM in the core layer. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

 Message 5 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 34 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Procedure 6 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

 Message 7 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

 Procedure 8 (optional): procedure that, in case it is needed, translates the attributes
that the Registration Handler has in the Enabler in a new set of attributes that it has
in the core layer. If attributes are the same or the Registration Handler already has
valid core token(s), it is not necessary.

 Message 9 (optional): generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Registration Handler already has valid core token(s), it is not necessary.

 Message 10 (MonitorResInterface): generated by the Registration Handler and sent
to the Core Resource Monitor. It is used to provide, along with the update message,
the core token(s) containing the attributes assigned to the Registration Handler.

 Message 11: generated by the Core Resource Monitor and sent to the Core
Security Handler. It is used to ask the security handler to verify the complete validity
of the token.

 Message 12 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

 Procedure 13: verification of the time validity, authenticity and integrity of the
provided token(s).

 Procedure 14: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

 Message 15: generated by the Core Security Handler and sent to the Core
Resource Monitor. It is used to communicate the outcome of the token validation
procedures performed by the Core Security Handler.

 Messages 16: returns core token to Registration Handler

 Message 17: schedules task for checking availability of specified resources (IDs)

 Message 18: returns status of availability scheduling and certificate (used to
demonstrate the identity of the entity generating the message, for authentication
purposes, the certificate must be validated by the Security Handler of the
component)

 Message 19: Registration Handler sends certificate to Security Handler for
validation

 Procedure 20: validate certificate

 Message 21: returns result of certificate validation

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 35 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

5.3.6 Availability reporting for Underlying resources

Resource Manager reports to Core RM about the availability of resources it uses for its
operations.

Figure 10 Availability reporting for Underlying resources

Description:

 Message 1 (optional): generated by the Resource Manager and sent to the Enabler
Security Handler. It is used to trigger the recovery of the core token(s). If the
Enabler is already logged in, it is not necessary.

 Message 2 (optional) (EnablerAAInterface): generated by the Enabler Security
Handler and sent to the Core (home) AAM in which the Enabler is registered. It is
used to authenticate the Enabler. If the Enabler is already logged in, it is not
necessary.

 Message 3 (optional): generated by the Core (home) AAM in the Enabler and sent
to the Enabler Security Handler. It is used to provide the home token(s) with
attributes included. If the Enabler is already logged in, it is not necessary.

 Message 4 (optional): generated by the Enabler Security Handler and sent to the
Resource Manager. It it is used to deliver the core token(s).

 Message 5 (ResAvailabilityInterface): generated by the Resource Manager and
sent to the Core Resource Monitor. It is used to forward the update message and
the core token(s) to the Core Resource Monitor.

 Message 6: generated by the Core Resource Monitor and sent to the Core Security
Handler in the core layer. It is used to ask to the security handler to verify the
complete validity of the token.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 36 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 7 (EnablerSecurityInterface): procedure that allows the Enabler Security
Handler that is acting on behalf of the Enabler to demonstrate that it is the real
owner of the token(s).

 Procedure 8: verification of the time validity, authenticity and integrity of the
provided token(s).

 Message 9: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated
within the token itself).

 Message 10: generated by the Core Security Handler in the core layer and sent to
the Core Resource Monitor. It is used to communicate the outcome of the token
validation procedures performed by the Core Security Handler.

 Message 11: Core Resource Monitor schedules task for checking availability of
specifies IDs

 Message 12: returns status of scheduling task for checking availability

5.3.7 Scheduled Enabler resource monitoring

Core Resource Monitor checks the availability of the resources exposed by Enabler and
reports it to Registry.

Figure 11 Scheduled Enabler resource monitoring

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 37 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Description:

 Message 1 (AccessResourceInterface): when the availability checking task is
executed it starts with this message from Core Resource Monitor to Resource
Access Proxy (includes certificate)

 Message 2: Resource Access Proxy sends certificate for validation to Security
Handler

 Procedure 3: validates certificate

 Message 4: returns result of certificate validation

 Message 5: Resource Access Proxy returns result of availability to Core Resource
Monitor

 Message 6: Core Resource Monitor collects all availability results, creates status list
and send it to Registry

 Procedure 7: updates availability in database

 Message 8: returns call

5.3.8 Search

Enabler searches for resources needed for operations within Enabler logic.

Figure 12 Search

Description:

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 38 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 1: Enabler logic send request to Resource Manager to find resources
needed for Enabler Logic

 Message 2 (optional): generated by the Resource Manager and sent to the Enabler
Security Handler. It is used to trigger the recovery of the core token(s). If the
Enabler is already logged in, it is not necessary.

 Message 3 (optional): generated by the Enabler Security Handler and sent to the
Core AAM in which the Enabler is registered. It is used to authenticate the Enabler.
If the Enabler is already logged in, it is not necessary.

 Message 4 (optional): generated by the Core AAM and sent to the Enabler Security
Handler. It is used to provide the home token(s) with attributes included. If the
Enabler is already logged in, it is not necessary.

 Message 5 (optional): generated by the Enabler Security Handler and sent to the
Resource Manager. It is used to deliver the core token(s).

 Message 6: generated by the Resource Manager and sent to the Search Engine. It
sends search query and the core token(s) to the Search Engine.

 Message 7: generated by the Search Engine and sent to the Core Security
Handler. It is used to ask to the security handler to verify the complete validity of the
token.

 Procedure 8: procedure that allows the Enabler Security Handler that is acting on
behalf of the Resource Manager to demonstrate that it is the real owner of the
token(s).

 Procedure 9: verification of the time validity, authenticity and integrity of the
provided token(s).

 Procedure 10: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

 Message 11: generated by the Core Security Handler and sent to the Search
Enginge. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

 Message 12: generated by the Search Engine and sent to the Registry. It is used to
search available resources.

 Message 13: generated by the Registry and sent to the Search Engine. It is used to
return the result of the search operation, containing resources and associated
access policies.

 Message 14: generated by the Search Engine and sent to the Core Security
Handler. It is used to deliver the core token(s) previously verified and the results of
the search operation.

 Procedure 15: procedure that checks, for each resource, if the attributes contained
in the core token(s) satisfy the access policy associated to that resource.

 Message 16: generated by the Core Security Handler and sent to the Search
Engine. It is used to deliver the result of the previous procedure.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 39 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 17: generated by the Search Engine and sent to the Resource Manager
asynchronously. It is used to deliver the result of the search operation (available
resources).

 Procedure 18: executes ranking of food resources

 Message 19 (optional): asynchronously sends ranking update to Resource
Manager

 Message 20 (optional): asynchronously sends message about the end of initial
ranking

 Message 21 (optional): synchronously sends message of the end of final ranking

 Message 22 (optional): returns search results to Enabler Logic

5.3.9 Enabler resource accessby using RAP

A symbIoTe application uses resources offered by the Enabler. It accesses the Enabler
through RAP. In this case, Core RAM in symbIoTe Core needs to be informed of this
interaction. The application needs to be registered both with symbIoTe Core and with the
Enabler.

Figure 13 Enabler resource access

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 40 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Description:

 Message 1 (optional): generated by the Application/Other Enabler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Application/Other Enabler is already logged in, it is not necessary.

 Message 2 (optional): generated by the Security Handler and sent to the home
AAM in which the Application/Other Enabler is registered. It is used to authenticate
the Application/Other Enabler. If the Application/Other Enabler is already logged in,
it is not necessary.

 Message 3 (optional): generated by the home AAM in the IoT platform and sent to
the Security Handler. It is used to provide the home token(s) with attributes
included. If the Application/Other Enabler is already logged in, it is not necessary.

 Message 4 (optional): generated by the Security Handler and sent to the
Application/Other Enabler. It it is used to deliver the core token(s).

 Message 5 (optional): generated by the Application/Other Enabler and sent to
Application Security Handler. It is used to trigger the operations for obtaining the
foreign token(s) from IoT platform. If the Application/Other Enabler already has
valid foreign token(s), it is not necessary.

 Message 6 (optional): generated by the Application Security Handler and sent to
the foreign AAM in IoT platform. It is used to trigger the operations for obtaining the
foreign token(s). If the Application/Other Enabler already has valid foreign token(s),
it is not necessary.

 Procedure 7 (optional) (AppSecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Application/Other Enabler to demonstrate
that it is the real owner of the token(s). If the Application/Other Enabler already has
valid foreign token(s), it is not necessary.

 Procedure 8 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Application/Other Enabler already has valid foreign
token(s), it is not necessary.

 Procedure 9 (optional): verification of any asynchronous revocation of the token(s)
(i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Application/Other Enabler already has
valid foreign token(s), it is not necessary.

 Procedure 10 (optional): procedure that, in case it is needed, translates attributes
that the Application/Other Enabler has in the home IoT platform in a new set of
attributes that it has in the core layer. If attributes are the same or the
Application/Other Enabler already has valid foreign token(s), it is not necessary.

 Message 11 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver the foreign token(s) with the new attribute(s).
If the Application/Other Enabler already has valid foreign token(s), it is not
necessary.

 Message 12 (optional): generated by the Application Security Handler and sent to
the Application/Other Enabler. It is used to forward the foreign token generated at
the previous step.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 41 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 13: Application/Other Enabler sends request access to selected
resources to Core Resource Access Monitor. Message includes foreign token
obtained in previous message

 Message 14: Core Recoure Access Monitor returns list of URLs for selected
resources in IoT platform

 Message 15: generated by the Application/Other Enabler and sent to the Resource
Access Proxy in the foreign IoT platform. It is used to access resources, while
providing the foreign token previously obtained.

 Message 16: generated by the Resource Access Proxy and sent to the Security
Handler in the foreign IoT platform. It is used to ask to the security handler to verify
the complete validity of the token.

 Procedure 17: procedure that allows the Application Security Handler that is acting
on behalf of the Application/Other Enabler to demonstrate that it is the real owner
of the token(s).

 Procedure 18: verification of the time validity, authenticity and integrity of the
provided token(s).

 Procedure 19: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself).

 Message 20: generated by the Security Handler in the foreign IoT platform and sent
to the Resource Access Proxy. It is used to communicate the outcome of the token
validation procedures performed by the Foreign Security Handler.

 Message 21: generated by the Resource Access Proxy and sent to the Security
Handler. It is used to deliver the core token(s) previously verified and the access
policy of the requested resource to the Security Handler.

 Procedure 22: it is used to check if the attributes included in the core token(s)
satisfy the access policy associated to the requested resource.

 Message 23: generated by the Security Handler and sent to the Resource Access
Proxy. It is used to deliver the result of the operation executed at the previous step.

 Procedure 24: In this procedure the Enabler internally calculates results or fetch
data from IoT platforms or services and generates messages 25-27. This
procedure is defined in Using Resource diagram.

 Message 25: asynchronously emit resource usage per use/per stream start

 Message 26: this message can be synchronous, then Resource Access Proxy
returns data. If it is asynchronously then it can emit async messages for some time

 Message 27: if previous message is asynchronous then this message informs Core
Resource Access Monitor when the stream is ended

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 42 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

5.3.10 Enabler resource access by using Domain-specific Interface

A symbIoTe application uses resources offered by the Enabler. It accesses the Enabler
through Domain-specific Interface. The application needs to be registered only with the
Enabler.

Figure 14 Enabler resource access

Description:

 Message 1 (optional): generated by the application and sent to the Domain-specific
Interface. It is used to get enabler token for accessing enabler. If the application is
already logged in, it is not necessary.

 Message 2 (optional): generated by the Domain-specific Interface and sent to the
enabler’s AAM in which the application is registered. It is used to authenticate the
application. If the application is already logged in, it is not necessary.

 Message 3 (optional): generated by the enabler’s AAM and sent to the Domain-
specific Interface. It is used to provide the enabler token(s) with attributes included.
If the application is already logged in, it is not necessary.

 Message 4 (optional): generated by the Domain-specific Interface and sent to the
application. It is used to deliver the enabler token(s).

 Message 5: generated by the application and sent to the Domain-specific Interface.
It is used to access resources, while providing the enabler token previously
obtained.

 Message 6: generated by the Domain-specific Interface and sent to the Security
Handler in the Enabler. It is used to ask to the security handler to verify the
complete validity of the token.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 43 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Procedure 7: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the enablers AAM before the expiration time
indicated within the token itself).

 Message 8: generated by the Security Handler in the Enabler and sent to the
Domain-specific Interface. It is used to communicate the outcome of the token
validation procedures performed by the Enabler Security Handler.

 Message 9: generated by the Domain-specific Interface and sent to the Security
Handler. It is used to deliver the enabler token(s) previously verified and the access
policy of the requested resource to the Security Handler.

 Procedure 10: it is used to check if the attributes included in the enabler token(s)
satisfy the access policy associated to the requested resource.

 Message 11: generated by the Security Handler and sent to the Domain-specific
Interface. It is used to deliver the result of the operation executed at the previous
step.

 Procedure 12: In this procedure the Enabler internally calculates results or fetch
data from IoT platforms or services and generates message 13. This procedure is
defined in Using Resource diagram from enabler application.

 Message 13: This message can be synchronous, then Domain-specific Interface
returns data. If it is asynchronously then it can emit async messages for some time.

5.3.11 Using Underlying resource from an application using Enabler RAP

On request from an application, Enabler is accessing Underlying resources at IoT
platforms. The application accesses Enabler through Enabler RAP.

Figure 15 Using Underlying resources

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 44 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Description:

 Message 1: When Resource Access Proxy in the Enablergets request for
accessing resource and when it checks security and policy (Resource Access
Diagram after message 23) it sends start processing to Processing Logic.

 Message 2: If Enabler Logic component has all data in local database and can give
processed data to Resource Access Proxy (message 16) it skips messages 2-15. If
it needs data then it sends this message to Resource Manager.

 Messages 3-7: This part is like in Search diagram. Messages between Resource
Manager and Search Engine have been copied; details are in Search diagram.

 Message 8: Starts getting data that isneeded for Enabler Logic by sending async
message to Platform Proxy

 Message 9: Generated by the Platform Proxy and sent to Enabler Security Handler.
It is used to trigger the operations for obtaining the foreign token(s) from IoT
platform. If the Enabler already has valid foreign token(s), it is not necessary.

 Procedure 10: This procedure does token validation and attribute mapping.

 Message 11: Result from procedure 10 is returning foreign token and attributes for
accessing resource.

 Messages 12-13: is accessing resource. In this access, the platform side is
validating token and checking policy.

 Message 12: Platform Proxy is sending request for accessing resource to Resource
Access Proxy in IoT platform. This request contains foreign token and attributes for
accessing resource.

 Message 13: After token validation and policy checking if everything is ok the
Resource Access Proxy in IoT platform returns data to Platform Logic

 Procedure 14: Platform Proxy executes procedures if interaction logic (e.g.
scheduled next request to resource).

 Message 14: Platform Proxy sends date to the Enabler Logic

 Procedure 15: Enabler Logiccan store data and process it.

 Message: 16: After Enabler Logic has processed data it sends data to Resource
Access Proxy.

 Message: 17: Resource Access Proxy sends processed data to the
Application/Other Enabler.

5.3.12 Using Underlying resource from an application using Domain-specific
Interface

On request from an application, Enabler is accessing Underlying resources at IoT
platforms. The application accesses Enabler through Domain-specific Interface.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 45 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 16 Using underlying resources

Description:

 Message 1: When Domain-specific Interface in the Enablergets request for
accessing resource and when it checks security and policy (Resource Access
Diagram from enabler application in procedure 12) it sends start processing to
Processing Logic.

 Message 2: If Enabler Logic has all data in local database and can give processed
data to Domain-specific Interface (message 16) it skips messages 2-15. If it needs
data, then it sends this message to Resource Manager.

 Messages 3-7: This part is like in Search diagram. Here are shown just messages
between Resource Manager and Search Engine. Details are in Search diagram.

 Message 8: Starts getting data that isneeded for Enabler Logic by sending async
message to Platform Proxy

 Message 9: Generated by the Platform Proxy and sent to Enabler Security Handler.
It is used to trigger the operations for obtaining the foreign token(s) from IoT
platform. If the Enabler already has valid foreign token(s), it is not necessary.

 Procedure 10: This procedure does token validation and attribute mapping.

 Message 11: Result from procedure 10 is returning foreign token and attributes for
accessing resource.

 Messages 12-13: is accessing resource. In this access, the platform side is
validating token and checking policy.

 Message 12: Platform Proxy is sending request for accessing resource to Resource
Access Proxy in IoT platform. This request contains foreign token and attributes for
accesing resource.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 46 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 13: After token validation and policy checking if everything is ok the
Resource Access Proxy in IoT platform returns data to Platform Logic

 Procedure 14: Platform Proxy executes procedures if interaction logic (e.g.
scheduled next request to resource).

 Message 14: Platform Proxy sends date to the Enabler Logic

 Procedure 15: Enabler Logic can store data and process it.

 Message: 16: After Enabler Logic has processed data it sends data to Domain-
specific Interface.

 Message: 17: Domain-specific Interface sends processed data to the application.

5.3.13 Enabler resource usage monitoring

Enabler is reporting on usage of resources it offers to applications.

Figure 17 Enabler resource usage monitoring

Description:

 Message 1 (optional): Generated by the Monitoring and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Monitoring is
already logged in, it is not necessary.

 Message 2 (optional): Generated by the Security Handler and sent to the home
(Enabler) AAM in which the Monitoring is registered. It is used to authenticate the
Monitoring. If the Monitoring is already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 47 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

 Message 3 (optional): Generated by the home (Enabler) AAM in the IoT platform
and sent to the Security Handler. It is used to provide the home token(s) with
attributes included. If the Monitoring is already logged in, it is not necessary.

 Message 4 (optional): Generated by the Security Handler and sent to the Core
AAM in the core layer. It is used to trigger the operations for obtaining the core
token(s). If the Monitoring already has valid core token(s), it is not necessary.

 Procedure 5 (optional): Procedure that allows the Security Handler that is acting on
behalf of the Monitoring to demonstrate that it is the real owner of the token(s). If
the Monitoring already has valid core token(s), it is not necessary.

 Procedure 6 (optional): Verification of the time validity, authenticity and integrity of
the provided token(s). If the Monitoring already has valid core token(s), it is not
necessary.

 Procedure 7 (optional): Verification of any asynchronous revocation of the token(s)
(i.e., if any token(s) have been revoked by the home AAM before the expiration
time indicated within the token itself). If the Monitoring already has valid core
token(s), it is not necessary.

 Procedure 8 (optional): Procedure that, in case it is needed, translates attributes
that the Monitoring has in the home IoT platform in a new set of attributes that it
has in the core layer. If attributes are the same or the Monitoring already has valid
core token(s), it is not necessary.

 Message 9 (optional): Generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Monitoring already has valid core token(s), it is not necessary.

 Message 10(optional): Generated by the Security Handler and sent to the
Monitoring. It is used to forward the core token generated at the previous step.

 Message 11: Monitoring generates usage report and sent it to the Core Resource
Access Monitoring.

 Message 12: Generated by the Core Resource Access Monitoring and sent to the
Core Security Handler. It is used to ask to the security handler to verify the
complete validity of the token.

 Procedure 13: Procedure that allows the Security Handler that is acting on behalf of
the Monitoring to demonstrate that it is the real owner of the token(s).

 Procedure 14: Verification of the time validity, authenticity and integrity of the
provided token(s).

 Procedure 15: Verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

 Message 16: Generated by the Security Handler in the core layer and sent to the
Core Resource Access Monitoring. It is used to communicate the outcome of the
token validation procedures performed by the Core Security Handler.

 Message 17: Stores report data to database

 Message 18: returns call

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 48 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 49 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

6 symbIoTe Use Case Enablers

This Section focuses on generic Enabler components (Resource Manager, Platform
Proxy, and Enabler Logic) which are domain-specificand relevant to symbIoTe use cases.
It is envisioned that symbIoTe use caseswill use Enablers(if and when appropriate) to
facilitate application development.Enablers performall processes toidentify, access and
analyze the data originatedfromthe underlying IoT resources.

An example of Enabler is designed for the Smart Mobility & Ecological Routing (SMER)
use, and here we present its domain-specific components. Workflows of the SMER use
case are mapped to the Enabler Architecture, and Enabler components are identified
which are responsible for executing processes within the use case.Domain-specific
Enablers related to other use cases defined within symbIoTe will be considered in the
following phases of the project.

6.1 Smart Mobility & Ecological Routing Use Case

The Smart Mobility and Ecological Routing (SMER) use-case addresses the problem of
inefficient transportation and poor air quality that many European cities face nowadays.
This use case offers the ecologically most preferable routes for motorists, bicyclists and
pedestrians based on the available traffic and environmental data acquired through
various platforms. This scenario is extremely relevant for people who travel within the
major European cities, since a constant exposure to pollutants can cause severe health
problems. It is also of the interest of the municipalities' governing bodies that, by helping
their citizens to avoid these health problems, they can reduce health care costs.
Additionally, the use-case will provide a way for users to search for Points of Interests,
filtered by certain factors such as air quality, noise pollution and parking availability.
symbIoTe will empower this usecase by providing platform interoperability, allowing for
developers to easily access and handle data from different platforms and domains in the
same manner.

The usecase showcases platform interoperability within the APP and CLD with a potential
for business models for bartering and trading of resources, which also require IoT platform
federations. Through symbIoTe, it will be possible to obtain and use air quality data from
different platforms without having to worry about their format. Additionally, it will allow the
development of reusable applications for urban services.

Enablers facilitate the implementation of SMER applications by handling air quality data
from underlying IoT platforms, and by integrating this data with external Routing Services
to find ecological routes. Furthermore, integrated air quality data exposed by the Enabler
can also serve as input to other applications, not just the one envisaged within this use
case.Example of such application could be monitoring air quality in the city to alarm
citizens in the event of pollution with potential peril for human health.

6.2 SMER workflows and Enabler Architecture

Workflows defined within the use case are the following:

1. Data Acquisition

2. Data Interpolation

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 50 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

3. Calculation of Green Route

4. Point of Interest Search.

Each of the workflows is mapped to Enabler-specific components shown in Figure 18. As
mentioned in Section 5, Enabler-specific components (Enabler Logic, Platform Proxy and
Resource Manager) need to be created and implementedaccording to domain-specific
requirements. In SMER domain, Enabler-specific components are defined based on the
aforementioned workflows.

Data Acquisition workflow is planned to be implemented within Resource Manager and
Platform Proxy. Data Interpolation, Calculation of Green Route and Point of Interest
Search are functionalities implemented within Enabler Logic, as shown in Figure 18. IoT
platforms used within the use case are sources of air-quality data. These platforms are
OpenIoT, UWEDAT, and MoBaaS. In the use case there also exist external services for
adding value to air-quality data from the aforementioned IoT platforms and exposed
through symbIoTe. These external services are Routing Service (RS), and Point of
Interest (PoI) Search Service. Routes and PoIs are found by combining best routes and
PoIs with air-quality data. Those external services can also be situated within IoT
platforms (as RS within MoBaas). Even this service within a specific IoT platform is
“enriched” by using symbIoTe because it can use resources from other symbIoTe
Compliant Platforms, not only from its own platform.

In the following parts of this Section workflows of the SMER use case aredescribed in
detail, and sequence diagrams showing how these functionalities will be implemented
within Enablers are introduced.

Figure 18 Architecture of Smart Mobility & Ecological Routing Enabler

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 51 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

6.3 Data Acquisition

The workflow Data acquisition is responsible for findingresources and acquiring sensor
data from underlying IoT platforms: mobile sensors from UniZG-FER’s OpenIoT platform,
fixed stations from AIT’s UWEDAT System and sensors fromUbiwhere’sMoBaaS platform.
Resource Manager is responsible for finding the resources, and Platform Proxy for
acquiring data from resources. All three platforms provide different sensor readings
through the harmonized interface so they can be used in a uniform way for the different
locations. Acquired data will be handled by components within Enabler Logic, and offered
to applications.

6.4 Data Interpolation

The workflow Data Interpolation finds relevant resources by using Resource Manager and
takes sensor readings as an input. Ithas an internal state, which consists mostly of
interpolated values together with some auxiliary values (e.g., date of acquisition, version of
the underlying street grid, etc.). The component is planned to be implemented in the
Enabler-specific component – EnablerLogic.

It produces air quality indexes for street segments. The set of street segments is aligned
with those used by the Routing Service.

6.4.1 Interface for measurement data access

The Interpolator component obtains its data from the underlying IoT platforms.Platform
Proxy is responsible for acquiring the needed data.The selection of the resources tobe
used within Interpolator is done through Resource Manager which contacts the symbIoTe
Search Engine in Core Services.

There are two alternatives for triggering the Interpolator to do a new interpolation:

1. Time trigger. The Interpolator will be started on a regular base using a timer. This
method can be used to simplify the effort of implementation.

2. Event triggered. The Interpolator registers itself with the platforms and will be
informed via an event when new relevant data is available. This method ensures
the use of the most up-to-date data.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 52 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 19 Data Interpolation

6.4.2 Interface for providing Interpolated Data

The Interpolator and the RS should use a network of street segments. Usually the RS
already works with such a network thus it makes sense to let the RS provide the network
for the Interpolator. Thus, we need an interface to convey network data from the RS to the
Interpolator. This interaction will be handled by the Green Route Calculator, and is
explained in more detail in the Section 6.5.

Once an interpolation is available, theGreen Route Calculator obtains it and sends the
results to the RS which requires another interface/method. Interpolated data for street
segments can be treated as if there is an (artificial) sensor for each street segment. To
keep the different interfaces homogenous with other components of symbIoTe it is
desirable to shape this interface the same way as other IoT platforms. Thus, the interface
will use the same design and behave as a RAP. This allows the Green Route Calculator to
obtain data in bulk. It also allows the Green Route Calculator to register for various
artificial “sensors” events and get (only) relevant updates within near real-time. This data
can then be sent to the corresponding Routing Services.

6.4.3 Implementation architecture and environment

A convenient set of libraries for the interpolation task is available for the Python (CPython)
environment. Especially Java does not provide a similar convenient functionality. Thus the
implementation will be in Python.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 53 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

6.5 Calculation of Green Route

The workflow Calculation of Green Route is planned to be implemented in Enabler-
specific component Green Route Calculator. The workflow for the calculation of Green
Routes allows users to obtain routes that avoid areas with high pollution (and, possibly,
other factors, such as traffic). These services (Routing Service within MoBaaS platform or
external Routing Service, as shown in Figure 18) use the enabler to obtain air quality data
associated with street segments (as described in the previous Data Interpolation section).
These data will be used by the services in the calculations of the routes, penalizing routes
that go through highly polluted areas. As such, an additional component Green Route
Calculator will be developed to serve as a bridge between the Interpolator, the RS
(whether as external services or services within IoT platform) and the applications
requesting ecological routes.

It is important to note that, the difference between external Routing Services and platform
Routing Services is that the platform service must communicate with the Enabler through
the Platform Proxy while the external service communicates with the Green Route
Calculator directly.

6.5.1 Obtaining Data

The RS consumes the street air quality data provided by the Interpolator to be able to
provide routes through areas with low pollution. The main concern with this process is
that, whenever a route request is made, it is not feasible nor efficient that the entire city air
quality data is obtained from IoT platforms.

As such, it is envisioned that, after the first bulk of air quality data is obtained, only
updates from that data (and not the whole data) are obtainedin future. This way, data
exchange between the various services is reduced and, by having the data stored and
immediately available when a route request is made, the whole process will be made more
quickly. Additionally, RS may operate only in a restricted area and might not want to
receive data from areas it does not operate in. It is also expected that, on registering with
the Enabler, RS can specify which data it wants to receive (street id, restricted area, city,
etc).

There are two distinct flows designed to implement the functionalities mentioned above.
The first one is represented in Figure 20, where the Green Route Calculator register a RS.
In return, the RS send its preferences, stating what data it wishes to receive. Alternatively,
this can simply be a data request (e.g. the service lost all of its data and needs the enabler
to send it again). The Green Route Calculator will store the platform’s preferences and,
additionally, send them to the Interpolator. This way, the Interpolator knows from which
sensors it needs to obtain data. It then requests from the Interpolator the air quality data.
This data is returned to the platform to be stored and later used for the calculations of
routes.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 54 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 20 Registration and Bulk Data Request – external RS

The Figure 21 shows the same case as in Figure 20 but this time the RS is in the platform
and Green Routing Calculator need to communicate by using Platform Proxy and RAP.

Figure 21 Registration and Bulk Data Request – RAP

The second flow relates to obtaining data updates from the Interpolator. Only changes to
the state of the air quality in the streets are needed, since the rest of the data is already

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 55 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

stored by the RS. This reduces the amount of data that needs to be sent between the
Interpolator and the RS. Additionally, it reduces the time for the processing of a route
request, since the RS containing the service already has all the information it needs. As
can be seen in Figure 22, the Interpolator sends its data updates to the Green Route
Calculator, which sends the relevant information to RS.

Figure 22 Air Quality Data Updates – external RS

The Figure 23 shows the same case as in Figure 22 but this time the RS is in the platform
and Green Routing Calculator needs to communicate by using Platform Proxy and RAP.

Figure 23 Air Quality Data Updates – RAP

Following these diagrams, the RS will be kept updated regarding the quality of the air of
the relevant streets.

6.5.2 Obtaining Route

As can be seen in Figure 24, the process of obtaining an ecological route will be more
direct due to most of the complex interactions between services being done in the
previous section. A registered application makes a request to the Green Route Calculator

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 56 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

within theEnabler, who directs it to thecorrect RS. The RS uses the collected air quality
data, plus any other data that can help (e.g. traffic data) and returns the result. For this
particular use case, the used RSwill be provided by AIT and by Ubiwhere’sMoBaaS
platform.

Figure 24 Obtaining Ecological Route – external RS

The Figure 25 is the same as Figure 24 but this time the RS is in the platform and Green
Routing Calculator need to communicate by using Platform Proxy and RAP.

Figure 25 Obtaining Ecological Route – RAP

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 57 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

6.6 Point of Interest Search

The workflow Point of Interest (PoI) Search is planned to be implemented in an Enabler-
specific component PoI Search. The workflow allows users to search for PoIs, such as
restaurants or bars. Furthermore, it allows filtering of the results through stated
preferences, such as noise levels or available parking. These data will be obtained
through symbIoTe-compliant platforms. It can then be possible for an application to use
PoI Search component to obtain a destination and use the Green Route Calculator
component to find a way to reach it.

Ascan be observed in Figure 26, an application makes a request to the Enabler, asking for
PoIs near a certain place and stating their preferences regarding the conditions of the PoI.
The PoI Search component will request from an externalPoISearch Service the PoIs near
that place. The PoI Search component will abstract this PoI Search Service for the
application. For this use case, the OpenStreetMap (OSM) service will be used, but others,
such as Foursquare, can eventually be integrated and used. After obtaining the PoIs, the
PoI Search component, for each item, will search for relevant resources
availablethroughCore Services. The Resource Manager will handle the resource search
and the Platform Proxy will take care of obtaining the data from the sensors near
requested point. If the acquired resources show that the PoI does not comply with the user
preferences, that PoI is discarded. The PoIs that do comply are then returned to the
application.

Figure 26 Point of Interest Search

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 58 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

7 Technologies for Enabler Implementation

This Section lists selected technologies considered to be used for Enabler
implementation. It has been derived from a complete collection of technologies relevant to
the development of the symbIoTe project that has been reported in Deliverable “D5.1:
Implementation Framework”.

7.1 Spring Cloud

Spring Cloud is a complete solution that offers seamless integration with Framework and
Boot tools. The easy use of Java, combined with the wide and active communities that
contribute the Spring project have been the main reason for choosing this tool.
In particular:

 the Spring Framework provides powerful mechanisms to help a faster development
of applications

 Spring Boot allows developers to create Spring-based applications easily

7.2 OData

OData is a REST-based communication protocol built on the HTTP defining a standard for
data-centric API. It provides standards and best practices for performing Create-Read-
Update-Delete (CRUD) operations on REST-based resources as well as querying
collections of resources.
These are the main reasons why OData have been selected for the resource access and
discovery, for symbIoTe-enabled platforms.

7.3 SensorThings API

The OGC SensorThings API is a standard HTTP/REST-based communication API and
data model for transferring sensor data and metadata. Since it is based on the OData
protocol the symbIoTe data model have been defined following this standard
implementation.

7.4 Apache Jena

Apache Jena is an open source Java framework for building Semantic Web and Linked
Data applications. It offers tools for storing and manipulating RDF data as well as an
HTTP interface or triple store, and it provides support for the Web Ontology Language
(OWL).
In the context of symbIoTe the Apache Jena framework is used to store, process and
query data in RDF format.

7.5 JSON Web Tokens

JSON Web Token (JWT) represents a compact instrument for transferring trusted
information between two parties, where information (claim) is encoded as a JSON object.
JWT includes a Message Authentication Code or a Signature that allows verifying its
authenticity and integrity as well.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 59 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

Within the symbIoTe project, JWT is used for carrying trusted access permissions (i.e.,
attributes), useful to support ABAC techniques.

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 60 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

8 Conclusion and Future Steps

This document presents Domain-Specific Enablers within the symbIoTe ecosystem,
designed according to system requirements, and reports their main functionalities and
generic architecture. Enablers are components placed in the symbIoTe Application
Domain that facilitate third-party application development by offering mechanisms to find
resources registered by L1 Compliant IoT Platforms, access the recourses directly on the
platform side, add value to those resources, and offer value-added services to
applications. Furthermore, the resources acquired and processed by Enablers and offered
to third-party applications are registered in symbIoTe Core, thus enabling other application
providers to find and to use them. Enablers have a generic architecture, but with
components that can be tailored according the needs of aspecific domain. These Enabler-
specific components handle the application logic, data queries and data access.

We have proposed a Domain-Specific Enabler for a selected symbIoTe use case – Smart
Mobility and Ecological Routing. Enabler-specific components are described for this
Enabler, as well as its main functionalities.The document also presents a list of
technologies considered to be used for Enabler implementation. During the next phases of
the project, the process of implementing generic Enabler components will start, as well as
the definition of Enabler-specific components for other symbIoTe use cases (where
applicable).

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 61 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

9 References

[1] Open Mobile Alliance (OMA): OMA and Machine-to-Machine (M2M)
Communication, annual report, 2011, url: http://openmobilealliance.org/static/oma-
annual-reports/documents/oma%20collateral%20m2m%205-11.pdf

[2] Tom Rebbeck, Analysys Mason: Telecoms Operators’ Approaches To M2M and
IoT, whitepaper, 2015, url:
http://www.analysysmason.com/Research/Content/Reports/M2M-IoT-operators-
approaches-May2015/

10 Glossary

Application developers build IoT applications based on the IoT services exposed by
various IoT platforms (reside at the symbIoTe APP domain).

Core Services services in symbIoTe Application Domain enabling applications
and Enablers to find desired resources from underlying IoT
platforms; and enabling IoT platforms to offer their resources to
applications and Enablers

Enabler developers build domain-specific functionalities within symbIoTe-provided
Enablers to facilitate cross-platform application development

Enabler resources resources offered by Enablers to Application developers. They
are created by processing Underlying resources from IoT
platforms according to domain-specific functionalities

External services services outside IoT platforms that can be used within Enablers
to add value to symbIoTe provided data

L1 Compliant Platform an IoT platform that registers its resources to Core Services,
and opens its interface to enable applications and Enablers to
access those resources

Resource a uniquely addressable entity in symbIoTe architecture and, as
a generic term, may refer to IoT devices, virtual entities,
network equipment, computational resources and associated
server-side functions (e.g., data stream processing). This
definition is on purpose highly generic and abstract to allow its
unified, recursive use across all layers of the envisioned
symbIoTe stack.

Smart Space physical environments (e.g. residence, campus, vessel, etc.)
with deployed things where one or more IoT platforms provide
IoT services.

Underlying resources resources from underlying IoT platforms used by Enablers.
Enabler Logic functions process these resources to create
Enabler resources and offer them to Application developers

http://openmobilealliance.org/static/oma-annual-reports/documents/oma%20collateral%20m2m%205-11.pdf
http://openmobilealliance.org/static/oma-annual-reports/documents/oma%20collateral%20m2m%205-11.pdf
http://www.analysysmason.com/Research/Content/Reports/M2M-IoT-operators-approaches-May2015/
http://www.analysysmason.com/Research/Content/Reports/M2M-IoT-operators-approaches-May2015/

688156 - symbIoTe - H2020-ICT-2015 D2.3 – Domain-Specific Enablers and Tools
 Public

Version 2.1 Page 62 of 62
 © Copyright 2017, the Members of the symbIoTe consortium

11 Abbreviations

ABAC Attribute-Based Access Control

APP symbIoTe Application Domain

CLD symbIoTe Cloud Domain

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IoT Internet of Things

JSON JavaScript Object Notation

JWT JSON Web Tokens

MoBaaS Mobility Backend as a Service

OGC Open Geospatial Consortium

OSM OpenStreetMap

OWL Web Ontology Language

PoI Point of Interest

RAP Resource Access Proxy

RDF Resource Description Framework

REST Representational state transfer

RS Routing Service

SMER Smart Mobility and Ecological Routing

