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DYNAMICS OF POLYNOMIAL MAPPINGS OF C?

By VINCENT GUEDJ

Abstract. We study the dynamics of polynomial self mappings f of C2. We construct, for a large
class of mappings, an invariant measure p which is mixing and of maximal entropy hu(f) =
max (log d:(f), log A\1(f)), where d;(f) is the topological degree of f and A\;(f) its first dynamical
degree. To achieve this, we look at the meromorphic extensions of f to smooth minimal compacti-
fications of C2. When a good compactification is found, we construct an f*-invariant Green current
T which contains many dynamical informations. When 6 := di(f)/A1(f) > 1, the measure p is
obtained as p = dd“(vT), where v is a partial Green function defined on the support of 7. When
6 < 1,u=T AT~ where T~ is a globally defined f.-invariant current.

1. Introduction. We study the dynamics of meromorphic self maps f: X —
X of a compact Kihler manifold X. When X is of general type, a result of
Kobayashi and Ochiai [K-O 75] asserts that there exists only a finite number
of such maps whose dynamics is henceforth trivial. On the other hand there are
plenty of such maps when X is rational, i.e., birationally equivalent to the complex
projective space P*. A general theory has been developed by several authors in
the last decade in the case X = P¥; we refer to the survey of Sibony [Si 99] for
a general introduction to the subject.

Our main interest here is in the dynamics of polynomial self mappings of C2.
It is natural to consider the meromorphic extension of such maps f to an “adapted”
compactification X of C2. Especially interesting is the case where the extension
f: X — X is algebraically stable (see Definition 2.1). Unfortunately, this notion
is not preserved under birational conjugacy. Thus one has to consider separately
all the possible compactifications of C? even if they are birationally equivalent.
It was e.g. realized in [Fa-G 99] that P! x P! is the good compactification of
a large class of polynomial mappings of C2. We push further this observation
by considering the case of Hirzebruch surfaces X = F, (see Section 3). A next
step would be to consider nonminimal smooth compactifications of C2. Indeed a
natural question is whether every polynomial self mapping of C? can be extended
as an algebraically stable meromorphic self-map of some (nonnecessary minimal)
compactification of C2.

There are two numerical data on f which are invariant under birational con-
jugacy. These are the topological degree d; of f (i.e., the number of preimages
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76 VINCENT GUEDIJ

of a generic point) and the first dynamical degree \;(f) defined as
M(f) = lim [deg (1",
Jj—+00

where deg (f) denotes the algebraic degree of f, i.e., the degree of the preimage
of a generic line L in C2. They satisfy 1 < d; < \;(f)? (we only consider the case
of dominating mappings, i.e., we exclude the case d; = 0). Previous works have
focused on the two extreme cases d; = 1 (Hénon mappings, birational mappings)
and d; = \1(f)? (endomorphisms of P?)—see references in [Si 99]. Our aim here
is to consider the intermediate cases 1 < d; < Aq( f)2. A crucial role is played
by the ratio 6§ := d;/A(f). We construct an invariant mixing measure of maximal
entropy

hu(f) = hiop(f) = max (log d;, log A1(f))

for a large class of mappings such that § # 1. Our construction follows closely
the tools developed in the study of Hénon mappings when 6 < 1 and those from
endomorphisms of P2 when § > 1. The critical case 6 = 1 deserves a special
treatment. Simple examples like f(z, w) = (z¢, w + 1) show that the nonwandering
set could be empty in C2.

We now describe more precisely the content of the paper. Our first main result
(Theorem 2.1) gives a general construction of an f*-invariant “Green current” T
for a dominating meromorphic self-map f: X — X on a compact Kédhler mani-
fold X. We follow the approach of Sibony [Si 99] who solved the case X = P*.
Our proof differs from Sibony’s in that it does not depend on the homogeneous
representation of P* as a quotient of C¥!1\{0} under a C* action. This con-
struction therefore applies to more general situations such as K3-surfaces, where
some biholomorphic mappings display interesting dynamics (see [Ca 99]) and
shows that the main results in [Ca 99] also hold in the Kihler (nonprojective)
case. Moreover our point of view yields very simple proofs of the link between
Supp T and the Julia set J; (Theorem 2.2) even in the case X = P*. We then es-
tablish several properties of the Green current, especially extremality properties
(Proposition 2.3 and Theorem 2.5) which can be thought of as ergodic prop-
erties of 7. This interpretation should shed some light on the proof of mixing
in Section 5.

In Theorem 3.1 we give a description of positive closed currents of bidegree
(1, 1) on smooth projective toric varieties (a similar description was given in the
author’s thesis for homogeneous manifolds of the linear group GL,(C)). This
and the description of rational self maps should be useful tools to analyze the
dynamics of polynomial self mappings of C* which admit a “good” compacti-
fication to these manifolds. This is done carefully in case X = F, is a smooth
minimal compactification of C? (see paragraphs 3.3 and 3.4). As a simple con-
sequence, we show that any quadratic polynomial mapping f: C? — C? admits
an algebraically stable extension either to P? or F!, F? (Proposition 3.7).
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C2 77

In Sections 4 and 5 we focus on the case of polynomial mappings of C2.
Under suitable hypotheses, we show that the potential g of the Green current
constructed in Theorem 2.1 naturally defines the basin of attraction Q. of a
superattractive fixed point g, at infinity. It is continuous in C? and (g > 0) = Q
corresponds to orbits ( f*(p))n>0 which grow to infinity with maximal exponential
speed of order A;(f) (Theorem 4.1). When § > 1, there might be orbits which
grow to infinity with lower speed. It is therefore natural to consider a partial Green
function, related to the speed of convergence to infinity of these remaining orbits.
When the speed order (or growth order of f) is optimal, i.e. equals §, we construct
an invariant measure p which is mixing and of maximal entropy (Theorem 4.4
and Proposition 4.5). Such a construction was done in [Fa-G 99] in the case of
polynomial skew-products of C?. Here it applies e.g. to mappings of the form
(P(w), Q(z) + R(w))—see Example 4.1 and Remark 4.2. The mixing property of p
follows from an equidistribution result of Russakovskii and Shiffman [R-Sh 97]
(see also [F-S 95] in the case of endomorphisms) and the crucial fact that p
does not charge pluripolar sets. This is the latter which motivated our alternative
construction (no such information is guaranteed by the general construction given
in [R-Sh 97]).

We address the case 6 = d;/A\i(f) < 1 in Section 5. The equidistribution
of points does not hold anymore, however there is an analogous result replacing
points by truncated positive closed currents (Proposition 5.5). We construct an f-
invariant current 7~ (Theorem 5.1) which naturally yields an invariant measure
uw=T*" AT~ as soon as the wedge product is well defined. The latter is shown
to be mixing and of maximal entropy under suitable assumptions (Theorem 5.3).

Acknowledgments. We thank N. Sibony and C. Favre for interesting con-
versations and the referee for useful suggestions.

2. Green Currents.

2.1. Construction of invariant currents. Letf: X — X be a meromorphic
self-map of a compact Kihler manifold X. Denote by I the indeterminacy set of
f, this is an analytic subset of X of codimension greater than 2.

Let 7(X) be the cone of positive closed currents of bidegree (1,1) on X. It
is possible to define, for every T € 7(X), the pull-back f*T of T by f: if V is
a small open subset of X\Ir and ¢ is a local potential of T in f(V), then we set
f*T |v:=dd(¢ of). This definition is easily seen to be independent of the choice
of local potentials and yields a current f*T € 7(X\If). By a result of Harvey-
Polking (see [Ha-P 75]), it extends trivially and uniquely as f*T a positive closed
current through Ir since codimc Iy > 2.

We always assume f is dominating, i.e., generically of maximal rank dimc X.
This insures that the mapping T € 7 (X) — f*T € 7 (X) is continuous. Moreover
cohomology classes are preserved (see [Me 97] or [Si 99]); f therefore induces
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78 VINCENT GUEDJ

a linear map
o HY'(X,R) — H"'(X,R)

[T] — [f*T].

—_—~—
P

In general @y, # ®rody: although ( f2)*T and f* ()2*73) clearly coincide on X\/rU
f “(If), the set f “I(If) might contain some hypersurface of X. This motivates the
following:

Definition 2.1. A map f: X — X is algebraically stable if there is no j € N
and no complex hypersurface V of X s.t. fj(V\Ifj) C Ir. In this case

\V/] S N, ¢fj+l = ij o Qf.

Example 2.1. When X = P* is the complex projective space of dimension &,
any rational self map f: P* — P* has the form f=1[Po:---: Ptl, where the P;’s
are homogeneous polynomials of the same degree d with no common factor. The
integer d is called the algebraic degree of f. In this case H"!'(X,R) ~ R, @ is
multiplication by d and the map f is algebraically stable iff the algebraic degree
of f/ is &. This happens if e.g. f is holomorphic, i.e. when Iy = (.

THEOREM 2.1. Let X be a compact Kihler manifold andf: X — X adominating
meromorphic self-map which is algebraically stable. Let w € T (X) with continuous
potential and assume f*w is cohomologous to \w (f*w ~ Aw for short), where
X > 1. Then there exists T € T (X) such that

) %( f*w — T inthe weak sense of currents. When f is holomorphic there
is uniform convergence of potentials therefore T admits a continuous potential.

Qf*T=AXTandT ~ w.

3) If ' € T(X) is cohomologous to w and admits a locally bounded potential,
then /\—l,,(f”)*w’ — T.

Proof. Since X is Kibhler, there exists 1 € L'(X) s.t. %f*w = w + dd°y. The
function 7 is “quasiplurisubharmonic” (see [De 92]), in particular v is bounded
from above on X hence we can assume 1 < 0. As f is algebraically stable, we
can iterate the previous equation to get

n—1

1 1
;\;(f”)w=w+dd61/)n, where ¢"=jz=;§¢°f]'

The sequence (,) is a decreasing sequence of quasiplurisubharmonic functions
whose curvature is uniformly bounded from below by dd®i, > —w. Its limit ¢
is either identically —oo or a quasiplurisubharmonic function (see [HO 83]). We
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C? 79

show o, # —o0. Consider

Z L(fiyw.

This is a bounded sequence of currents in 7 (X) such that o, ~ w. It has therefore
bounded mass and any cluster point ¢ clearly satisfies f*o = Ao and o ~ w. Fix
v € LY(X) s.t. 0 = w +dd°v. The functional equation yields

dd‘v = dd + %ddc(v of),

hence v — %v of =1 + c for some constant ¢ € R. Replacing v by v — /\’\ 7, We

can assume ¢ = (. There follows that ¥, = v — Xlﬁv of", 50 U < oy # —00 since
v is bounded from above.

Set T = w+dd°{Po. Then T ~ w and f*T = AT. When f is holomorphic, 1
is also bounded from below hence (1;) uniformly converges towards 1, which
is therefore continuous.

Let w’ € T(X) be cohomologous to w. If ' admits a locally bounded potential
we can find a bounded function ¢ on X so that w’ = w+ddyp. There follows that
A7"p o f uniformly converges to O thus

1
T = (f”) w + —ddc(so ofy —T. O

Remark 2.1. Similar convergence results have been previously established.
When f is holomorphic, the case X = P* is due to Fornaess-Sibony [F-S 94] and
Hubbard-Papadopol [H-P 94]. In an arithmetical context, Zhang [Z 95] considers
the case where [w] = c¢|(L) is the first Chern class of a positive holomorphic line
bundle.

When f is merely meromorphic, such a construction was done by Hubbard
[H 86] and Bedford-Sibony (see [B-Sm 91]) in case f is a Hénon mapping. Sibony
solved the case of a general rational selfmap of P* in [Si 99] and a similar
construction was done in [Fa-G 99] for multiprojective spaces X = P" x - - - x P,

2.2. Dynamical interpretation. We first recall some standard definitions
from complex dynamics.

Definition 2.2. Let f: X — X be a dominating meromorphic self-map of a
compact Kéhler manifold X. We assume f is algebraically stable.

e A point x belongs to the Fatou set F; of f if there exists a neighborhood
U of x such that ( f ) is equicontinuous. The Julia set if J; = X\ ;.

e A point x is normal if there exists a neighborhood U of x and a neighborhood
V of the indeterminacy set Ir such that f"(U) NV = () for all n € N. We denote
by N the set of normal points.

e The map f is said to be normal if Ny = X\Ef, where Ef = Ui>11.
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80 VINCENT GUEDJ

It follows from the definitions that F¢ is an open set, Iy C Ef C Jy and N is
an open subset of X\Es. Note that holomorphic mappings are normal.

THEOREM 2.2. Let f,X,w, T be as in Theorem 2.1. Assume further that w is a
Kdahler form. Then

(1) Supp T C Jy.

(2) Ny\SuppT C F;.

In particular if f is normal, then Jy = Supp T has a positive 2(k — 1)-Hausdorff
dimensional measure (here k = dim¢c X > 2).

Remark 2.2. It follows from the proof of Theorem 2.1 that T admits a con-
tinuous potential in /\Gr One can actually show (see [Br-D 99]) that 7 admits
Holder-continuous potential of exponent o > 0 in Nj. It follows by standard
arguments (see [Si 99]) that Supp T has positive Hy_ 1y~ measure.

Proof. Let U be a small open subset of F;. We can assume (f") converges
to some holomorphic mapping 4 in U, hence f™(U) C U’ for i large enough.
Since w is Kihler, we can find w’ a smooth closed positive (1, 1)-form such that
w'=01in U’ and ' ~ w. By Theorem 2.1 we get

.1 . .
T =lim E(f”')*w’ =0in U.

Conversely let U be an open subset of N s.t. U CC Ny\Supp T. Using the
notations of the proof of Theorem 2.1, we have T = w+dd i and A7"(f")*w =
w + dd )y, therefore

1
(f)w = \" [X;(f")*w - T] = dd“ N[ — oc]) in U.

Now MY, — Y| < Cy in U, therefore (f")*w admits a uniformly bounded
potential. Since w is Kéhler, it follows from Chern-Levine-Nirenberg inequalities
that the L?-norm of the derivatives of (f") is uniformly bounded in U. So is the
L*>-norm by subharmonicity, hence (") is equicontinuous, i.e. U NJs = 0.
When f is normal this yields Js = Supp T. It follows from the support
theorem of Federer (see [Fe 69]) that Supp T has positive 2(k — 1)-Hausdorff
measure. O

As will become clear in the forthcoming sections, the extremality properties
of the Green current T are related to the ergodic properties of certain invariant
measures. This motivates the following:

ProposiTION 2.1. Let f,X,w, T be as in Theorem 2.1. Then T is an extremal
point of the closed convex cone

KN ={Se TX)/f*S=ASand S ~ w}.
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C?2 81

Remark 2.3. When the ®y-eigenspace associated to A is one-dimensional,
any current S satisfying f*S = AS is cohomologous to w and T is extremal among
those currents. This will be the case when X is e.g. a Hirzebruch surface (see
Section 3).

Proof. Consider S € IC}‘:’] and fix v a potential for S, i.e. § = w + dd°v.
We have T = w + dd~,, Where 1), is the potential defined in the proof of
Theorem 2.1 by

Yoo = Z %"/} ij-

jz0

Since f*S = S, we can assume v — A~ v of = 4. Composing with f7, this yields
v < 9Pso. Now if §’ is another current in IC}‘:’] such that 7 = (S+5')/2, we can find
v’ € L1(X) such that v/ —A~'v'of = ¢ and 8’ = w+ddv’. Therefore u = (v+v")/2
is another potential for 7. It differs from ¥, by a constant which has to be 0
since u — A\~ luo f = 1. On the other hand u < v, therefore v = v’ = 1), hence
S=8 =T, so T is extremal. m|

THEOREM 2.3. Let f,X,w, T be as in Theorem 2.1. Assume moreover that the
@y eigenspace associated to X is one-dimensional.
Then T does not charge any complex hypersurface of X.

Remark 2.4. This result is due to Sibony [Si 99] in the case X = P* and
we follow his approach. Our hypothesis on @; is purely technical (and could
be omitted with some more work, see [Fa 99]). Note however that it is satisfied
when e.g. X is a Hirzebruch surface (see Section 3).

Proof. The basic idea of the proof is as follows: if T charges some irreducible
hypersurface V' then its potential satisfies 1)y = —oo. On the other hand,
the invariance f*T = AT implies V (or some component of f~/(V) for some
integer j) is invariant under f (or some iterate of f), say f(V\Iy) C V. If fiv is
dominating (i.e. f(V\Iy) = V), then one can construct an invariant current on V
whose potential minorates .y, contradicting 1|y = —oc. We now make this
more precise.

Our assumption on @y insures T is an extremal point in the cone of currents
S € T(X) satisfying f*S = AS (see Remark 2.3).

By a theorem of Siu [Siu 74], T can be decomposed as T = T + T>, where
T € T(X) does not charge any hypersurface of X and T, = >_¢jlV;], where
the ¢;’s are nonnegative constants and the V;’s are irreducible divisors of X. The
invariance f*T = AT yields T) < \™'f*T; < T. Set

1N
=S —_(f)
Ry N,§=1 )J(f)Tl
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82 VINCENT GUEDIJ

and let R be a cluster point of (Ry). Then f*R = AR and T} < R < T. By
extremality of T it follows that R = ¢T for some constant ¢ € [0, 1]. Therefore
eitherc=0and T =T, or c =1 and T = T} does not charge any hypersurface.

There remains to show that T # T,. Assuming T =T, = }_ ¢j[V;], we infer
again from the invariance and the extremality of T that there exists / € N* with
Vo C f~1(Vy), otherwise the currents Ry, = N~ Zjlil A7 (f))*T would not charge
Vo. Assume [ = 1 for simplicity. Since f(Vo\Ir) C Vo, we can define a decreasing
sequence of analytic subsets of X

Wi =F(Vo\Ip), - . ., Wj = F(W,_1\Ip).

The analytic subset W = N;W; is nonempty since f is algebraically stable. Thus

W is an irreducible analytic subset of X such that f(W\I;) = W, i.e., fiw is a

dominating self-map of W. If W is reduced to a point, then it is a fixed point for

S which does not belong to Ir. Thus ¢s(p) > —oo contradicting 1|y, = —o0.
Assume now W has positive dimension. Set

1 N—-1

1 .
on =5 > 3w @w).

N %5

Then (oy) is a bounded sequence of currents in 7 (W) which are cohomologous
to wyy. Let o be a cluster point of (on), then (fijw)*oc = Ao. We can argue
as in the proof of Proposition 2.1 and find a potential v € L'(W) for ¢ on W
(0 = wyy +dd“v) such that v < ¥y. Therefore Yoy # —oo and this contra-
dicts T|V0 = co[Vol. O

We now show that the Green current is extremal in 7 (X) when f is bimero-
morphic, i.e., when there exists a meromorphic map f~!: X — X such that
f~lof =fof!is the identity outside some complex hypersurface. A similar
result also appears in [G-S 00] for X = PX.

THEOREM 2.4. Letf,X,w, T be as in Theorem 2.1. Assume )\ > 1 is the spectral
radius of ®; and the corresponding ®y-eigenspace is one-dimensional. Assume
moreover f is bimeromorphic.

Then T is extremal in T (X).

Proof. Let S € T(X) be such that 0 < § < T. We need to show that § is
proportional to T. Observe that ¥(f~/)*T = T outside some critical hypersurface
Hj. We define S; := ¥(f~/)*S the trivial extension of X(f/)*S through H;. By
construction we get 0 < §; < T. Consider now S; = A7(f)*S;. The invariance
of T yields again 0 < S; < T. Therefore S,S; do not charge any complex
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C2? 83

hypersurface and, since they coincide outside the critical set of f7, it follows that
/ 1 i\ *
S=Sj=—)‘7(f) S;.
Note that S; is cohomologous to cjw + 6;, so
L i 1o s 0 S
;(f) Sj~cjw+§(f) i~ 9.

With our assumptions on the cohomology class of w, this insures 6; = 0 and
¢j = ¢ € [0,1] is independent of j. Therefore S; ~ cw and we now show that
AT (f)*S; converges (in the weak sense of currents) towards c¢T as j goes to
infinity. This will prove that S = cT.

Let vj,w; € L'(X) be potentials for S; and R; := T — Sj, in other words

Sj = cw+ddvj and R; = (1 — c)w + dd°w;.

We can assume without loss of generality that w; < 0 and v; + w; = ¥,
where 1, denotes the potential of T defined in the proof of Theorem 2.1. Since
A71pe 0 f/' — 0 and (vy) is bounded from above, we get A 7v; o f/ — 0 hence

1 .. 1 ., 1 .
S= V(fj) Sj=c—ﬁ(ff) w +dd°¢ (Evj off) — cT. ]

Remark 2.5. (i) It is an interesting problem to describe the cone K¢« of f*-
invariant currents. A complete answer was given in [Fa-G 99] and [Fa 99] in case
f is a bimeromorphic self-mapping of a compact Kéhlerian surface X. It seems
that invariant measures of maximal entropy should arise from such currents.

(i1) It was recently shown by Diller and Favre [D-Fa 00] that the @ eigen-
space associated to \j(f) is always 1-dimensional if d,(f) < A;(f)?. Thus our
cohomological assumption is automatically satisfied here.

3. Algebraically stable mappings on rational surfaces. When X = CP*,
there is a useful description of rational self maps, using “homogeneous coor-
dinates” (see e.g. Theorem 2.1 in [F-S 94]). These coordinates can be used to
describe the cone 7 (P¥). Such homogeneous coordinates exist for a broad class
of toric varieties (see [Cox 95]). We use them to describe the cone 7 (X) in Sec-
tion 3.1 and consider the particular case of Hirzebruch surfaces F, in Section 3.2.
Homogeneous representation of rational self maps of the F,’s are then explored
in Sections 3.3 and 3.4.

3.1. The cone 7(X) on toric varieties. Let X be a smooth compact pro-
jective toric variety. According to [Cox 95], X can be realized as a geometric
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84 VINCENT GUEDIJ

quotient

X=CM\z/G

where Z is an analytic subset of CV of codimension greater than 2 and G =
Homz(Pic(X),C*) ~ (C*)" acts on CN\Z via

A=, M) €(CH — Wz A 20,

where a' = (aj1,...,a;,) € N are fixed and 2= Xfﬂ ---X,’ir. We denote by
m: CN\Z — X the canonical projection. For a = (ay, ..., a,) € R’, we set

Po:={v € PSH((CN)/supB‘P =0 and P satisfies (%), },

where B denotes the unit ball of CV and

Mo YOz, AT 2n) = 3 ailog [N + ¥z, - -, 2w)

i=1
for all (z, \) € CN x (C*Y".

THEOREM 3.1. Let X be a smooth compact projective toric variety. There is a
unique isomorphism £ between P := Ugerr Po, with the L}oC topology, and T (X),
endowed with the weak topology of currents, which satisfies the relation

£ W) = ddy, Ve € P.

Proof. Let ¢ € P. Given s = (s1,...,sy): U — CV \Z a local holomorphic
section of 7, we can define a positive closed current of bidegree (1, 1) in U setting
T, := dd°( o s). If s’ is another section of 7 in U, then s’ = (h% sy, ... ,sNh“N),
where h = (hy,...,h,): U— (C*)" is holomorphic. Thus it follows from (x),, that
T, = Ty since each log |k;| is pluriharmonic in U. This shows that the definition
is independent of the choice of a local section, hence T defined in U by T is
actually a globally well defined positive closed current of bidegree (1,1) on X
which we denote by L(3)). Observe that 7*L()) = ddy by construction. So
L)) = L(p) implies ¢ — ¢ is pluriharmonic with logarithmic growth in CV.
Thus it is constant and the normalization yields ¢ = ¢, that is £ is injective.

We now show L is surjective. given T € 7 (X), we can consider 7*T €
T(CN\Z) which admits a trivial extension through Z since codim¢ Z > 2 (see
[Ha-P 75]). Since H'(CV, 0) = H2x(C",R) = 0, we can find u € PSH(C") s.1.
7*T = dd“u. Consider

v(z) = /GR u(g - z)dg,
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where Gg ~ (R*)¥ is the maximal compact subgroup of G and dg denotes the
Haar measure of Gg. Since 7*T is invariant under the action of Gg, we infer
7T = ddv.

Given g € G, the function w,: z € CN — v(g-2) —v() is pluriharmonic
in CV and invariant under the rotations of Gg, therefore it is constant: v(g -
2) = c(g) +v(2). The map ¢: g = (A1,...,A) € G = (C*) — c(g) € R
satisfies c(g - g') = c(g) + c(g’) and c(g) = 0 if g € Gg. Moreover c(g) > 0
if g = (A1,...,\,) is such that | A; |[> 1 for all i. This follows from convexity
properties of psh functions (see [K 91]). Thus we end up with a group morphism

h R, +) — R,+)

(t1, ... 1) —> c(e'l, ... e).

The increasing properties of ¢ insure 4 is continuous, hence there exists «j,. . .,
a, > 0 such that A(ty,...,t,) = Y i_; a;t;. The function ¥ := v — K belongs to
‘P, for an appropriate choice of the constant K € R and it satisfies 7*T = dd“'V.

Note that £ is obviously continuous by construction. We can extend naturally
L as a one-to-one linear mapping £: P ® R — 7(X) ® R. Note that PQR is a
closed subspace of L}OC(CN ) and 7(X) ® R is also closed in the space of closed
currents of bidegree (1, 1). It follows therefore from the open mapping theorem
that £~ is continuous.

Finally let s: U — CM\Z be a local section of 7. If 7*T = dd¢i), then
s*(n*T) = T\y = dd“(3p o 5). This shows T (hence £) is uniquely determined by
the relation 7*T = 7* L()) = dd“. O

3.2. Compactifications of C2. Any smooth minimal compactification X of
C? is a smooth projective toric surface, indeed it is either the projective space P2
or a Hirzebruch surface F,, := P(Op1 (0)®@Op1(a)), a € N\{1} (see e.g. [P-Sc 91]).
In this case N = 4, Z = {0} x C> U C? x {0} and the action of G ~ (C*)? is
given by

(A, 1) € (CH2: (20,21, W0, w1) — (A20, Az1, A% iwo, pw1).

Thus F, = C*\Z/G has the form described in 3.1 (we actually allow a nega-
tive integer —a following the standard notations: we could equally well write
(Azo, Az1, uwo, A%uwp)). We are going to give some more information about the
cone T (IF,).

e C =(z0 =0) and C' = (wg = 0) define two irreducible curves of F, whose
associated line bundles generate Pic(IF,) ~ Z2. They satisfy

c’=0, C¢-C'=1, C?*=-a

Moreover C' is the only irreducible curve with negative self intersection.
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e Any curve H, o of F, is defined as {P = 0}, where P is a bihomogeneous
polynomial of bidegree (o, @') in the sense that

P(\z0, Az1, A\ ™% pwo, piw1) = A% 6 P(z0, 21, wo, w1).

Observe that o might be negative, e.g. P = wy is a bihomogeneous polynomial
of bidegree (—a, 1) s.t. (P = 0) = C’. More precisely it is always true that o/ > 0
and o +aa’ > 0, since any H, o is linearly equivalent to (a +ad’) - C + o/C’.

Since C,C’ generate H""!(F,,R) ~ R?, we decompose 7 (F,) = UT o (Fy),
where

Toow o) ={T € T(F,)/T ~ (a+ad)[C] +[C']}.

With these notations, one checks easily that the isomorphism £ described in
Theorem 3.1 satisfies L(Pq.o') = To.o(Fs), where ¥ € P, s satisfies

W(Az0, Az1, A% pwg, pwy) = alog | A + o' log | u| + ¥(z0, 21, Wo, w1).

As for divisors o' > 0 and « might be negative. However the latter happens only
in exceptional cases described by the following:

PROPOSITION 3.1. Set wy = L(} log[|23| + |23|1) and

1
wy=L <§ log [(|z0]* + |21 |*)*|wo|* + [wi lz]) '

Let T € 1, o (F,). Then the following hold:

e T is cohomologous to a Kdhler form iff a > 0 and o’ > 0.

o T is cohomologous to a smooth semi-positive form iff a > 0.

o There existsy > 0and S € Tz g(Fa) with 3 = a+ay > 0and ' = o/ —y > 0
suchthatT = S+v[C']. Inparticularifa < OthenT charges the curve C' = (wg = 0).

Proof. Observe that w;,w; are smooth semi-positive forms on F, such that
wi ~[C] and w; ~ a[C]+[C'].

Therefore T € T, (F,) is cohomologous to aw; + &/w,. Assume T is cohomol-
ogous to a Kihler form. Then [T]-C =o' > 0 and [T]-C’ = a > 0. Conversely if
a,a’ > 0, one can compute the Levi forms of ¥; = £L~!(w;) and P, = LY ws)
to check that aw; + o/w, is a Kihler form.

Similarly if T is cohomologous to a smooth semi-positive form, then [T]-H >
0 for any curve H of F,. This yields a > 0 when H = C’. Conversely if a > 0,
then T is cohomologous to aw; + a’w; which is smooth, semi-positive.

It remains to analyze the case a < 0: By a theorem of Siu [Siu 74], we can
decompose T = 4[C'] + S, where v > 0 and S € 73 p(F,) has no mass on C'.
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Clearly 8 = a+ayand 8 =a’ —~v > 0. We claim 3 > 0, ie. [S]-C’ > 0.
To see this we can approximate S in the weak sense of currents by rational
divisors §; = Nij[Pj] which have no C’-component (see e.g. [G 99]). It follows

that [S;]- C’ > 0 hence [S]-C’' > 0. O

3.3. Rational self maps of F,. In order to apply Theorem 2.1, we describe
the linear map ®; when X = I, and give criteria for f to be algebraically stable. In
particular we give precise conditions in Section 3.4 so that a polynomial self-map
of C? admits an algebraically stable extension to some F,.

Letf: F, — F, be a dominating rational self-map of . It easily follows from
the existence of homogeneous coordinates on I, (see [Cox 95] and [Gu 95]) that
there exists F = (P, P1, Qo, Q1) a polynomial self map of C* with the following
properties:

(1) The following diagram is commutative

F, L T,

T T

ch\z 5 chz

(2) Py and P; are relatively prime. So are Qp and Q.

(3) Py, P, are bihomogeneous of bidegree (o, 3), Q1 is bihomogeneous of
bidegree (v, ) and Qp is bihomogeneous of bidegree (v — aw, § — af).

Moreover any polynomial self-map H of C* which satisfies (1) and (2) has
the form H = (APo, APy, \™%uQo, 1Q1) for some constants (X, 1) € (C*)2. Since
the P;’s and the Q;’s define complex curves in I, it follows from the previous
section that 8 > 0 and 6 > af3. Moreover a > 0 since otherwise wy would
divide both Py and P; (Proposition 3.1). The induced linear map @y is given, in
the basis ([w;], [w2]) by the “degrees of f:

_ e 7
Af_[ﬁ 6]6M2(N).

In other words, f*w; ~ aw; + Bw; and f*wy ~ Ywi + dws.

Definition 3.1. Letf: F, — F, be a dominating rational self-map. The matrix
Af = [g g] € M3(N) denotes the algebraic degrees of f. It is the matrix of the
induced linear map ®;: H'!(F,,R) — H"!(F,,R) in the basis ([w;], [w2]).

PROPOSITION 3.2. Let f be a dominating rational self-map of F, and denote by
F = (P, Py, Qo, Q1) a bihomogeneous representative of f. The indeterminacy set
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Ir of f is the discrete set Iy = Ip U I, where

Ip = {[z0: 21 : wo : wi] € Fo/Pilz,w) =0,0 < i < 1}
Ig = {[z0:21 : wo : wi] € F/Qi(z,w)=0,0 <j < 1}.

Proof. Obvious. O

The following lemma gives useful criteria to decide whether a map is alge-
braically stable.

LEMMA 3.1. Letf,F be as above. The following are equivalent:

(1) f is algebraically stable, i.e., there is no curve C of Fy s.t. f*(C\I; C If.
(2) Vn € N, F" is a bihomogeneous representative of f".

(3) Vn € N, q)fnﬂ = q)f [¢) q)fn

The proof is identical to the case a = 0 (see Proposition 1.8 in [Fa-G 99]).
To illustrate the usefulness of bihomogeneous representatives, we now charac-
terize the holomorphic self-maps of F,. The case a = 0 is well known (see e.g.
Proposition 1.5 in [Fa-G 99]); we therefore assume a > 1.

ProposiTION 3.3. Let f: F, — F, be a dominating holomorphic map, a > 1.
Then Ay = [0‘ g] and f admits a unique representative F' = (Po, P1, Qo, Q1) such

that Qo = wy and Q1 = w{ + onl, where Q1 is a bihomogeneous polynomial of

bidegree (a, o — 1). Conversely, any F of this form uniquely defines a holomorphic
self-map of F,.

Proof. Since Ip = (), the wedge product [Py = 0] A [Py = 0] is well defined
and identically 0. This yields 8 = 0. Similarly Iy = 0 yields §[6a + 2y —ac] =
Now 6 > 0 since § > af3 and f is dominating, hence da + 2y = aa.

It follows that v — aa = —y — ad < 0. As Qp is bihomogeneous of bidegree
(y — aa, § — aB), Proposition 3.1 insures wo divides Qp. Thus Iy = @ implies
01(20,21,0,1) # 0 for all [z0,21] € P!. Therefore v = 0, @ = é and Q; =
owf + woQ1, where @ is a bihomogeneous polynomial of bidegree (a,a — 1).

By Proposition 3.1 again, Qp which is bihomogeneous of bidegree ( — aa, o)
has necessarily the form Qg = ¢'w§. We can normalize F uniquely so that ¢ =
=1 O

3.4. Meromorphic extensions of polynomial mappings. Consider now
f: (z,w) € C? — (P(z,w), Q(z,w)) € C? a polynomial mapping. Set 3 = deg,, P
6 = deg,, Q and write P(z,w) = Z,.B___(,Ai(z)wﬁ‘i, O(z,w) = E}S:o Bj(Z)Wa_j. Set
a = degAyg, v = deg By and consider

Ai(z0,21) = 2§"Aiz1/20),  Bj(z0,21) = 23" Bj(z1/20)-
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These are homogeneous polynomials in (zo, z1) if a is large enough. Now

8 . LI o
Pi=3" Ao, cowhw{ ™ and Q1= Bj(zo, z)wpw;

i=0 =0

are bihomogeneous polynomials of bidegree (o, 3), (v, 6) is a is chosen large
enough so that the following condition is satisfied:

(%) V(i,j), a+ia>degA; and <+ ja > degB;.

In order to get an algebraically stable extension of f, we need to make another
assumption on a. Sett = y—aa and s = 6—a3. The map F = (zg"“" wh, P, 25wy,
Q)) is a bihomogeneous representative of the extension f of f to F,, as soon as
the following condition is satisfied:

(x%) §>ap and y+a(é—a)—a’B>0.

In other words ¢ > 0 and ¢ + as > 0. Thus a should not be chosen too large if
B # 0. The two conditions (*) and (**) might be incompatible, however we have
the following:

LEMMA 3.2. If there exists a € N satisfying () and (x*) then the meromorphic
extension f of f to F, is algebraically stable.

Proof. The only curves that can be contracted to a point of indeterminacy
are the curves C = (70 = 0) and C' = (wp = 0) at infinity. They are either fixed
or sent to the point goo = [0 : 1 : 0 : 1]. Now P1(0,1,0,1) = Ap(0,1) # O
since deg Ap = a, hence g, # Ip. Similarly g, # Ip, therefore f is algebraically
stable. O

Example 3.1. Consider f = (2 +zw,z* +2°w®), 6§ >2. Thena=f=1,7=3
and

Ag=z1, A1 =287'22, Bo=12}, Bs =504,
It follows that f admits an algebraically stable extension to F, for a such that

1 < a < 6 — 1. However the meromorphic extension of f to P? or P! x P! are
not algebraically stable. Note that the first dynamical degree of f is

1+6+/(6—1)2+12

2

A(f) =

hence it is not an integer if 6 # 3
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Example 3.2. (Polynomial skew-products) Consider f = (P(z), Q(z,w)),
where degP = «, deg,Q = 6 and Q = f:o Bj(z)w‘s‘j with deg By = . Con-
dition (+x) becomes v + a(6 — ) > 0 since 3 = 0. Therefore if 6 > «, f admits
an algebraically stable extension in I, for a large enough.

Example 3.3. Consider f(z,w) = W?, 29 + w9).
(1) If > > pq and d > p, then f admits an algebraically stable extension to
F, for a such that g/d < a < d/p. Indeed the bihomogeneization process yields

q a(d—aq, d— d ad—q. d
Py =zg'wo, P1=w{, Qo= Zo( p)Wo % Qr=wi+zy whz.

The indeterminacy set is [r = {[0 : 1 : 1 : O],[1 : 0 : O : 1]} and the curves
at infinity are contracted to the point go, = [0 : 1 : O : 1]. The degrees of the
extension are Ay = [2 2] therefore the first dynamical degree of f equals d.

(2) If d® < pg and g > d, then f? = ([z7 + w¥]P,wP9 + [z9 + w¥]¢) admits an
holomorphic extension to P? and has algebraic degree pq. Therefore the first
dynamical degree of f is A1(f) = \/pq.

(3) There remains to consider the case ¢ < d < p. One can check by induction
that for all j, f does not admit an algebraically stable extension to P? nor to any
FF,.. One needs here to consider nonminimal compactifications of C2. For example
when g = 1, d = 2, p = 3, then f = (W’, z + w?) becomes algebraically stable in
P2 blown up at two points: blow up first the point [z : w : t] = [1 : 0 : 0], then
blow up the intersection between the exceptional divisor and the strict transform
of (¢t =0).

ProposITION 3.4. Let f(z,w) = (P(z,w), Q(z,w)) be a dominating polynomial
self mapping of C? of algebraic degree d,(f) = max (deg P,deg Q) = 2.
Then f or f? admits an algebraically stable extension either to P2, or Fy or F».

Proof. Consider first the extension of f to P2. The hyperplane (¢ = 0) at
infinity is either fixed or sent to a point, say [z : w:¢] = [0 : 1 : 0]. Thus f is
algebraically stable in P? except in the latter case when [0 : 1 : 0] is a point of
indeterminacy. This means f has the following form

f(z,w) = (az+ bw + ¢, z[dw + ez] + L(z, w)),

where L is linear.

If b = 0 then f is a skew-product with 1 = 6 > o = 1, so f admits an
algebraically stable extension to any F,, a > ao (see Example 3.2, here ap = 2
would work).

Ifd =0 b #0, then e # 0 since d,(f) = 2. Thus we get f2(z,w) =
(bez? + linear terms, e(az + bw)? + linear terms), so f> admits an holomorphic
extension (hence algebraically stable) to P2,
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Finally assume bd # 0. Using our previous notations, we get a =0, 8=~ =
6 =1 and P(z,w) = Ao(2)w + A1(2), Oz, w) = Bo(2)w + B1(2) with

degAp =0,degA; < 1,degBp=1,degB; < 2.

Looking at the extension in [, in bihomogeneous coordinates, the condition (xx*)
becomes 1 > a and 1+a—a® > 0 hence a € {0, 1}. On the other hand condition
(%) yields a > degA;, 1 + a > degB;. Thus f admits an algebraically stable
extension to . O

Remark 3.1. Similar (but much longer) computations show that any poly-
nomial self mapping of C? of algebraic degree 3 admits an algebraically stable
extension to P? or F, or P? blown up at 2,3 or 4 points. We conjecture that any
polynomial self mapping of C? admits an algebraically stable extension to some
(nonminimal) compactification of C2.

4. Mappings with large topological degree.

4.1. Growth properties and dynamical degrees. In this section f: C?> —
C? is a polynomial dominating mapping, X = C?UY,, is either P? or a Hirzebruch
surface I, and we still denote by f: X — X its meromorphic extension. It
follows from Section 3 that there is a smooth semi-positive (1, 1)-form w on X
s.t. f*w ~ Aw—here A denotes the spectral radius of the induced linear map
®; on H"!(X,R). Indeed one can take the Fubini-Study Kihler form w = wgs if
X =P? and w = twi +hw; if X = F,, where 11,1, > 0 satisfy A+ (11, 12) = A1, 12).
The form w is unique up to normalization: if f is algebraically stable with A > 1,
we normalize it so that [. T Awrg = 1, where T is the Green current constructed
in Theorem 2.1. Actually there is one exceptional case where w is not uniquely
determined. This is when 3 = v = 0 and o = 6 on X = F,. However this
corresponds to a polynomial skew-product of C? whose simple dynamics was
completely settled in [Fa-G 99].

Define 1) € PSH(C?) by ¢(z,w) = %log [1+|z]2 + |w|?] if X =P? or

t t
e w) = 5 log[1+ |1+ 2 log [(1 +[z)" + wl’]

if X =F, so that dd“y) = w in C2.

THEOREM 4.1. Assume f(Yoo\If) = goo ¢ If. Then the following hold:

e the map f is algebraically stable on X, q., is a superattractive fixed point
and the first dynamical degree of f satisfies A = \{(f) > 1.

e the sequence gi(p) = A7 o fi(p) converges pointwise towards a function
g € PSH(C?) which satisfies g o f = \g.
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o the set Qo = {p € C?/g(p) > 0} is the basin of attraction of g, the
function g is pluriharmonic in Q.. and continuous in C2.
eset K* := C?\Qq, then K¥ N Yoo = Supp TN Yoo = Ir #0.

Proof. Since C? is f-invariant, the only curves that could be contracted to
points of indeterminacy are contained in Y.,. The latter is sent to g, which
is fixed and does not belong to I, therefore f is algebraically stable (Lemma
3.4). Since f is polynomial, Df(g.) has a 0-eigenvalue in directions transverse
to Y. The other eigenvalue is also O since Y., is contracted to g, hence
doo 1s a superattractive fixed point. The first dynamical degree of f equals the
spectral radius of the induced linear map @ (since f is algebraically stable), hence
A1(f) = A Clearly A > 1 otherwise f would act linearly at infinity contradicting
f(Yoo\If) = {doo-

Since f is algebraically stable, we can apply Theorem 2.1: the sequence
A7T"(f")*w converges towards a Green current T € 7T (X) satisfying f*T = AT.
The choice of potential is unique up to the addition of a constant, therefore the
convergence of (g;) is a consequence of Theorem 2.1 if we normalize the potential
g of T in C? so that infg2 g = 0.

To show that the basin of attraction of g, is precisely the set where g > 0,
one needs to estimate the growth of f outside this basin. This was done in
[Fa-G 99] in the case a = 0 and the proof for every a is quite similar: one shows
the existence of C > 0 and v < A such that for all points p outside the basin
of goo

1+ | @)l < ci+|pll”, V€N

The case X = P? is similar though the estimate is easier to establish (y = A — 1 is
easily shown to be convenient in this case). Since €, is a Fatou component, the
Green current vanishes on Q., (Theorem 2.2), i.e., g is pluriharmonic on Q.
The upper-semi-continuity of g > 0 guarantees that g is continuous at every point
of OK* C (g = 0), hence g is continuous in C2.

The current T is supported on K*. If we show that every point of indeter-
minacy belongs to Supp T, then Iy C Supp TN Yy, C KfNYy C Ir, where the
latter inclusion comes from the fact that every point of Yo, \Is belongs to the
basin Q. Recall that T = w + dd“1,, Where

Yoo =) %w off and %f*w = w+ddy.

j20

Thus ¢ has positive Lelong number at every point of Ir since w is Kahler (this
follows from our assumption f (Yoo \If) = goo: if w is not Kihler, then X = F, and
f is a “skew-product,” i.e. 5y = 0, but in this case one of the two lines at infinity
is not contacted by f). Therefore T has positive Lelong number at every point of
If, in particular Iy C Supp T.
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Finally note that I is nonempty otherwise f would be holomorphic and Yoo
could not be contracted to the point g since f is finite-to-1 (this follows from
Proposition 3.3). m|

In order to construct interesting invariant measures starting from the Green
current T, we need to relate the growth of the mapping fjs,,, r to the dynamical
degrees of f. The following lemma is a basic observation that we are going to
use several times.

LEMMA 4.1. Letf, A\, T be as above and let d, denote the topological degree of
f. Then

/(czf*wFS AT =6 :=d/\

Proof. Tt is well known that the set Z = {p € C?/#f~!(p) # d,} is a proper
algebraic subset of C2. Since wrs A T is a probability measure in C? which does
not charge hypersurfaces, we infer

/ ffwrs AT) = / [ wres ANT) = (wrs AT, fi 1) = d;.
(o c2\z

Therefore [ f*wrs AT = A1 Jerf*(wrs AT) = 6. O

PROPOSITION 4.1. Letf, K" be as in Theorem 4.1. Let d, denote the topological
degree of f and set § = d;/ \.
(1) If there exist constants C,~y such that

(%) L+ |lf(pll > Cl1+|pll1", Vpe KT,

then vy < 6. The set Iy is an attracting set for fix+ if v > 1.

(2) If Iy is an attracting set for fix+, then § > 1, f is not normal and K* := {p €
C? J(f"(P)n>0 is bounded} is a compact polynomially convex subset of C2.

(3) If there exist constants C,~y such that

(+%) L+f(pll < Cl1+|lpll1",  Vp € KT,

then y < 6. The set Iy is a repelling set for fixc+ if v < 1.

(4) If Iy is a repelling set for fix+, then 6 < 1, f is normal hence K* = K*
is closed and K := {p € C?/(f™(p))nez is bounded} is a compact polynomially
convex subset of C2.

Proof. (1) Set u(p) = log* ||f(p)|| and u. = max ([1 + e]lu — C.,~ylog* ||p|))-
Then u, u. are plurisubharmonic functions on C2. If R > 0 is fixed, we can
choose ¢p > 0 and C. > 1 so that u. = ~log* ||p|| in a neighborhood of
B(R) = {p € C?/||p|| < R} for any 0 < & < €. Moreover it follows from (¥)

This content downloaded from 130.120.81.66 on Thu, 21 Apr 2016 12:31:49 UTC
All use subject to http://about.jstor.org/terms



94 VINCENT GUEDJ

that u, = [1 + €]u — C. on Supp T\B(R.) for R, large enough. Let Y > 0 be a
smooth test function in C? s.t. x = 1 in a neighborhood of B(R). Then

’y/ dd°log® |p|| AT = / ddu, NT < / xdd‘u. NT
B(R) B(R) C?

= [1+5]/ decu/\TS[1+s]/ ffwrs AT,
c? c2

where the last equality follows from Stokes theorem. Letting ¢ — 0 and R — +o0,
this yields

7=’Y/ wFs/\TS/f*wFs/\T
2 o

hence v < § by Lemma 4.1.

(2) If v > 1, it follows from (*) that Iy = K+ N Yy is an attracting set for
Jixc+- Conversely if Ir is an attracting set for f, then there is an inequality (x) with
either v > 1 or y=1 and C > 1. It follows from (1) that 6 > ~v > 1.

Assume I is an attracting set for f|,<;+. Let B*(Iy) denote the set of points
which are attracted by Ir under iteration. This is an open subset of X* which
contains a neighborhood of infinity in K* and is nonempty since K+ N Yo, = Iy
# (. Therefore f is not normal and K* is a compact subset of C2. Set u,(p) =
log* |lf"(p)|| € PSH(C?). If p € C?\K*, then f*(p) — Yo therefore u,(p) —
+00 whereas supg. sup, u, = supg- log* || - || < 400, hence K* is polynomially
convex.

Proofs of (3) and (4) are similar to those of (1) and (2). We say that Ir
is a repelling set for fix+ if it is an attracting set for f|E1 in the following
sense: there exists V an open neighborhood of Y, in C? s.t. f~{(V N K*) cC
VNK* and fA(VNKY — I in the Hausdorff metric. It clearly follows that
f is normal and more precisely K* = K*. Let B~ (Iy) denote the set of points
whose backward orbit is attracted by Ir. If Ir is a repelling set for fix+ then
B~(I) is an open subset of K* which contains a neighborhood of infinity,
therefore the set K of points of bounded orbit (both forward and backward)
is compact in C?. To see that K is polynomially convex, one can consider the
functions v, = d; "(f™). log* || - |- m|

Remark 4.1. The maximal v such that 1 + |f(p)|| > C[1 +||p|]”, Vp € C?
is called the Lojasiewicz exponent of f at infinity and is usually denoted by
Loo(f). This is a rational number which can be computed explicitly by means of
a simple algebraic formula (see [C-K 92]). Note that Y, is an attracting set for

Fif Loo(f) > 1.
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C2 95
4.2. f*-invariant measures.

THEOREM 4.2. Let f be as in Theorem 4.1. Assume Iy is an attracting set for
fik+and 6 =di /X > 1. Set

_lXN:_l_(fj)* AT
uN_N].:l&j w .

Then (uy) is a sequence of probability measures in C*. Any cluster point u has
support in the compact set K* = {p € C?/(f(p))n>0 is bounded} and satisfies
fp=dip

If 1 does not charge pluripolar sets, then it is an invariant measure (fip = p)
which is mixing and of maximal entropy

hu(f) = htop(f) = log di(f).

Proof. It follows from Lemma 4.1 that py is a probability measure. Since Ir
is an attracting set for f+, the set K* is compact (Proposition 4.1) and filp) — Iy
for every point in Supp T\K*. Assume X = P? and goo = [1 : O : 0]. Then if
f=(f.f) we have

1 . .
3 log[1+ ||f'||*] = log | 3| + u;, with u; bounded on Supp T\K*.

It follows that uy — O outside K*. A similar proof applies for the other com-
pactifications of C2. The invariance of T yields

N+1 1 AT
N HN+1 Nw )

1,
d—thN-

hence f*u = d;p follows from pyy; — uy — 0.
Let x be a test function. Then f, x is well defined outside some analytic subset
and f.f*x = d;x. Therefore

lf*f*><> = (1, X)

(fatts X) = <ditf*f*u,x> = <u, i

if ;1 does not charge pluripolar sets. Moreover since d; > A = A\(f), a result
of Russakovskii and Shiffman [R-Sh 97] asserts that p satisfies the following
equidistribution property: there exists a pluripolar set & such that

1 .
v, € C\&, 7 e —
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96 VINCENT GUEDJ

where €, denotes the Dirac mass at point p. As was observed in [Fa-G 99], this
implies that ;1 is mixing whenever p does not charge pluripolar sets.

Finally the functional equation f*u = d,u insures that f has constant Jacobian
d, with respect to y. The Rohlin-Parry formula (see [Pa 69]) yields k,(f) > logd;.
On the other hand h,,,(f) < logd; by a result of Friedland [Fr 91], it follows
therefore from the variational principle (see e.g. [Wa 82]) that these are equalities,
hence 1 has maximal entropy. O

What remains is to make sure that . does not charge pluripolar sets. A natural
idea is to construct a partial Green function v which measures the (slower) growth
of orbits on Supp T. A similar construction appears in [Fa-G 99] in the case of
polynomial skew-products of C? and in [G-S 00] in the study of polynomial
automorphisms of C*. We have the following:

PROPOSITION 4.2. Let f be as above. Assume there exists C > 0 s.t.

VpeSuppT,  1+|f(p)|l < CI1+|p|1°.

Then v; = 7 log" ||f/(p)|| (almost) decreases on Supp T towards a function v €
Ly (Supp T) which satisfies v o f = év. Therefore (uyn) converges towards the
probability measure p = dd°(vT) which does not charge pluripolar sets.

Proof. The growth control on f on Supp T implies vj,1 < vj+C'6 —J. Therefore
(vy) is almost decreasing and v = lim v; is well defined at every point of Supp T.
Since v is upper-semi-continuous and nonnegative, it is locally bounded hence
v-T is a well-defined “pluripositive current” in the sense of Sibony [S 85]. There
are Chern-Levine-Nirenberg inequalities for dd“(v-T) similar to the classical ones
(see [Fa-G 99]). They insure that p = limdd‘(v; - T) = lim y; does not charge
pluripolar sets. O

Example 4.1. Let f: (z,w) € C? — (P(w), Q(z) + R(w)), where P,Q,R are
polynomials of degree p, q,d with d > max (p, q). Then f admits an algebraically
stable extension to P? with Ir=[1:0:0] and f(Yoo\If) = goo = [0 : 1 : 0]. Note
that the topological degree of f is d; = pq and the first dynamical degree equals
d.

(a) If 6 = pq/d > 1, then the hyperplane Y, at infinity is an attracting set for
f. This can be checked directly or by computing the Lojasiewicz exponent of f at
infinity which is Loo(f) = 6 = pq/d > 1. More precisely we have the following
growth control: there exists C > 1 such that

1
@ G+Ipl < 1+ < ClL+ Pl vp € K = C\ Q.

Thus f satisfies the assumptions of Theorem 4.2 and Proposition 4.2.
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C2 97

(b) If 6 = pg/d < 1, then I is a repelling set for fjx+ and moreover we have
the following growth control for f~!: there exists C > 1 such that

(b) %[1 +F@INYe < 1+ pll < ClL+IAPINY?,  ¥p € KF = C*\ Qoo

Proof. (a) We set V.. = {(z,w) € C?/ max (|z|, |w|) > 1/e}. We leave it to the
reader to check that there exists g9 > 0 such that 0 < e < g9 = f(Ve) C V¢ /2. In
particular f(V. N K*) C V., NK* since K* is f-invariant. Now K* N Yoo = Ir =
[1:0: 0], therefore

K*nV.={(@zw) € K*/|z| > 1/e and |w| < c(e)|z]},

where c(¢) — 0 as ¢ — 0. We claim that there exists C; > 1, £; > 0 such that
if 0 <e<epand (z,w) € V.N KT then

1
(%) — 2 < [wl? < Gyl
Cy

Assume on the contrary that |w|? > C;|z|? where C} >> 1, then if (Z/, w') = f(z, w),
we get |[w| = |Q@) + Rw)| > C'|w|¢ > |Z| = |P(w)| contradicting |w/| <
c(e/2)|'|. Similarly if |w|¢ < |z|9/C; then |w| > C"|z|? > C"Ci|w|* > |7, a
contradiction.

Therefore () is satisfied and this yields |z|°/C, < |Z/| < Cy[z|® for any
(z,w) € V. N K*. The desired growth control follows from compactness of
K*\Ve. N K*.

(b) Straightforward adaptation of the previous case. O

Remark 4.2. Similar growth control could easily be obtained for mappings
of the form f(z, w) = (P(z) + A(z, w), Q(z) + R(w) + B(z, w)) where the polynomials
A and B have small degrees compared to those of P, Q, R.

Note also that these estimates are stable under composition. Thus (a) (or (b))
applies for mappings f = f} o - -- o f;, where each f; has the form described in
Example 4.1.

5. Mappings with small topological degree.

5.1. Construction of f,-invariant currents. Letf: X — X be a dominating
meromorphic self-map of compact Kihler manifold X. Given R € 7(X), we
would like to define the push-forward f.R of R by f. When f is holomorphic, this
can be done by duality setting ( fyR,8) := (R,f*8) for every test form #. When
f is merely meromorphic, we can consider G a desingularization of the graph
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98 VINCENT GUEDJ

Gy C X x X of f. We have a commutative diagramm

Q2

where 71,7, are holomorphic proper maps. The current 7{R is a well-defined
element of 7(G) (see the introduction of Section 2.1) hence we can consider
Sf+R := (m2)«(m]R). One checks that this definition is independent of the choice of
desingularization of Gy. It preserves cohomology classes hence induces a linear
map on H'"!(X, R) which is dual to the map ®; defined in Section 2.1 in case X
is a compact complex surface. There is a useful alternative construction. Denote
by d; the topological degree of f and set

Zr={p € X/#f~'(p) #d.}.

The latter is well known to be a proper analytic subset of X. If ¢ is a local
potential of R, we can consider dd°( f.), where f,p(p) = 2 f@=p P@) is well
defined on X\Z;. This definition clearly does not depend on the choice of local
potentials and yields a positive closed current of bidegree (1,1) in X\Zs which
coincides there with (m2)«(7{R). Thus dd°( fi¢) has bounded mass near Z; and
we can consider its trivial extension through Z;. When R is smooth, these two
currents coincide everywhere since they do not charge complex hypersurfaces.

It is easy to check that (f*1),R = (f/).(fiR) as soon as f is algebraically
stable. Moreover we have the basic identity

fof "R = diR in X\Z;.

Remark 5.1. The dynamical study of push-forward of currents appears in
[F-S 98] in the context of endomorphisms of P2. Although our interest is rather
in mappings with “small” topological degree, some arguments of Fornaess and
Sibony can easily be adapted to our situation and we refer to [F-S 98] for further
details on push-forward of currents.

THEOREM 5.1. Let X be a compact Kédhler manifold andf: X — X adominating
meromorphic self-map which is algebraically stable. Let w € T (X) with continuous
potential and assume f,w ~ Aw, where A > d,(f).

Then there exists T~ € T (X) such that:

(1) A™"(f")ew — T~ in the weak sense of currents. When f is holomorphic,
there is uniform convergence of potentials therefore T~ admits a continuous po-

tential.
(2) The current T~ satisfies f,T~ = AT~ and T~ ~ w.
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DYNAMICS OF POLYNOMIAL MAPPINGS OF C? 99

(3) Ifw' € T(X) is cohomologous to w and admits a locally bounded potential,
the \™"(fM)ew’ — T~
(4) The current T~ is extremal in the cone

K= {R € TX)/f.R ~ AR and R ~ w}.

Proof. The proof is very similar to those of Theorem 2.1 and Proposition 2.1.
We therefore only sketch the construction of the potential of 7~. Let ¢ € L1(X)
be such that \™!f,w = w+dd°yp. Since ¢ is quasiplurisubharmonic, we can assume
¢ < 0. Since f is algebraically stable, we get ( 4w = (F)«( frw) for all integers
j. Thus we can iterate the previous equation to get A7(f/),w = w +ddp;, where

j-1
wi=> %(f’)*w

=0
is a decreasing sequence of quasiplurisubharmonic functions. If ¢, # —o0, the
current T~ = w + dd°p satisfies all our requirements. Thus it remains for us
to show that the limit ¢, is not identically —oo. Since A~(f),w is bounded in
T (X), we can construct o € 7(X) such that f,oc = Ao and 0 ~ w. Let v € L'(X)
be a potential for o; we can assume

v — %f*v=<p.

Then it follows that v — A7(ff),v = @j. Now v is bounded from above on X,
hence there exists C > 0 such that

| d\’
%Zv—ﬁ(f’)*CuJ—C(X’) .

Since d; < A we infer o, > v hence oo # —00. O

Remark 5.2. When d, = 1, i.e. when f is bimeromorphic, then f,w = (f~')*w
hence T~ is the Green current associated to f 1.

Assume now X = P2 or FF,,. Then the linear action induced by f, on H'!(X,R)
is dual to the action induced by f*. We let w denote a normalized Kihler form
such that f,w ~ Aw, where )\ denotes the spectral radius of the linear actions
f« f*. Observe that the eigenspace associated to A is one-dimensional since we
assume A > d;(f).

THEOREM 5.2. Let f be as in Theorem 5.1 with X = P? or F,. Assume there
exists a finite set S which is f~-attracting. Then T~ is an extremal point of the
cone T (X).
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100 VINCENT GUEDJ

Proof. The proof goes along the same lines as that of Theorem 2.4. Given
S € T(X) such that 0 < § < T~ we need to show S = xT~ for some x € [0, 1].
Observe first that one can adapt the proof of Theorem 2.3 to show that 7~ does
not charge complex hypersurface of X. In particular 7~ does not charge the
analytic subsets Z; for all j > 1. Consider

AN AV —
T;:= <d—,> (f/)*T~ and §; := (d_t) (f)*S

where -~~ means that we take the trivial extension through Z; of these currents.
We have A\ 7/(f/ )+«(Tj)) =T~ in X\ij. However T~ does not charge Zﬂ-. We claim
neither does A™/(f7).(T;) so that they coincide everywhere on X. Indeed from
the invariance (f).T~ = NT~ we get T; = d;’(f))*(f/).T—. Thus if X = P? we
have T; ~ ajwrs with o; < 1. It follows that

wrs ~ T~ < AXY()(T)) ~ ajwrs,

hence o = 1 and A7().(T}) actually equals 7~. When X =F, we have T~ ~ w
where R[w] is the eigenspace associated to the spectral radius A of the linear
action induced by f. on H"!'(X,R) ~ R2. Therefore Tj ~ ajw + 6; with a; < 1
and A(f).6; — 0. We infer similarly §; ~ 0 and o; = 1. This shows T~ =
A(f)u(T)) and Tj ~ w. Since AI(f),(S)) < T~ = X I(f).(Tj) we also have
S =A7(f)«(Sj) on X and S; ~ S ~ xw for some x € [0, 1].

Define R; = T; — S; > 0 and fix potentials uj,vj,w; € L'(X) so that T; =
w+dduj, Sj = xw+ddvj, R = (1 — x)w +dd°w;. We normalize these potentials so
that u; = vj+w; and supy v; = supy w; = 0. This insures that they do not converge
uniformly towards —oo. We claim A™(f/),(4;)) — 0 in L'(X). Indeed,

dd O\ ()u)) = XI(T) — X)) =T~ = A7 (fulw) — 0.

Therefore A 7( /). (u;) — C < 0 (possibly C = —o0).

We now use the fact that there exists a finite f~!-attracting set S to show
C =0 (S = Ir in Theorem 5.3 below). Fix V a small neighborhood of § such that
f‘l(V) CC V and Nf(V) C S. Since S is finite, we get T~ = 0 in V. Since
T;,S;j, R; are all supported on Supp T~, it follows from Harnack inequalities that
there exists a constant Cy independent of j such that —Cy < u; < 0 in V. This
yields

J .
—Cy (%) < Xll-.(ff)*uj <0inV,

since f‘l(V) C V. Therefore )\‘j(ff)*uj — 0in V, hence C =0.
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Now 0 > vj = u; — w; > u; therefore A™7(f),(v;) — 0. This shows
S = AT()u(8) = AV (fa(w) + dd N7 (f)u(vy)) — 2T~ O

5.2. Invariant measures. We now come back to the situation described in
Section 4.1: X is either P? or a Hirzebruch surface F, and f: X — X is the
algebraically stable meromorphic extension of a polynomial self-map of C2. Let
w,w’ € T(X) with continuous potential such that f*w ~ Aw and fiw' ~ Au'.
We assume A\ > d,-here d, stands, as usual, for the topological degree of f. We
normalize w,w’ by imposing [y w A w’ = 1. By Theorems 2.1 and 5.1 we can
define

T 1 Ny * - — 1 1 n /
T = lim V(f)wandT —nllgloov(f s’

n—+00

THEOREM 5.3. Let f be as in Theorem 4.1. Assume Iy is a repelling set for f and
§:=d/A< 1.

Then u = T* A T~ is an invariant probability measure with support in the
compact set K = {p € C?/(f"(P))nez is bounded}. The measure y is mixing. It
does not charge pluripolar sets and has maximal entropy

hp,(f) = htop(f) =log A.

The proof is divided into three steps. To simplify notations we only treat the
case X = P2. In this case the first dynamical degree ) equals the algebraic degree
doff.

Step 1 (Invariance of p). It follows from the work of Bedford and Taylor
(see e.g. [K 91]) that p is a well-defined positive Radon measure. This is clear in
C? where T* has locally bounded potential. Near every point of indeterminacy
p € Iy, T* admits a potential that is continuous outside p (Theorem 4.1). So p is
globally well defined (see e.g. [F-S 95b]) since Supp T N Y, = If.

We now show that u has compact support in C2. Let V be a neighborhood
of I; such that f~1(V) C V and Nj>of (V) = Ir. Denote by B~(Iy) = Uj>qf/(V)
the basin of attraction of Ir for f“. We claim that C2 = K~ U B~(If), where
K~ ={p € C?/(f~(p))n>0 is bounded}. Indeed if p; — o \If With p; € f7"i(p)
for some point p € C?, then p = f(pj) — goo since g is a (super)attractive
fixed point for f, a contradiction. Since I is a finite number of points, we can
choose coordinates so that Ir N (w = 0) = (. It follows that (f").(log* ||(z, w)]|) =
(fM«(log |w|)+0O(d}) in the basin B~ (If) so T~ has support in K~. On the other
hand T* has support in K* which clusters only on Ir in Y, (see Theorem 4.1 and
Proposition 4.1). This shows p has support in the compact set K (Proposition 4.1).
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102 VINCENT GUEDJ

Observe that 1+ does not charge proper analytic subsets as follows from Chern-
Levine-Nirenberg inequalities (see [K 91]). In particular y does not charge the set
Z; = {p € C?/#~(p) # d;}. The invariance of y will follow from the following:

LEMMA 5.1. Let R, S be two positive closed currents of bidegree (1, 1). Assume
Sf+R N\ S does not charge the set Z; and S has locally bounded potential. Then

HRAf*S)=fiRAS.
Proof. Let x be a test function and assume first S is smooth. We have

(LRALS), x) = (RALS).f*x) = (R.f*(XS)) = (iR, XS) = (RN S, X).

For the general case, we can regularize S and use the monotone convergence
theorem in the style of Bedford-Taylor (see [K 91]). O

Since p =T~ ATt =d~'T~ Af*T*, we get fpu =d~'f, T~ AT* = p. Thus
 is an invariant measure with compact support in C2.

Step 2 (Mixing). We now show that y is mixing. Given X, 8 two test func-
tions, we need to prove (see [Wa 82]) that

/0xofjd,u—>/9du/xd,u.

We can assume without loss of generality that 0 < 6, x, < 1. Observe that
. 1 ., 1 _
/9x offdu= <9T‘, R (xT+)> = <I(fj)*(9T ) xT*> :
i

Set R; = AJ(f)(T"). The invariance of 7~ guarantees 0 < R; < T~.
Moreover any cluster point R of (R;) is closed by Proposition 5.1 below. Since
T~ is extremal in 7 (X), we infer R = ¢T~ where

¢ ={cT™,w) =lim(Rj,w) = lim(8T ™, \ 7 (f)*w) = / 0dp.

Thus ¢ = ¢y is independent of R and this shows that (R;) actually converges
towards cyT~. Denote by g* the continuous potential of 7*. Then

(RiANT,x) = (dd°x NRj,g*) + 2(dR; Ndx, g") + (dd°R;, xg*).

The first term converges towards cg(dd“x AT, g*) = cocy since g* is continuous
and dd°x AR; — c¢dd°x AT~ in the sense of Radon measures. The last two terms
converge to 0 since ||dR;||, ||ddR;|| — O (Proposition 5.1 below). This shows
is mixing.
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The next proposition is the key tool to deduce ergodic properties of invariant
measures from extremality properties of invariant currents. It relies on the use of
Cauchy-Schwartz inequality in the style of Ahlfors-Beurling. Such a result was
initiated by Bedford and Smillie (see Lemma 1.2 in [B-Sm 92]) in the context
of Hénon mappings (see also Proposition 6.1 in [Si 99]). In the context of endo-
morphisms of P2, Fornaess and Sibony gave a similar result for push-forward of
“truncated currents” (Proposition 5.4 in [F-S 98]). We leave the technical adap-
tation to the reader.

PROPOSITION 5.1. Let R be a positive closed current of bidegree (1, 1) in a ball
B of C? and x > 0 a test function in B. Define

1 7y * _ i n
= F(f) (xR) and R, = )\,,(f )« (XR).

Then (S,), (R,) are bounded sequences of positive currents. We have ||dS,|,
|ldR,|| = OA""/?) and ||dd°R,|| = O\™™), ||dd°S,|| = O((d;/\)"). In particular
any cluster point of these sequences is a closed positive current.

Step 3 (Entropy of ;). We now show that x4 has maximal entropy logd,
following the lines of the proof of Theorem 4.4 in [B-Sm 92]. Observe first that
hu(f) < hiop(f) < logd. The first inequality follows from the variational princi-
ple (see e.g. [Wa 82]) and the second is due to Friedland [Fr 91]. We therefore
only need to show that h,(f) > logd.

Let U be a connected neighborhood of g, such that f(U) C U and Nj>,
FI(U) = {goo}- Let w’ be a smooth semi-positive closed (1, 1)-form on P2 such
that ' ~ w and W' = 0 near go.. Shrinking U if necessary, we can assume
w' = 0in U. Let L be a line in C? which intersects the line at infinity in U.
For a generic choice of L, we have d~"(f").[L] — T~. This is the dual version
of an equidistribution result of Russakovskii and Shiffman which can be proved
analogously since d > d;. We set

=[L] A —(f" *(w') and p, := Z(ff)*(un)

]—0

We show below (Lemma 5.2) that u, — p = T+ A T~. Observe that v, is a
probability measure with compact support in C2. Indeed

L= g fomngne'= 5 [[macmre =1,

since (f")*w' =0in U.
Fix € > 0 and let £ = {¢;} be a measurable partition of P? such that diam(¢;) <
€ and wu(9¢;) = 0. By a result of Misiurewicz (see [Mi 76] and [B-Sm 92] for an
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adaptation to this context), we have
1 n—1
hu(f) > limsup ~H,, ( V f“1(§)> .
n—+oo N .
i=0
Now every element of V?;)l ~i(&) is contained in an e-ball in the metric d,(p, q) =

maxo<i<n—1 d(f(p).f'(q)) -here d stands e.g. for the Fubini-Study metric. If B is
an e-ball, we have

1 C
(B) = - /B [DR] A (/)W) < - Aera(f'(B N De)

since w’ is smooth. We infer

(A ! 1
n Hy, (\/f_l(f)) 2 logd — ogC - _Ul(f n,e),
i=0

where v} 0 f.n,€) = supg Aera( f*(B N Dg)). The main result of Yomdin in [Y 87]
asserts that lim._,¢ lim, 1o ,,Ul( f,n,e)=0. This yields h,(f) > logd.

LEMMA 5.2. limp,— 400 tn = U

Proof. 1t follows from Lemma 5.1 that

. 1.
()s(vn) = E(f’)*(w[DR]) A S W

d”—l
Let (k,) be a sequence of integers such that k, — +oo and k, = o(n). We can
decompose p, as u, = u, + A, where A, — O and

= 1" Uy — GY
Z(ff>*(un) Ry AT +dd” | = % === (f)«($IDg)) | -

“ ad
j—kn J=kn

Here u, denotes the potential of = (fM*W') and R, = 1 ;’_k"f" ;, F«([L]). The
second term converges towards O because u, umformly converges towards G*
on compact subsets C2. Now (R,) converges towards 7~ so we can argue as in
the proof of the ergodicity of u: since ||dRy||, ||dd°R,|| — O (Proposition 5.1),

we get u! =R, NT* > T~ ANT*=p. m|

Remark 5.3. We assumed Ir is repelling to insure that p is compactly sup-
ported. Since f is polynomial, T* has locally bounded potential in C?sopu=
T+ AT~ is well defined in C2, hence in X\Ir, hence in X. A careful analysis of
the potentials near Iy should show that y is of total mass in C2. This would be a
first step towards a generalization of Theorem 5.3: one expects the measure p to
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still mixing and of maximal entropy. This was partially done in [Fa-G 99] in the
case of birational polynomial mappings.

Example 5.1.

(1) Consider f: (z,w) € C? — (P(w), Q(z) + R(w)), where P, Q, R are poly-
nomials of degree p = deg P, ¢ = deg O, d = deg R with d > pq. Then f admits
an algebraically stable extension to P? with Ir=[1:0:0] and fX\Ip) =[0:
1 : 0] = goo. Note that f*wps ~ dwrs ~ fiwrs and A(f) = d > pq = di(f),
hence we can consider 7* and 7~. Moreover I is a repelling set for fis,,, 7 (see
Example 4.1). Thus f satisfies the assumptions of Theorem 5.3. One can check
here that = T* A T~ is precisely the equilibrium measure of the compact K of
points with bounded orbits.

(2) Consider f = (w, w?z + B(w)), where B is a polynomial of degree b < a.
Then f admits an algebraically stable extension to X = P! x P! with \ = [a +
Va? +4]/2. We have Iy = I2 = {(0, 00); (00,0)} and f*(Yoo\If) = goo := (00, 00).
The map f is birational, i.e. d; = 1. One easily checks that Ir is an attracting
2-cycle for f, so f satisfies the assumptions of Theorem 5.3.
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