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Introduction

We are interested in the approximation of positive closed currents of bidegree
(1, 1) on a complex manifoldX by rational divisors, i.e. currents of the type
1
Nj

[Hj ], whereNj is an integer and[Hj ] denotes the current of integration
along a complex hypersurfaceHj of X.

WhenX is a pseudoconvex open set inCm s.t.H2(X,R) = 0, Lelong
proved [Le 72] that one can always find such an approximation in the weak
sense of currents. Demailly [De 82] generalized this result to the case where
X is a Stein or a projective algebraic manifold, modulo some cohomological
assumptions: for example one can weakly approximate a positive closed
currentT of bidegree(1, 1) if it has integer class (i.e.[T ] ∈ H2(X,Z)).

Using rational convexity properties of the complement of the support of
a positive closed currentT of bidegree(1, 1) in Cm, Duval and Sibony [D-S
95] showed that one can approximateT by rational divisors whose support
converges toSupp T in the Hausdorff metric.

The purpose of this work is an attempt to generalize this result to the
case of projective algebraic and Stein manifolds.

We first consider the case of homogeneous manifolds (X is homogeneous
if its group of biholomorphisms Aut(X) acts transitively onX). There is
in this situation a useful regularization process for positive metrics of holo-
morphic line bundles which we recall in an Appendix. Our main theorem
1.6 shows that:
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Theorem 0.1 Every positive closed currentT of bidegree(1, 1) on the pro-
jective spacePm(C) (resp. the Grassmann manifoldGk,m(C) of k−planes
of Cm, resp. the hyperquadricQm(C) for m ≥ 4) can be weakly approxi-
mated by rational divisors whose support converges toSupp T .

We give an example (1.3) of a current on an abelian torus for which such an
approximation does not hold.

In paragraph 2 we define and study the notion of (strong)rational convex-
ity on a complex manifoldX: a compact setK is said to be (strongly)rationally
convex ifX \K is a union of positive divisors. Our main theorem is a gen-
eralization of a result of [D-S 95]:

Theorem 0.2 Let S be a smooth compact totally real submanifold of a
projective algebraic manifoldX. ThenS is rationally convex iff it is isotropic
for some Hodge form, i.e.ω|S = 0 for some K̈ahler formω on X s.t.
[ω] ∈ H2(X,Z).

There is no intrinsic definition of polynomial convexity on complex
manifolds generalizing the usual notion inCm. However we define a notion
of polynomial convexity relative to a positive closed currentT of bidegree
(1, 1):

Definition 0.3 TheT−polynomial hull of a compact subsetK ofX is

K̂T :=
{
x ∈ X / f(x) ≤ sup

K
f, ∀f ∈ CT (X) s.t.ddcf ≥ −T

}
,

whereCT (X) denotes the set of functionsf ∈ L1(X) s.t. exp(f + ϕ) is
continous wheneverϕ is a local potential ofT . The compactK is said to
beT−polynomially convex when̂KT = K.

In many cases,X \ Supp T satisfies a convexity property (the “condition
(C)”: ∀K ⊂⊂ X \ Supp T , K̂T ⊂⊂ X \ Supp T ) which turns out to be
intermediate between being “rationally convex” and being Runge. An inter-
esting observation on the Levi problem (theorem 3.7) yields the following:

Theorem 0.4 Let T be a positive closed current of bidegree(1, 1) on a
compact K̈ahler manifoldX. If T is cohomologous to a K̈ahler form and
satisfies condition(C), thenX \ Supp T is Stein.

This generalizes the standard situation wheres is a holomorphic section of
some positive holomorphic line bundle onX andT = [{s = 0}] is the
current of integration along the positive divisor{s = 0}.

Our main approximation result gives an approximation of certain positive
closed currents by rational divisors with a control of the supports and the
Lelong numbers of the approximants:
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Theorem 0.5 Let T be a positive closed current of bidegree(1, 1) on a
projective algebraic manifoldX. Assume there isλ > 0 s.t. [λT ] = c1(L)
for some holomorphic line bundleL which we assume is positive. Assume
T = [H] + R, whereH =

∑p
j=1 λj [Zj ] (∀j, λj is a positive constant and

Zj is an irreducible algebraic hypersurface ofX) andR is a positive closed
current of bidegree(1, 1) onX s.t. the level sets of Lelong numbers ofR,
Ec(R) = {x ∈ X /ν(R, x) ≥ c}, are of codimension greater or equal
than2. Assume moreover thatT satisfies condition(C).
Then there existsNj ∈ N andsj ∈ Γ (X,LNj ) s.t.

i) Tj = 1
Nj

[{sj = 0}] −→ T in the weak sense of currents;

ii) {sj = 0} −→ Supp T in the Hausdorff metric;
iii) ∀x ∈ X, ν(Tj , x) −→ ν(T, x).

It can be seen as a combination of a result of Demailly [De 93] and the
approximation result of Duval and Sibony [D-S 95].

Finally we take up our main results in paragraph 5 considering the case
of Stein manifolds.

We now set some notations and recall a few definitions from complex
analytic geometry for the reader’s convenience.

Let L be a holomorphic line bundle on a complex manifoldX. We al-
ways implicitly fix a locally finite open covering{Uα} of X s.t.L|Uα

is
trivial and both theUα’s and theUαβ := Uα ∩ Uβ are connected and simply
connected. The line bundle is then uniquely determined by its transition
functionsgαβ ∈ O∗(Uαβ). We denote byPic(X) the Picard group of holo-
morphic line bundles ofX and we use a multiplicative notation for the
group law;Γ (X,L) denotes the set of holomorphic sections ofL on X,
i.e. s ∈ Γ (X,L) is a set{sα} of functionssα ∈ O(Uα) satisfying the
compatibility conditionsα = gαβsβ in Uαβ .

A positive (singular-)metric ofL is a setϕ = {ϕα} of plurisubharmonic
functions (psh for short),ϕα ∈ PSH(Uα), s.t.ϕα = ϕβ+log |gαβ | in Uαβ .
Note that the curvature current of the metric defined asddcϕ := ddcϕα in Uα
(whered = ∂+∂ anddc = 1

2iπ (∂−∂)) is globally well defined onX, since
log |gαβ | is pluriharmonic inUαβ ; it is a positive closed current of bidegree
(1, 1) onX but not necessarily a smooth form since we allow singularities.
Observe also that the difference of two metrics ofL is a globally well defined
functionf ∈ L1(X). If h = {hα} ∈ Γ (X,L), thenlog |h| := {log |hα|}
defines a positive singular metric ofL onX. We denote byP(X,L) the
set of positive metrics ofL on X; if ϕ = {ϕα} ∈ P(X,L) andh =
{hα} ∈ Γ (X,L), then the norm ofh in the metricϕ is defined in eachUα
by |h|ϕ := |hα|e−ϕα .

WhenX is compact K̈ahler, it follows from the Hodge decomposition
theorem that if a positive closed currentT of bidegree(1, 1) onX has integer
class (i.e.[T ] ∈ H2(X,Z)), then[T ] is equal to the first Chern class of some
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holomorphic line bundleL onX. Therefore there exists a positive metricϕ
of L onX which is a potential forT (i.e.T = ddcϕα in Uα and we write
thenT = ddcϕ).

A line bundleL ∈ Pic(X) is said to be pseudoeffective if there exists a
singular positive metricϕ of L onX andL is positive (resp. semi-positive)
if it admits a smooth positive metricϕ onX s.t. the curvature formddcϕ is
a Kähler form onX (resp. a semi-positive(1, 1)−form).

We refer to [De 90] for further details and we finally recall a particular
version of the solution to the∂−problem withL2−estimates on projective
algebraic and Stein manifolds that we use intensively in the present work:

Theorem 0.6 LetX be a projective algebraic or a Stein manifold of dimen-
sionm and fixω a Kähler form onX. LetL be a holomorphic line bundle on
X and suppose there exists a singular metricθ ofL s.t.ddcθ ≥ εω for some
positive constantε. Then for every smooth∂−closed(m, 1)−form v with
values inL, s.t.

∫
X |v|2e−2θdVω < +∞, there exists a smooth(m, 0)−form

u with values inL s.t.∂u = v and∫
X

|u|2e−2θdVω ≤ 1
ε

∫
X

|v|2e−2θdVω,

wheredVω = 1
m!ω

m denotes the K̈ahler volume element.

Acknowledgements.I would like to express my heartfelt thanks to N.Sibony for suggesting
this work and helping me through it. Part of it was done while i was visiting Chalmers
University of Technology under the support of the Swedish Royal Academy of Sciences. I
am particularly grateful to B.Berndtsson for very stimulating discussions.

1 Approximation of currents on homogeneous manifolds

1.1 A modification procedure

In this section we set up a general construction of holomorphic sections
with prescribed bounded norm on the set where a metric of a line bundle is
pluriharmonic (proposition 1.1). This is an important technical step in the
approximation theorem of the next section and we use it as well to establish
rational convexity properties of the complement of the support of positive
closed currents on homogeneous manifolds (theorem 2.5).

Proposition 1.1 LetX be a projective algebraic homogeneous manifold.
LetT be a positive closed current of bidegree(1, 1) onX s.t. [T ] = c1(L)
for some holomorphic line bundleL that we assume is positive.
AssumeT admits a continuous potential, i.e. there exists a continuous pos-
itive metricϕ ofL s.t.ddcϕ = T .
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For ε > 0 we setKε = {m ∈ X /d(m,Supp T ) ≥ ε} ⊂⊂ X \ Supp T ,
whered is a pseudo-distance function defined in the Appendix.
LetV be an open subset ofX s.t.Kε ⊂ V ⊂⊂ X \ Supp T and fixδ > 0.

Then we can find an integerM and construct a continuous positive metric
ψ ofLM and a holomorphic sectionh ofLM in V s.t.

i) Kε ⊂ {m ∈ V / |h|ψ(m) ≥ 1} = {m ∈ V / |h|ψ(m) = 1} ⊂⊂ V

ii) ‖ ψ
M − ϕ‖L∞(X) ≤ δ

iii) ψ is C∞−smooth andddcψ > 0 in a neighborhood ofSupp T .

We first prove three lemmas.

Lemma 1.2 Under the above assumptionsX \ Supp T is Stein and we
can find large relatively compact Stein open subsetsW ofX \ Supp T and
positive integersk s.t.Lk |W is trivial.

Proof. It is an easy consequence of the Kontinuitätssatz thatX \ Supp T
is locally pseudoconvex inX (see [Ce 78]). SinceX is homogeneous it
is infinitesimally homogeneous (i.e. the global holomorphic vector fields
generate the tangent space ofX at every point ofX, see [Hi 75]). It follows
then from a result of Hirschowitz [Hi 75] thatX \ Supp T is Stein iff it
admits no “interior integral curve” (a holomorphic mapγ : C → X \
Supp T with relatively compact image whose tangent vectors belong to
some holomorphic vector field onX). If such a curve exists, we can construct
by a standard argument (see lemma 1.3 below) a non trivial positive closed
currentS of bidimension(1, 1) with compact support inX \ Supp T . Now
T is cohomologous to a K̈ahler formω (L is positive), henceT = ω−ddcf
for somef ∈ L1(X) which is smooth outsideSupp T (see [G-H 78] p149);
thus Stokes theorem gives

‖S‖ :=
∫
X ω ∧ S =

∫
X\Supp T dd

cf ∧ S
=
∫
X\Supp T d

cf ∧ dS
= 0.

ThereforeX \ Supp T contains no interior integral curve hence it is Stein
(see also theorem 3.8).

Let % be a smooth strictly p.s.h. exhaustion function ofX \ Supp T .
By Sard’s lemma we can findR ∈ R as big as we like so thatW =
{x ∈ X \ Supp T / %(x) < R} is a smooth relatively compact Stein open
subset ofX \Supp T . Therefore the cohomology ofW is finite dimensional
andH1(W,R) = H1(W,Z) ⊗ R.

SinceW is Stein, it follows from Cartan’s theorem B that the Picard
groupPic(W ) = H1(W,O∗) is isomorphic toH2(W,Z).

NowL admits a flat metric inW sinceddcϕ = 0 in W hence the image
of the first Chern class ofL viaH2(W,Z) → H2(W,R) ' H2

dR(W,R) is 0.
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In terms ofČech cohomology this means that a finite number of equations
in a finite number of unknowns with coefficients inZ admits a solution inR.
Therefore it must have some solution inQ, and multiplying the equations
by some large integerk gives a solution inZ to the corresponding system,
i.e.c1(Lk) = 0 inH2(W,Z). Sincec1 is an isomorphism betweenPic(W )
andH2(W,Z), this shows thatLk |W is trivial. Q.E.D.

Lemma 1.3 Let Ω be an open subset of a complex Kähler manifoldX
and letγ : C → Ω be a non constant holomorphic map with relatively
compact image inΩ. Then there exists a non trivial positive closed current
of bidimension(1, 1) with support inγ(C).

Proof. Fix ω a Kähler form onX and letSR be the current of integration
over the analytic discγ(∆(R)), where∆(R) denotes the disc of radiusR
centered at0 in C. We normalizeSR in the following way:

< SR, θ >:=
1∫

γ(∆(R)) ω

∫
γ(∆(R))

θ,

whereθ is any test form of bidegree(1, 1) onX. ThereforeSR are positive
currents of bidimension(1, 1) and of mass1 onX. We want to extract a
weak limit that is closed; it will have compact support inγ(C).

We claim there exists a sequence of radiiRj → +∞ s.t.

R
1/2
j

[∫
∂∆(Rj)

|γ′|2ω
]1/2∫

∆(Rj)
|γ′|2ω

→ 0.

Assume the contrary. Then there existsc > 0 s.t.∀R > 0,

R1/2
[∫
∂∆(R) |γ′|2ω

]1/2∫
∆(R) |γ′|2ω

≥ c > 0.

Setf(t) =
∫
∆(et) |γ′|2ω. This is a well defined function oft ∈ R which

is smooth, positive, and s.t.f ′(t) = et
∫
∂∆(et) |γ′|2ω ≥ 0. We thus have

f ′(t)
f2(t) ≥ c2 > 0. This implies

1
f(0)

≥ −1
f(t)

+
1

f(0)
≥ c2t, ∀t ≥ 0,

a contradiction.
Fix such a sequenceRj . Since‖SRj‖ = 1, there exists a subsequence

(SRjk
) which converges in the weak sense of currents towards a positive

currentS of bidimension(1, 1). Again‖S‖ = 1andS has relatively compact
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support inΩ. We claim thatS is closed. Indeed letθ be a test form of degree
1. Then

< dS, θ >= − < S, dθ >= − lim
k→+∞

[∫
∂∆(Rjk

) γ
∗θ∫

∆(Rjk
) γ

∗ω

]
.

Now there existsC > 0 s.t.|γ∗θ| ≤ C|γ′|ω and Cauchy-Schwarz inequality
gives∣∣∣∣∣

∫
∂∆(Rjk

)
γ∗θ

∣∣∣∣∣ ≤ C

∫
∂∆(Rjk

)
|γ′|ω ≤ CR

1/2
jk

[∫
∂∆(Rjk

)
|γ′|2ω

]1/2

.

On the other handγ∗ω = |γ′|2ω hence by definition ofRj ,

| ∫∂∆(Rjk
) γ

∗θ|∫
∆(Rjk

) |γ′|2ω
→ 0,

henceS is closed. Q.E.D.

Let PH(W ) be the real vector space of pluriharmonic functions inW .
Let{Uα} be an open covering ofW s.t. both theUα’s and theUαβ = Uα∩Uβ
are connected and simply connected.

Let ϕ ∈ PH(W ). We can writeϕ = <(hα) in Uα wherehα ∈ O(Uα)
and we setvαβ = 1

2iπ [hα − hβ]. This is a holomorphic function inUαβ
which has imaginary part equal to zero hencevαβ is constant. Moreover
vαβ + vβγ + vγα ≡ 0 in Uαβγ , thus{vαβ} is a realČech1−cocycle and
defines a class[vαβ(ϕ)] ∈ H1(W,R).

Lemma 1.4 The map

Φ : PH(W ) → H1(W,R)
ϕ → [vαβ(ϕ)] = Φ(ϕ)

is a morphism of real vector spaces s.t.kerΦ = <(O(W )).
Givenϕ ∈ PH(W ), there existsH ∈ O∗(W ) s.t.ϕ = log |H| in W iff

Φ(ϕ) ∈ H1(W,Z) ⊂ H1(W,R).
If moreoverW is Stein, thenΦ is surjective.

Proof.The first assertion is clear.
Letϕ ∈ PH(W ) and assumeΦ(ϕ) = [vαβ ] ∈ H1(W,Z) ⊂ H1(W,R).

Then there existscαβ ∈ Z andwα ∈ R, s.t.vαβ = cαβ + wα − wβ. Thus
we have

hα + 2iπwα = hβ + 2iπwβ + 2iπcαβ
and we can define a global holomorphic function by settingH = ehα+2iπwa

in Uα. Clearlylog |H| = ϕ in W .
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Conversely assume there existsH ∈ O∗(W ) s.t.log |H| = ϕ in W . We
fix a determinationhα = logH of the complex logarithm ofH in Uα. Two
such determinations only differ by an integer multiple of2iπ hence

vαβ =
1

2iπ
[hα − hβ ] = cαβ ∈ Z.

This shows that[vαβ ] ∈ H1(W,Z) ⊂ H1(W,R).
Assume now thatW is Stein and let[vαβ ] ∈ H1(W,R). It also defines

a class inH1(W,O) = {0}. Thus there existshα ∈ O(Uα) s.t. vαβ =
1

2iπ [hα − hβ ]. Hencef = <hα is a globally well defined pluriharmonic
function onW s.t.Φ(f) = [vαβ ]. Q.E.D.

Remark 1.5 This can be seen as a reformulation in terms ofČech coho-
mology of lemma 1.3 in [D-S 95].

Proof of proposition 1.1.Letϕε be the regularized metric ofϕ defined in the
Appendix. It is a smooth metric for the same line bundleL that decreases
uniformly towardsϕwhenε decreases towards 0 since we assumedϕ is con-
tinuous. We can therefore assume that‖ϕε−ϕ‖L∞(X) ≤ 5.δ/8 (otherwise,
replaceε by some smaller constant)
Moreover,ϕε = ϕ onKε, andϕε > ϕ inX \Kε, hence we can also assume
thatϕε ≥ ϕ+ 4δ′/8 on∂V (with 0 < δ′ ≤ δ).

LetW be a smooth Stein open subset ofX \Supp T s.t.V ⊂⊂ W ⊂⊂
X\Supp T andH1(W,R) is equal toH1(W,Z)⊗R and of finite dimension,
andLk |W is trivial for some positive integerk (see lemma 1.2).

Thereforekϕ is a continuous metric ofLk onX which defines a plurihar-
monic function inW . SinceΦ : PH(W ) → H1(W,R) is surjective, we can
find f1, . . . , fp in PH(W ) s.t.(Φ(fj)) is aZ−basis ofH1(W,R). We can
thus chooseλ = (λ1, . . . , λp) ∈ Rp so small thatθλ = kϕ +

∑p
j=1 λj .fj

(which is a continuous metric ofLk in W ) satisfiesΦ(θλ) ∈ H1(W,Q) =
H1(W,Z) ⊗ Q and‖ 1

kθλ − ϕ‖L∞(V ) < δ′/8.

Fix M1 ∈ N s.t. Φ(M1.θλ) ∈ H1(W,Z). By lemma 1.4 we can find a
holomorphic sectionh of LM in W (M = kM1) which has constant norm
equal to 1 in the metricM1θλ (i.e. |h|e−M1θλ ≡ 1).

SinceL is positive, we can find a smooth metricG of L s.t.ddcG > 0 in
X. Considerfη = η.G+ (1 − η) [ϕε − 2δ′/8] (0 ≤ η < 1). It is a smooth
metric ofL s.t.ddcfη > 0 in X if η > 0 and‖fη − (ϕε − 2δ′/8)‖L∞(X) =
η.‖G− (ϕε − 2δ′/8)‖L∞(X) ≤ δ′/8 if we chooseη small enough.

We define

ψ =
{
M1 sup(kfη, θλ) in V
M.fη in X \ V

It is a well defined continuous positive metric ofLM in X since the maxi-
mum of two continuous positive metrics of a holomorphic line bundle is a
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continuous positive metric of the same line bundle and

fη ≤ (ϕε − 2δ′/8) + δ′/8 = ϕ− δ′/8 <
1
k
θλ onKε

whereas

fη ≥ (ϕε − 2δ′/8) − δ′/8 ≥ ϕ+ δ′/8 >
1
k
θλ on∂V.

We haveddcψ = M.ddcfη ≥ MηddcG > 0 in X \ V and

‖ψ/M − ϕ‖ ≤ max
{

‖fη − ϕ‖L∞(X); ‖θλ/k − ϕ‖L∞(V )

}
≤ δ

since

‖fη − ϕ‖L∞(X) ≤ ‖fη − (ϕε − 2δ′/8)‖L∞(X) + 2δ′/8 + ‖ϕε − ϕ‖L∞(X)
≤ 3δ′/8 + 5δ/8 ≤ δ.

Finally,ψ = M1.θλ = log |h| in a neighborhood ofKε hence

Kε ⊂
{
m ∈ V / |h|e−ψ ≥ 1

}
=
{
m ∈ V / |h|e−ψ = 1

}
⊂⊂ V,

and the proof is complete. Q.E.D.

1.2 Approximation of(1, 1)−positive closed currents

Theorem 1.6 LetX be a projective algebraic homogeneous manifold and
T a positive closed current of bidegree(1, 1) onX. Assume that∃λ ∈ R∗+

s.t. [λT ] ∈ H2(X,Z), hence[λT ] = c1(L) for some holomorphic line
bundle which, we assume, is positive.

Then there exists(Hj) algebraic hypersurfaces ofX and(Nj) integers
s.t. 

1
λNj

[Hj ] → T in the weak sense of currents

and
Hj → Supp T in the Hausdorff metric.

Remark 1.7 The cohomological and the positivity assumptions on the co-
homology class ofT are always satisfied ifH1,1(X) = C. This the case ifX
is the complex projective spacePm(C), the Grassmann manifoldGk,m(C)
of complex k-planes ofCm or the hyperquadricQm(C) (m ≥ 4).

Proof of the theorem.We can assume thatT is smooth since, on a homoge-
neous manifold, we can regularizeT in such a way that[T ε] = [T ] andT ε

tends toT in the sense of the theorem (see Appendix).
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We can also assumeλ = 1 and we denote byϕ = {ϕα ∈ PSH(Uα)} a
smooth positive metric ofL s.t.ddcϕ = T (two such metrics only differ by
a constant).

Let Kn =
{
m ∈ X /d(m,Supp T ) ≥ 1

n

}
, and δn > 0 a sequence

converging towards 0. We fix neighborhoodsVn ⊂⊂ X \ Supp T of Kn.
By proposition 1.1, we can find integersMn, continuous positive metrics
ψn of LMn and holomorphic sectionshn of LMn in Vn with the prescribed
properties.

Fix (aj)j∈N a sequence of points dense inSupp T .We are going to con-
struct for eachn, an integerNn and a global holomorphic sectionSn of
LNn.Mn s.t.

|Sn|e−Nnψn ≤ 1 onX

|Sn|e−Nnψn ≥ 1
2

on {a1, . . . , an} ∪Kn

Thus we get by ii) of proposition 1.1:

1
Nn.Mn

log |Sn| ≤ ϕ+ δn onX

1
Nn.Mn

log |Sn| ≥ ϕ− δn − log 2
Mn

on {a1, . . . , an}
|Sn| > 0 onKn.

The first two inequalities show the convergence of1Nn.Mn
log |Sn| in L1

loc
towardsϕ (c.f. lemma 15.1.7. in [Ḧo 85]), and the Lelong-Poincare equation
then gives the convergence of1Nn.Mn

[{Sn = 0}] towards T in the weak sense
of currents, while the last inequality shows that{Sn = 0} ⊂ X \Kn, and
sinceKn exhaustsX \ Supp T , this gives the convergence of{Sn = 0}
towardsSupp T in the Hausdorff metric.

We construct now the sectionsSn. From now on,n is fixed and we might
not mention the subscript. We fix an open covering{Uα} ofX which is fine
enough s.t.∀1 ≤ i ≤ n, ∃!ai ∈ Uαi andL|Uαi

is trivial.
Sinceψ is smooth in a neighborhood ofSupp T , andddcψ > 0 on

Supp T , there are holomorphic polynomialsPi s.t.ψαi(x) − <(Pi)(x) ≥
cid

2
eucl(ai, x), in a neighborhoodWi of ai, Wi ⊂ Uαi , for some strictly

positive constantsci. We choose theWi’s small enough so thatWi ∩ Uβ =
∅, ∀β 6= αi.

Let χi ∈ C∞
0 (Wi) with 0 ≤ χi ≤ 1, andχi ≡ 1 in a neighborhood

of ai. We define smooth sectionsfi of LNM by fαi = 0 if α 6= αi and
fαi
i = χie

NPi (N is an integer to be chosen later).
Let χ be a test function in a neighborhood ofK ′ =

{|h|e−ψ ≥ 1
}

(0 ≤ χ ≤ 1 andχ ≡ 1 in a neighborhood ofK ′), s.tSuppχ is disjoint from
the supports of theχi’s.
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Setu = χ.hN +
∑n

i=1 fi. This is a smooth global section ofLNM

onX, hence∂u is a smooth∂−closed(0, 1)−form with values inLNM ,
i.e. a smooth∂−closed(m, 1)−form with values inLNM ⊗K∗

X (m is the
dimension ofX).

We setN = N1 +N2 where we fixN2 ∈ N s.tLN2.M ⊗K∗
X is positive

andN1 will be chosen later. Fixω a Kähler metric onX, ε > 0 andG a
smooth metric ofLN2.M ⊗K∗

X s.tddcG ≥ ε.ω. We solve∂v = ∂u onX
with L2 estimates associated to the metricθ = N1.ψ +G and get∫

X
|v|2e−2θdVω ≤ 1

ε

∫
X

|∂u|2e−2θdVω.

SinceSupp ∂χ ⊂ {|h|e−ψ < 1
}

, andSupp ∂χi ⊂ {|eMPi |e−ψ < 1
}

, we
can fixa < 1 s.t.|∂u|2e−2Nψ ≤ C1a

2N1 with C1 independent ofN1. Thus∫
X

|v|2e−2θdVω ≤ C2a
2N1 .

We estimate nowv onX. It is standard (see lemma 15.1.8 in [Hö 85]) that

|v(x)|2 ≤ C3

(
r2 sup

B(x,r)
|∂v|2 + r−2m‖v‖2

L2(B(x,r))

)

≤ C4e
2Nψ(x)e2N1η

[
(sup |∂u|2e−2N ) + ‖v‖2

θ

]
≤ C5(eηa)2N1e2Nψ(x),

with C5 independent ofN1 and whereη is the uniform oscillation ofψ
on the ballsB(x, r). HereB(x, r) implicitly stands for the pull back of an
euclidean ball via a coordinate chart. We chooser so thateηa < 1 andN1
so thatC5(eηa)N1 < 1

9 and setSn = 3
4(u− v). ThenSn is a holomorphic

(m, 0)−form with values inLNM ⊗K∗
X , i.e. it is a holomorphic section of

LNM onX and it satisfies all our requirements. Q.E.D.

Remark 1.8 It follows from the Borel-Weil theorem (see e.g. [Ak 95]) that
a semi-positive holomorphic line bundleL on a projective algebraic ho-
mogeneous manifoldX is either positive, or the pull-backp∗L′ under a
morphismp : X → Y , whereY is a projective algebraic homogeneous
manifold of lower dimension, of a positive holomorphic line bundleL′ on
Y . A positive closed currentT of bidegree(1, 1) onX s.t.[T ] = c1(L) thus
satisfiesT = p∗T ′ for some positive closed currentT ′ of bidegree(1, 1) on
Y with [T ′] = c1(L′), and the approximation ofT reduces to that ofT ′ on
Y .
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1.3 On a counterexample of Grauert

We explain here an example due to Grauert ([Na 63]) of a pseudoconvex
domain in a complex torus which is not holomorphically convex hence not
Stein. We show that there is in fact no complex hypersurface of the torus
contained in this pseudoconvex domain, whereas it contains the support of
a (1, 1)−positive closed current. Finally we give an explicit example in the
2-dimensional case of this situation, where the parameters are chosen so
that the torus is algebraic. This provides a counterexample to the approxi-
mation theorem of the previous section if we omit the cohomological and
the positivity assumption.
LetΛ be the lattice ofCm generated by

λ1 = (1, 0, . . . , 0) andλj = (iaj , aj2, . . . , ajm) = (iaj , λ′
j), 2 ≤ j ≤ 2m

where(λj)1≤j≤2m is a R−free family in Cm ' R2m, and (aj)2≤j≤2m
are real constants s.t.a2 anda3 areZ−independent. We denote byX the
corresponding complex torus andπ : Cm → X = Cm/Λ the canonical
projection.

ConsiderUα =
{
z ∈ Cm / 0 < <(z1) < 1

α

}
, andDα = π(Uα), where

α > 1. Setϕ(z) = 1
1−α<(z1) + 1

<(z1) . An easy computation shows that
ϕ is plurisubharmonic inUα, and it is moreover aC∞−smooth exhaustion
function forUα. Now sinceϕ is invariant by any elementλ ∈ Λ s.t.λ+ Uα∩
Uα 6= ∅,ϕ also defines a smooth-psh exhaustion function forDα, henceDα

is pseudoconvex.

Proposition 1.9 There is no compact analytic subset ofX of dimension
m− 1 contained in the domainDα.

Proof. Assume the contrary and let A be such a set which, we can assume,
is connected.f(z) = <(z1) is a well defined pluriharmonic function on
Dα. If A is compact,f attains its maximum onA thus is constant onA and
A ⊂ π({<(z1) = t}) for some real constantt. This necessarily means that
A ⊂ π({z1 = c}), with equality ifA is of dimensionm − 1. But sincea2
anda3 areZ−independent,π({z1 = c}) is dense inπ({<z1 = <c}), hence
it cannot be closed. A contradiction. Q.E.D.

On the other hand,T = ddc(max(<(z1) − 1
2α , 0)) is a well defined

positive closed current of bidegree(1, 1) onX s.t.Supp T = π({<(z1) =
1
2α}) ⊂⊂ Dα. This current is not approximable in the sense of our theo-
rem, sinceDα is a neighborhood ofSupp T which does not contain any
hypersurface ofX.

Note that there is noλ > 0 s.t. [λT ] ∈ H2(X,Z) sincea2 anda3 are
Z−independent;T is moreover not cohomologous to a Kähler form (it is
cohomologous toc. i2dz1 ∧ dz1) and in particularX \ Supp T is not Stein
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since it admits non trivial(1, 1)−positive closed currents with compact
support (anyddc(max(<(z1) − t, 0)), for t 6= 1

2α ).
We exhibit now an explicit algebraic example:
Recall that a torusCm/Λ is algebraic iff there existsH ∈ GLm(C) a positive
definite hermitian matrix s.t.=H(Λ,Λ) ⊂ Z (see [G-H 78] p303). LetΛ be
the lattice inC2 generated by

λ1 = (1, 0) ; λ2 = (i, 0) ;

λ3 = (i
√

2, 1) ; λ4 = (0, i
√

2);

and define

H =
(

1 −i√2
i
√

2 2 +
√

2

)
H is a hermitian matrix which satisfies

tr H = 3 +
√

2 > 0 anddetH =
√

2 > 0,

hence it is positive definite. Of course,=H(λ, λ) = 0 , ∀λ ∈ Λ, and we
easily check that:

H(λ1, λ2) = −i andH(λ1, λ3) = 0 andH(λ1, λ4) = 2
H(λ2, λ3) = 0 andH(λ2, λ4) = 2i andH(λ3, λ4) = −2i

hence=H(Λ,Λ) ⊂ Z and the complex torusX = C2/Λ is algebraic.

2 Rational convexity on compact complex manifolds

Recall that the rational hull of a compact setK of Cm is defined as the
complement of the union of hypersurfaces ofCm that do not intersectK.
Duval and Sibony show in [D-S 95] that one can replace the hypersurfaces
in the definition by positive closed currents of bidegree(1, 1) in Cm whose
support does not intersectK.

Therefore there are several natural generalizations of this notion to com-
plex manifolds whether one considers the hull with respect to effective di-
visors (resp. positive divisors) or positive closed currents of bidegree(1, 1)
(with or without cohomological restrictions). Although these notions might
coincide (e.g. onPm(C)), most of the time they differ considerably (e.g. on
abelian tori). We are going to consider the strongest notion of rational con-
vexity (see definition 2.1 below) because it allows the use ofL2−techniques
and it is the proper notion to consider for the generalization of the main the-
orem in [D-S 95] (see theorem 2.9 below), which was our main motivation
for the study of rational convexity.
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Definition 2.1 LetK be a compact subset of a projective algebraic manifold
X. We define the rational hull ofK by

r(K) := {m ∈ X / ∀H positive divisor ofX, m ∈ H ⇒ H ∩K 6= ∅},

andK is said to be rationally convex whenr(K) = K.

Lemma 2.2

r(K) ={m ∈ X /
∣∣∣fg (m)

∣∣∣ ≤ supK
∣∣∣fg ∣∣∣ , ∀L ∈ Pic(X) positive and

∀f, g ∈ Γ (X,L) s.t.{g = 0} ∩K = ∅
andm /∈ {f = 0} ∩ {g = 0}}

thereforer(K) is compact andr(r(K)) = r(K).

Proof. Let m /∈ r(K); since positive divisors coincide (modulo linear
equivalence) with positive line bundles on a projective algebraic manifold,
we can find a holomorphic sections of a positive line bundleL s.t.s(m) = 0
and {s = 0} ∩ K = ∅. SinceL is positive, we can findk ≥ 1 and a
holomorphic sectionf of Lk s.t. f(m) 6= 0. Setg = sk; we thus have
|fg (m)| = +∞ whereassupK |fg | < +∞, hencem /∈ r′(K), wherer′(K)
denotes the right hand side in the lemma.

Fix nowm /∈ r′(K) andf, g holomorphic sections of a positive holo-
morphic line bundleL s.t. |fg (m)| > supK |fg |. Eitherg(m) = 0 and we

are done, org(m) 6= 0 and we may considers = f − f
g (m).g: it is a

holomorphic section ofL s.t.s(m) = 0 and{s = 0} ∩K = ∅. Q.E.D.

Example 2.3 i) WhenX = Pm(C) andK ⊂⊂ Cm ⊂ Pm(C), this coin-
cides with the usual notion of rational convexity.

ii) Pm(R) = {[z0, . . . , zm] ∈ Pm(C) / zi
zj

∈ R wheneverzj 6= 0} is

a smooth compact totally real submanifold ofPm(C) which is rationally
convex and intersects every hyperplane ofPm(C). Indeed let[x] ∈ Pm(C)\
Pm(R); we can assumex0 = 1 andx1 /∈ R (otherwise rotate coordinates).
Consider the homogeneous polynomial of degree 2,Pε(z) = z2

1 − x2
1z

2
0 +

ε[z2
2 + . . . + z2

m − (x2
2 + . . . + x2

m)z2
0 ]; clearly Pε(x) = 0, but for ε > 0

small enough,Pm(R) ∩ {Pε = 0} = ∅ sincex2
1 /∈ R+.

iii) LetT be a non trivial positive closed current of bidegree(1, 1) on
X, then its support intersects every positive divisor, hencer(Supp T ) = X.
Indeed assumeθ is the current of integration along a positive divisor which
does not intersect the support ofT ; sinceθ is cohomologous to a K̈ahler
formω, we have‖T‖ =

∫
X ω ∧ T =

∫
X θ ∧ T = 0, a contradiction.
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2.1 A fundamental lemma

Lemma 2.4 LetX be a projective algebraic manifold of dimensionm. LetL
be a positive holomorphic line bundle onX and letϕbe a positive continuous
metric ofL onX. Lets be a holomorphic section ofL defined on an open
subsetV ofX and assumeK = {a ∈ V / ‖s(a)‖ϕ = |s(a)|e−ϕ(a) ≥ 1} is
compact.

ThenK is rationally convex.

Proof. More precisely,a ∈ X \K being fixed, we are going to construct a
global holomorphic sectionS of LM (M a large integer to be chosen later)
s.t.S(a) = 0 and{S = 0} ∩K = ∅.

Let χ ∈ C∞
0 (V ) be s.t.0 ≤ χ ≤ 1 andχ ≡ 1 in a neighborhood

of K, anda /∈ Suppχ. We considerv = ∂(χsM ) = ∂χ.sM . This is a
smooth∂−closed(0, 1)−form with values inLM or else a smooth∂−closed
(m, 1)−form with values inLM ⊗K∗

X .
SinceL is positive, there existsM1 ∈ N and global holomorphic sections

h1, . . . , hm of LM1 which form a local coordinate system ata. More pre-
cisely, we can find thehj ’s s.t.hj(a) = 0 and

⋂m
j=1{hj = 0} = {a}. Thus

G1 = m
2 log[

∑m
j=1 |hj |2] is a singular metric ofLmM1 which is smooth in

X \ {a} and admits a logarithmic singularity of coefficientm at the point a.
Fix ω a Kähler metric onX. SinceL is positive, there existsM2 ∈ N

s.t.LM2 ⊗ K∗
X is positive. TakingM2 large enough, we can even assume

the existence of a smooth metricG2 of LM2 ⊗K∗
X s.tΘG2(L

M2 ⊗K∗
X) :=

ddcG2 ≥ ω.
We now solve∂u = v onX with L2−estimates associated to the metric

ψ = G1 + G2 + M3ϕ of LM ⊗ K∗
X (M = mM1 + M2 + M3), which

satisfiesddcψ ≥ ω. We obtain therefore a smooth sectionu of LM st:∫
X

|u|2e−2ψdVω ≤
∫
X

|v|2e−2ψdVω,

wheredVω denotes the K̈ahler volume element1m!ω
m.

Sinceχ ≡ 0 in a neighborhood ofa which is the only singularity of
the metricψ, the integral on the right hand-side is obviously convergent.
Moreover,χ ≡ 1 hence∂χ ≡ 0 in a neighborhood ofK, thus we can fix
α ∈]0, 1[ s.t. |s|e−ϕ ≤ α < 1 onSupp ∂χ. Hence∫

X
|u|2e−2ψdVω ≤ C1α

2M3 ,

whereC1 is a constant independent ofM3.
Sinceψ has a logarithmic singularity of coefficientm = dimCX at the

pointa, we necessarily haveu(a) = 0.
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Fix η > 0 s.tαeη < 1. Fix r > 0 s.t.χ ≡ 1 on the pseudo-ballsB(y, 2r)
(which are the pull-back of euclidean balls via a coordinate chart),y ∈ K,
and the oscillation ofψ (which is uniformly continuous on any compact
neighborhood ofK which avoidsa) is smaller thanη. Observe thatu is
holomorphic hence|u|2 is subharmonic on the pseudo-ballsB(y, r) y ∈ K,
so:

|u(y)|2 ≤ C2

∫
B(y,r)

|u|2dVω

≤ C2e
2M3(ϕ(y)+η)

∫
B(y,r)

|u|2e−2M3ϕdVω

≤ C3e
2ψ(y)e2M3η

∫
B(y,r)

|u|2e−2ψdVω

≤ C4e
2ψ(y)(αeη)2M3 ,

whereC4 = C1.C3 is a constant independent ofM3.
Fix δ > 0 s.t. |s|M1+M2e−(G1+G2) ≥ δ > 0 on K and fixM3 large

enough so that|u|e−ψ ≤ δ
2 .

Now we setS = χ.sM −u. This is a global holomorphic section ofLM

s.tS(a) = 0 and|S|e−ψ ≥ δ
2 > 0 onK, hence{S = 0} ∩ K = ∅ (ψ is

smooth onK) and we are done. Q.E.D.

Theorem 2.5 Let T be a positive closed current of bidegree(1, 1) on a
projective algebraic homogeneous manifoldX s.t [T ] = c1(L) for some
positive holomorphic line bundleL. Then for everyε > 0, the compact set
Kε = {m ∈ X /d(m,Supp T ) ≥ ε} is rationally convex.

Proof. Fix ε > 0 anda ∈ X \ Kε. Using proposition 1.1, we can fix a
neighborhoodV of Kε which does not containa, a sufficiently big integer
M , a global continuous metricψ of LM and a local holomorphic sectionh
of LM defined onV s.tKε ⊂ F = {m ∈ V / |h(m)|e−ψ(m) ≥ 1} ⊂⊂ V .
ButF is rationally convex by the previous lemma anda /∈ V hence we can
construct a global holomorphic sectionS of some power ofL s.t.S(a) = 0
and{S = 0} ∩Kε ⊂ {S = 0} ∩ F = ∅. Q.E.D.

Remark 2.6 If T = ddc max(<z1, c) in the example 1.3,X \ Supp T
cannot be exhausted by rationally convex compact sets, since it contains non
trivial positive closed currents with compact support (see example 2.3.iii).

2.2 Rational convexity of totally real submanifolds

Proposition 2.7 LetX be a projective algebraic manifold equipped with a
Kähler metricω. LetK be a compact subset ofX.
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i) For everya /∈ r(K), there exists a positive closed currentT of bidegree
(1, 1) onX which admits a continuous potential and s.t.T is smooth and
strictly positive ata, T vanishes in a neighborhood ofr(K) and moreover
[T ] ∈ H2(X,Z).

ii) For every ε > 0 and every fixed neighborhoodV of r(K), we can
find a smooth(1, 1)−formωε which satisfies the following properties:

a)ωε ≥ ω in X \ V
b)ωε ≡ 0 in a neighborhood ofr(K)
c)ωε ≥ −ε.ω in V

d) [ωε] ∈ H2(X,Z).

Proof. i) Leta ∈ X\r(K). There exists a global holomorphic sectionsof a
positive holomorphic line bundleLonX s.t.s(a) = 0 and{s = 0}∩K = ∅,
hence{s = 0} ∩ r(K) = ∅ sincer(r(K)) = r(K). Let G be a smooth
metric ofL on X s.t. ddcG > 0. Changings in λ.s for some large real
positive constantλ if necessary, we can assume|s|e−G > 1 on r(K).
Considerψ = max(log |s|, G). This is a well defined continuous positive
metric ofL onX s.t.ψ ≡ G in a neighborhood ofa andψ ≡ log |s| in a
neighborhood ofr(K). ThereforeT = ddcψ satisfies all our requirements
since moreover[T ] = [ddcψ] = c1(L) ∈ H2(X,Z).

ii) SinceX \ V is compact, we can find a finite number of pointsaj s.t.
T =

∑
Taj is a(1, 1)−positive closed current which is strictly positive in

X \ V , vanishes in a neighborhood ofr(K) and has integer class. Since
moreoverT admits a continuous potential, we can use a regularization the-
orem due to Richberg [Ri 68] to approximateT by smooth forms with small
negative part to obtain what we need. Q.E.D.

Recall that a submanifoldS of X is totally real if ∀x ∈ S, the real
tangent spaceTR

x (S) of S at x contains no complex line. We show now
that a compact totally real submanifold ofX is rationally convex iff it is
isotropic for some Hodge form (i.e. a Kähler form whose cohomology class
belongs toH2(X,Z)). More precisely, we have the following

Theorem 2.8 Let S be a smooth compact totally real submanifold of a
projective algebraic manifoldX. The following are equivalent:

i)S is rationally convex.

ii) There exists a smooth Hodge formθ for X s.t.j∗θ = 0,

wherej : S → X denotes the inclusion map.

Proof. i) ⇒ ii) : SinceS is smooth and totally real, there exists a positive
functionρwhich is smooth and strictly plurisubharmonic in a neighborhood
of S and s.t.S = ρ−1(0) and∇ρ = 0 on S. IndeedS can be defined as
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the zero set of a finite number of smooth globally defined funtionsgi, then
ρ :=

∑
g2
i will be strictly psh in a neighborhood ofS since S is totally real.

SetSδ = {m ∈ X /ρ(m) < δ} and fixδ > 0 small enough.
Fix χ ∈ C∞

0 (S2δ) with 0 ≤ χ ≤ 1 andχ ≡ 1 in a neighborhood of
Sδ and defineω1 = ddc(χ.ρ). Fix a Kähler metricω onX and a positive
integerA s.t.ω1 ≥ −A.ω onX andω1 ≥ 1

Aω onSδ.
We can use proposition 2.7 withV = Sδ, ε = 1

4A2 and the fact that
r(S) = S to construct a smooth(1, 1)−form ω2 which satisfies:

a)ω2 ≥ ω in X \ Sδ
b)ω2 ≡ 0 in a neighborhood of S

c)ω2 ≥ − 1
4A2ω in Sδ

d) [ω2] ∈ H2(X,Z).

Consider nowθ = ω1+2Aω2. This is a smooth strictly positive(1, 1)−form
onX s.t.j∗θ = j∗ω1 = j∗(ddcρ) = d(j∗dcρ) = 0 since the gradient ofρ
vanishes onS. Furthermore[θ] ∈ H2(X,Z) since[ω1] = 0, henceθ is the
desired Hodge form.

ii) ⇒ i) :
There exists a positive holomorphic line bundleL onX s.t. c1(L) = [θ].
We need the following

Lemma 2.9 There exists a Stein neighborhoodV ofS and an integerk s.t.
Lk |V is trivial.

We show how the lemma implies the theorem.
We can assumek = 1, therefore positive metrics ofL define psh functions
onV . We only need to follow the corresponding proof in [D-S 95], where
the psh functions are replaced by positive metrics of the line bundlesLM ,
which can be viewed as functions onV .

Starting with a smooth strictly positive metricϕ ofLwith j∗(ddcϕ) = 0,
we define a small perturbationϕε = ϕ+

∑p
j=1 εjψj which is again a strictly

positive metric ofL with ψj smooth functions with compact support inV
and such thatMϕε has periods in2πZ onS. The latter allows us to construct
a smooth functionh onS with values inR that we extend locally inV in
a functionhs (which is equivalently a smooth section ofLM aboveV )
satisfying

a) ∂hs = 0 to order s onS

b)Mϕε − log |hs| vanishes to order 2 onS.

Using lemma 3.3 in [D-S 95] we can modifyMϕε locally in V and obtain
a new strictly positive smooth metric̃ϕ of LM which, together withhs,
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fulfils the hypotheses of lemma 3.2 in [D-S 95]. As the construction of
the holomorphic sectionh of LM on V only requires the solution of the
∂−equation on a Stein neighborhoodSδ of S, and asL is trivial there, we
can again use the same construction as in [D-S 95] and then apply our lemma
2.4 to conclude thatS is rationally convex.

There remains to prove lemma 2.9.

Proof of lemma 2.9.Let V = Sδ be a tubular neighborhood ofS; then
H2(V,Z) ' H2(S,Z). SinceV is Stein,Pic(V ) ' H2(V,Z). Butc1(L|S)
= [j∗ddcϕ] = [0], hencec1(L|V ) = [0], i.e. the image of the first Chern
class ofL inH2

dR(V,R) via the morphism induced by the canonical inclusion
Z → R is trivial. As we have already explained in the proof of lemma 1.2,
this implies thatLk|V is trivial for some integerk. Q.E.D.

3 T-polynomial convexity

There is no intrinsic definition of polynomial convexity on complex man-
ifolds extending the usual notion inCm. Indeed,K = {[1, eiθ, e−iθ] ∈
P(C2) / 0 ≤ θ ≤ 2π} is polynomially convex when viewed as a subset of
C2 = P2(C) \ {z0 = 0}, but it is not polynomially convex as a subset of
the other chartP2(C) \ {z1 = 0} ' C2.

However we define a notion of polynomial convexity relative to a fixed
positive closed currentT of bidegree(1, 1) on a complex manifoldX. It
is an interesting tool to describe the convexity properties ofX \ Supp T
(see 3.1) and there is an analogue of the classical Oka principle whenT is
the current of integration along a positive divisor of a projective algebraic
manifoldX (see 3.3). The case of Stein manifold will be considered in 5.1.

Definition 3.1 Let T be a positive closed current of bidegree(1, 1) on a
complex manifoldX, and letK be a compact subset ofX.
We define theT−polynomial hull ofK by

K̂T :=
{
x ∈ X / f(x) ≤ sup

K
f, ∀f ∈ CT (X) s.t.ddcf ≥ −T

}
,

whereCT (X) denotes the set of functionsf ∈ L1(X) s.t. exp(f + ϕ) is
continous wheneverϕ is a local potential ofT . Note in particular that any
f in CT (X) is lower semi-continuous.

The compactK is said to beT−polynomially convex when̂KT = K.

We list a few elementary properties of these hulls:

i) K̂T is closed and̂̂KT
T

= K̂T .
ii) ∀λ > 0, K̂λT = K̂T .
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iii) If T = T1 + T2 is a sum of two positive closed current of bidegree
(1, 1) thenK̂T ⊂ K̂T1 ∩ K̂T2 .

iv) WhenX = Pm(C), T = [{z0 = 0}] andK is a compact subset of
Cm = Pm(C)\{z0 = 0}, thenK̂T is the usual polynomial hull ofK in Cm.
Indeed, a functionf ∈ CT (X) defines a psh log-homogeneous function in
Cm+1 via ϕ(z) = f([z]) + log |z0| henceϕ|{z0=1} = f|Cm ∈ PSH(Cm)
and is s.t.f(ζ) ≤ log+ |ζ| + C; conversely any functionψ ∈ PSH(Cm)
with log-growth defines a log-homogeneous psh function inCm+1 set-
ting ϕ(z) = ψ(z1/z0, . . . , zm/z0) + log |z0| if z0 6= 0 andϕ(0, ζ) =
lim supz→(0,ζ), z0 6=0 ϕ(z). The functionϕ corresponds to a functionf ∈
CT (X) via f([z]) = ϕ(z) − log |z0|. ThusK̂T equals the hull ofK with
respect to the psh functions of log-growth inCm, and it is standard that this
hull is exactly the polynomial hull ofK (see also the second assertion of
proposition 3.2 below).

Proposition 3.2 LetX be a complex manifold.
When[T ] is equal to the first Chern classc1(L) of a holomorphic line

bundleL onX, then

K̂T =
{
x ∈ X / (ψ − ϕ)(x) ≤ sup

K
(ψ − ϕ), ∀ψ ∈ Pc(X,L)

}
,

wherePc(X,L) denotes the set of positive metricsψ of L onX s.t.eψ is
continuous, andϕ is a positive metric ofL onX s.t.ddcϕ = T .

Moreover if we define

pT (K) =
{
x ∈ X / |h|kϕ (x) ≤ sup

K
|h|kϕ , ∀k ∈ N, ∀h ∈ Γ (X,Lk)

}
,

then K̂T ⊂ pT (K), with equality ifL is positive andX is a projective
algebraic homogeneous manifold (resp. a Stein manifold).

Proof. Fix Uα an open covering ofX trivializing L. If [T ] = c1(L), then
there exists a positive metricϕ = {ϕα} of L onX s.t.ddcϕ = T , and two
such metrics (with respect to this covering) only differ by a pluriharmonic
function which is globally well defined onX, thus the definition of the right
hand side is independent of the choice of the potentialϕ of T . Letψ = {ψα}
be a positive metric ofL s.t.eψ is continuous, thenf = ψ−ϕ is a globally
well defined function onX which lies inCT (X) and s.t.ddcf ≥ −ddcϕ =
−T .

Conversely, iff ∈ CT (X) is s.t.ddcf ≥ −T , thenψ = {f + ϕα} is a
positive metric ofL onX s.t.eψ is continuous; the first assertion follows.

Let k ∈ N andh ∈ Γ (X,Lk), thenψ = 1
k log |h| defines a positive

metric ofL onX s.t.eψ is continuous, hencêKT ⊂ pT (K).
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Conversely leta ∈ X \K̂T ; there existsψ ∈ Pc(X,L) s.t.(ψ−ϕ)(a) >
supK(ψ−ϕ). If X is homogeneous we can assumeψ is smooth (otherwise
replaceψ by its regularized metricψε for ε > 0 small enough). If moreover
L is positive, we can assumeψ has strictly positive curvature, replacing
if necessaryψ by (1 − η)ψ + ηG, whereG is a smooth metric ofL s.t.
ddcG > 0 andη > 0 is small enough.

Sinceddcψ(a) > 0, there exists a holomorphic polynomialP and a
positive constantc s.t.ψα(x) − <(P )(x) ≥ cd(x, a)2 in a neighborhood of
a ∈ Uα. Let χ be a positive test function defined in this neighborhood, s.t.
χ ≡ 1 in a smaller neighborhood ofa and0 ≤ χ ≤ 1. If X is projective
algebraic we can solve∂v = ∂(χeNP ) withL2−estimates associated to the
weightNψ and construct, in the same vein as what has been done in the
proof of theorem 1.6, a holomorphic sectionh ofLN onX s.t.|h|e−Nψ ≤ 1
onX and|h(a)|e−Nψ(a) ≥ 1/2. Thus for a choice ofN large enough, we
get

(
1
N

log |h| − ϕ)(a) > sup
K

(
1
N

log |h| − ϕ),

hencea ∈ X \pT (K). The Stein case will be considered in proposition 5.4.
Q.E.D.

3.1 Steinness ofX \ Supp T

Definition 3.3 T is said to satisfy condition(C) if

∀K ⊂⊂ X \ Supp T, K̂T ⊂⊂ X \ Supp T.
Example 3.4 i) WhenX is homogeneous, the regularization process in-
sures that every positive closed current of bidegree(1, 1) s.t. [T ] = c1(L)
satisfies condition(C). IndeedT = ddcϕ for some positive metric ofL,
and the regularized metricsϕε of ϕ (see Appendix) satisfyϕε − ϕ ≡ 0 in
a neighborhood ofK if ε > 0 is small enough whereasϕε − ϕ > 0 in a
neighborhood ofSupp T .

ii) WhenT = [{s = 0}] wheres ∈ Γ (X,L) andL is semi-positive, then
T satisfies condition(C). IndeedL admits a positive continuous metricψ
onX, henceψ is locally bounded onSupp T whereaslog |s| ≡ −∞ on
Supp T .

iii) If π : X̃ → X is the blow-up at a pointp of a compact complex
manifoldX (dimC(X) ≥ 2), and if T is the current of integration along
the exceptional divisorE = π−1(p), then∀K ⊂⊂ X̃ \ Supp T , K̂T = X̃,
since every functionf ∈ CT (X̃) s.t.ddcf ≥ −T defines a plurisubharmonic
function inX̃ \ E ' X \ {p}, hence is constant; thusT = [E] does not
satisfy condition(C).
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Lemma 3.5 If K = K̂T , then for any open neighborhoodV of K, there
exists a non negative functionf ∈ L1(X) s.t.f+ϕ is upper semi-continuous
wheneverϕ is a local potential ofT and moreoverddcf ≥ −T onX with
f ≡ 0 onK andf > 0 in X \ V .

Proof. Let a ∈ X \ K = X \ K̂T , then there existsfa ∈ CT (X) s.t.
ddcfa ≥ −T andfa(a) > 0 ≥ supK fa. Sincef is lower semi-continuous
ata, f > 0 in a small ballB(a, εa).

We can considerf+
a = max(fa, 0). Thenf+

a ≡ 0 onK andf+
a + ϕ

is upper semi-continuous (u.s.c.) as a maximum of two u.s.c. functions.
Moreoverf+

a = max(fa + ϕ,ϕ) − ϕ henceddcf+
a ≥ −T onX.

Now we can coverX \ V by a finite number of ballsB(ai, εai) and
considerf = 1

p

∑p
i=1 f

+
ai

to conclude. Q.E.D.

Corollary 3.6 If T satisfies condition(C), thenX \ Supp T admits a psh
exhaustion function.

Proof. By hypothesis, we can exhaustX \ Supp T by an increasing se-

quence of compact setsKj that satisfyK̂j
T

= Kj andKj ⊂ (Kj+1)◦.
By the previous lemma, we can find for eachj, a non negative function

fj which is psh inX \ Supp T , identically0 onKj and positive outside
(Kj+1)◦. Multiplying by some large constant, we can even assumefj ≥ 2j

onKj+2 \ (Kj+1)◦. Thereforef =
∑

j≥0 fj is a psh exhaustion function
for X \ Supp T (the sum is finite on each compact set). Q.E.D.

Theorem 3.7 LetΩ be a complex manifold which admits a psh exhaustion
function. ThenΩ is Stein iff there is no non trivial positiveddc−closed
current of bidimension(1, 1) with compact support inΩ.

Proof. If Ω is Stein, it admits a smooth strictly psh exhaustion function
ϕ. LetS be a positive current of bidimension(1, 1, ) with compact support
in Ω and s.t.ddcS = 0. Thenddcϕ ∧ S is a well defined positive measure
which measures the mass ofS. Stokes theorem gives∫

Ω
ddcϕ ∧ S =

∫
Ω
ϕddcS = 0,

henceS ≡ 0.
Conversely, letf be a psh exhaustion function ofΩ, and defineΩj =

{x ∈ Ω /f(x) < j}. We set

H = {S current of bidimension(1, 1) onΩ s.t.ddcS = 0} ,
and

Kj = {S positive current of bidim.(1, 1) onΩ s.t.‖S‖ = 1
andSuppS ⊂ Ωj

}
.
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ThenH is a hyperplane of the setT(1,1)(Ω) of currents of bidimension(1, 1)
onΩ andKj is a convex compact subset ofT(1,1)(Ω).

We assume that∀j ∈ N, H ∩ Kj = ∅; the theorem of Hahn-Banach
insures the existence of a linear functionalΦj on T(1,1)(Ω) s.t.Φj(H) = 0
andΦj(Kj) ≥ cj > 0. This functional is defined by a smooth(1, 1)-form
ωj , s.t.Φj(S) =

∫
X S∧ωj . Since it belongs toH⊥ = {ddcg}, we can write

ωj = lim ddcgk; thus forkj large enough,ϕj = gkj
is a smooth function

onX s.t.
∫
Ω S ∧ ddcϕj > 0 for everyS ∈ Kj , sinceKj is compact, hence

ϕj is strictly psh in a neighborhood ofΩj .
Without loss of generality we can assume−3

4 ≤ ϕj ≤ −1
2 on Ωj

(otherwise replaceϕj by Ajϕj + Bj for some properly chosen constants
Aj andBj). Consider now

ψj =

ϕj in Ωj−1
max(ϕj , f − j) in Ωj \Ωj−1
f − j in Ω \Ωj

This is clearly a psh function inΩwhich is strictly psh inΩj−1 and moreover
ψj ≥ −3

4 in Ω andψj ≤ 0 in Ωj .
We set finallyψ = f +

∑
j≥1 2−jψj . Thenψ is an exhaustion function

forΩ which is strictly psh; it follows from a result of Fornaess-Narasimhan
([F-N 80]) thatΩ is Stein. Q.E.D.

Theorem 3.8 Let T be a positive closed current of bidegree(1, 1) on a
compact K̈ahler manifoldX. AssumeT is cohomologous to a K̈ahler form
and satisfies condition(C), thenX \ Supp T is Stein.

Proof. Letω be a K̈ahler form cohomologous toT . SinceT is real andX
is Kähler,T − ω is in factddc−exact; there exists a distributionf onX s.t.
T = ω−ddcf . Note thatf is a smooth strictly psh function inX \Supp T .

LetS be a positiveddc−closed current of bidimension(1, 1) with com-
pact support inX \ Supp T . Stokes theorem gives∫
X
ω∧S =

∫
X\Supp T

ω∧S =
∫
X\Supp T

ddcf∧S =
∫
X\Supp T

fddcS = 0,

henceS ≡ 0.
NowT satisfies condition(C) thusX \Supp T admits a psh exhaustion

function (corollary 3.6); thereforeX \ Supp T is Stein by the previous
theorem. Q.E.D.

Remark 3.9 This can be seen as a generalization of the standard result:
X \ {s = 0} is Stein, whens is a holomorphic section of some positive
holomorphic line bundle onX.
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3.2 Oka principle

In this section we want to investigate the case whereT is the current of
integration along a positive divisor of a projective algebraic manifoldX.

Let L be a positive holomorphic line bundle onX, s ∈ Γ (X,L) and
T = [{s = 0}]. By the Kodaira embedding theorem, there existsk ∈ N and
a basis(s0 = sk, s1, . . . , sN ) of Γ (X,Lk) s.t. the map

Φ : X → PN (C)
x 7→ [s0(x), . . . , sN (x)]

defines a holomorphic embedding ofX onto a subvarietyV of PN (C) with
L = Φ∗(O(1)|V ). If K is a compact subset ofX \ Supp T , Φ(K) thus is a
compact subset ofV \ {z0 = 0} ⊂ CN and one easily checks that

Φ−1(Φ̂(K)) = pT (K) ⊂⊂ X \ Supp T,
whereΦ̂(K) denotes the usual polynomial hull ofΦ(K) in CN . Indeed
every holomorphic section ofLp defines a holomorphic section ofO(p)|V
that extends to a holomorphic section ofO(p) on PN (C) and conversely.

If f is a function holomorphic in a neighborhood ofpT (K) thenF =
f ◦ Φ−1 is a function holomorphic in a neighborhood of̂Φ(K) in V that

extends to a function holomorphic in a neighborhood of̂Φ(K) in CN . The

classical theorem of Oka-Weil asserts thatF is a uniform limit onΦ̂(K) of
polynomials inzi/z0, 1 ≤ i ≤ N . Therefore we have the following

Theorem 3.10 (Oka-Weil) LetT = [{s = 0}] with s ∈ Γ (X,L), L posi-
tive. LetK be a compact subset ofX\Supp T . Then every function holomor-
phic in a neighborhood ofpT (K) is a uniform limit onpT (K) of polynomials
in si/sk wheresi ∈ Γ (X,L) (andk is an integer s.t.Lk is very ample), i.e.
of meromorphic functions of the typeh/sp whereh ∈ Γ (X,Lp).

Definition 3.11 Let L ∈ Pic(X). We say that(Ht)t≥t0 is a continuous
L−family of algebraic hypersurfaces if the following holds:

i) ∀t ≥ t0, there existsdt ∈ N andst ∈ Γ (X,Ldt) s.tHt = {st = 0};
ii) t 7→ dt is bounded on each compact set;
iii) (t, x) 7→ st(x) is continuous on[t0,+∞[×X.

Moreover the family is said to joinx toH∞ avoiding a compact setK if
i) x ∈ Ht0 and∀t ≥ t0,Ht ∩K = ∅;
ii) supx∈Ht

d(x,H∞) → 0 ast → +∞.

Definition 3.12 LetK be a compact subset ofX \ {s = 0}, wheres ∈
Γ (X,L), L positive, and setT = [{s = 0}]. The Oka-hullOT (K) of K
relative toT is defined by saying that a pointx ∈ X lies inX \OT (K) iff
there exists a continuousL−family of algebraic hypersurfaces(Ht) joining
x toH∞ = {s = 0} avoidingK.
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Theorem 3.13 (Oka principle) Let s ∈ Γ (X,Ld), whith L ∈ Pic(X)
positive and setT = [{s = 0}]. Then

∀K ⊂⊂ X \ Supp T, pT (K) = OT (K).

Proof. Let x ∈ X \ pT (K); there existsk ∈ N andh ∈ Γ (X,Lk) s.t.
h/sk(x) = 1 > supK |h/sk|. Therefore(Ht := {h − tsk = 0})t≥1 is
a continuousL−family of algebraic hypersurfaces which joinsx to H∞
avoidingK, hencex /∈ OT (K).

Conversely, letx ∈ pT (K) and assume there exists a continuousL-
family of algebraic hypersurfaces(Ht = {st = 0})t≥1 that joinsx to
H∞ = {s = 0} avoidingK.

SincepT (K) is compact, there existsr ≥ 1 s.t.Hr ∩ pT (K) 6= ∅ and
∀t > r, Ht ∩ pT (K) = ∅.

Since(Ht) avoidsK, the function(t, x) 7→ ft(x) = sdt

sd
t
(x) is bounded

on [r, r + 1] ×K.
Now let y ∈ pT (K) ∩ Hr; |fr(y)| = +∞ hence by continuity ofHt,

|ft(y)| → +∞ ast → r+. Thus there existst > r s.t. |ft(y)| > supK |ft|.
SinceHt∩pT (K) = ∅,ft is holomorphic in a neighborhood ofpT (K) hence
we can approximate it uniformly onpT (K) by functions of the typeh/sp

with h ∈ Γ (X,Lp), thusy cannot lie inpT (K), a contradiction. Q.E.D.

4 Approximation of currents on projective algebraic manifolds

In this section we wish to extend theorem 1.6 to the case of non homoge-
neous projective algebraic manifolds. We need to make an extra assump-
tion (T satisfies condition(C)) which is always satisfied in the homoge-
neous case; on the other hand we obtain a control on the Lelong num-
bers of the approximants (such a control was obtained by Demailly in [De
93]) and this gives a refinement of theorem 1.6 in the homogeneous case
(see corollary 4.3). Recall that by a theorem of Siu [Siu 74], the level sets
Ec(T ) = {x ∈ X /ν(T, x) ≥ c} of Lelong numbers of a positive closed
currentT onX are proper closed analytic subsets ofX for eachc > 0.

Theorem 4.1 Let T be a positive closed current of bidegree(1, 1) on a
projective algebraic manifoldX. Assume[λT ] = c1(L) for some holomor-
phic line bundleL which we assume is positive. AssumeT = [H] + R,
whereH =

∑p
j=1 λj [Zj ] (∀j, λj is a positive constant andZj is an ir-

reducible algebraic hypersurface ofX) and R is a positive closed cur-
rent of bidegree(1, 1) on X s.t. the level sets of Lelong numbers ofR,
Ec(R) = {x ∈ X /ν(R, x) ≥ c}, are of codimension greater or equal
than2. Assume moreover thatT satisfies condition(C).
Then there existsNj ∈ N andsj ∈ Γ (X,LNj ) s.t.
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i) Tj = 1
Nj

[{sj = 0}] −→ T in the weak sense of currents;

ii) {sj = 0} −→ Supp T in the Hausdorff metric;
iii) ∀x ∈ X, ν(Tj , x) −→ ν(T, x).

We first need a proposition:

Proposition 4.2 Under the hypotheses of the theorem (withλ = 1), let ϕ
be a positive metric ofL which is a potential forT , let K be a compact
subset ofX \ Supp T s.t.K = K̂T and fixω a Kähler form onX.

Then for every open setV s.t.K ⊂ V ⊂⊂ X \Supp T and everyδ > 0,
we can findM ∈ N and construct a positive metricψ of LM onX and a
sectionh ∈ Γ (V, LM ) s.t.

i) K ⊂ {m ∈ V / |h|ψ ≥ 1} = {m ∈ V / |h|ψ ≡ 1} ⊂⊂ V ,
ii) ‖ψ/M − ϕ‖L∞(V ) ≤ δ and‖ψ/m− ϕ‖L1(X) ≤ δ,
iii) supx∈X |ν(ψ/M, x) − ν(ϕ, x)| ≤ δ,
iv) ddcψ ≥ ε.ω in a neighborhood ofSupp T for some constantε > 0,
v) ψ is continuous inX \ Supp T and smooth on a dense subset of

X \ Ec0(T ) for somec0 > 0.

Proof. Following Demailly, we setϕs = 1
s sup1≤j≤N [log |fj |] where

(f1, . . . , fN ) is an orthonormal basis of sections ofΓ (X,Ls) with finite
L2−norm

∫
X ‖f‖2

sϕdVω. It is proved in [De 93] (proposition 9.1) that:
a) ‖ϕs − ϕ‖L1(X) → 0 ass → +∞ and the convergence is uniform

on compact subsets ofX \ {x ∈ X /ϕ is not continuous atx}, hence in
particular on compact subsets ofX \ Supp T ;

b) ν(T, x) −m/s ≤ ν(Ts, x) ≤ ν(T, x), ∀x ∈ X, wherem = dimCX
andTs = ddcϕs.

ClearlyE+(Ts) := {x ∈ X /ν(Ts, x) > 0} is equal toE1/s(Ts) =
{x ∈ X /ν(Ts, x) ≥ 1/s} ⊂ E1/s(T ) andϕs is smooth on a dense subset
of X \ E+(Ts).

LetU be a relatively compact open neighborhood of∂V inX \Supp T
s.t.K = K̂T ⊂⊂ V \ U . Let x ∈ U . There existsψx ∈ Pc(X,L) and
δx > 0 s.t. (ψx − ϕ)(x) ≥ δx > 0 > −δx ≥ supK(ψx − ϕ). Since
(ψx − ϕ) is lower semi-continuous (l.s.c.) atx, (ψx − ϕ) > δx in a small
ball B(x, εx). We can coverU by a finite number of ballsB(xi, εi) and
considerψ1, . . . , ψp the corresponding metrics.

We setδ′ = min(δ, δ1/8, . . . , δp/8) and we fixs large enough so that
‖ϕs − ϕ‖L∞(V ∩U) < δ′ and‖ϕs − ϕ‖L1(X) < δ′. Thus∀i = 1, . . . , p,
(ψi − ϕs) ≥ 4δ′ > 0 in B(xi, εi) and supK(ψi − ϕs) ≤ −4δ′ < 0.
Therefore

fs :=
1
p

p∑
i−1

max(ψi − ϕs, 0)
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is a non negative function inL1(X) s.t.fs +ϕs is u.s.c. and which satisfies
ddcfs ≥ −Ts onX with fs ≡ 0 onK = K̂T andfs ≥ 4δ′ > 0 in U .

SinceT is cohomologous to a K̈ahler form (L is positive) and satisfies
condition(C),X \ Supp T is Stein by theorem 3.8. We can therefore find,
as in the proof of proposition 1.1, a relatively compact Stein open subsetW
of X \ Supp T that containsV , and construct integersk andM1, a small
perturbationθλ of kϕ in W and a holomorphic functionh in W s.t.

a)Lk|W is trivial;

b) ‖ 1
kθλ − ϕ‖L∞(V ) < δ′;

c)M1θλ = log |h|.
Now letG be a smooth metric ofL s.t.ddcG > 0 onX and consider

ψ =
{

max (M1.θλ;M [(1 − η)(fs + ϕs) + ηG− 2δ′]) in V
M [(1 − η)(fs + ϕs) + ηG− 2δ′] onX \ V,

whereM = k.M1. Then for a choice ofη > 0 small enough ands large
enough,ψ is a positive metric ofLM which satisfies all our requirements.
Q.E.D.

Proof of theorem 4.1.ReplacingT by T/λj if necessary, where(λj) is
a sequence of positive rational numbers converging toλ, we can assume
λ = 1. Let Kn be a sequence of compact subsets ofX \ Supp T that

exhaustsX \ Supp T and s.t.K̂n
T

= Kn. We fix δn > 0 a sequence
converging towards 0 and open neighborhoodsVn of Kn that are relatively
compact subsets ofX\Supp T . Using proposition 4.2, we construct integers
Mn, positive metricsψn ofLMn onX and holomorphic sectionshn ofLMn

in Vn with the prescribed properties.
Fix (aj) a dense sequence of points inSupp T , s.t.∀n ∈ N, a1, . . . , an

belong toSupp T \ Ecn(T ) where(cn) is a sequence of positive numbers
converging to0 s.t.ψn is smooth andddcψn > 0 at the pointsa1, . . . , an
(see iv) and v) of proposition 4.2).

Let (Fn) be an increasing sequence of compact subsets ofX \ E+(T )
s.t.
⋃
Fn = X \ E+(T ) andKn ∪ {a1, . . . , an} ⊂ Fn ⊂⊂ X \ Ecn(T ).

We are going to construct for eachn an integerNn and a sectionSn ∈
Γ (X,LNn.Mn) s.t.

|Sn|e−Nnψn ≤ 1 onFn
|Sn|e−Nnψn ≥ 1/2 onKn ∪ {a1, . . . , an}
ν( 1

Nn
log |Sn|, x)

≥ (1 − 1/
√
Nn)ν(ddcψn, x) − 1/Nn, ∀x ∈ Ecn(ddcψn)∫

X |Sn|e−NnψndVω ≤ C,

whereC is a positive constant independent ofn in the last inequality.
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The first two inequalities, together with Lelong-Poincaré equation and ii)
of proposition 4.2, imply thatTn = ddc( 1

Nn.Mn
log |Sn|) converges weakly

towardsT in X \ E+(T ). SinceT = [H] + R with codimCEc(R) ≥ 2,
∀c > 0, the Hausdorff dimension ofE+(R) = E+(T ) \ ∪pj=1Zj is less or
equal than2m− 4 henceTn actually converges towardsT onX \ ∪pj=1Zj
(see e.g. [F-S 95]).

One easily checks that∀x ∈ X \∪Zj , lim sup ν(Tn, x) ≤ ν(T, x) since
Tn → T in the weak sense of currents. Therefore the third inequality together
with iii) of proposition 4.2 insures that∀x ∈ E+(T ) \ ∪Zj , ν(Tn, x) →
ν(T, x) hence∀x ∈ X \∪Zj , ν(Tn, x) → ν(T, x). Now(‖Tn‖) is bounded
by the last inequality and ii) of proposition 4.2, thus(Tn) admits a subse-
quence that converges weakly towards a positive closed currentT ′ of bide-
gree(1, 1) on X. ClearlyT ′ ≡ T on X \ ∪Zj andT ′ ≥ T on ∪Zj by
the third inequality, thereforeT ′ ≡ T on X sinceX is compact K̈ahler
and [T ′] = [T ] = c1(L); thusTn converges weakly towardsT onX and
ν(Tn, x) → ν(T, x), ∀x ∈ X.

Finally since|Sn| > 0 onKn andTn → T , {Sn = 0} converges towards
Supp T in the Hausdorff metric.

From now on,n is fixed, and we will not mention the subscript. We pro-
ceed as in the proof of theorem 1.6 and construct, using i),iv),v) of proposi-
tion 4.2, a smooth(m, 0)−form u = χ.hN +

∑n
i=1 χie

N.Pi with values in
LN.M ⊗K∗

X s.t.|u|e−N.ψ = 1 onK ∪{a1, . . . , an} and|u|e−N.ψ < 1 out-
side a neighborhood of this set. We solve∂v = ∂u onX withL2−estimates
associated to a weightθ = N1ψ +G and get an estimate∫

X
|v|2e−2θdVω ≤ 1

ε

∫
X

|∂u|2e−2θdVω ≤ C1a
2N1 .

We use now the fact thatψ is continuous onX \ Ecn(T ) hence uniformly
continuous on a compact neighborhood ofF which is relatively compact in
X \Ecn(T ). We obtain in the same vein as what has been done in the proof
of theorem 1.6 a uniform estimate forv:

|v(x)|2 ≤ C2(eηa)2N1e2Nψ(x), ∀x ∈ F,

whereeηa < 1 andC2 is a constant independent ofN1. We chooseN1
large enough so that|v|e−Nψ ≤ 1

3 onF and we setS = 3
4(u− v). ThusS

satisfies the first two inequalities.
To get the third one, observe thatu ≡ 0 in a neighborhood of any

x ∈ Ecn(ddcψ). Thus v is holomorphic there and the convergence of∫
X |v|2e−2θdVω forcesv to vanish atx at an order greater or equal than
N1ν(ddcψ, x) − 1. Therefore

ν(
1
N

log |S|, x) ≥ N1

N
ν(ddcψ, x) − 1

N
≥ (1 − 1√

N
)ν(ddcψ, x) − 1

N
,
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for a choice ofN1 large enough, sinceN = N1 +N2 whereN2 is a fixed
integer.

Finally we observe that
∫
X |v|2e−2θdVω ≤ C1 hence∫

X
|v|2e−2NψdVω ≤ C2 ;

since
∫
X |u|2e−2NψdVω ≤ C3 we obtain∫

X
|S|e−NψdVω ≤ C4

∫
X

|S|2e−2NψdVω ≤ C5 ,

where all the constants involved are independent ofN1. Q.E.D.

Let T be a positive closed current of bidegree(1, 1) on a projective
algebraic manifoldX. By a theorem of Siu [Siu 74], we can decomposeT
as

T =
∑
j≥1

λj [Zj ] +R,

where eachZj is an irreducible analytic subset ofX of pure codimension1,
theλj ’s are positive constants andR is a positive closed current of bidegree
(1, 1) on X s.t. ∀c > 0, Ec(R) = {x ∈ X /ν(R, x) ≥ c} is a closed
analytic subset ofX of codimension greater or equal than2.

WhenX is homogeneous we can approximateT by currents

Tn =
n∑
j=1

λj [Zj ] +R+
+∞∑

j=n+1

λjω
εn
j ,= [Hn] +Rn

whereωεj denotes the regularization of[Zj ] and we choose a sequenceεn →
0. Sinceωεj is cohomologous to[Zj ],Tn is cohomologous toT ; sinceλj → 0
asj → +∞, Tn → T in the weak sense of currents with convergence of the
Lelong numbers and convergence of the supports in the Hausdorff metric
(Suppωεn

j → Zj asn → +∞). Thus it is sufficient to approximate each
Tn in the sense of theorem 4.1 to get a similar approximation forT .

Now sinceX is homogeneous eachTn satisfies condition(C) and since
ωεn
j is smooth, codimCEc(Rn) = codimCEc(R) ≥ 2; therefore we have

the following refinement of theorem 1.6:

Corollary 4.3 LetX be a projective algebraic homogeneous manifold and
letT be a positive closed current of bidegree(1, 1) onX s.t.[T ] = c1(L) for
some positive holomorphic line bundleL onX. Then there existsNj ∈ N
andsj ∈ Γ (X,LNj ) s.t.

i) Tj = 1
Nj

[{sj = 0}] −→ T in the weak sense of currents;

ii) {sj = 0} −→ Supp T in the Hausdorff metric;
iii) ∀x ∈ X, ν(Tj , x) −→ ν(T, x).
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When does a positive closed current of bidegree(1, 1) satisfy condition(C)
? Whenπ : X̃ → X is the blow up at a pointp of a compact manifoldX, we
have seen previously (Example 3.4.iii) that the current of integration along
the exceptional divisor does not satisfy condition(C). One might hope that
a stronger positivity assumption on the line bundle will imply thatT satisfies
condition(C). However in [D-P-S 94], the authors give an example of a line
bundleL on a ruled surfaceX that is numerically effective (i.e.L.C ≥ 0, for
every curveC of X) and which only admits one positive (singular) metric
ϕ (up to additive constants); thusT = ddcϕ does not satisfy condition(C).
We briefly recall their construction:

Example 4.4 Letτ ∈ C s.t.=(τ) > 0, and consider the manifoldX defined
as the quotient ofC × P1 by the equivalence relation

(z′, [w′]) ∼ (z, [w]) iff ∃(a, b) ∈ Z2 s.t. z′ = z + a+ bτ &
[w′] = [w0, w1 + bw0]

We denote byπ the canonical projection ofC × P1 ontoX and byp1 the
canonical projection ofC onto the elliptic curveE = C/Z[τ ]. The mapping

p : X −→ C/Z[τ ]
π(z, [w]) 7−→ p1(z)

expressesX as a ruled surface overE. We denote byE∞ the elliptic curve
at infinityπ({(z, [0, 1]) ∈ C × P1 / z ∈ C}) ' E.

It can be shown (see [D-P-S 94]) that the line bundleL∞ corresponding
to the divisorE∞ is nef and only admits one positive metric (up to additive
constants), henceT∞ = [E∞] does not satisfy condition(C) since∀K ⊂⊂
X \ Supp T∞, K̂T∞ = X. MoreoverΩ∞ = X \ Supp T∞ is Stein since
the functionf(z, [w]) = (=w)2 + (<w− =z/=τ)2 is smooth, well defined
in Ω∞ and easily seen to be a strictly psh exhaustion function forΩ∞;
therefore condition(C) is not necessary forX \ Supp T to admits a psh
exhaustion function.

Question 4.5 LetT be a positive closed current of bidegree(1, 1) on a pro-
jective algebraic manifoldX s.t.[T ] = c1(L) for some positive holomorphic
line bundleL onX. DoesT satisfy condition(C) ?

5 Stein manifolds

The proofs of our main results show, with very slight modifications, that
they also hold on Stein manifolds (essentially the uniform estimates have to
be performed on compact subsets of the manifold).

However, as there are some considerable simplifications on these man-
ifolds to technical problems we came across when working on algebraic
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manifolds, we therefore reformulate in this section some of the main results
after recalling a few well-known facts about Stein manifolds.

Fact 5.1 If X is Stein, then every holomorphic line bundle onX is positive
andPic(X) ' H2(X,Z) ' Div(X) (modulo linear equivalence).

A theorem of Docquier and Grauert [D-G 60] asserts that every locally
pseudoconvex open subset of a Stein manifold is Stein. Thus we have:

Fact 5.2 Let T be a positive closed current of bidegree(1, 1) on a Stein
manifoldX thenX \ Supp T is Stein.

5.1 Approximation of currents

TheT−polynomially convex hullK̂T of a compact subsetK of a complex
manifoldX is a closed subset ofX defined in 3.1. Notice that it is compact
if X is Stein, sinceX admits a smooth psh exhaustion function.

Proposition 5.3 LetT be a positive closed current of bidegree(1, 1) on a
Stein manifoldX s.t. [T ] = c1(L) for someL ∈ Pic(X). ThenT satisfies
condition(C) and for every compact subsetK ofX, we have

K̂T = pT (K) =
{
x ∈ X / ∀h ∈ O(X), |h|(x)e−ϕ(x) ≤ sup

K
|h|e−ϕ

}
,

whereϕ is a metric ofL which is a potential forT .

Proof. We can assumeX is a closed complex submanifold ofCN (for N
large enough). By a theorem of Docquier-Grauert [D-G 60], there exists a
holomorphic retractionπ : V → X defined in a neighborhoodV of X in
CN .

Let {Uα} be an open covering ofX trivializing L. Let gαβ ∈ O∗(Uαβ)
be the associated transition functions ofL and letϕ = {ϕα ∈ PSH(Uα)}
be a positive metric ofLwhich is a potential forT . Considering a finer open
covering, we can assume theϕα’s are defined in some slightly bigger open
subsetU ′

α so thatB(z, ε)∩X ⊂ U ′
α for everyz ∈ Uα∩B(0, 2R) andε > 0

small enough, whereR is a positive constant to be chosen later.
Nowπ∗L is a positive holomorphic line bundle onV andGαβ := gαβ ◦

π ∈ O∗(Ũαβ) are its transition functions associated to the trivializing open
covering{Ũα} = {π−1(Uα)}. Thus ϕ̃ = {ϕ̃α} := {ϕα ◦ π} satisfies
ϕ̃α = ϕ̃β + log |Gαβ | in Ũαβ = Ũα ∩ Ũβ, i.e. ϕ̃ is a positive metric ofπ∗L
onV . A straightforward computation shows that(z ∈ Supp ddc(ϕ̃)) ⇐⇒
(π(z) ∈ Supp ddcϕ).
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We can regularize this metric inV ∩B(0, 2R) in the following way; we
set

ϕ̃εα(z) :=
∫

CN

ϕ̃α(w)χε(z − w)dλ(w),

whereχε is a smooth non-negative function inCN , invariant by rotation,
with compact support equal toB(0, ε) and s.t.

∫
CN χε ≡ 1. Thus forε > 0

small enough,̃ϕεα is a psh function iñUα ∩B(0, 2R) and one easily checks
that:

i) ϕ̃εα = ϕ̃εβ + log |Gαβ | in Ũαβ ∩B(0, 2R);
ii) ϕ̃εα(z) = ϕ̃α(z) if d(z, Supp ddcϕ̃) > ε andϕ̃εα(z) > ϕ̃α(z) other-

wise (hered stands for the euclidean distance inCN ).
LetθR be a non negative test function inCN s.t.θR ≡ 1 in a neighborhood

of B(0, R) = {z ∈ CN / |z| ≤ R} andθ ≡ 0 outsideB(0, 2R) ∩ V . Let f
be a smooth positive metric ofL onX and consider

ψ̃ε = θR.ϕ̃
ε + (1 − θR)f ◦ π +Amax(|z|2 −R2, 0).

Then for a choice ofA > 0 large enough,̃ψε defines a continuous positive
metric ofπ∗L onV s.t.ψ̃ε ≡ ϕ̃ε onV ∩B(0, R).

Now letK be a compact subset ofX\Supp T and fixR > 0 large enough
so thatK̂T ⊂⊂ X ∩B(0, R). Then forε > 0 small enough, the continuous
positive metricψε := ψ̃ε|X of L onX satisfiesinfSupp T∩B(O,R)(ψ

ε−ϕ) >

0 = supK(ψε − ϕ), henceK̂T ⊂⊂ X \ Supp T andT satisfies condition
(C).

The equalityK̂T = pT (K) follows from a standard application of the
techniques ofL2−estimates on Stein manifold (see [Hö 88] and the proof
of proposition 3.2) noticing that we can regularize any positive metric of a
holomorphic line bundle on compact subsets of a Stein manifold and add a
small smooth strictly psh function as well. Q.E.D.

Remark 5.4 Note thatX \ Supp T is usually not a Runge domain, i.e.T
does not necessarily satisfies condition(C ′) obtained by replacingddcf ≥
−T byddcf ≥ 0 in the definition ofK̂T (take e.g.X = C2 andT = [{z1 =
0}]).

Theorem 5.5 Let T be a positive closed current of bidegree(1, 1) on a
Stein manifoldX. Assume[T ] ∈ H2(X,Z), i.e. [T ] = c1(L) for some
holomorphic line bundleL on X. Then there existsNj ∈ N and sj ∈
Γ (X,LNj ) onX s.t.

i) Tj := 1
Nj

[{sj = 0}] → T in the weak sense of currents;

ii) {sj = 0} → Supp T in the Hausdorff metric;
iii) ∀x ∈ X, ν(Tj , x) → ν(T, x).
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Proof. By Siu’s theorem we can decomposeT asT =
∑

j≥1 λj [Zj ] +R.

We can weakly approximate each current[Zj ] by positive smooth(1, 1)-
formsωεj s.t. moreoverSuppωεj → Zj asε → 0 (for this we can regularize
[Zj ] on a compact subsets ofX and add a smooth strictly psh function that
vanishes on a large compact subset ofX as it has been done in the proof of
proposition 5.3). We can therefore weakly approximateT by currents

Tm =
m∑
j=1

λj [Zj ] +R+
+∞∑

j=m+1

λjω
εm
j = [Hm] +Rm,

with convergence of the supports in the Hausdorff metric and convergence
of the Lelong numbers sinceλj → 0 asj → +∞.

Now [λTm] = [λT ] = c1(L) sinceωεm
j is cohomologous to[Zj ],Tm sat-

isfies condition(C)by proposition 5.3, and codimCEc(Rm) = codimCEc(R) ≥
2; thus we can use an analogue of theorem 4.1 in the Stein case to get an
approximation ofTm by rational divisors which yields the desired approxi-
mation forT . Q.E.D.

5.2 Rational convexity

Since every divisor is positive on a Stein manifold, the analogue of definition
2.1 in this case is the natural generalization of the standard one inCm:

Definition 5.6 LetK be a compact subset of a Stein manifoldX; the ra-
tional hull ofK is defined by

r(K) = {m ∈ X / ∀H complex hypersurface ofX,

m ∈ H ⇒ H ∩K = ∅},
andK is said to be rationally convex whenr(K) = K.

As in the algebraic case,r(K) is a compact subset ofX andr(r(K)) =
r(K). Since every positive closed current of bidegree(1, 1) with integer
class satisfies condition(C) on a Stein manifold, we have the following
analogue of theorem 2.6:

Theorem 5.7 LetT be a positive closed current of bidegree(1, 1) on a Stein
manifoldX s.t. [T ] ∈ H2(X,Z).

ThenX \ Supp T can be exhausted by rationally convex compact sets.

Finally a very similar proof to that of theorem 2.8 gives

Theorem 5.8 LetS be a smooth compact totally real submanifold of a Stein
manifoldX; the following are equivalent:

i) S is rationally convex.
ii) There exists a smooth Hodge formθ for X s.t. j∗θ = 0, wherej :

S → X denotes the inclusion map.
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A Regularization process

It is in general not possible to approximate positive currents by positive
smooth forms on complex manifolds. However this can be done on homo-
geneous manifolds (i.e. complex manifolds with a transitive group of auto-
morphisms) where there is a natural regularization procedure. We explain
here how to regularize the positive singular metrics of a holomorphic line
bundle on a compact homogeneous manifold. The case of positive currents
was considered by Richthofer (see [Hu 94]).
LetX be a compact complex homogeneous manifold; letGbe the connected
component of the identity ofAut(X) and letH = {g ∈ G/g(x0) = x0}
be the isotropy group of a pointx0 ∈ X; thenX is naturally isomorphic
to G/H. Let T be a(1, 1)−positive closed current onX = G/H and
let χ ∈ C∞

0 (G) a non negative function with compact support inG, s.t.
χ(id) > 0 and

∫
G χ(g)dg = 1, whereid stands for the identity element in

G. We define

Tχ =
∫
G
χ(g) l∗g−1(T )dg,

wheredg is the Haar measure onG andlg will stand for the multiplication
on the left byg both inG and inX = {g.H}, according to the context. It
is clear from the definition thatTχ defines a smooth(1, 1)−positive closed
current onX. Furthermore,

Theorem A.1 i) Tχ is cohomologous toT .
ii) If T is strictly positive at a pointx0, thenTχ is strictly positive on

U.x0 = {g(x0) ∈ X /g ∈ U}, whereU is the interior of the support ofχ
(in particular,Tχ is strictly positive atx0).

We refer to [Hu 94] for a detailed proof.
We now define the regularized metricsϕε of a given metricϕ of a pseu-

doeffective holomorphic line bundleL onX. We first construct a pseudo-
distance function onX that will tell us exactly whenϕε is equal toϕ.

Let Φ be a biholomorphic map from a relatively compact open neigh-
borhoodU of zero inCN onto a relatively compact open neighborhoodV
of the identity inG which maps0 to id; we write hereX in the Klein form
G/H. We can assume thatU is included in the unit ball ofCN (N is the
complex dimension ofG). We define a positive function onG2 via

D(g, f) =
{‖Φ−1(g−1.f)‖ if g−1.f ∈ V

1 otherwise

where‖ζ‖ stands for the euclidean norm ofζ in CN . This is a (a priori) non
symmetrical non-negative function onG2 which is bounded by1, upper
semi continuous and obviously satisfiesD(g, f) = 0 iff g = f . WhenF is
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a closed subset ofG, we defineDF (g) = inff∈F D(g, f). If F is invariant
by multiplication on the left by the elements ofH, i.e. h.F = F , then
∀(g, h) ∈ G × H, DF (g) = DF (h.g) sinceD(h.g, h.f) = D(g, f) for
anyf ∈ F . This allows us to define a similar function onX: if K is a closed
subset ofX, we setdK(x) = Dπ−1(K)(zx) whereπ : G → X = G/H is
the canonical projection andzx is any element inπ−1({x}). The definition
is independent of the choice of the preimagezx thanks to the invariance of
π−1(K), and we have:

1) 0 ≤ dK(x) ≤ 1, ∀x ∈ X
2) dK(x) = 0 ⇔ x ∈ K
3) dK is upper semi continuous

The setsKε = {x ∈ X /dK(x) = d(x,K) ≥ ε} (ε > 0) are therefore
compact subsets ofX which exhaustX \K whenε decreases towards0.

Letθε be a usual approximation of the identity for the convolution product
in CN andχε the related approximation inG, that is:θε ∈ C∞

0 (CN ) is invariant by rotation
θε ≥ 0 and

∫
CN θε = 1

Supp θε = B(0, ε)

and we then defineχε onG byχε(g)dg = (Φ−1)∗(θε(ζ)dζ) so thatχε is a
positive test function onG with

∫
G χε = 1 and the support ofχε converges

to {id} asε decreases towards0.
Let nowϕ be a singular positive metric of a pseudoeffective holomorphic
line bundleL. That isϕ is a given set of plurisubharmonic functionsϕα in
Uα, where{Uα} is an appropriate open covering ofX. The line bundle is
trivial in each open subsetUα and is described by the transition functions
gαβ ∈ O∗(Uαβ). Theϕ′

αs satisfy the relationsϕα = ϕβ + log |gαβ | in Uαβ .
Considering a finer open covering we can assume (and we will in the sequel)
that all the functionsϕα (resp.gαβ) are defined in some slightly bigger open
subsets thanUα (resp.Uαβ).

Sinceddc(ϕα) = ddc(ϕβ) in Uαβ , the curvature form of the metric is
globally well defined and its supportSupp ddcϕ as well.

The line bundleπ∗L is well defined and holomorphic onG, and we
denote byGαβ = gαβ ◦ π its transition functions associated to the covering
π−1(Uα). We define a positive metricψ of π∗L byψ = ϕ ◦ π.

Similarly to the case of currents, we set{
ϕεα(x) =

∫
G χε(g)l

∗
g−1(ϕα(x))dg,

ψεα(z) = ϕε ◦ π(z) =
∫
G χε(g)ψα(g−1.z)dg.

These are smooth functions that are well defined inUα, resp.π−1(Uα) if
ε > 0 is small enough, sinceϕα (resp.ψα) is defined in a slightly bigger
open subset thanUα (resp.π−1(Uα)).
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Proposition A.2 The functionsϕε = {ϕεα} (resp.ψε = {ψεα}) define a
smooth positive metric ofL (resp.π∗L) which is strictly positive at a point
x wheneverϕ is strictly positive atx.

ϕε (resp.ψε) decreases towardsϕ (resp.ψ) whenε decreases towards
0+ and Supp ddcϕε (resp.Supp ddcψε) converges toSupp ddcϕ (resp.
Supp ddcψ) in the Hausdorff metric.

More precisely, forε small enough we have{
ϕε(x) = ϕ(x) if dK(x) = d(x, Supp ddcϕ) > ε
ϕε(x) > ϕ(x) if 0 ≤ dK(x) ≤ ε

whereK denotes the support ofddcϕ.

Proof. Fromψα = ψβ + log |Gαβ | in π−1(Uαβ) we deduce

ψεα = ψεβ +
∫
G
χε(g) log |Gαβ(g−1.z)|dg

= ψεβ +
∫

CN

θε(ζ) log |Gαβ(Φ(ζ)−1.z)|dζ.

Now the functionh : ζ → log |Gαβ(Φ(ζ)−1.z)| is pluriharmonic inU and
therefore the last integral is equal toh(0) = log |Gαβ(z)| sinceΦ(0) = id.
Thusψεα = ψεβ+log |Gαβ | andψε is a smooth metric ofπ∗L. Of course this
also gives the corresponding result forϕε. The positivity assertions directly
follow from the fact thatddcϕε = Tχε with the notation of theorem A.1.

Fixing α andz we denote byH the plurisubharmonic function defined
in a neighborhood of0 in CN byH(ζ) = ψεα(Φ(ζ)−1.z). Thus

ψεα(z) =
∫
θε(ζ)H(ζ)dζ =

∫
θ(ζ)H(εζ)dζ ≥

∫
θ(ζ)H(ε′ζ), if ε ≥ ε′,

sinceθ is invariant by rotation andH is plurisubharmonic. Thereforeψε is
decreasing andϕε as well. It is now enough to prove the last assertion to
obtain the whole proposition.

It is absolutely equivalent to prove the similar results forψ, i.e.{
ψε(z) = ψ(z) if DF (z) = D(z, Supp ddcψ) > ε
ψε(z) > ψ(z) if 0 ≤ DF (z) ≤ ε

whereF = Suppψ = π−1(K). Of course this implicitly means that for
eachα and eachz ∈ π−1(Uα) the inequalities betweenψα andψεα hold, but
we don’t write the subscriptα anymore. Settingζ = Φ(g), we have

ψε(z) =
∫
V
χε(g)ψ(g−1.z)dg

=
∫
U
χε(Φ(ζ))ψ(Φ(ζ)−1.z)|JacΦ(ζ)|2dζ

=
∫
U
θε(ζ)f(ζ)dζ,
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whereζ → f(ζ) = ψ(Φ(ζ)−1.z) is a plurisubharmonic function (in fact a
set of plurisubharmonic funtions, but we omit to mention it from now on)
sinceΦ is holomorphic and the group operationsg → g−1 andg → g.z as
well. Therefore{

ψε(z) = f(0) = ψ(z) if deucl(0, Supp ddcf) > ε
ψε(z) > f(0) = ψ(z) otherwise

A straightforward computation shows that the Levi form off at the point
ζ applied tow satisfiesLf (ζ).w = Lψ(Φ(ζ)−1.z).(J(ζ).w), whereJ(ζ)
denotes the jacobian matrix of the mapζ → Φ(ζ)−1.z which is biholomor-
phic.
HenceSupp ddcf = Φ−1([Supp ddcψ]−1.z) and ifε < 1,

deucl(0, Supp ddcf) ≥ ε ⇔ inf
f∈F

‖Φ−1(f−1.z)‖ ≥ ε

⇔ DF (z) ≥ ε

Q.E.D.

As an application we have the following:

Corollary A.3 If L is a holomorphic line bundle on a compact complex ho-
mogeneous K̈ahler manifold, it is equivalent to say thatL is pseudoeffective
or nef or semi-positive: given a singular positive metricϕ on L, ϕε is a
smooth positive metric ofL.

Moreover, if there exists a singular metricϕ of L s.t. ddcϕ is strictly
positive at one point, thenL is positive.

Proof. The equivalence between the three notions of weak positivity di-
rectly comes from[ddcϕ] = [ddcϕε] since

∫
G χε(g)dg = 1 (cf i) in theorem

A.1).
Let nowϕ be a singular metric of a holomorphic line bundleL which

is strictly positive at some pointa ∈ X. Fix ε > 0 small enough, then
T = ddcϕε is a smooth positive current which is strictly positive ata.
ThusTχ is a smooth positive current cohomologous toT which is strictly
positive inU.a by theorem A.1, whereχ is any positive test function onG
with

∫
G χ = 1 andU is the interior of the support ofχ. Since the action

of G is transitive onX, we can coverX by a finite number ofUj .a (we
don’t necessarily assume thatid ∈ Uj here) and obtain that way a current
S = 1

s

∑s
j=1 Tχj which is smooth, strictly positive and cohomologous to

T , i.e.S is a Kähler form onX s.t. [T ] = [S].
It is now a standard consequence of Hodge theory on compact Kähler

manifold that there existsv ∈ C∞(X) s.t.S = T + ddcv. ThereforeGα =
ϕεα + v defines a smooth metric ofL s.tddcG = S is Kähler. Q.E.D.
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