
Data Science and Engineering manuscript No.
(will be inserted by the editor)

Robust cross-platform workflows: how technical and
scientific communities collaborate to develop, test
and share best practices for data analysis

Steffen Möller · Stuart W. Prescott ·
Lars Wirzenius · Petter Reinholdtsen ·
Brad Chapman · Pjotr Prins ·
Stian Soiland-Reyes · Fabian Klötzl ·
Andrea Bagnacani · Matúš Kalaš ·
Andreas Tille · Michael R. Crusoe

Received: date / Accepted: date

S. Möller
University of Rostock, Institute for Biostatistics and Informatics in Medicine and Ageing
Research, Rostock, Germany and Debian Project
E-mail: moeller@debian.org

S.W. Prescott
School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia and Debian Project

L. Wirzenius
QvarnLabs, Helsinki, Finland and Debian Project

P. Reinholdtsen
University Center for Information Technology, University of Oslo, Oslo, Norway and Debian
Project

B. Chapman
Harvard School of Public Health, Boston, Massachusetts, USA

P. Prins
University Medical Center Utrecht, Utrecht, The Netherlands

S. Soiland-Reyes
eScience Lab, School of Computer Science, The University of Manchester, Manchester, UK;
Common Workflow Language Project and Apache Software Foundation

F. Klötzl
Max-Planck-Institute for Evolutionary Biology, Plön, Germany

A. Bagnacani
Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Ger-
many

M. Kalaš
Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Nor-
way

A. Tille
Debian Project, Wernigerode, Germany

M. R. Crusoe
Common Workflow Language Project and Debian Project

2 Steffen Möller et al.

Abstract Information integration and workflow technologies for data analysis
have always been major fields of investigation in bioinformatics. A range of
popular workflow suites are available to support analyses in computational
biology. Commercial providers tend to offer prepared applications remote to
their clients. However, for most academic environments with local expertise,
novel data collection techniques or novel data analysis, it is essential to have
all the flexibility of open source tools and open source workflow descriptions.

Workflows in data-driven science such as computational biology have con-
siderably gained in complexity. New tools or new releases with additional fea-
tures arrive at an enormous pace, new reference data or concepts for quality
control are emerging. A well-abstracted workflow and the exchange of the same
across work groups has an enormous impact on the efficiency of research and
the further development of the field. High-throughput sequencing adds to the
avalanche of data available in the field; efficient computation and, in partic-
ular, parallel execution motivate the transition from traditional scripts and
Makefiles to workflows.

We here review the extant software development and distribution model
with a focus on the role of integration testing and discuss the effect of Common
Workflow Language (CWL) on distributions of open source scientific software
to swiftly and reliably provide the tools demanded for the execution of such
formally described workflows. It is contended that, alleviated from technical
differences for the execution on local machines, clusters or the cloud, commu-
nities also gain the technical means to test workflow-driven interaction across
several software packages.

Keywords Continuous Integration testing · Common Workflow Language ·
container · software distribution · automated installation

1 Introduction

An enormous amount of data is available in public databases, institutional
data archives or generated locally. This remote wealth is immediately down-
loadable, but its interpretation is hampered by the variation of samples and
their biomedical condition, the technological preparation of the sample, and
data formats. In general, all sciences are challenged with data management,
and particle physics, astronomy, medicine and biology are particularly known
for data-driven research.

The influx of data further increases with more technical advances and
higher acceptance in the community. With more data, the pressure raises on
researchers and service groups to perform analyses quickly. Local compute fa-
cilities grow and have become extensible by public clouds, which all need to
be maintained and the scientific execution environment be prepared.

Software performing the analyses steadily gains functionality, both for the
core analyses and for quality control. New protocols emerge that need to be
integrated in existing pipelines for researchers to keep up with the advances in
knowledge and technology. Small research groups with a focus on biomedical

Sharing robust cross-platform workflows 3

compute environment

software
environment

execution
environment

containers local

remote
images

scienti�c packages

Linux distributionLinux distribution

HPC

incoming

data

analysed

data

Fig. 1 Workflow specifications comprise formal references to a range of packages to be
installed without specifying the execution environment. The separation between problem-
specific software, and the packages a Linux distribution provides, is fluid.

research sensibly avoid the overhead entailed in developing full solutions to the
analysis problem or becoming experts in all details of these long workflows,
instead concentrating on the development of a single software tool for a single
step in the process. Best practices emerge, are evaluated in accompanying
papers, and are then shared with the community in the most efficient way
[37].

Over the past five years, with the avalanche of high-throughput sequenc-
ing data in particular, the pressure on research groups has risen drastically to
establish routines in non-trivial data processing. Companies like Illumina of-
fer hosted bioinformatics services (http://basespace.illumina.com/) which
developed into a platform in its own right. This paper suggests workflow en-
gines to take the position of a core interface between the users and a series
of communities to facilitate the exchange, verification and efficient execution
of scientific workflows [32]. Prominent examples of workflow and workbench
applications are Apache Taverna [38], with its seeds in the orchestration of
web interfaces; Galaxy [1, 11], which is popular for allowing the end-users’
modulation of workflows in nucleic acid sequencing analysis and other fields;
the lightweight hightly-compatible Nextflow [8]; and KNIME [5] which has
emerged from machine learning and cheminformatics environments, and is
now also established for bioinformatics routine sequence analyses [13].1.

Should all these workflow frameworks bring the software for the execution
environment with them (Figure 1) or should they depend on system adminis-
trators to provide the executables and data they need?

1 For a growing list of alternative workflow engines and formalisms, see
https://github.com/common-workflow-language/common-workflow-language/wiki/

Existing-Workflow-systems and https://github.com/pditommaso/awesome-pipeline.
An overview of workbench applications in bioinformatics is in [23, 36] and [18] pp. 35-39,
http://bora.uib.no/bitstream/handle/1956/10658/thesis.pdf#page=35

4 Steffen Möller et al.

2 Methods

The foundations of functional workflows are sources for readily usable software.
The software tools of interest are normally curated by maintainers into instal-
lable units that we will generically call ‘packages’. We reference the following
package managers that can be installed on one single system and, together,
represent all bioinformatics open source software packages in use today:

– Debian GNU/Linux (http://www.debian.org) is a software distribution
that encompasses the kernel (Linux) plus a large body of other user soft-
ware including graphical desktop environments, server software and spe-
cialist software for scientific data processing. Debian and its derivatives
share the deb package format with a long history of community support
for bioinformatics packages [26, 29].

– GNU Guix (https://www.gnu.org/software/guix/) is a package man-
ager of the GNU project that can be installed on top of other Linux dis-
tributions and represents the most rigorous approach towards dependency
management. GNU Guix packages are uniquely isolated by a hash value
computed over all inputs, including the source package, the configuration
and all dependencies. This means that it is possible to have multiple ver-
sions of the same software and even different combinations of software, e.g.
Apache with ssl and without ssl compiled in on a single system.

– Conda (https://conda.io/docs/) is a package installation tool that, while
popularised by the Anaconda Python distribution, can be used to man-
age software written in any language. Coupled with Bioconda [7](https:
//bioconda.github.io/), its software catalogue provides immediate ac-
cess to many common bioinformatics packages.

– Brew (https://brew.sh) is a package manager that distributes rules to
compile source packages; originally designed to work on macOS but capable
of managing software on Linux environments as well.

The Common Workflow Language (CWL) [3] is a set of open community
made standards with a reference implementation for maintaining workflows
with a particular strength for the execution of command-line tools. CWL will
be adopted also by already established workflow suites like Galaxy and Apache
Taverna. It is also of interest as an abstraction layer to reduce complexity in
current hard-coded pipelines. The CWL standards provide

– formalisms to derive command-line invocations to software
– modular, executable descriptions of workflows with auto-fulfillable specifi-

cations of run-time dependencies

The community embracing the CWL standards provides

– tools to execute workflows in different technical environments, i.e. local
clusters and remote clouds2

2 http://www.commonwl.org/#Implementations

Sharing robust cross-platform workflows 5

– auto-installable runtime environments using lightweight isolation from the
underlying operating system

For isolation from an operating system (Figure 1), it is now popular to
adopt software container technologies such as Docker (https://www.docker.
com/). Increasingly, high-performance computing sites turn to the compatible
Singularity [21] (http://singularity.lbl.gov/), which is considered to be
well-suited for research containerisation, as it is also for non-privileged users.
The Open Container Initiative’s Open Container Format and Open Container
Interface configuration files (https://www.opencontainers.org/) specify the
contents of these containers (such as via Dockerfiles), representing an interface
to the bespoke packages of the Bioconda community and the underpinning base
of a GNU/Linux distribution (such as that produced by the Debian project).
In high-performance compute environments, the acceptance rate of Docker is
relatively low due to its technical overhead and demand for special privileges
(https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure).
With the focus of this article being on the provisioning of software, we use the
availability of auto-configured Docker images as an example that has a low
barrier to enter for new users; other alternative configuration and software
management engines can also be used to create setups of the same packages,
e.g. Puppet, Chef or Ansible (https://docs.ansible.com/ansible/intro_
installation.html). Automated or programmable deployment technologies
are also enabling for collaborative computational environments, for example,
by sharing folders at an Infrastructure-as-a-Service cloud provider (e.g. [35] or
https://aws.amazon.com/health/genomics/). Incompatible versions of in-
teracting tools would disrupt the workflow as a whole. This motivated Dock-
store to shift from dynamic image creation with Ansible to ready-prepared
Docker images[30]. The exact specification of versions from snapshot.debian.org,
Bioconda, or unspecified versions of two tools together in the same release of
a distribution is expected to overcome this difficulty.

The Debian GNU/Linux distribution provides base systems for the Docker
images and has a rich repository of scientific software with special interest
groups for science in general, and additional efforts for e.g. Astronomy, Bioin-
formatics and Chemistry (https://blends.debian.org/med/tasks/) [26].
The Bioconda community provides additional packages homogeneously for all
Linux distributions and macOS. Differences between these communities and
consequences for the specification of workflows are described below.

3 Results and Discussion

The scientific method needs scientific software to be inspectable, that is, it
should be open source (https://www.heise.de/tp/features/Open-Science-and-Open-Source-3443973.
html). Openness is increasingly a requirement from funding agencies or the pol-
icy of institutes — either way, it is good scientific practice. Bioinformatics is no
exception, which would not be noteworthy if there was not the vicinity to the

6 Steffen Möller et al.

pharmaceutical industry and medical technology. It is likely that the past dis-
pute over the public accessibility of the human genome has manifested the open
source principles in this community ([19] and Ewan Birney, 2002 at http://

archive.oreilly.com/pub/a/network/2002/01/28/bioday1.html). Beyond
inspectability, for the exchange and collaborative development of workflows,
software licenses must allow redistribution of the software. While well-maintained,
pre-compiled, non-inspectable, black-box tools may also be redistributable,
this is also potentially undesirable for the technical reason that the pre-compiled
binary will not use the latest processor features and optimised external libraries
to their full potential. Targeted optimisation is not achievable with any cen-
tralised distribution of software since the end-users’ hardware is too diverse to
optimise for them all; however, only the most CPU-intensive packages need to
be optimised and this can be done centrally for various common cloud plat-
forms. With scientific software distributed as source code, local recompilations
are relatively easy and the automated compilation recipes that are provided
by Linux distributions facilitate that.

3.1 Distribution: getting software from its developers to its users

A software distribution may be small. Common on traditional closed-source
operating systems like macOS or Windows, the developers themselves are likely
to offer a readily installable package to download. Binaries of the executable
and also binaries of the libraries the software uses are bundled. The version of
the self-developed software is the latest, but the versions of the libraries are
whatever the author knows to be compatible with a particular release.

In the philosophy of Linux distributions, common functions should be bro-
ken out into libraries, and libraries should only be installed once with all tools
depending on one single installation. This philosophy developed, in part, as
a reaction to the problems that were experienced in dealing with monolithic
software systems where big, expensive computers (mainframes, minicomput-
ers) required considerable effort from local system administrators to build
software from source (from tape, possibly from the vendor), or by installing
binary versions directly from vendors. Inflexibility of solutions and a “look
but don’t touch” policy from vendors made local tailoring and improvement
of software problematic in many instances. A key step was the creation of pre-
compiled, Internet-distributed Linux distributions which saved the local sys-
tem administrator from the tiresome task of compiling everything by hand. An
important stage in the development of the distribution was the standardisation
of which compiler was used, the versions of libraries that would be included,
the file locations on disk, and the removal of pointless variations between soft-
ware packages [37]. Such requirements are codified in documents such as the
Filesystem Hierarchy Standard (FHS, http://www.pathname.com/fhs/) and
Debian Policy (https://www.debian.org/doc/debian-policy/).

Standardisation made shared libraries the norm. The shared library model
of maintenance only works when the application programming interfaces (APIs)

Sharing robust cross-platform workflows 7

are stable or at least not changing in backwards-incompatible ways on a fre-
quent basis. Such stability permits the use of the same library across software
both new and old. Difficulties due to incompatibilities between versions are
possible and need to be fixed — in the library or the calling code — as part
of regular software maintenance, and the requisite changes are communicated
back to the respective authors of the software. In mature and well-designed
code bases, incompatible changes are rare and for some languages such as
C, there is a formal way by which they can be tracked and described in the
shared object name and version (soname and sover, https://www.gnu.org/
software/libtool/manual/html_node/Updating-version-info.html). Fur-
ther, peer pressure and code review help avoid incompatible changes. In less
mature software, in code bases that have grown organically, without the benefit
of team design, refinement, regular code review, and with different pressures
on the development, keeping backwards compatibility during regular devel-
opment and maintenance is harder and breaking changes are an unwelcome
companion. Notably, much scientific software possesses these attributes. Main-
tainers of software packages in Linux distributions (the largest of which have
more than 2000 contributors maintaining packages), use the distribution’s in-
frastructure to notify difficulties, report them to the developers of the software
or prepare a respective fix themselves.

Contributors to Linux distributions see a fluid transition from the code
written by the program’s authors to a perpetual maintenance effort to keep
the program working for all its users within the distribution and with the
current versions of any dependent libraries, as illustrated in Figure 2. The
shared library maintenance model avoids keeping additional, redundant, sepa-
rate copies of the same or only slightly different versions of a particular library.
All tools in the same distribution benefit from the latest advancements of that
library, including security-related bug fixes. Through wider testing, problems
are found earlier and for a larger fraction of routines in the library. Except
for the possibility of newly introduced problems, this increases performance
for everyone. With eyeballs concentrating on the same latest version, this also
helps the early detection of new concerns.

There is a consensus that in an ideal world the authors of many tools
and libraries indeed collaborate closely to ensure that shared library resources
are performant, flexible and suitable for all tools that use them. In Linux
distributions, the shared library development model indeed works well for the
packages very close to the core of the distribution, such as the ones required
to get the machine to boot and show the graphical user interface or based on
suitably mature APIs. However, use of the shared library maintenance model
comes at the cost of an increased time from software being released by its
author to the time that the software is released in a stable release of a Linux
distribution.

New versions of a distribution are released periodically, with different user
groups seeking different release cadences: desktop users might be happy with
relatively short cycles every 6 months (Ubuntu, Fedora), or perhaps more
stable cycles of 24 months (Debian, Ubuntu LTS), while infrastructure and

8 Steffen Möller et al.

large Linux installations (e.g. a compute cluster) are likely to run older releases
with even longer release cycles (Red Hat family, 4-5 years). Compiling new
software to older releases of the distribution (“backporting”) is typically not
automated and, due to the extensive dependency trees of the shared library
model, can make this effort quite difficult.

For a scientist, there are competing forces for their tooling. It is the science
that they care about, not the finer details of distribution maintenance, and
so the convenience and reproducibility of the analytical environment created
by the Linux distribution should not be underestimated. At the same time,
the prospect of a delay in obtaining for new research tools is not acceptable
as they will not benefit from new optimisations, new features or, most impor-
tantly, improved accuracy. From the perspective of the scientist, the scientific
software is special in its need to be up-to-date, while the base system function-
ality (which may be just sufficiently recent to provide compatible compilers
and core libraries) is a mere cumbersome consequence of the computational
demands. Through the lens of looking for the latest tools to address a scientific
problem, the Linux distribution and the delays in process and QA it entails
become an unwelcome barrier to code delivery. Container-based deployment
of tools thus offers an alluring possibility: a stable base distribution running
on the hardware with containers of bespoke tools deployed on top. Within
the container, a domain-specific (or language-specific) package manager can
be used to install and upgrade the tooling.

With a focus on problem-tailored workflows that are comprised of multiple
tools, scientists have a desire for a repository that contains recent releases.
However, they still want the benefits of a curated software library in which
the software is known to work. The fundamental dichotomy of software man-
agement is that both “recent” and “well-tested” are difficult to achieve at the
same time. The maintenance effort is better distributed across a community,
to avoid a perpetual investment of time for updates that is unrewarding (both
scientifically and in terms of career advancement) for the individual scientist.
Thus, to allow for a focus on workflows with better reproducibility across in-
stallations, one wants recent scientific software nonetheless readily installable
as packages.

The Gentoo Linux distribution popularised the concept of storing read-
ily executable commands for downloading and installing packages in a public
code repository (https://wiki.gentoo.org/wiki/Project:Science/Overlay). The
approach of distributing compilation recipes rather than compiled code found
broad acceptance within the Homebrew initiative for macOS (https://brew.
sh) together with its Linuxbrew companion (https://linuxbrew.sh). While
technically similar, for bioinformatics, the Bioconda initiative (https://bioconda.
github.io/) propelled itself to the heart of the community. Since command-
line instructions are mostly the same across Linux distributions, these build
instructions can be shared across different execution environments. There is
no lock-in to one particular community. Further, these build instructions are
often easily adapted to new versions of the software and are technically easy
to improve or extend for anyone familiar with software code maintenance with

Sharing robust cross-platform workflows 9

git (http://git-scm.com). By reducing the scope of the integration problem
to a smaller software domain, there is less of the overhead that delays tradi-
tional Linux distributions. The software is readily installable and suitable for
automated installation into pristine environments.

The downside is that a maintenance and installation procedure that works
nicely across distributions cannot be deeply integrated with any distribution
because the integration and QA work of the package maintainer has not been
performed; when the API changes in ways that break compatibility, someone
must do the integration work to create the coherent software stack, and some-
one must be prepared to apply the polish and ensure standards-conformance
of the package. Yet again a forerunner is the Gentoo distribution with the in-
troduction of its Prefix concept (https://wiki.gentoo.org/wiki/Project:Prefix)
to allow for user-defined installation at non-privileged locations [2].

The method of having an “alternative root” prefix with a FHS-like file hi-
erarchy, e.g. /alt/bin, /alt/lib, /alt/var, allows software distribution tools like
Brew to have binaries and libraries installed side-by-side with the operating
system’s own libraries; in effect being a secondary software distribution, by-
passing library version incompatibility issues. One can consider this approach
to be pioneered by the StoreAdm system [6] (http://storeadm.sf.net/),
which used a file hierarchy of symbolic links to individually captured software
installations, relying on the rpath mechanism (https://en.wikipedia.org/
wiki/Rpath) to modify the search path for dynamic libraries.

Poor integration can manifest itself in a lack of documentation (manual
pages are missing from Bioconda), missing resources, or unusual on-disk lo-
cations for the included files. While documentation may be provided instead
by command-line help in modern tools, integration problems are harder for
the user to ameliorate. In Bioconda, Python modules are not installed in a
system-accessible fashion but instead with every package in a separate direc-
tory and not available to the Python interpreter without further action by
the user. While this permits co-installability of package versions, access to
provided libraries is less immediate and convenient as when the package is
centrally managed such as in Debian. Further, the ability to install multiple
versions of the same module does not permit the one Python process to use
these multiple versions, even if that might be required by the overall software
stack. The container has not removed the need for integration tests and QA
work on the stack, merely attempted to reduce the size of the problem domain.

Simple, automated deployment of bespoke analysis tools is synergistic with
the wide deployment of container technologies and the dynamic deployment of
cloud instances. Both provide almost immediate access to single tools or com-
plete workflows. For large projects, because of the then increasing likelihood
of a failure, deployment of the same packages or containers shall be performed
in an environment that detects and reacts to such outages [34].

10 Steffen Möller et al.

Debian

Conda

Developers Users

Maintainer's

attention

Available in

"unstable"

no time

5 days no

major bugs

up to

2 years "testing"

released as

"stable"

Backport

made for

"stable"

released

in other

derivatives

manually

on request

weeks

to years

available

for

installation

Maintainer's

attention

no time

Available in

"testing"

Software

release

Fig. 2 The software distribution process for packages in a Linux distribution such as Debian
(upper) and in a smaller immediate-availability catalogue such as Conda/Bioconda (lower).
The Conda system renders packages immediately available across many releases of many
Linux distributions and the macOS. The arrival in Debian’s “unstable” distribution can
be equally fast, then with build and QA tests, grants users time to comment prior to the
transition to testing. In the Linux distribution, the new release will not be automatically
made available (“backported”) to the current stable release.

3.2 Shipping confidence: a workflow perspective

The confidence in the correct execution of a workflow has its foundation in the
confidence in all its component tools and their integration. The right workflow
must have been selected for the right kind of properly formatted data. A new
software installation needs to perform correctly and that should be testable
by the local user and also by the package maintainer and integrator through
QA tests.

Modern software ships with self-tests including unit tests of functions, func-
tional tests (for a fixed input, the output should not change across installa-
tions), interfacing tests (errors in the input should throw the expected error
messages) and integration tests with other parts of the ecosystem. The Debian
Project in particular invests a considerable effort to test every new submission
to its distribution:

– Can it be built? (https://buildd.debian.org/)
– Can it be installed upgraded and removed? (https://piuparts.debian.

org/)
– Does its test suite still pass? (https://ci.debian.net/)
– How does that new version differ? (https://snapshot.debian.org)

Additionally, packages that depend on a newly uploaded library are tested
in the same way to prevent problems cascading through the software stack.
Packages with self-tests conducted as part of the build process will have these
tests executed at build time by the build system, and after the build the
piuparts system will test if the package installs, upgrades and removes as it
should. The CI (Continuous Integration) system will install the package and
run the defined self-tests to verify that the packages work as expected when

Sharing robust cross-platform workflows 11

installed. Such testing is a key feature of the distribution’s QA work and is
important to verify that newer dependencies than those the authors of the
software may have had available at the time the software was released, work
with the package as built.

A workflow also needs to be tested as a whole, since the exact combination
of tools that determines the input of a tool cannot be foreseen by the individual
authors. Build dependencies for packages should also be minimal which will
constrain interface tests with other tools to static textual representations - an
external tool’s update with a change to its default file format will not have an
immediate effect. Like regular applications, workflow pipelines may also ship
with a test suite [12]. However, there is still a need to develop ways to perform
tests in a package-independent manner. We may see a transition from testing
for technical completion of a workflow towards the finding of regressions in
the performance of the tool. The Genome in the Bottle consortium provides
a gold standard [39] for sequencing and variant calling to support respective
benchmarking [22]. Others have independently evaluated tools for molecular
docking [15] and, generally, every new competing method will have to prove its
performance in some way. The local confirmation of such an evaluation would
yield the highest-possible confidence in a workflow.

The Common Workflow Language (CWL) project has published a stan-
dard to describe command-line tools for the integration in workflows. The
CWL community provides its own workflow engine for reference and develop-
ment use. This reference executor can be used as an interface from workflows
to command-line tools; e.g. for the Apache Taverna workflow engine, it may
substitute an earlier tool wrapper [20] and is also finding acceptance by the
Galaxy community. It could also be the means to exchange ways to evaluate
the performance of tools and whole workflows independently of any distribu-
tion.

Successful transfer of experience from one community to another needs a
mapping of software packages across distributions. Source package matching
can be performed based on the package name, which should be very similar if
not identical, and the home page at which the tool is presented. Each way is
not without difficulty, both for very young and very old tools. To the rescue
come registries of software like Bio.Tools [17], and the resource identification
initiative (https://scicrunch.org/resources) expands the same concept
well beyond software. For sharing whole workflows, myExperiment (http:
//myexperiment.org/) is a well-established repository used be multiple work-
flow systems and research communities [10], complementing more specific
workflow repositories like CWL Viewer [33] (https://view.commonwl.org/),
Galaxy’s ToolShed (https://galaxyproject.org/toolshed/workflow-sharing/),
and Dockstore[30].

12 Steffen Möller et al.

Table 1 Features in Linux distributions and cross-distribution package providers.

Linux distribution Brew/Conda

Common

– Tests provided by software developers are executed at build time.
– Recent releases find early entry into the distribution.

Positive

– Strict adherence to UNIX file
system standards

– Rich annotation of packages
– Building across several archi-

tectures (e.g. ARM and Pow-
erPC64)

– Test of effect of new library re-
lease on correctness of tools us-
ing that library

– All software is tested to build
– Offers popcon usage statistics

– Compatible across all Linux en-
vironments

– Immediate availability of the
software

– Integration with GitHub
– Available also for macOS
– Acceptable to deploy a trusted

binary directly

Negative

– Difficult to install several ver-
sions of the same tool without
using software containers

– Immediate availability of new
software only if manually back-
ported

– man pages missing
– Redundancies wrt. libraries
– Redundant installation for mul-

tiple users

3.3 How distributions meet

Recipes for the execution of data analysis tools and workflows refer to a basic
image of a Linux distribution plus a series of additional packages to install.
When combined with lightweight containers such as Docker or Singularity, the
recipe becomes directly installable (Figure 2) [27]. It needs to be left to the
users’ opinion where to draw the line between traditional distribution-provided
packages that are already used to communicate with the kernel and the end
user packages of the given scientific discipline, which are often redundantly
available from the Linux distribution and a Linuxbrew/Bioconda commu-
nity, or other repositories like BioConductor [9] (http://bioconductor.org).
There are advantages to each approach, as shown in Table 1.

By way of example, Debian already provides many packages for the R
statistical analysis suite. The setup time for the container could be much
reduced by pre-installing those into the container prior to cloning and use; the
flexibility to do so is left to the user’s discretion. On every computer, local or
remote, users have the choice to use software that is directly retrieved from
the developers, with all its redundancies, or instead the coherent and curated
presentation via their Linux distribution. A Linux distribution cannot and
should not provide all possible software for all user communities. However, the

Sharing robust cross-platform workflows 13

Table 2 Example for the configuration file for a docker container. It combines an Ubuntu
basic image with packages retrieved from Bioconductor, Bioconda or a static web address.
(https://github.com/h3abionet, https://hub.docker.com/r/continuumio/miniconda/)

FROM ubuntu:latest

MAINTAINER Parts by Eugene de Beste, Kamil Kwiek, Long Yee

Seed minimal system

RUN apt-get update -y && \

apt-get install --no-install-recommends r-base-core -y && \

apt-get install -y build-essential \

wget zlib1g-dev libblas-dev \

liblapack-dev gfortran libssl-dev

Additions the distribution provides

RUN printf "source(’https://bioconductor.org/biocLite.R’)" > script.R

RUN printf "biocLite(’crlmm’)" >> script.R

RUN Rscript script.R

RUN rm script.R

Additions from a community repository

RUN apt-get update && \

apt-get install -y wget bzip2 libxext6 libsm6 libxrender1 libglib2.0-0

Based on https://hub.docker.com/r/continuumio/miniconda/~/dockerfile/

RUN echo ’export PATH=/opt/conda/bin:$PATH’ > /etc/profile.d/conda.sh && \

wget --quiet https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \

-O ~/miniconda.sh && \

/bin/bash ~/miniconda.sh -b -p /opt/conda && rm ~/miniconda.sh

ENV PATH /opt/conda/bin:$PATH

Installation of Conda

RUN /opt/conda/bin/conda create -y -n qiime1 python=2.7 \

qiime matplotlib=1.4.3 mock nose -c bioconda

RUN /opt/conda/bin/conda install psutil

ENV PATH /opt/conda/envs/qiime1/bin:$PATH

Installation of QIIME with Conda

RUN apt-get update && apt-get install -y unzip wget

RUN wget https://www.cog-genomics.org/static/bin/plink160816/plink_linux_x86_64.zip && \

unzip plink_linux_x86_64.zip -d /usr/bin/

RUN rm -rf plink_linux_x86_64.zip

Installation of a binary from the web as an alternative to the Debian package

RUN apt-get install -y curl grep sed dpkg && \

TINI_VERSION=‘curl https://github.com/krallin/tini/releases/latest | \

grep -o "/v.*\"" | sed ’s:^..\(.*\).$:\1:’‘ && \

curl -L "https://github.com/krallin/tini/releases/download/v${TINI_VERSION}%tini_${TINI_VERSION}.deb" \

> tini.deb && \

dpkg -i tini.deb && rm tini.deb && apt-get clean

Installation of a Debian package from the web

14 Steffen Möller et al.

software engineering lessons learned in maintaining large distributions should
be adopted as much as possible and the effort towards minimal redundancy
and maximal testing can be shared within the community.

Software catalogues and registries have a key role in facilitating cooper-
ation and synchronisation of communities, in that these refer to workflows
using a particular tool and propose means to install the software, with all
the user feedback known from regular “app stores”. RRID (Resource Identi-
fiers) [4] offers to act as a common reference point also for scientific software
which further strengthens cross-platform activities and reproducibility, albeit
not without semantic deficiencies: Sharing the same RRID is both 1) a early
version of the tool Bowtie that is still maintained for aligning short reads and
2) a newer version of Bowtie used for new technologies that provide longer
reads. (However this situation is not a problem when the tool identifier (like
RRID) is combined with a desired version) The registries OMICtools [14] and
Bio.Tools [17] have begun to integrate Debian’s curated package descriptions
into their catalogues. With Debian, all control over the packaging is with
the individual package maintainers, but the scientific packages are commonly
team-maintained, which facilitates mass changes like the introduction of ref-
erences to catalogues from Debian in analogy to references to publications
that are already offered today. Bulk retrieval of any such edited annotation is
possible via the Debian database and its API (https://udd.debian.org/) to
bidirectionally maintain links. Bio.tools is also collaborating with the commu-
nity of SEQanswers.com [24], and it can be reasonably predicted that further
coordination will develop. Once catalogues also serve workflows and best prac-
tices with example data, pan-package testing can become routine, which will
be of interest to all users of any of the tools involved.

Another aspect of such registries is their approach to describe their collec-
tions of computational tools, and the implications that such characterizations
entail. While the OMICtools registry leverages a tailor-made taxonomy that
tags each tool and enables researchers finding the most pertinent tool for their
data analysis task, the bio.tools registry employs the EDAM ontology [16].
Terms from EDAM (a collaboratively and openly maintained ontology) can
describe a tool in terms of its topic, operation, data, and format, thus provid-
ing a multifaceted characterization: tools can be grouped by functionality, and
compatible data formats. Within the scope of sharing workflows, and enhanc-
ing testing and reproducibility through workflow modularity, such features
can make the difference between enabling users to manually build their own
computational pipelines, and assisting users in recommending them pertinent
tools to automate constructing them. A controlled vocabulary of terms, or a
structured inference-ready ontology can already provide ground for automated
or semi-automated decision-making system.

The CWL CommandLineTool standard describes tools at a very syntactical
level. While these CWL based tools descriptions may be optionally earmarked
with EDAM annotations, there is no generic direct transfer possible from the
command line interface to any such semantic annotation.

Sharing robust cross-platform workflows 15

The Docker configuration shown in Table 2 illustrates how a base sys-
tem from a Linux distribution can be prepared, and then further code can
be deployed within the container by adding-in external resources. The recipe
described by Table 2 demonstrates vividly that users may not explicitly care
about the particular version that is installed, either of the operating system
or the installed library, with the only specification being that it should be
the “latest reliable”. It is not uncommon to just refer to the latest version
released by a trusted maintainer, but this trust can only be earned by solid
testing against a good reference, and at best any such test environment is
available locally to confirm the installation. Tables 3 and 4 show a readily
usable implementation from the EBI Metagenomics [25] workflow. It was ini-
tially prepared for Docker but was adjusting to allow for a regular distribu-
tions package via the SciCrunch Research Resource ID of the tool infernal
and the CWL’s SoftwareRequirement specification (https://w3id.org/cwl/
v1.0/CommandLineTool.html#SoftwareRequirement). Debian packages ref-
erence the same catalogues to support the matching.

The installation procedure of BioConductor in Table 2 is trusted, the rest
performs in an automated manner. Version information can be retrieved at
runtime. For the user that desires to always have the latest released version of
a bespoke tool, the distribution providing backported versions is a significant
advantage. While technically and socially difficult to undertake en masse, auto-
mated backporting of much scientific software is possible, and efforts to provide
such packages either officially within the distribution (http://backports.
debian.org) or through external repositories (http://neuro.debian.net/)
will continue to grow in importance.

A yet unresolved issue with BioConductor and other tools and frameworks
that provide their own packages is that they have their own release scheme
of highly interconnected packages which do not synchronise with an under-
lying Linux distribution. This issue is, albeit to a lesser degree, shared with
the rolling Conda and GNU Guix distributions. GNU Guix does allow multi-
versioning of packages and their dependencies, but the main software distribu-
tion typically only includes recent releases of software. Currently, no software
packaging system distributes the same software with many versions, e.g. com-
patibility with R version 3.4 and with a particular earlier version of this es-
tablished statistics environment as requested for a BioConductor release. The
community has not yet found an answer to this problem though Conda chan-
nels can be used to achieve this. For GNU Guix a similar “channels” system
is being considered for supporting older software packages.

4 Conclusion

We have discussed the many efforts at different levels that is contributed by
volunteers. User-installability in HPC environments is provided by containers
like Singularity or the Prefix concept of Gentoo. Every distribution needs to
provide proofs for the reliability of their packages by themselves. Conceptional

16 Steffen Möller et al.

File tools/infernal-docker.yml:

class: DockerRequirement
dockerImageId: infernal
dockerFile:
$include: infernal-Dockerfile

File tools/infernal-cmscan.cwl:

cwlVersion: v1.0
class: CommandLineTool
label: search sequence(s) against a covariance model database
doc: "http://eddylab.org/infernal/Userguide.pdf"
requirements:

ResourceRequirement:
coresMax: 1
ramMin: 1024 # just a default, could be lowered

hints:
SoftwareRequirement:

packages:
infernal:

specs: ["https://identifiers.org/rrid/RRID:SCR_011809"]
version: ["1.1.2"]

#- $import: infernal-docker.yml

inputs:
covariance_model_database:

type: File
inputBinding:

position: 1
secondaryFiles:
- .i1f
- .i1i
- .i1m
- .i1p

query_sequences:
type: File
streamable: true
inputBinding:

position: 1
format:

- edam:format_1929 # FASTA
...
$namespaces:
edam: http://edamontology.org/
s: http://schema.org/

$schemas:
- http://edamontology.org/EDAM_1.16.owl
- https://schema.org/docs/schema_org_rdfa.html

s:license: "https://www.apache.org/licenses/LICENSE-2.0"
s:copyrightHolder: "EMBL - European Bioinformatics Institute"

Table 3 Example CWL tool descriptions from EBI Metagenomics workflow (https://
github.com/ProteinsWebTeam/ebi-metagenomics-cwl/) which the first provides the tool,
the second lays out the interface. The first file is no longer included by the tool description
but the software dependency is specified via an external catalog [4].

Sharing robust cross-platform workflows 17

File workflows/cmsearch-multimodel.cwl:

#!/usr/bin/env cwl-runner
cwlVersion: v1.0
class: Workflow

requirements:
ScatterFeatureRequirement: {}

inputs:
query_sequences: File
covariance_models: File[]
clan_info: File

outputs:
matches:

type: File
outputSource: remove_overlaps/deoverlapped_matches

steps:
cmsearch:

run: ../tools/infernal-cmsearch.cwl
in:

query_sequences: query_sequences
covariance_model_database: covariance_models
only_hmm: { default: true }
omit_alignment_section: { default: true }
search_space_size: { default: 1000 }

out: [matches]
scatter: covariance_model_database

concatenate_matches:
run: ../tools/concatenate.cwl
in:

files: cmsearch/matches
out: [result]

remove_overlaps:
run: ../tools/cmsearch-deoverlap.cwl
in:

cmsearch_matches: concatenate_matches/result
clan_information: clan_info

out: [deoverlapped_matches]

Table 4 Example CWL workflow from EBI Metagenomics using the tool infernal as de-
scribed in Table 3.

differences remain in the degree of manual curation. Via cross-distributional
efforts like AppStream, a good part of this curation may be shifting to the
upstream source tree, to be equally used by all distributions. The EDAM
annotations are a prime candidate to make this transition from Debian or
software catalogues into the source tree.

We have presented Conda-based packages as a cross-distributional resource
of readily usable software packages. There is an on-going need for a tradi-
tional Linux distribution underneath, of which the focus in this article lies on
the Debian distribution as a point of comparison with Conda. Philosophical
differences between these efforts persist, especially towards the avoidance of
redundancy between packages. Other package managers such as GNU Guix
and Brew we did not explore here. These four package managers together rep-
resent the full range of free and open source software in use today and can

18 Steffen Möller et al.

be installed on one system without interfering with each other, each provid-
ing some level of convenience, robustness and reproducibility. I.e., compiling
software by hand is rarely necessary today and should generally be avoided.

By placing a high value on standardisation, policy compliance (https:
//www.debian.org/doc/debian-policy/) and quality assurance, it is under-
stood that immediate participation of newcomers in Debian maintainership
is rendered more difficult; contributions are undoubtedly more difficult than
a pull request on GitHub which the Conda initiatives requests. The Debian
community is moving towards technologies with lower barriers to entry, but its
focus on using free software tools to develop a free operating system [28, 31],
and a strict adherence to correctness and policy will keep this barrier relatively
high for the foreseeable future.

With a focus on the exchange of workflows, we need to find ways to elimi-
nate hurdles for an exchange of experiences between distributions of scientific
software. Formally, this can be performed by an exchange of tests/benchmarks
of tools and complete workflows alike. This is a likely challenge for upcoming
informal meetings like a Codefest [29].

Workflow testing and modularization can highly benefit from a more homo-
geneous characterization of all available software tools. The EDAM ontology
provides such descriptors, but its terms have to be associated manually, and
their precise attribution highly depends on the very knowledge of the ontology
itself. The lack of a protocol formalising whether the developer or the pack-
age maintainer has to make provide them, brings however ground for both
communities to decide whether to channel their efforts towards a better tool
description enrichment.

We have experimented with packages of the Bioconda software infrastruc-
ture for Debian to reduce the overhead for users of Debian and derivative
distributions, e.g., Ubuntu, to add Bioconda-provided packages to their work-
flows. Conversely, it would be feasible to add a bit of extra logic to the Conda
infrastructure to install system packages if those are available and the user has
the permission to install to system directories. Similar points can be made for
GNU Guix and Brew. We also note that containerisation technologies, such as
Docker and Singularity, allow for easy deployment of software tools with their
dependencies inside workflows. All mentioned software packaging technologies
play well with containers.

A bioinformatics pipeline can be expressed as a workflow plus data plus
(containerized) software packages which is a first step towards reproducible
analysis. Once a research project is completed and the results are published,
the analysis still needs to be reproducible, both for researchers in the com-
munity and for oneself when going back to past projects. Institutional data
archives are now commonplace and researchers deposit data in them as part
of the publication process. What is needed to complete the reproducibility, is
the analysis tooling. This holds for any size of data, including local findings
of a pre-clinical study or remote big data such as from physics or astronomy.
Hence, researchers need well-established transitions between arbitrary research
environments that render our research the most productive, and an environ-

Sharing robust cross-platform workflows 19

ment that may be reliably installed across many clinical environments. This is
a long-term goal that we had better all start working towards now. We are ap-
proaching it with the CWL, and seeing the CWL as an integral part of a Linux
Distribution with all the distributions’ established policies and infrastructure
to assess correctness and reliability will be beneficial for all.

Acknowledgements The authors thank Fabien Pichon, Stephan Struckmann and Georg
Fuellen for their review and comments to the manuscript. This work has been supported by
funding from the European Union’s Horizon 2020 research and innovation programme un-
der H2020-PHC-2014-two-stage grant agreement 633589 “Ageing with Elegans” and H2020-
EINFRA-2015-1 grant agreement 675728 “BioExcel CoE”. In addition the project has ben-
efited from EU ICT COST Action “cHiPSet” (IC1406). This publication reflects only the
authors’ views and the commission is not responsible for any use that may be made of the
information it contains.

Conflicts of interest: AT, MRC, SM and PR received travel grants by Debian for
participating in a Debian Med Sprint. MRC and SSR are members of the CWL Leadership
Team at the Software Freedom Conservancy.

References

1. Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D.,
Čech, M., Chilton, J., Clements, D., Coraor, N., Eberhard, C., Grüning, B.,
Guerler, A., Hillman-Jackson, J., Von Kuster, G., Rasche, E., Soranzo, N.,
Turaga, N., Taylor, J., Nekrutenko, A., Goecks, J.: The Galaxy platform
for accessible, reproducible and collaborative biomedical analyses: 2016
update. Nucleic Acids Res. 44(W1), W3 (2016). DOI 10.1093/nar/gkw343

2. Amadio, G., Xu, B.: Portage: Bringing hackers’ wisdom to science. CoRR
abs/1610.02742 (2016). URL http://arxiv.org/abs/1610.02742

3. Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer,
M., Kartashov, A., Leehr, D., Ménager, H., Nedeljkovich, M., Scales,
M., Soiland-Reyes, S., Stojanovic, L.: Common Workflow Language, v1.0.
figshare (2016). DOI 10.6084/m9.figshare.3115156.v2

4. Bandrowski1, A., Brush, M., Grethe1, J.S., Haendel, M.A., Kennedy, D.N.,
Hill, S., Hof, P.R., Martone1, M.E., Pols, M., Tan, S., Washington, N.,
Zudilova-Seinstra, E., Vasilevsky, N.: The resource identification initiative:
A cultural shift in publishing. F1000Research 4, 134 (2015). DOI 10.
12688/f1000research.6555.2

5. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T.,
Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Infor-
mation Miner, pp. 319–326. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). DOI 10.1007/978-3-540-78246-9 38

6. Christensen, A., Egge, T.: Store — a system for handling third-party ap-
plications in a heterogeneous computer environment. In: J. Estublier (ed.)
Software Configuration Management: ICSE SCM-4 and SCM-5 Workshops
Selected Papers, pp. 263–276. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1995). DOI 10.1007/3-540-60578-9 22

20 Steffen Möller et al.

7. Dale, R., Grüning, B., Sjödin, A., Rowe, J., Chapman, B.A., Tomkins-
Tinch, C.H., Valieris, R., The Bioconda Team, Köster, J.: Bioconda: A
sustainable and comprehensive software distribution for the life sciences.
bioRxiv (2017). DOI 10.1101/207092

8. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E.,
Notredame, C.: Nextflow enables reproducible computational workflows.
Nat Biotechnol. 35(4), 316–319 (2017). DOI 10.1038/nbt.3820

9. Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Du-
doit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn,
T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M.,
Rossini, A., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.,
Zhang, J.: Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5(10), R80 (2004). DOI
10.1186/gb-2004-5-10-r80

10. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D.,
Newman, D., Borkum, M., Bechhofer, S., Roos, M., Li, P., De Roure, D.:
myExperiment: a repository and social network for the sharing of bioinfor-
matics workflows. Nucleic Acids Res. 38(suppl. 2), W677–W682 (2010).
DOI 10.1093/nar/gkq429

11. Goecks, J., Nekrutenko, A., Taylor, J., Galaxy Team: Galaxy: a compre-
hensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol. 11 (2010). DOI
10.1186/gb-2010-11-8-r86

12. Guimera, R., Chapman, B.: Bcbio-Nextgen: Automated, Distributed Next-
gen Sequencing Pipeline. EMBnet.J. 17, 30 (2012). DOI 10.14806/ej.17.
b.286

13. Hastreiter, M., Jeske, T., Hoser, J., Kluge, M., Ahomaa, K., Friedl, M.S.,
Kopetzky, S.J., Quell, J.D., W.Mewes, H., Küffner, R.: KNIME4NGS: A
comprehensive toolbox for next generation sequencing analysis. Bioinfor-
matics (2017). DOI 10.1093/bioinformatics/btx003

14. Henry, V.J., Bandrowski, A.E., Pepin, A.S., Gonzalez, B.J., Desfeux,
A.: OMICtools: an informative directory for multi-omic data analysis.
Database 2014, bau069 (2014). DOI 10.1093/database/bau069

15. Irwin, J.: Community benchmarks for virtual screening. J. Comput. Aided
Mol. Des. 22(3-4), 193–199 (2008). DOI 10.1007/s10822-008-9189-4

16. Ison, J., Kalaš, M., Jonassen, I., Bolser, D., Uludag, M., McWilliam, H.,
Lopez, J.M.R., Pettifer, S., Rice1, P.: Edam: an ontology of bioinformatics
operations, types of data and identifiers, topics and formats. Bioinformat-
ics 29(10), 1325–1332 (2013). DOI 10.1093/bioinformatics/btt113

17. Ison, J., Rapacki, K., Ménager, H., Kalaš, M., Rydza, E., Chmura, P.,
Anthon, C., Beard, N., Berka, K., Bolser, D., Booth, T., Bretaudeau,
A., Brezovsky, J., Casadio, R., Cesareni, G., Coppens, F., Cornell, M.,
Cuccuru, G., Davidsen, K., Vedova, G.D., Dogan, T., Doppelt-Azeroual,
O., Emery, L., Gasteiger, E., Gatter, T., Goldberg, T., Grosjean, M.,
Grüning, B., Helmer-Citterich, M., Ienasescu, H., Ioannidis, V., Jespersen,
M.C., Jimenez, R., Juty, N., Juvan, P., Koch, M., Laibe, C., Li, J.W.,

Sharing robust cross-platform workflows 21

Licata, L., Mareuil, F., Mičetić, I., Friborg, R.M., Moretti, S., Morris,
C., Möller, S., Nenadic, A., Peterson, H., Profiti, G., Rice, P., Romano,
P., Roncaglia, P., Saidi, R., Schafferhans, A., Schwämmle, V., Smith, C.,
Sperotto, M.M., Stockinger, H., Vařeková, R.S., Tosatto, S.C., delaTorre,
V., Uva, P., Via, A., Yachdav, G., Zambelli, F., Vriend, G., Rost, B.,
Parkinson, H., Løngreen, P., Brunak, S.: Tools and data services registry:
a community effort to document bioinformatics resources. Nucleic Acids
Res. 44(D1), D38 (2016). DOI 10.1093/nar/gkv1116

18. Kalaš, M.: Efforts towards accessible and reliable bioinformatics. Ph.D.
thesis, University of Bergen, Norway (2015). DOI 10.5281/zenodo.33715.
URL http://hdl.handle.net/1956/10658

19. Kent, W.J., Haussler, D.: Assembly of the Working Draft of the Human
Genome with GigAssembler. Genome Res. 11(9), 1541–1548 (2001). DOI
10.1101/gr.183201

20. Krabbenhöft, H.N., Möller, S., Bayer, D.: Integrating ARC grid middle-
ware with Taverna workflows. Bioinformatics 24(9), 1221–1222 (2008).
DOI 10.1093/bioinformatics/btn095

21. Kurtzer, G., Sochat, V., Bauer, M.: Singularity: Scientific containers for
mobility of compute. PLoS ONE 12(5), e0177,459 (2017). DOI 10.1371/
journal.pone.0177459

22. Laurie, S., Fernandez-Callejo, M., Marco-Sola, S., Trotta, J., Camps,
J., Chacón, A., Espinosa, A., Gut, M., Gut, I., Heath, S., Beltran, S.:
From Wet-Lab to Variations: Concordance and Speed of Bioinformatics
Pipelines for Whole Genome and Whole Exome Sequencing. Hum. Mu-
tat. 37(12), 1263–1271 (2016). DOI 10.1002/humu.23114

23. Leipzig, J.: A review of bioinformatic pipeline frameworks. Briefings in
Bioinformatics 18(3), 530–536 (2017). DOI 10.1093/bib/bbw020. URL
+http://dx.doi.org/10.1093/bib/bbw020

24. Li, J.W., Robison, K., Martin, M., Sjödin, A., Usadel, B., Young, M., Oli-
vares, E.C., Bolser, D.M.: The SEQanswers wiki: a wiki database of tools
for high-throughput sequencing analysis. Nucleic Acids Res. 40(suppl
1,D1), D1313–D1317 (2012). DOI 10.1093/nar/gkr1058

25. Mitchell, A., Bucchini, F., Cochrane, G., Denise, H., Hoopen, P.t., Fraser,
M., Pesseat, S., Potter, S., Scheremetjew, M., Sterk, P., et al.: Ebi metage-
nomics in 2016 - an expanding and evolving resource for the analysis
and archiving of metagenomic data. Nucleic Acids Research 44(D1),
D595–D603 (2015). DOI 10.1093/nar/gkv1195. URL http://dx.doi.

org/10.1093/nar/gkv1195

26. Möller, S., Krabbenhöft, H., Tille, A., Paleino, D., Williams, A., Wolsten-
croft, K., Goble, C., Holland, R., Belhachemi, D., Plessy, C.: Community-
driven computational biology with Debian Linux. BMC Bioinformatics
(2010). DOI 10.1186/1471-2105-11-s12-s5

27. Moreews, F., Sallou, O., Ménager, H., bras, Y.L., Monjeaud, C., Blanchet,
C., Collin, O.: BioShaDock: a community driven bioinformatics shared
Docker-based tools registry. F1000Research 4(1443) (2015). DOI
10.12688/f1000research.7536.1

22 Steffen Möller et al.

28. Murdock, I.A.: The Debian Linux Manifesto (1994). URL
http://www.ibiblio.org/pub/historic-linux/distributions/

debian-0.91/info/Manifesto. Included in the release of Debian version
0.91

29. Möller, S., Afgan, E., Banck, M., Bonnal, R., Booth, T., Chilton, J.,
Cock, P., Gumbel, M., Harris, N., Holland, R., Kalaš, M., Kaján, L.,
Kibukawa, E., Powel, D., Prins, P., Quinn, J., Sallou, O., Strozzi, F., See-
mann, T., Sloggett, C., Soiland-Reyes, S., Spooner, W., Steinbiss, S., Tille,
A., Travis, A., Guimera, R., Katayama, T., Chapman, B.: Community-
driven development for computational biology at Sprints, Hackathons
and Codefests. BMC Bioinformatics 15(Suppl. 14), S7 (2014). DOI
10.1186/1471-2105-15-S14-S7

30. O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G., Liu, X.K., Patricia,
J., Paten, B., Stein, L., Ferretti, V.: The Dockstore: enabling modular,
community-focused sharing of Docker-based genomics tools and workflows.
F1000Research 6(52) (2017). DOI 10.12688/f1000research.10137.1

31. Perens, B.: Debian’s “Social Contract” with the Free Software Commu-
nity. debian-announce@lists.debian.org (msg00017) (1997). URL https:

//lists.debian.org/debian-announce/1997/msg00017.html. Re-
published as Debian Social Contract, Version 1.0

32. Prins, P., de Ligt, J., Tarasov, A., Jansen, R.C., Cuppen, E., Bourne, P.E.:
Toward effective software solutions for big biology. Nature Biotechnology
33, 686–687 (2015). DOI 10.1038/nbt.3240

33. Robinson, M., Soiland-Reyes, S., Crusoe, M., Goble, C.: CWL Viewer:
The Common Workflow Language Viewer. F1000Research 6(1075) (2017).
DOI 10.7490/f1000research.1114375.1

34. Schulz, W., Durant, T., Siddon, A., Torres, R.: Use of application con-
tainers and workflows for genomic data analysi. Journal of Pathology
Informatics 7(1), 53 (2016). DOI 10.4103/2153-3539.197197

35. Shanahan, H.P., Owen, A.M., Harrison, A.P.: Bioinformatics on the Cloud
Computing Platform Azure. PLoS ONE 9(7), 1–9 (2014). DOI 10.1371/
journal.pone.0102642

36. Spjuth, O., Bongcam-Rudloff, E., Hernández, G.C., Forer, L., Giovac-
chini, M., Guimera, R.V., Kallio, A., Korpelainen, E., Kańdu la, M.M.,
Krachunov, M., Kreil, D.P., Kulev, O., Labaj, P.P., Lampa, S., Pireddu,
L., Schönherr, S., Siretskiy, A., Vassilev, D.: Experiences with workflows
for automating data-intensive bioinformatics. Biology Direct 10(1), 43
(2015). DOI 10.1186/s13062-015-0071-8

37. Taschuk, M., Wilson, G.: Ten simple rules for making research software
more robust. PLoS Comput. Biol. 13(4), e1005,412 (2017). DOI 10.1371/
journal.pcbi.1005412

38. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen,
S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J.,
Belhajjame, K., Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Bal-
cazar Vargas, M.P., Sufi, S., Goble, C.: The Taverna workflow suite: de-
signing and executing workflows of Web Services on the desktop, web or

Sharing robust cross-platform workflows 23

in the cloud. Nucleic Acids Research 41(W1), W557–W561 (2013). DOI
10.1093/nar/gkt328

39. Zook, J., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W.,
Salit, M.: Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls. Nat. Biotechnol. 32(3), 246–
251 (2014). DOI 10.1038/nbt.2835

