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Abstract—This paper presents SCoPE (Systolic Chain of 

Processing Elements), a first step towards the realization of a 

generic systolic array for support vector machine (SVM) object 

classification in embedded image and video applications. SCoPE 

provides efficient memory management, reduced complexity, and 

efficient data transfer mechanisms. The proposed architecture is 

generic and scalable, as the size of the chain, and the kernel 

module can be changed in a plug and play approach without 

affecting the overall system architecture. These advantages 

provide versatility, scalability and reduced complexity that make 

it ideal for embedded applications. Furthermore, the SCoPE 

architecture is intended to be used as a building block towards 

larger systolic systems for multi-input or multi-class 

classification. Simulation results indicate real-time performance, 

achieving face detection at ~ 33 frames per second on an FPGA 

prototype. 

 

Index Terms— Field-programmable gate array (FPGA), 

Support Vector Machine (SVM), Systolic Array, Object 

Detection.  

I. INTRODUCTION 

 

UPPORT VECTOR MACHINES (SVMS) have been widely 

adopted since their introduction by Cortes and Vapnik [1].  

They are considered one of the most powerful classification 

engines due to their high classification accuracy rates, which 

in many cases outperform well established classification 

algorithms such as neural networks. Consequently, there has 

been growing interest in utilizing SVMs in embedded object 

detection and other image classification applications. While 

software implementations of SVMs yield high accuracy rates, 

they cannot efficiently meet real-time requirements of 

embedded applications (failing to take advantage of the 

inherent parallelism of the algorithms). Hence, SVM hardware 

architectures emerged as a potential solution for real-time 

performance. The majority of these emerging architectures 

presented in literature is directed towards specific applications 

and cannot be easily modified to adapt in other scenarios. 

Only few works have looked into generic and versatile 

architectures to satisfy the variety of embedded object-

detection applications. Literature suggests that existing 

general-purpose SVM architectures do not scale well in terms 

of required hardware resources, complexity, data transfer 

(wiring) and memory management, primarily because of two 

important constraints; the number of support vectors (SVs) 

and their dimensionality [2]. An SVM with a small number of 

 
 

SVs, requires only a few computational modules, however, 

several applications require a large number of high 

dimensional SVs. As such, a general-purpose SVM 

architecture with a large number of modules faces design 

challenges such as fan-out and routing, increased complexity, 

and other performance limitations. An efficient SVM 

architecture needs to be scalable, provide real-time 

performance, and be easy to design and implement. Issues 

such as parallel memory access, distribution of the inputs to 

the computation modules while taking into consideration fan-

out requirements, and efficient computation of the kernel 

operations (requires the most computational power), need to 

be considered.  

This work presents a distributed pipelined architecture that 

can be expanded in a systolic manner, providing efficient 

management for memory and data (transfer/wiring) resources. 

The Systolic Chain of Processing Elements (SCoPE) is a 

modular architecture consisting of almost identical processing 

elements (PEs). The architecture can be scaled according to 

the available hardware budget, without affecting the operation 

or frequency of the system. The architecture also addresses the 

wiring and fan-out complexity of routing the input vector to 

the classification modules. A prototype chain of the SCoPE 

architecture was implemented on a Virtex 5 FPGA and was 

evaluated using training data from a face detection application. 

However, the architecture is suitable for several SVM image 

classification applications. 

 This paper briefly explains the basic principles of SVM 

classification, and provides a brief overview of other hardware 

implementations that are present in the literature in section II. 

The SCoPE architecture is presented in section III and an 

evaluation of a SCoPE prototype is presented in section IV. 

Finally Section V provides some insight on the ongoing work 

and future considerations. 

II. SVM BACKGROUND & RELATED WORK 

A. Review of Support Vector Machines 

An SVM is a binary classification algorithm where each 

sample in the data set is viewed as a k-dimensional vector [3]. 

The SVM takes a data set that contains samples from two 

classes (labeled -1 and +1), and constructs separating 

hyperplanes between them. The separating hyperplane that 

best separates the two classes is called the maximum-margin 

hyperplane and forms the decision boundary for classification. 

The margin (shown in Fig. 1 (a)) is defined as the distance 

between two parallel hyperplanes that lie at the boundary of 

each class. The data samples that lie at the boundary of each 

class and determine how the maximum-margin hyperplane is 
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formed, are called support vectors (SVs) [3]. The SVs are 

obtained during the training phase and are then used for 

classifying new (unknown) data. When two data classes are 

not linearly separable, a kernel function is used to project data 

to a higher dimensional space (feature space), where linear 

classification is possible. This is known as the kernel trick [3] 

and allows an SVM to solve non-linear problems. An input is 

classified at runtime using the classification decision function,  

- 𝐷(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎і𝑦і𝐾(𝑥, 𝑠і⃗⃗⃗) +  𝑏𝑚
і=1 )                                               (1) 

in which 𝑎і are the alpha coefficients (weight of each SV), 

𝑦і are the class labels of the SVs, 𝑠і⃗⃗⃗  are the SVs, �⃗� is the input 

vector, 𝐾(�⃗�, 𝑠і⃗⃗⃗) is the chosen kernel function and b is a bias 

value. The flow of this computation is illustrated in Fig. 1 (b). 

The kernel computation (steps 2 & 3 in Fig. 1 (b)) is split into 

two parts, the vector operation and kernel-dependent 

additional operations on the produced scalar value. Both parts 

depend on the choice of kernel function (popular kernel 

functions are shown in (2)-(5)). For example, the vector 

operation for kernels (2), (3) and (4) involves a dot-product 

computation, whereas for (5), it involves the computation of 

the squared norm of the difference of two vectors. 

Popular Kernel Functions: 

- Linear:  𝐾(𝑥, 𝑧) =  (𝑥 ∙ 𝑧)                                                                (2) 

- Polynomial:  𝐾(𝑥, 𝑧) =  (𝛾(𝑥 ∙ 𝑧) +  𝑟)𝑑 , 𝛾 > 0                             (3) 

- Sigmoid:  𝐾(𝑥, 𝑧) =  tanh((𝑥 ∙ 𝑧) +  𝜃)                                          (4) 

- Radial Basis Function:  𝐾(𝑥, 𝑧) = 𝑒𝑥𝑝(‖(𝑥 − 𝑧)‖2 (2𝜎2)⁄ )         (5) 

 
Fig.  1.  (a) Maximum-margin hyperplane and margin for an SVM trained 

with samples from two classes. (b) Data flow for the computation of (1).  

B. Related Work on Support Vector Machines 

 Hardware implementations of SVMs have gained noticeable 

interest in recent years, primarily because of the potential real-

time performance benefits they offer. Most implementations 

have targeted either specific applications, or require a large 

amount of computational resources, and thus are not suitable 

for general-purpose embedded environments. An attempt to 

design a massively parallel architecture to accelerate learning 

algorithms was presented in [4], which utilized arrays of 

vector processing elements controlled through a host CPU in 

SIMD fashion. The centralized nature of the CPU, however, 

creates a bottleneck, emphasizing the need for distributed 

control. An FPGA implementation utilizing a Microblaze 

processor as a control unit and custom hardware coprocessors 

to perform the SVM classification was presented in [5]. The 

design was restricted to 8-dimensional vectors, limiting the 

application space. An integrated vision system for object 

detection and localization based on SVM was presented in [6]; 

however, the system offered limited scalability. An analog 

custom processor was presented in [7] and an implementation 

of a training algorithm for SVMs was presented in [8]. SVM 

implementations have also been explored using embedded 

processors in [9] and [10]. Considering the limitations of 

previous works, SCoPE was designed to provide scalability, 

and reduced memory and data flow complexity, making it 

suitable for general purpose embedded classification 

applications. 

III. SCOPE: THE PROPOSED ARCHITECTURE 

The proposed architecture consists of a chain of PEs that 

operates in a pipelined manner and can be expanded vertically 

with minor modifications (introduction of vertical data flow) 

to operate in a systolic manner. This paper focuses on 

describing the design and flow of operation of a single 

horizontal chain; the full architecture is part of ongoing work. 

A. The SCoPE Components 

SCoPE consists of three main regions (Fig. 2); the front-end 

(input), the middle (computation) and back-end (output) 

regions. The front-end includes the input vector memory, 

address generator units and the front-end PE, which is the 

input part of the chain. The middle region bears the bulk of the 

computation where each PE receives data from the previous 

PE, processes the data, and propagates it to the next PE in 

pipelined manner. The back-end operates as the output of the 

system; it consists of the back-end PE that transfers all the 

data outside of the chain, a kernel unit, a MAC unit, and the 

alpha coefficients memory. All three regions are supervised by 

a finite state machine control unit. 

The front-end and back-end PEs differ with the middle PEs 

by having additional control signals and modules in order to 

interact with the I/O interfaces at each end. Each PE consists 

of a data transfer unit, a processing unit and a memory unit, 

along with glue logic assisting in synchronization and control 

(Fig. 3). The main processing unit is a multiplication-

accumulation (MAC) unit that performs the kernel’s vector 

operation between the input vector and SV elements. The 

transfer unit propagates data from one PE to the next. The 

memory unit holds a group of SVs for which the PE performs 

the kernel vector operation with the input vector. Distributing 

the SV data to each PE, allows for a scalable and manageable 

system, and also contributes to smaller and faster memory 

units. Each PE has three operational states: PROCESSING, 

IDLE and TRANSFERRING. In the PROCESSING state the 

PE is involved with the computation of the vector operation, 

and simultaneously transfers data/control values to the next 

PE. These values are encoded in a 25-bit word as shown in 

Fig. 4.  In the IDLE state, the PE remains idle. Lastly, in the 

TRANSFERRING state, the 25-bit scalar value computed by 

each PE is transferred to the next PE. Data switching is done 

through a 2-1 multiplexer and data propagation through a 

register.  
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Fig.  3.  Main architectural components of a processing element.  

 

 
Fig.  4.   In the PROCESSING state, data values and control signals are 

transferred in an encoded 25-bit word:  (1) Address for SV memories. (2) 
Input vector element. (3) New address signal for SV memory. (4) Enable 

signal for PE’s MAC unit. (5) Reset signal for PE’s MAC unit. (6) Left 

unused for future implementations. 

 

The kernel and back-end MAC units make up the remaining 

components and require the most processing resources. The 

type of kernel does not impact the data flow, but influences 

the maximum achievable system performance. The kernel can 

be implemented either as a Look-Up Table (LUT) or by using 

custom logic. The latter may reduce the maximum operating 

frequency due to increasing computational complexity, while 

the former impacts the accuracy of the classification and 

increases memory demands, depending on the size and 

precision of the LUT. The back-end MAC unit’s bitwidth 

(precision) is determined by the choice of kernel (i.e. the 

kernel’s output bitwidth), the number of SVs (determines the 

number of accumulations and consequently the precision of 

the accumulator) as well as the chosen precision for the alpha 

coefficients. One of the main advantages of the proposed 

architecture is that these two resource-hungry components are 

shared amongst the PEs, thus reducing the overall hardware 

overhead and complexity.  

B. The SCoPE Flow of Operation 

The classification procedure begins with the PEs in the 

IDLE state. The system receives the first input vector element 

and generates the address for the SV memory, leading the 

front-end PE in the PROCESSING state. The SV memory in 

the front-end PE outputs the corresponding SV element and 

the computation begins. The rest of the PEs in the chain 

follow this computation pattern, one after another. When the 

scalar value is computed in all PEs, all PEs enter the 

TRANSFERING state simultaneously, propagating the 

computed scalar value towards the back-end PE. The kernel 

and back-end MAC units then begin processing each scalar 

value that they receive from the back-end PE. The kernel 

outcome is computed, multiplied with its respective preloaded 

coefficient and accumulated. When the accumulation is 

completed, the control unit asserts an accumulation reset 

signal. This signal is propagated through the chain to reset the 

MAC unit values in each PE. Each PE will then again enter 

the PROCESSING state to begin a new kernel vector 

operation. When all SV operations finish, the bias is 

processed. The total number of cycles required for the 

classification of an input vector is given by: 

- (𝑛 + 𝑘 + (𝑛 + 2))*⌈𝑚
𝑛⁄ ⌉                                                            (6)  

The first input vector element takes n (number of PEs) cycles 

to reach the back-end PE (i.e. to fill the pipeline) and the PEs 

then take k (number of elements in vector) cycles to compute 

the scalar value. The front-end PE’s scalar value (which is the 

furthest away from the back-end region) takes an additional 

n+2 cycles to reach the kernel unit and be accumulated. The 

chain processes n SVs in parallel, so if we assume m total SVs 

in a training set, we need  ⌈𝑚
𝑛⁄ ⌉ repetitions in total, for all 

SVs. 

IV. EVALUATION & RESULTS 

A prototype of the proposed architecture with a chain of 

100 PEs was implemented on a Virtex 5 FPGA and evaluated 

using face detection, a popular embedded application. The 

MAC units were mapped both on the FPGA’s embedded DSP 

units and on the slice logic, and the internal SV memory in 

each PE was implemented using the dedicated FPGA block 

RAM. The SVM was trained in MATLAB, using 6,800 

samples (4,400 non-faces, 2,400 faces) with training 

 

 

 
Fig.  2.  Block diagram of the SCoPE architecture illustrating the three main regions and their basic components. 
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information from [11]. The training phase produced m=818 

SVs that were distributed amongst the n=100 PEs (some PEs 

had 9 SVs and some had 8 SVs in their SV memory). Each 

vector consisted of k=400 8-bit elements, corresponding to an 

input 20x20 grayscale image. The polynomial kernel was 

used, with parameters r=0, γ=1 and d=2, (i.e. a square 

operation). The alpha coefficients had a fixed point 18-bit 

format. Table I shows the synthesis results of the proposed 

architecture, which is limited by the multiplier resources 

(available slice logic and DSP units) and operating frequency 

of the FPGA. The design can be scaled to the available 

hardware budget and its modularity and ability to be super-

pipelined allow for further performance improvement.  

To the best of our knowledge, there is limited work dealing 

with general SVM hardware implementations, and 

performance metrics used in existing works relate to the 

specific benchmark applications used in each implementation. 

Therefore, comparing our preliminary results to other works is 

impractical, as several factors affect the resulting frame rate, 

such as the search window size, window overlap and the 

source image size. Table II shows the parameters chosen in the 

experimental framework and the computation of the frame rate 

achieved for a single chain. The targeted FPGA can, however, 

fit 5 parallel SCoPE modules with shared SV memory units, 

raising the frame rate up to ~ 33 fps, shown also in Table II. 

The experimental architecture achieves 88% detection 

accuracy, which can be further increased by improving the 

training set with more training samples. However, this may 

result in an increased number of SVs. 

 
TABLE I: SYNTHESIS RESULTS FOR THE XILINX VIRTEX 5-LX110T FPGA 

Slice Registers 

(69,120) 

5,162  
(7%) 

Slice LUT  

(69,120) 

8,887 
(12%) 

DSP48Es (64) 
(64  of the multipliers 

were implicitly mapped 

on the DSP units) 

64  

(100%) 
PE Utilization  
(multiplier mapped on 

slice logic) 

145 of 

69,120 
(0.2%) 

Memory (666KB) 329KB 

(49%) 
Block Rams (148) 74 (50%) 

 
TABLE II: EXPERIMENTAL SETUP & PERFORMANCE RESULTS 

Experimental Framework: 

   Image Size 320x240 Window Overlap 5 pixels 

FPGA Frequency 100 MHz # of input vectors 

(# of 20x20 windows) 

2,745 

Classification Cycles: 

Single input 

vector (using (6) ) 

5,418 

(~54μs) 
Whole Image 14,872,410 

(~0.14s) 

Frames per second: 

1 SCoPE module ~ 6.72  5 SCoPE modules ~ 33.61 

V. ONGOING AND FUTURE WORK & CONCLUSIONS 

The regular and modular nature of SCoPE provides 

scalability, reduced complexity, and efficient memory and 

data/control transfer management, especially when dealing 

with applications requiring a large number of high 

dimensional SVs. Work in progress involves evaluating the 

architecture using other kernel functions as well as other 

object detection applications. However, emphasis is being 

placed on expanding the architecture into a systolic array.  

The future systolic array implementation will utilize both a 

horizontal (currently employed in SCoPE) and a vertical 

pipeline, where input vector elements will move along the 

horizontal pipeline and SV elements along the vertical. One of 

the rows of the array will be identical to SCoPE and will 

contain the distributed SV memories. The other rows will not 

have a memory unit, but will receive the SV elements from 

that row in a vertical systolic manner, as illustrated in Fig. 5. 

SCoPE can potentially support multiclass classification 

problems with minor modifications. Each row in the array will 

follow the SCoPE architecture, with its own set of SVs and 

kernel function (if necessary), so that each row can perform 

different classification from the other rows, with no need for 

vertical data movement. However, further work is necessary to 

address the increasing memory demands. 

SCoPE provides a modular and regular way of performing 

SVM classification and can be used in a variety of embedded 

applications. The expected systolic array implementation will 

take advantage of the inherent parallelism, to increase 

SCoPE’s performance capabilities while maintaining 

versatility and scalability.  

 

 

Fig.  5.  Block diagram of a possible future systolic array implementation. 
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