
 1

Abstract—This paper presents SCoPE (Systolic Chain of

Processing Elements), a first step towards the realization of a

generic systolic array for support vector machine (SVM) object

classification in embedded image and video applications. SCoPE

provides efficient memory management, reduced complexity, and

efficient data transfer mechanisms. The proposed architecture is

generic and scalable, as the size of the chain, and the kernel

module can be changed in a plug and play approach without

affecting the overall system architecture. These advantages

provide versatility, scalability and reduced complexity that make

it ideal for embedded applications. Furthermore, the SCoPE

architecture is intended to be used as a building block towards

larger systolic systems for multi-input or multi-class

classification. Simulation results indicate real-time performance,

achieving face detection at ~ 33 frames per second on an FPGA

prototype.

Index Terms— Field-programmable gate array (FPGA),

Support Vector Machine (SVM), Systolic Array, Object

Detection.

I. INTRODUCTION

UPPORT VECTOR MACHINES (SVMS) have been widely

adopted since their introduction by Cortes and Vapnik [1].

They are considered one of the most powerful classification

engines due to their high classification accuracy rates, which

in many cases outperform well established classification

algorithms such as neural networks. Consequently, there has

been growing interest in utilizing SVMs in embedded object

detection and other image classification applications. While

software implementations of SVMs yield high accuracy rates,

they cannot efficiently meet real-time requirements of

embedded applications (failing to take advantage of the

inherent parallelism of the algorithms). Hence, SVM hardware

architectures emerged as a potential solution for real-time

performance. The majority of these emerging architectures

presented in literature is directed towards specific applications

and cannot be easily modified to adapt in other scenarios.

Only few works have looked into generic and versatile

architectures to satisfy the variety of embedded object-

detection applications. Literature suggests that existing

general-purpose SVM architectures do not scale well in terms

of required hardware resources, complexity, data transfer

(wiring) and memory management, primarily because of two

important constraints; the number of support vectors (SVs)

and their dimensionality [2]. An SVM with a small number of

SVs, requires only a few computational modules, however,

several applications require a large number of high

dimensional SVs. As such, a general-purpose SVM

architecture with a large number of modules faces design

challenges such as fan-out and routing, increased complexity,

and other performance limitations. An efficient SVM

architecture needs to be scalable, provide real-time

performance, and be easy to design and implement. Issues

such as parallel memory access, distribution of the inputs to

the computation modules while taking into consideration fan-

out requirements, and efficient computation of the kernel

operations (requires the most computational power), need to

be considered.

This work presents a distributed pipelined architecture that

can be expanded in a systolic manner, providing efficient

management for memory and data (transfer/wiring) resources.

The Systolic Chain of Processing Elements (SCoPE) is a

modular architecture consisting of almost identical processing

elements (PEs). The architecture can be scaled according to

the available hardware budget, without affecting the operation

or frequency of the system. The architecture also addresses the

wiring and fan-out complexity of routing the input vector to

the classification modules. A prototype chain of the SCoPE

architecture was implemented on a Virtex 5 FPGA and was

evaluated using training data from a face detection application.

However, the architecture is suitable for several SVM image

classification applications.

 This paper briefly explains the basic principles of SVM

classification, and provides a brief overview of other hardware

implementations that are present in the literature in section II.

The SCoPE architecture is presented in section III and an

evaluation of a SCoPE prototype is presented in section IV.

Finally Section V provides some insight on the ongoing work

and future considerations.

II. SVM BACKGROUND & RELATED WORK

A. Review of Support Vector Machines

An SVM is a binary classification algorithm where each

sample in the data set is viewed as a k-dimensional vector [3].

The SVM takes a data set that contains samples from two

classes (labeled -1 and +1), and constructs separating

hyperplanes between them. The separating hyperplane that

best separates the two classes is called the maximum-margin

hyperplane and forms the decision boundary for classification.

The margin (shown in Fig. 1 (a)) is defined as the distance

between two parallel hyperplanes that lie at the boundary of

each class. The data samples that lie at the boundary of each

class and determine how the maximum-margin hyperplane is

SCoPE: Towards a Systolic Array for SVM

Object Detection

Christos Kyrkou, Student Member, IEEE and Theocharis Theocharides, Member, IEEE

S

 2

formed, are called support vectors (SVs) [3]. The SVs are

obtained during the training phase and are then used for

classifying new (unknown) data. When two data classes are

not linearly separable, a kernel function is used to project data

to a higher dimensional space (feature space), where linear

classification is possible. This is known as the kernel trick [3]

and allows an SVM to solve non-linear problems. An input is

classified at runtime using the classification decision function,

- 𝐷(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎і𝑦і𝐾(𝑥, 𝑠і⃗⃗⃗) + 𝑏𝑚
і=1) (1)

in which 𝑎і are the alpha coefficients (weight of each SV),

𝑦і are the class labels of the SVs, 𝑠і⃗⃗⃗ are the SVs, �⃗� is the input

vector, 𝐾(�⃗�, 𝑠і⃗⃗⃗) is the chosen kernel function and b is a bias

value. The flow of this computation is illustrated in Fig. 1 (b).

The kernel computation (steps 2 & 3 in Fig. 1 (b)) is split into

two parts, the vector operation and kernel-dependent

additional operations on the produced scalar value. Both parts

depend on the choice of kernel function (popular kernel

functions are shown in (2)-(5)). For example, the vector

operation for kernels (2), (3) and (4) involves a dot-product

computation, whereas for (5), it involves the computation of

the squared norm of the difference of two vectors.

Popular Kernel Functions:

- Linear: 𝐾(𝑥, 𝑧) = (𝑥 ∙ 𝑧) (2)

- Polynomial: 𝐾(𝑥, 𝑧) = (𝛾(𝑥 ∙ 𝑧) + 𝑟)𝑑 , 𝛾 > 0 (3)

- Sigmoid: 𝐾(𝑥, 𝑧) = tanh((𝑥 ∙ 𝑧) + 𝜃) (4)

- Radial Basis Function: 𝐾(𝑥, 𝑧) = 𝑒𝑥𝑝(‖(𝑥 − 𝑧)‖2 (2𝜎2)⁄) (5)

Fig. 1. (a) Maximum-margin hyperplane and margin for an SVM trained

with samples from two classes. (b) Data flow for the computation of (1).

B. Related Work on Support Vector Machines

 Hardware implementations of SVMs have gained noticeable

interest in recent years, primarily because of the potential real-

time performance benefits they offer. Most implementations

have targeted either specific applications, or require a large

amount of computational resources, and thus are not suitable

for general-purpose embedded environments. An attempt to

design a massively parallel architecture to accelerate learning

algorithms was presented in [4], which utilized arrays of

vector processing elements controlled through a host CPU in

SIMD fashion. The centralized nature of the CPU, however,

creates a bottleneck, emphasizing the need for distributed

control. An FPGA implementation utilizing a Microblaze

processor as a control unit and custom hardware coprocessors

to perform the SVM classification was presented in [5]. The

design was restricted to 8-dimensional vectors, limiting the

application space. An integrated vision system for object

detection and localization based on SVM was presented in [6];

however, the system offered limited scalability. An analog

custom processor was presented in [7] and an implementation

of a training algorithm for SVMs was presented in [8]. SVM

implementations have also been explored using embedded

processors in [9] and [10]. Considering the limitations of

previous works, SCoPE was designed to provide scalability,

and reduced memory and data flow complexity, making it

suitable for general purpose embedded classification

applications.

III. SCOPE: THE PROPOSED ARCHITECTURE

The proposed architecture consists of a chain of PEs that

operates in a pipelined manner and can be expanded vertically

with minor modifications (introduction of vertical data flow)

to operate in a systolic manner. This paper focuses on

describing the design and flow of operation of a single

horizontal chain; the full architecture is part of ongoing work.

A. The SCoPE Components

SCoPE consists of three main regions (Fig. 2); the front-end

(input), the middle (computation) and back-end (output)

regions. The front-end includes the input vector memory,

address generator units and the front-end PE, which is the

input part of the chain. The middle region bears the bulk of the

computation where each PE receives data from the previous

PE, processes the data, and propagates it to the next PE in

pipelined manner. The back-end operates as the output of the

system; it consists of the back-end PE that transfers all the

data outside of the chain, a kernel unit, a MAC unit, and the

alpha coefficients memory. All three regions are supervised by

a finite state machine control unit.

The front-end and back-end PEs differ with the middle PEs

by having additional control signals and modules in order to

interact with the I/O interfaces at each end. Each PE consists

of a data transfer unit, a processing unit and a memory unit,

along with glue logic assisting in synchronization and control

(Fig. 3). The main processing unit is a multiplication-

accumulation (MAC) unit that performs the kernel’s vector

operation between the input vector and SV elements. The

transfer unit propagates data from one PE to the next. The

memory unit holds a group of SVs for which the PE performs

the kernel vector operation with the input vector. Distributing

the SV data to each PE, allows for a scalable and manageable

system, and also contributes to smaller and faster memory

units. Each PE has three operational states: PROCESSING,

IDLE and TRANSFERRING. In the PROCESSING state the

PE is involved with the computation of the vector operation,

and simultaneously transfers data/control values to the next

PE. These values are encoded in a 25-bit word as shown in

Fig. 4. In the IDLE state, the PE remains idle. Lastly, in the

TRANSFERRING state, the 25-bit scalar value computed by

each PE is transferred to the next PE. Data switching is done

through a 2-1 multiplexer and data propagation through a

register.

 3

Fig. 3. Main architectural components of a processing element.

Fig. 4. In the PROCESSING state, data values and control signals are

transferred in an encoded 25-bit word: (1) Address for SV memories. (2)
Input vector element. (3) New address signal for SV memory. (4) Enable

signal for PE’s MAC unit. (5) Reset signal for PE’s MAC unit. (6) Left

unused for future implementations.

The kernel and back-end MAC units make up the remaining

components and require the most processing resources. The

type of kernel does not impact the data flow, but influences

the maximum achievable system performance. The kernel can

be implemented either as a Look-Up Table (LUT) or by using

custom logic. The latter may reduce the maximum operating

frequency due to increasing computational complexity, while

the former impacts the accuracy of the classification and

increases memory demands, depending on the size and

precision of the LUT. The back-end MAC unit’s bitwidth

(precision) is determined by the choice of kernel (i.e. the

kernel’s output bitwidth), the number of SVs (determines the

number of accumulations and consequently the precision of

the accumulator) as well as the chosen precision for the alpha

coefficients. One of the main advantages of the proposed

architecture is that these two resource-hungry components are

shared amongst the PEs, thus reducing the overall hardware

overhead and complexity.

B. The SCoPE Flow of Operation

The classification procedure begins with the PEs in the

IDLE state. The system receives the first input vector element

and generates the address for the SV memory, leading the

front-end PE in the PROCESSING state. The SV memory in

the front-end PE outputs the corresponding SV element and

the computation begins. The rest of the PEs in the chain

follow this computation pattern, one after another. When the

scalar value is computed in all PEs, all PEs enter the

TRANSFERING state simultaneously, propagating the

computed scalar value towards the back-end PE. The kernel

and back-end MAC units then begin processing each scalar

value that they receive from the back-end PE. The kernel

outcome is computed, multiplied with its respective preloaded

coefficient and accumulated. When the accumulation is

completed, the control unit asserts an accumulation reset

signal. This signal is propagated through the chain to reset the

MAC unit values in each PE. Each PE will then again enter

the PROCESSING state to begin a new kernel vector

operation. When all SV operations finish, the bias is

processed. The total number of cycles required for the

classification of an input vector is given by:

- (𝑛 + 𝑘 + (𝑛 + 2))*⌈𝑚
𝑛⁄ ⌉ (6)

The first input vector element takes n (number of PEs) cycles

to reach the back-end PE (i.e. to fill the pipeline) and the PEs

then take k (number of elements in vector) cycles to compute

the scalar value. The front-end PE’s scalar value (which is the

furthest away from the back-end region) takes an additional

n+2 cycles to reach the kernel unit and be accumulated. The

chain processes n SVs in parallel, so if we assume m total SVs

in a training set, we need ⌈𝑚
𝑛⁄ ⌉ repetitions in total, for all

SVs.

IV. EVALUATION & RESULTS

A prototype of the proposed architecture with a chain of

100 PEs was implemented on a Virtex 5 FPGA and evaluated

using face detection, a popular embedded application. The

MAC units were mapped both on the FPGA’s embedded DSP

units and on the slice logic, and the internal SV memory in

each PE was implemented using the dedicated FPGA block

RAM. The SVM was trained in MATLAB, using 6,800

samples (4,400 non-faces, 2,400 faces) with training

Fig. 2. Block diagram of the SCoPE architecture illustrating the three main regions and their basic components.

 4

information from [11]. The training phase produced m=818

SVs that were distributed amongst the n=100 PEs (some PEs

had 9 SVs and some had 8 SVs in their SV memory). Each

vector consisted of k=400 8-bit elements, corresponding to an

input 20x20 grayscale image. The polynomial kernel was

used, with parameters r=0, γ=1 and d=2, (i.e. a square

operation). The alpha coefficients had a fixed point 18-bit

format. Table I shows the synthesis results of the proposed

architecture, which is limited by the multiplier resources

(available slice logic and DSP units) and operating frequency

of the FPGA. The design can be scaled to the available

hardware budget and its modularity and ability to be super-

pipelined allow for further performance improvement.

To the best of our knowledge, there is limited work dealing

with general SVM hardware implementations, and

performance metrics used in existing works relate to the

specific benchmark applications used in each implementation.

Therefore, comparing our preliminary results to other works is

impractical, as several factors affect the resulting frame rate,

such as the search window size, window overlap and the

source image size. Table II shows the parameters chosen in the

experimental framework and the computation of the frame rate

achieved for a single chain. The targeted FPGA can, however,

fit 5 parallel SCoPE modules with shared SV memory units,

raising the frame rate up to ~ 33 fps, shown also in Table II.

The experimental architecture achieves 88% detection

accuracy, which can be further increased by improving the

training set with more training samples. However, this may

result in an increased number of SVs.

TABLE I: SYNTHESIS RESULTS FOR THE XILINX VIRTEX 5-LX110T FPGA

Slice Registers

(69,120)

5,162
(7%)

Slice LUT

(69,120)

8,887
(12%)

DSP48Es (64)
(64 of the multipliers

were implicitly mapped

on the DSP units)

64

(100%)
PE Utilization
(multiplier mapped on

slice logic)

145 of

69,120
(0.2%)

Memory (666KB) 329KB

(49%)
Block Rams (148) 74 (50%)

TABLE II: EXPERIMENTAL SETUP & PERFORMANCE RESULTS

Experimental Framework:

 Image Size 320x240 Window Overlap 5 pixels

FPGA Frequency 100 MHz # of input vectors

(# of 20x20 windows)

2,745

Classification Cycles:

Single input

vector (using (6))

5,418

(~54μs)
Whole Image 14,872,410

(~0.14s)

Frames per second:

1 SCoPE module ~ 6.72 5 SCoPE modules ~ 33.61

V. ONGOING AND FUTURE WORK & CONCLUSIONS

The regular and modular nature of SCoPE provides

scalability, reduced complexity, and efficient memory and

data/control transfer management, especially when dealing

with applications requiring a large number of high

dimensional SVs. Work in progress involves evaluating the

architecture using other kernel functions as well as other

object detection applications. However, emphasis is being

placed on expanding the architecture into a systolic array.

The future systolic array implementation will utilize both a

horizontal (currently employed in SCoPE) and a vertical

pipeline, where input vector elements will move along the

horizontal pipeline and SV elements along the vertical. One of

the rows of the array will be identical to SCoPE and will

contain the distributed SV memories. The other rows will not

have a memory unit, but will receive the SV elements from

that row in a vertical systolic manner, as illustrated in Fig. 5.

SCoPE can potentially support multiclass classification

problems with minor modifications. Each row in the array will

follow the SCoPE architecture, with its own set of SVs and

kernel function (if necessary), so that each row can perform

different classification from the other rows, with no need for

vertical data movement. However, further work is necessary to

address the increasing memory demands.

SCoPE provides a modular and regular way of performing

SVM classification and can be used in a variety of embedded

applications. The expected systolic array implementation will

take advantage of the inherent parallelism, to increase

SCoPE’s performance capabilities while maintaining

versatility and scalability.

Fig. 5. Block diagram of a possible future systolic array implementation.

REFERENCES

[1] C. Cortes and V. Vapnik, "Support-vector networks," Machine

Learning, vol. 20, no. 3, 1995, pp. 273-297.

[2] R. Reyna-Rojas, D. Houzet, D. Dragomirescu, F. Carlier and S.
Ouadjaout, “Object Recognition System-on-Chip Using the

Support Vector Machines,” EURASIP Journal on Applied Signal

Processing, vol. 2005, no. 7,2005, pp. 993-1004.
[3] C. J. C. Burges, "A tutorial on support vector machines for pattern

recognition," Data Mining and Knowledge Discovery, vol. 2, no. 2,

1998, pp. 121-16.
[4] H. P. Graf, et. al., “A Massively Parallel Digital Learning

Processor,” NIPS 2008, pp. 529-536.

[5] I. Biasi, A. Boni, and A. Zorat, "A reconfigurable parallel
architecture for SVM classification," IEEE International Joint

Conference on Neural Networks, vol. 5, 2005, pp. 2867-2872.

[6] R.A. Reyna, D. Esteve, D. Houzet, and M.-F. Albenge,
"Implementation of the SVM Neural Network Generalization

Function for Image Processing," 5th IEEE International Workshop

on Computer Architectures for Machine Perception, 2000, p.147.
[7] R. Genov and G. Cauwenberghs. “Kerneltron: Support Vector

Machine in Silicon,” IEEE Transactions on Neural Networks, vol.

14, no. 5, 2003, pp. 1426-1434.
[8] D. Anguita, A. Boni, and S. Ridella. “A Digital Architecture for

Support Vector Machines: Theory, Algorithm, and FPGA

Implementation,” IEEE Transactions on Neural Networks, vol. 14,
no. 5, September 2003, pp. 993-1009.

[9] R. Pedersen and M. Schoeber, “An Embedded Support Vector

Machine,” International Workshop on Intelligent Solutions in
Embedded Systems, June 2006, pp. 1-11.

[10] S. Dey, M. Kedia, N. Agarwal, and A. Basu, "Embedded support

vector machine: Architectural enhancements and evaluation," Proc.
of the 20th International Conf. on VLSI Design, 2007, pp. 685-690.

[11] E. Osuna, R. Freund, and F. Girosi, “Training support vector
machines: an application to face detection,” IEEE Conference on

Computer Vision and Pattern Recognition, 1997, pp. 130-136.

