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Abstract

This chapter aims to define and interpret phases of the AI Lifecycle for
Edge AI applications. We highlight common pitfalls that can arise when
developing and maintaining AI models at the edge and outline best practices
that are recognized in academia and industry, with the goal of developing
a well-established taxonomy and pipeline for the lifecycle of Edge AI. We
lay out that edge-based AI is seen as a natural extension of the cloud-based
AI paradigm, solving problems related to real-time responsiveness, privacy,
and independent operation closer to the source of the data. The challenges
of edge-use cases are summarized, including limited network access, limited
computational resources, and the need for customised deployment and main-
tenance procedures.
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2.1 Introduction and Background

In an ever more digital world, AI-based solutions have proven to be a driving
force that is reshaping industries at an unprecedented pace. As artificial
neural network architectures are growing, cloud-centred AI is a feasible
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approach to deal with increasing computational requirements as no dedicated
hardware is required and cloud-based systems can scale with application
demands. This also unlocked the potential of AI-based solutions in industrial
applications, followed by a continuous adoption of such technologies. Certain
applications such as autonomous driving, financial trading, and healthcare
monitoring. impose strict latency and availability requirements, which, cou-
pled with concerns of data privacy and bandwidth availability, result in a
set of requirements that cloud computing is unable to satisfy. Incorporating
local data processing can be the key to achieving fast response and real-
time latency, decoupled from the inherent delays arising from device-to-cloud
communication. It enables decentralized solutions capable of inferring off-
line, increasing service availability while lowering bandwidth and power
requirements. In addition, it improves data privacy. By delegating compu-
tation closer to the edge, relevant features can be extracted, and private ones
obfuscated before any data gets transferred over a network. This also reduces
the size of data transfers, further easing the requirements on the network
infrastructure of the overall solution.

EdgeAI refers to the practice of doing AI computations near the users at
the networks edge instead of centralised locations [1], and in this context,
becomes a natural extension of the cloud-centric paradigm, enabling the
transfer of computations closer to the data acquisition source [2]. The EdgeAI
computing market was estimated at $9 bn in 2020, with projections to reach
$59.6 bn by 2030 [3]. Following this definition, the term edge device can
describe both computation nodes between the edge and the Cloud (referred
to as fog computing)[4], and lightweight processing units coupled with the
sensors acquiring the data. The second type, further referred to as low-
powered devices, includes field-programable gate arrays (FPGAs), tensor
processing units (TPUs), media processing engines (MPE), as well as other
processing units.

The main areas of applications of EdgeAI are among security, mobile net-
works, healthcare, voice and image analysis [5]. The list of tools and devices
is constantly expanding as use-cases including predictive maintenance in
industrial environments: sensors for predicting asset deprecation and main-
tenance timeline of production chains. Developments and innovations in the
field of Edge AI happen both for software and hardware hand in hand, driven
by the need for specialised frameworks for low-powered devices that cannot
make use of containers and virtualisation typical of Cloud-based solutions.
This enables a large variety of available solutions, of diverse complexity and
computational power. On the other hand, the migration of existing Machine
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Learning (ML) algorithms to the edge faces significant challenges due to the
limited hardware capabilities associated with low-powered devices.

Various techniques of compression, enabling coping with the reduced
hardware capabilities are an active subject of research. Most notable among
compression techniques are pruning-based [6], which decreases the size
and complexity of trained model by eliminating non-contributing compo-
nents (weight, neuron, channel, filter) with minimal impact on accuracy and
quantization-based [7], which reduce inference complexity by switching
from the standard float-32 representation to more bit-conservative ones.

Within this chapter we define the stages of the Edge AI Lifecycle by
augmenting the well-established Software Development Life Cycle (SDLC)
with ML and edge-specific processes and stages.

For convenience, all phases are grouped into three stages: (I) Pre-
Development, (II) Development, and (III) Production. It should be noted
that, like the SDLC case, phases in the Edge AI Lifecycle can overlap and
cycle back. An overview of the flow of the Edge AI Lifecycle is presented in
Figure 2.1 with examples of frameworks used at each stage.

Starting with the first phase in the Lifecycle of any software solution
is the requirement formulation phase, which includes functional and non-
functional requirements. Based on these, we introduce the ML methodology
planning phase, which includes data planning (describing the type of data and
availability of labels to be used for training, validation, testing) as well as the
choice of software frameworks and ML methodologies. A difference between
the Cloud-centric approach and the edge approach, is the addition of a third
component in the ML planning phase, namely the selection of inference hard-
ware. Typically, in the case of Cloud-based solutions, the developed solution
enters the deployment phase completely virtualized, and able to be deployed
on any of the typical Cloud hardware, customisable within a few clicks on
established platforms such as AWS. This is not the case for edge solutions,
when the choice of hardware imposes restrictions on the software frameworks
to be used, and on data formats. In the Edge use-case this step contains three
intertwined components which impose limitations on each other. Following
this phase, along with the dataset assembly phase, is the Development stage,
consisting of the training, validation, evaluation, and optimisation phases.
The conceptual difference between validation and evaluation is that validation
chooses the best performing model of the many trained, while evaluation is
used to obtain a representative estimate of its performance on unseen data.
Following that, the optimisation stage then simplifies the obtained model
while ensuring the accuracy does not drop below the specified requirements,
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Figure 2.1 AI Lifecycle Stages Overview.

and depending on the techniques used can sometimes partially overlap with
the training phase. Finally, the Production stage encompasses the deploy-
ment, operation, and maintenance phases. The following subchapters address
each of the stages defined above and elaborate on the good practices and
common pitfalls recognized within academic and industrial environments,
with the goal of pushing towards an openly standardized approach to Edge
AI development and deployment.

2.2 Pre-development

We define the Pre-Development stage as encompassing the definition and
planning of the ML solution and associated hardware for inference, along
with the assembly of the corresponding dataset.
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The definition phase includes problem formulation, which represents
the process of translating the real-world problem into a format that can be
solved by a machine. For the planning phase, we introduced three intertwined
categories in the previous sub-chapter: hardware, software, and data. To better
understand the interaction between the three categories, we depart from the
relationship between data types and machine learning algorithms capable
of processing each type. Based on the problem statement, the type of data
and the scope of the ML algorithms, several learning paradigms can be
distinguished, as outlined in Table 2.1.

Each type of learning is equipped to handle different types of tasks,
with their own requirements in terms of data and annotations. Unsupervised
learning for example, being used mostly for extracting insights from large
datasets with no labels, is rarely deployed to the edge. Typical edge use-cases
refer instead to supervised (or semi-supervised, depending on the availability
of labels for the data) or reinforcement learning. Every type of learning can
in turn be further decomposed into different types of tasks. For example,
a classification task can be formulated as binary classification, multiclass
classification, or multi-label classification. A segmentation problem, very
common in computer vision tasks, can be treated either as semantic seg-
mentation (pixel-wise segmentation into foreground and background), or
instance segmentation (different objects of the same class receiving distinct
labels of the same class). Different formulations entail different labelling
effort requirements. For example, although instance segmentation outputs

Table 2.1 Types of Learning and corresponding tasks
Type of

Learning
Explanation Application tasks

Supervised Learning a function that maps an
input to an output based on sample
input-output pairs (labelled data)

Classification, Regression,
Semantic Segmentation,
Instance Segmentation

Unsupervised Analyses unlabelled datasets with-
out the need for human labelling
(data-driven)

Feature Extraction, Trend
identification, Clustering,
Principal Component Analysis

Semi-
supervised

Represents a combination of the
above two types, typically used in
dealing with a partially labelled
dataset

Can be used to tackle both
supervised and unsupervised
type tasks

Reinforcement Attempts to evaluate the optimal
behaviour in a particular context or
environment, based on reward or
penalty.

Robotics, Autonomous Driving,
Natural Language Processing
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a detailed mask covering all pixels belonging to an instance of the object
of the given class, in some applications a separation between foreground
and background would suffice, significantly cutting the time required for
labelling. It is recommended to choose the simplest problem formulation
type which satisfies the task requirements, with the goal of minimising the
resource requirement to prepare the dataset.

Dataset Formulation

The goal of the dataset preparation phase to create a set of data that is
representative of the intended use-case, with sufficient examples to provide
the developed neural network model with enough space during training for
generalisation and identification of relevant features. It represents a critical
stage which might make the production of a high accuracy model an impos-
sible task, or more difficult than it needs to be. Hence, the right domain
knowledge is required. Domain knowledge refers to the general background
knowledge of the field or environment from which the data originates. It is
particularly important for identifying outliers and non-representative data-
points, detecting biases, and proposing attribute sampling methods, to reduce
the non-informative data in the set. Equally important, domain knowledge is
required for the formulation of data labelling guidelines, which help to ensure
that the dataset is consistently annotated even if the annotation process is done
by multiple experts as annotation variability must be kept to a minimum.
Furthermore, to better combat the possibility of human error, data labelling
by multiple experts in parallel can be an effective, albeit costly, solution. One
common pitfall arising from insufficient data analysis and lack of domain
knowledge during the pre-development stage is concept drift [8]. It refers to
unforeseen changes in the relation between input and output data that are left
unaccounted for. An example of concept drift is the shift in relation that might
occur due to seasonal conditions e.g. summer to winter. Based on the nature
of the change of the statistical properties of the predicted variable, the drift
can be sudden, gradual, incremental, or periodic. The dangers of concept
drift are amplified by the fact that its negative impacts on the accuracy are
not detectable during training, and only become apparent during production,
manifesting as degraded performance of the deployed solution. More on
the detection and combating of concept drift is presented in the Production
sub-chapter.

Data augmentation represents the process of “artificially” increasing
a dataset by modifying copies of existing datapoints (augmentation) or
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synthetically generating new ones using the existing dataset (synthetic).
Although typically used to expand datasets which have high costs of labelling,
data augmentation techniques are also useful as an additional regularization
factor, and to combat overfitting during training [9]. Another non-trivial
use of data augmentation is to create datasets out of private data, when
augmentation is used to obfuscate private features. Data augmentation can
be counter-productive in cases with data bias, as the inherent bias in the data
persists (and can be amplified) in the augmented dataset. Data bias describes
the effect of over-representing certain elements in the dataset. It leads to
models trained on it ending up “lazy”, i.e. biased to predict the majority class.

There are multiple techniques of addressing the bias inherent in the
data, at various stages of the AI Lifecycle. During pre-development, bias-
compensating strategies include re-weighting and re-sampling the data, such
that the dominating class becomes under-sampled. To further improve the
generalisation capabilities and convergence of the developed model, it is
recommended to make use of statistical rescaling techniques, such as nor-
malisation and standardisation. Normalisation rescales the data to a [0,1]
interval, and should be used when the distribution of the expected real-world
data is unknown, while standardisation rescales the data such that the mean
becomes zero and the standard deviation becomes one. It should be used when
it can be assumed that the expected data follows a Gaussian distribution.
Such techniques are helpful with improving the convergence speed during
training, and with the regularisation of model weights. Before proceeding
to Development, the dataset is split into training, validation, and test subsets.
Most common split ratios include 60-80% for training, 10-20% for validation,
and 10-20% for testing. While the train and validation subsets are actively
used in the Development stage, the purpose of the test subset is to give
an estimate of the performance of the resulting model on unseen data and
should therefore only used for computing a final quality metric once the best
performing model on the validation set is selected.

2.3 Development

In the domain of Edge AI, the development of lightweight neural network
architectures has gained substantial importance. This is primarily driven
by the increasing demand for precise and resource-efficient Deep Neural
Networks (DNNs), especially in scenarios where these networks need to
operate on resource-constrained edge computing devices. The development
stage represents the most computationally intensive phase during which the
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network model is created, trained, evaluated, and optimised. At this stage
in particular, comprehensive documentation is needed to record every step
of model development, including weight initialisation and random number
generator seed, to ensure the reproducibility and transparency of the process.
Development is usually conducted in the Cloud or on-premise servers, where
sufficient computational resources are available. This sub-chapter will pro-
vide a brief overview of state-of-the-art methodologies used for architecture
design and training, as well as techniques for model compression and optimi-
sation. Additionally, an overview of state-of-the-art hardware used for edge
applications will be presented.

Model architecture development and training phase

Training phase represents the iterative process of exposing the neural network
model to the dataset, enabling it to learn and adjusting its weights and
biases, also known as model parameters, such that the accuracy of the model,
measured on the train set (also referred to as fitting accuracy) increases. The
process starts with model initialisation, during which the model parameters
are either randomly initialised or pre-set in case of a pre-trained network, as
well as with the selection of a hyperparameter set. The term hyperparameters
refers to a broad set of choices made prior to the network training phase,
and include design decisions of the network architecture (number of layers,
neurons, filters, etc), learning rate, activation functions, optimisation algo-
rithm, etc. The difference between model parameters and hyperparameters
is that the first refers to the weights of the model trained through backprop-
agation applied on the model’s loss function, while hyperparameters refer
to top-level parameters controlling the learning process. Picking the right
hyperparameters is not a straightforward process, and a sub-optimal choice
would negatively influence the convergence of model training, as well as
the resulting overall accuracy. The activity to identify suitable hyperparam-
eters for DNN models within reasonable timeframes for novel applications
has necessitated the adoption of automated pipelines. Trivial techniques for
hyperparameter optimisation include manual search, grid search, and random
search. These involve the launch of multiple experiments (i.e. independent
training processes) with manually, grid-based, or randomly selected hyper-
parameters out of the set of possible values, which are then tried either
sequentially or in parallel. The efficacy of each is then evaluated based on the
performance of the model on the validation dataset, during or after training.
Such methods do not guarantee that the optimal solution is found and are
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expensive in terms of computational resources and time. Due to the sheer
complexity of manually exploring an extensive array of hyperparameter com-
binations, there has been a growing need for derivative network architecture
search technologies. To this extent, more informed searching methods have
been developed, such as Evolutionary and Population-based Optimisation
[10]. These methods are adaptive, meaning they stop experiments in which
the choice of hyper-parameters has proven to be sub-optimal, as measured
by a user-defined fitness function. The terminated experiments are then
replaced by new instances with hyperparameter sets derived from the more
promising experiments. Such approaches are very efficient at minimising
the training time and the hardware resources consumed compared to the
previously mentioned classical search methods, and in addition provide a
more exhaustive search over the hyperparameter space. Frameworks like Ray
Tune, Optuna, and Hyperopt provide implementations for hyperparameter
optimisation, and are compatible with most common ML frameworks such
as PyTorch, TensorFlow, and Keras.

Another approach to hyperparameter optimisation is given by Neural
Architecture Search (NAS) algorithms, which exhibit the capacity to optimize
a diverse range of functions, encompassing both precision and complexity
considerations, within a discrete search space. These algorithms have a con-
siderable drawback due to the challenging evaluation step. Indeed, evaluating
a sampled DNN necessitates a computationally intensive full training process.

Figure 2.2 Overview of hyper-parameter training methodologies [10] illustrating (a) sequen-
tial optimisation; (b) parallel optimisation; (c) adaptive optimisation.
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To alleviate this computational load, different techniques have been devel-
oped, such as the usage of reduced datasets, look-up tables and approximation
of models to estimate cost-related metrics (memory occupancy, latency,
energy consumption). Differential Neural Architecture Search (DNAS) repre-
sents a pivotal advancement in the realm of NAS, markedly reducing the time
required for optimization. This reduction is achieved by transitioning from a
discrete search space to a continuous one, rendering the problem addressable
using gradient-descent optimization techniques. The central idea of DNAS
revolves around the definition of a set of architectural parameters able to
encode the selection of a DNN architecture from the search space. DNAS
jointly optimizes these architectural parameters alongside the weights of the
neural networks. This amalgamation of architectural parameter optimization
and weight training within a continuous search space contributes to the
accelerated optimization of DNN architectures, making DNAS a promising
approach to exploring efficient and effective neural network design.

“[11] introduces DARTS Differentiable Architecture Search”, addressing
the challenges associated with scalability in architecture search. DARTS
introduces the DNAS concept, framing architecture search as a differentiable
problem. Through the continuous relaxation of architectural representations,
DARTS enables accelerated search processes employing gradient descent
techniques, significantly reducing search time. Extensive experiments have
been conducted on diverse datasets, including CIFAR-10 and ImageNet,
showing DARTS exceptional ability to uncover high-performance convo-
lutional and recurrent architectures tailored specifically for image classi-
fication and language modelling tasks. This goal is especially relevant in
a domain where optimized network architectures, capable of accommo-
dating the constraints of edge devices, hold considerable importance, thus
contributing to the advancement of EdgeAI model development. In [12],
the researchers acknowledge the escalating demand for DNN models that
strike a balance between precision and operational efficiency, a require-
ment in the context of edge computing. PLiNIO, is an open-source library
that consolidates a comprehensive set of cutting-edge DNN design automa-
tion techniques into a user-friendly interface. These techniques, rooted in
lightweight gradient-based optimization, simplify the intricacies of DNN
development for edge applications. Through empirical assessments con-
ducted on tasks pertinent to edge computing, the study demonstrates that
PLiNIO yields many DNN solutions that surpass baseline models in respect
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of the delicate trade-off between accuracy and model size. It is worth noting
that PLiNIO exhibits remarkable memory reductions, up to 94.34%, while
maintaining accuracy levels, underscoring its pivotal role in EdgeAI model
development.

In summary, derivative network architecture search technology, exempli-
fied by pioneering frameworks such as DARTS, is pivotal in the EdgeAI
model development. These innovative approaches make the optimization
process more efficient, allowing us to navigate the complex landscape of
hyper-parameter configurations and unveil DNN architectures that achieve
optimal equilibrium between accuracy and model size. This research direc-
tion holds great promise for the future of Edge AI, where resource-efficient,
high-performing neural network architectures serve as the bedrock for a wide
range of applications.

Model validation phase

Model validation asseses the quality of the training process by measuring
the accuracy of the model on a dedicated validation dataset (validation
accuracy). It goes hand in hand with the training phase. Insights acquired
from the validation accuracy assessment are then used to compare different
training instances to identify the optimal hyperparameter choices, and to
assess when the training process should be stopped. Typically, an early stop-
ping mechanism is used for this purpose, which monitors the development
of validation accuracy and stops the training once the accuracy reaches a
plateau or starts degrading. Failing to stop a training session in time is
one of the causes of overfitting, occurring when the model learns patterns
unique to the training set that do not apply to real-world data. An overfitted
model is typified by a high discrepancy between the fitting and validation
accuracies and performs poorly on unseen data. Various techniques to combat
the overfitting effect exist and can be grouped by mechanism as presented
in Table 2.2.

Model evaluation phase

The evaluation phase starts once the training has been completed and the
best performing instance of the model has been identified. The goal of this
phase is to assess how well the trained model generalises to new, unseen data,
thus emulating a real-world scenario. The accuracy of the model on the test
dataset is measured, and serves as a final, unbiased indicator of the model’s
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Table 2.2 Techniques to combat overfitting.
Mechanism type Technique description

Data-based More training data – most straightforward, increase the diver-
sity of the training data by adding additional datapoints
Data augmentation – artificially increase the diversity of the
training data through augmentation techniques and the addition
of noise.
K-fold cross validation – split the dataset into K subsets,
with each subset used for validation set once while the others
are used for training. Other similar cross validation tech-
niques include stratified cross-validation, leave-one-out-cross-
validation (LOOCV), etc.

Regularisation-based L1 and L2 Regularisation – penalise complex model weights
by adding their L1 or L2 norm to the loss function as an
additional term
Dropout [13] – randomly deactivate a fraction of neural
network neurons during each training iteration

Feature-based Feature engineering – manual selection, transformation, and
creation of features from the original data
Pruning – removal of parameters from a network based on
their usefulness to the inference output, thus reducing the
model’s complexity

Inference-timed Model ensembling [14] – combine predictions from multiple
models to produce a single optimal predictive model

Training-timed Early stopping – stops the training process once the validation
accuracy stops improving

performance. The measured evaluation accuracy must not then be used to
make any further decisions about the model’s architecture, hyperparameters,
or any other aspect of training. Doing so would represent a form of data
leakage when information from outside the training and validation phases
makes its way into the training pipeline and undermines the validity and
estimated evaluation accuracy of the trained model. Instead, in case the
measured evaluation accuracy does not satisfy the requirements set in the
previous stage, the whole development process must be restarted, with new
dataset splits.

Model compression phase

Compressing a DNN model is crucial for making it more suitable for deploy-
ment on resource-constrained devices. There are several techniques available
to achieve DNN model compression, as outlined in Table 2.3.
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Table 2.3 Compression Techniques
Compression
Technique

Technique description

Weight Quantisation Involves representing the model’s weights with a lower bit preci-
sion than the standard 32-bit floating-point numbers. Common
bit-widths include 8-bit or even lower, reducing memory and
computational requirements.

Model Quantisation Involves quantizing activations during inference. This can further
reduce memory and computation requirements by using lower-
precision representations for intermediate activations.

Pruning Involves removing unimportant/low-magnitude weights or neu-
rons from the model. These elements contribute minimally to the
model’s performance, so their removal can significantly reduce
model size and inference time without a significant loss in accu-
racy.

Knowledge
Distillation

Represents training a smaller student model to mimic the
behaviour of a larger, more complex teacher model. This transfer
of knowledge from the teacher to the student model results in
a smaller and more efficient model that maintains most of the
teacher’s accuracy.

Knowledge Pruning This approach combines knowledge distillation with pruning.
The teacher model is first pruned to a smaller size, and then a
student model is trained to mimic the pruned teacher. This results
in a more compact model while maintaining the knowledge of
the original, larger model.

Low-Rank
Factorization

This technique decomposes the weight matrices of the model
into lower-rank matrices. By doing this, you can reduce the
number of parameters in the model, leading to a smaller model
with less computational overhead.

Sparse Models Sparse models are models with a substantial number of zero-
valued weights. Techniques like sparse training or structured
sparsity constraints can be applied to encourage weight sparsity,
resulting in a more compact model.

Compact
Architectures

Using model architectures designed for efficiency, such as
MobileNet, EfficientNet, or SqueezeNet, can lead to smaller mod-
els that maintain competitive performance on various tasks.

Transfer Learning Instead of training a model from scratch, one can use pre-trained
models as a starting point and fine-tune them to the specific task
at hand. This approach leverages the knowledge learned from a
larger dataset and model, resulting in a smaller model customised
for the specific task.

These techniques can be used individually or in combination to achieve
the desired level of compression while minimizing the impact on model
accuracy and performance. The choice of technique(s) depends on the specific
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requirements of the task at hand and the available computational resources.
Quantization, for example, has evolved significantly in the context of Edge AI
applications. Its history is marked by the pursuit of approximating floating-
point weights and activations with low bit-width integers, ultimately aimed
at reducing model size and enhancing operational efficiency. Particularly at
the edge, where computational resources are constrained, quantization is a
critical factor in making DNNs more viable [15]. In the past, quantization was
often applied post-training, essentially mapping the high-precision model to
a lower-precision representation. However, a significant breakthrough came
with the introduction of Quantization-Aware Training (QAT) [16]. QAT
enables DNNs to adapt to the effects of quantization during the training
process, mitigating the subsequent drop in accuracy that occurs with post-
training quantization. Standard fixed-precision quantization assigns a uniform
integer bit-width to the entire DNN, neglecting the unique sensitivity of
each layer to precision reduction. Recognizing this limitation, the field
advanced with mixed-precision methods [17]. These approaches introduce
variability in bit-width assignment, quantizing different subsets of the DNN at
varying levels of precision. This innovation, however, introduces a challeng-
ing optimization problem, demanding the identification of precise bit-width
assignments that strike an optimal balance between model accuracy and
computational complexity. The challenge grows exponentially with the num-
ber of considered bit-widths, making it a computationally intensive effort.
Several mixed-precision strategies have emerged to address this complexity-
accuracy trade-off, representing a parallel development orthogonal to NAS.
Additionally, some strategies employ reinforcement learning techniques to
automate bit-width assignment. Recently, a gradient-based method inspired
by the principles of DNAS was introduced, enabling bit-width assignment
during training [18]. This method dynamically quantizes data at various preci-
sions and selects an optimal precision during the training process. In essence,
quantization techniques have witnessed a historical shift from post-training
conversion to in-training adaptation, reflecting the growing importance of
model efficiency in the context of Edge AI applications and the innovative
approaches developed to optimize this critical aspect of DNNs.

Hardware for Edge AI

Edge AI relies on a variety of hardware components and platforms to
enable efficient and real-time inference. Many edge devices, such as smart-
phones, IoT devices, and embedded systems, use SoCs that integrate various



2.4 Production 57

components like CPU, GPU, DSP, and often hardware accelerators like Neu-
ral Processing Units (NPUs) or Field-Programmable Gate Arrays (FPGAs).
These compact and power-efficient chips are well-suited for running AI
workloads at the edge. General-purpose CPUs are still widely used in edge
devices for AI inference, especially for less demanding tasks. Many modern
CPUs come with support for hardware-based vectorization and optimizations
like SIMD (Single Instruction, Multiple Data) instructions to accelerate AI
workloads. GPUs, originally designed for graphics rendering, are highly
parallel processors that excel at performing matrix operations essential
for deep learning. Edge devices equipped with GPUs can leverage their
computational power for AI tasks. Specialized NPUs designed explicitly
for accelerating deep learning workloads are increasingly integrated into
SoCs for edge devices and provide hardware acceleration for AI inference,
improving both speed and energy efficiency, but generally have higher power
consumption than dedicated hardware. FPGAs offer hardware programma-
bility, making them adaptable to specific AI models and tasks. They are
commonly used in scenarios where low latency and real-time processing are
crucial, such as autonomous vehicles and robotics. AI-specific accelerators,
like Google’s Tensor Processing Unit (TPU) and Intel’s Movidius VPU, are
custom-designed chips optimized for AI workloads. These accelerators are
highly efficient for tasks like image recognition, object detection, and voice
processing, making them valuable for Edge AI applications with stringent
requirements. Depending on the specific needs of an Edge AI application,
custom hardware solutions may be developed to meet unique demands, such
as specialized hardware for robotics. The choice of hardware for Edge AI
depends on factors such as the specific AI workload, power constraints,
latency requirements, and cost considerations. Many Edge AI applications
use a combination of these hardware components to optimize performance,
power efficiency, and resource utilization for AI inference. Of particular
significance are the architectural advancements that have emerged in recent
years, owing to the advent of RISC-V, an open Instruction Set Architecture
(ISA) that empowers hardware developers to devise pioneering and high-
performance solutions. As an exemplar, the GreenWaves GAP8 processor,
equipped with eight CV32E40P cores [19], delivers 22.65 Giga Operations
Per Second (GOPS) with an exceptional power efficiency of 4.24 milliwatts
per GOP (mW/GOP). This technological achievement was effectively har-
nessed for the autonomous navigation of a micro-drone through the execution
of a neural network [20].
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2.4 Production

With the increase in maturity of Machine Learning algorithms, the issue
of efficient deployment and maintenance comes more and more into focus.
This has led to the emergence of the MLOps field, which handles the
tasks of deployment, monitoring, and operations of ML models. Provision-
ing, the starting point of deployment to the edge, represents the transla-
tion of the model to the specific architecture of the hardware. Within the
Cloud paradigm, provisioning is less critical, as the models are traditionally
deployed through virtual machines and containers, isolated from underly-
ing hardware. Deployment to the edge however, particularly to low-power
devices, requires the use of specialized frameworks, often developed and
maintained by the manufacturers of said devices. Typically said frameworks
consist of an intermediate representation component, which represents the
prepared model in a lightweight, optimised state, and an inference engine
which runs the model. Intel’s OpenVINO toolkit is one such example, best
suited for Intel’s CPUs, GPUs, as well as GNAs. CoreML is compatible with
Apple devices, while Tensorflow Lite is best used for Android and Coral
TPUs. At the same time attempts are made at creating universal formats, such
as ONNX, which supports a variety of frameworks used for developing ML
models, such as Tensorflow, PyTorch and Caffe, and make them available
on various hardware. Depending on the requirements and complexity of the
application, the model can then be deployed to function in an online or
offline mode. For describing the monitoring phase, we will assume an online
functioning mode, with at least occasional network connectivity to a Cloud-
based managing framework. The data used for training does not always
accurately reflect the real-world encountered by a deployed model in the long
term, reflected in degrading model performance over time, adjustments must
be made based on insights acquired during the production stage. Variations
in production data distributions, a symptom of this effect, can be detected
with data drift detection algorithms, such as the Kolmogorov-Smirnov test,
Population Stability Index, Page-Hinkley method, etc. The phenomenon of
taking such insights into account and modifying the deployed model based on
them is called Continuous Learning and represents a technique of proactive
intervention to combat model drift.

After sufficient new data are acquired during production, a data curation
stage is triggered, in which the data is prepared for a fine-tuning session. The
fine-tunning session mirrors the training and validation pipeline, followed
by an offline testing stage determining if the resulting fine-tuned model has
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Figure 2.3 Model Training Overview illustrating (a) training during the development stage
and (b) training during the production stage.

improved or downgraded its performance. Finally, the fine-tuned model is
deployed in parallel to the production version, and their predictions compared
in online testing, in which their comparative accuracies on unseen data are
evaluated. In case the fine-tuned model is performing better, it takes the place
of the previous version of the model, and the other is removed from service.
Good version control is essential at this stage, to track model development
and to keep the older versions as fall-back options, to be made available in
case of unforeseen deviations by the active model. An overview of the ML
procedures taking place within the continuous learning paradigm is presented
in Figure 2.3. Here during stage (a) the optimal hyperparameters are found
and the model is trained on the initial data, and in stage (b) the model
makes use of the continuous learning pipeline to fine-tune its weights based
on feedback from the production environment. It should be noted however
that particularly in the case of Edge AI, where the production stage takes
place on distributed, low-powered hardware, the infrastructure required to
enable the continuous learning pipeline becomes more convoluted than in
the Cloud-centric case. The issues that it needs to consider are the reduced
computing power, which must be shared between the inferring component
and the data acquisition component, and the limited bandwidth to be used for
data transfer and model re-deployment, as well as the fact that new models
must be deployed on each device. Overall, the infrastructure must support
Edge-to-Cloud integration for transfers of fresh data, Model Version Control
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Table 2.4 Types of Automation based on the definition by SAE International [21]
Level of
Automation

Stage Name Stage explanation

Level 0 No Automation The human operator performs all tasks without
input from the machine

Level 1 Assistance Limited assistance is provided to the human
operator in completing specific tasks

Level 2 Partial Automation The machine takes over some of the task, but
continuous human monitoring is required

Level 3 Conditional
Automation

The machine can perform most tasks indepen-
dently, but human intervention is required in
case of complex and unexpended situations

Level 4 High Automation The machine can perform most tasks indepen-
dently, human intervention required in excep-
tional cases

Level 5 Full Automation Human operator not needed at all. The
machine can perform independently including
in exceptional conditions

for tracking and updating models as needed, and Over-the-Air (OTA) updates
for the deployed models.

Depending on the level of autonomy of the deployed AI solution, as well
as the requirements of the human factor in inference monitoring, different
levels of autonomy can be defined. Currently, there is a system in place for
autonomy in vehicles developed by SAE International [21], which we will
use as a starting point to generalise guidelines for the autonomy of Edge AI
solutions, presented in Table 2.4.

The difficulties of reaching level three and above, as defined in the table
above, particularly in the case of autonomous driving, lie in the unpredictabil-
ity of the environment in which an autonomous vehicle operates. In case of
controlled environments, as is usually the case for applications within facto-
ries and assembly lines, the probability of unexpected and exceptional cases
diminishes considerably, easing the transition to high and full automation.

2.5 Conclusion

In this chapter we have presented Edge AI as a natural extension of the
Cloud-centric AI paradigm that enables solutions for use-cases with strict
latency and data privacy requirements. The challenges and novel research
directions arising from the transition towards the edge are summarised,
including the development of compression techniques aimed at reducing
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model complexity and inference time with minimised accuracy losses, as
well as the design of compact, low-power hardware and associated software
for network deployment. The standard SDLC is expanded to include the
emergent set of good practices of ML development, deployment to the edge
and maintenance, and encapsulated within the Edge AI Lifecycle. Divided
into a pre-development, development, and production stage, common pit-
falls and good practices are outlined, with the goal of pushing towards a
well-established pipeline and taxonomy in the field of Edge AI. The Pre-
Development section summarises the processes of dataset assembly, and
problem definition with the translation of the task into one of the ML
paradigms. Following that, the Development section addresses the emergent
automation of the network design phase, as introduced by evolutionary hyper-
parameter search algorithms, and NAS-based methodologies. The section
goes on to describe model validation and evaluation tactics, common to
all ML applications. The specifics of edge use-cases are then addressed
by a categorisation of model compression techniques, and an overview of
available edge hardware. Finally, the Production section details a collection of
frameworks used for the deployment of optimised models on dedicated hard-
ware and outlines the importance of production monitoring and continuous
learning pipelines.
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