





Consiglio Nazionale delle Ricerche

## The ex-post assessment of policy programs impact

Logic, steps, guidelines

# FOSSR

Fostering Open Science in Social Science Research Innovative tools and services to investigate economic and societal change

Giovanni Cerulli, CNR-IRCrES









### Introduction

- Assessing the impact of policy programs post-implementation is vital for informed decision-making
- A deep understanding of it requires a synthesis of both qualitative and quantitative methods and analyses
- The impact assessment is a **learning process**, entailing continuous feedback and adaptation to the environment (for example, the policy stakeholders)
- Here, we elucidate the main steps needed for correctly carrying out policy ex-post impact assessment











#### **Ex-post program evaluation: main steps**









### Policy evaluation objectives and perimeter

### **Define objectives**

Clarify the specific goals—whether evaluating *efficiency, equity,* or *sustainability.* This entails the definition of the policy **targeted outcomes** 

#### **Perimeter definition**

Clearly outline the **setting** of the assessment (considering, for example, time, resources, and data constraints)









### B Elaborating a Policy Evaluation Logical Framework (PELF)

#### **Key Concepts and Theories**

Identify and emphasize the **foundational characters** shaping the policy program, including **theories** about stakeholder behaviours

#### **Causal Pathways**

Dipict the **cause-and-effect relationships**, detailing how inputs lead to outputs and eventual outcomes









### Validation of the PELF with stakeholders

- Open interaction
- Questionnaires
- Focus groups











### Data Collection and Preparation

#### **Quantitative Methods**

- Surveys and Questionnaires: Utilize structured surveys for numerical data collection
- Data pre-processing: Make data ready to be used for analysis
- Secondary Data: Leverage available datasets and official statistics for a broader context

#### **Qualitative Methods**

- Interviews: Conduct in-depth interviews to capture nuanced insights
- Focus Groups: Organize discussions to explore diverse perspectives
- Document Analysis: Review reports and case studies for qualitative depth







Consiglio Nazionale delle Ricerche

### **6** Data Analysis

### Descriptive qualitative and quantitative evidence

Descriptive statistics, by tables and charts

### **Counterfactual statistical/econometric methods**

- Experimental methods: based on Randomized Control Trials (RCT)
- Quasi-experimental methods: based on observational data







Consiglio Nazionale delle Ricerche

## Analysis of preliminary results

- Visual reporting of the results
- Comments, interpretation and narrative building
- Development of detailed case studies for a rich, contextspecific understanding







Consiglio Nazionale delle Ricerche

### 8 Results validation

#### Robustness

Cross-verify results from different methods to enhance credibility

#### **Divergence Analysis**

 Explore areas of divergence between qualitative and quantitative data for a more comprehensive understanding









### O Provisional reporting and communication

#### Integration

Blend findings from both qualitative and quantitative analyses in a drafted comprehensive Report including methodology, findings, and recommendations

#### **Highlighting main findings**

Identify and put into emphasis **synthetic sentences** summarizing main findings for a cohesive narrative









### Stakeholder Engagement

Communicate results through presentations and workshops to encourage feedback and discussion with stakeholders

**Continuous Improvement** 

Seek feedback for refining assessment methods

Adaptation

Use feedback to adapt the approach for future assessments and enhance overall quality







Consiglio Nazionale delle Ricerche

### Final report

### **Summarize Key Points**

Recap the key elements of the assessment process

### **Highlight Significance**

Emphasize the importance of a combined qualitative/quantitative approach for given results more credibility









### DESIGNING EX-POST ASSESSMENT OF CORPORATE RDI POLICIES

Conceptualization, Indicators and Modeling

# FOSSR

Fostering Open Science in Social Science Research Innovative tools and services to investigate economic and societal change

Giovanni Cerulli, CNR-IRCrES







Consiglio Nazionale delle Ricerche

### **Summary of this presentation**

- Policy description
- Rationale for corporate RDI support and causes of policy failure/success
- Conceptualization: logical framework, behavioral modeling and indicators
- Counterfactual econometric methods for RDI ex-post evaluation
- Learning and risk analysis for RDI policies
- Some open questions of ex-post program evaluation









## **Policy description**

#### Type of measure

**Corporate RDI competitive project-funding** using *direct financial support* (Grants and Subsidized loans). We abstract from policies based on "fiscal measures" and from any other non-competitive project-based incentive scheme.

#### Type of ex-post impact analysis

**Input (or R&D) and "innovative" output additionality**. We abstract from support downstream effects on profitability/productivity and from "behavioral" additionality



Ministero dell'Università e della Ricerca





# Rationale for corporate RDI support and causes of policy failure/success











### Why subsidizing R&D?

- RDI activity is generally characterized by *low appropriability* of results (Nelson, 1959; Arrow, 1962)
- RDI activity is plagued by highly uncertain returns and this strengthens the *information* asymmetries between RDI fund borrowers and financers. (Bhattacharya and Ritter, 1985).
- R&D also lacks tangible assets that can be used as collaterals for lenders (Bester, 1985; Mansfield,1977; Berger and Udell, 1998; Harhoff, 1998)
- RDI is an *irreversible* activity and this produces relevant "sunk costs" (Stiglitz and Weiss, 1981)
- Systemic failures (e.g., Martin and Scott, 2000; Mowery, 1995; Metcalfe, 2005; Malerba, 2009).



Ministero dell'Università e della Ricerca



Consiglio Nazionale delle Ricerche

## Conceptualization: logical framework, behavioral modeling, indicators











#### Step 1. Logical Framework for the design no Units' eligibility Non-eligible units of ex-post assessment of RDI policies yes Step 2. no Non-applying units Units' self-selection yes $\mathbf{V}$ Step 3. no Applying units not supported Units' selection by the Agency (Ex-ante evaluation) Step 4. Agency implementation of the Step 7. policy Using ex-post evaluation to **Counterfactual** predict future effect set of firms (Learning) Step 5. Units' behavior Step 6. Estimation of the policy effect by a treatment model (*Ex-post evaluation*)









### **Firm self-selection**

| Step                | General factor | Specific factor         | Indicator                                          |
|---------------------|----------------|-------------------------|----------------------------------------------------|
| Firm self-selection | Opportunities  | Opportunities costs     | Time (or resources) subtracted to other activities |
|                     |                | Private information     | Project measure of imitative                       |
|                     |                | disclosure              | easiness                                           |
|                     | Bureaucracy    | Administrative          | Administrative and managerial                      |
|                     |                | commitment              | costs                                              |
|                     |                | Public delays in taking | Time from project application                      |
|                     |                | decision                | to acceptance/refusal ( past                       |
|                     |                |                         | experience)                                        |

$$I_F = I_F [X_1, u_F]$$









#### **Agency selection**

| Step                | General factor                              | Specific factor                                 | Indicator                                                                                                                          |
|---------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Agency<br>selection | Firm economic and<br>financial soundness    | Financial structure                             | Cash-flow<br>Debt<br>Equity                                                                                                        |
|                     |                                             | Scale economies                                 | Size                                                                                                                               |
|                     |                                             | Scope economies                                 | Presence of more than one line of business                                                                                         |
|                     |                                             | Cost structure                                  | Labour/capital intensity                                                                                                           |
|                     |                                             | Human capital                                   | Employees' education level                                                                                                         |
|                     |                                             | Business experience                             | Age                                                                                                                                |
|                     |                                             | Access to networks                              | Be part of national or foreign groups                                                                                              |
|                     |                                             | Exposure to competitiveness                     | Export-intensity                                                                                                                   |
|                     |                                             | Sector                                          | Sectoral indicator                                                                                                                 |
|                     |                                             | Region                                          | Regional indicator                                                                                                                 |
|                     |                                             | RDI quality of the project                      | Technical board assessment<br>(multifaceted projects scores)                                                                       |
|                     | Firm and project quality in<br>terms of RDI | RDI quality of the firm                         | Stock of knowledge (as cumulated R&D<br>spending)<br>Pre-treatment level of patenting activity<br>Presence of previous RDI support |
|                     | Project consistency with welfare objectives | Project capacity to meet<br>external objectives | Technical board assessment on this facet<br>Direct assessment via project analysis                                                 |

 $I_A = I_A(\mathbf{X}_2, \underline{u}_A)$ 









## Agency implementation

| Step                                           | General factor | Specific factor         | Indicator                                                                     |
|------------------------------------------------|----------------|-------------------------|-------------------------------------------------------------------------------|
| Agency<br>implementation of<br>policy          | Management     | Managerial costs of the | Administrative costs                                                          |
|                                                |                | program                 |                                                                               |
|                                                |                | Timing                  | Time passing from issuing to selecting to provision of funds (by instalments) |
|                                                |                | Funds availability      | Amount of funds by time                                                       |
|                                                | Control        | Monitoring              | Costs of monitoring                                                           |
| <b>X</b> <sub>2</sub> (descriptive indicators) |                |                         |                                                                               |









#### **Firm RDI behavior**

| Step      | General factor  | Specific factor             | Indicator                                                                      |
|-----------|-----------------|-----------------------------|--------------------------------------------------------------------------------|
|           | Financial       | Funds availability          | Cash-flow<br>Debt<br>Equity<br>Venture capital                                 |
|           |                 | Technological policy tools  | Presence or level of RDI subsidies                                             |
|           |                 | Other policy tools          | Presence or level of non-RDI subsidies                                         |
|           | Economic        | Scale economies             | Size                                                                           |
|           |                 | Scope economies             | Presence of more than one line of business                                     |
|           |                 | Structure of cost           | Labour/capital intensity                                                       |
| -         |                 | Opportunity costs           | Costs of alternative investments (ICT, fixed capital formation, human capital) |
|           |                 | Stock of knowledge          | Cumulated R&D spending                                                         |
|           |                 | Innovative activity         | R&D outlay<br>Patenting activity<br>Innovative turnover                        |
| Firm RDI  |                 | Technological opportunities | Sector                                                                         |
| behaviour | Knowledge-based | Human capital               | Employees' education level                                                     |
|           |                 | Access to networks          | Be part of national or foreign groups<br>RDI collaborations                    |
|           |                 | Spillovers                  | Sectoral (cumulated) R&D expenditure (or patenting activity)                   |
|           | Experience      | Life-cycle                  | Age                                                                            |
|           |                 | Previous RDI support        | Presence or level of past RDI subsidies                                        |
|           |                 | Previous non-RDI support    | Presence or level of past non-RDI subsidies                                    |
|           | Market          | Industrial organization     | Firm market power<br>Sectoral concentration<br>Product differentiation         |
|           |                 | State of demand             | Past turnovers                                                                 |
|           |                 | Macroeconomic conditions    | Time dummies                                                                   |
|           |                 | Appropriability conditions  | Sectoral patenting intensity                                                   |
|           |                 | Exposure to competitiveness | Export intensity                                                               |
|           |                 | Geography                   | Regional location                                                              |









# A general treatment model

Define:  $d = I_A \cdot I_F$ 

where d is in this case a binary indicator (tacking 1 for supported and 0 for nonsupported units). In a counterfactual setting, where both supported and non-supported firms are needed for evaluation purposes, we have that:

 $R = R(H, X_4, v)$  with:

 $H = I_A \cdot I_F \cdot S = d \cdot S$ if the level of the subsidy S is knownH = dif the level of the subsidy S is unknown

In the second case (binary treatment setting), the model reduces to this system of equations:  $\begin{cases} d = d(\mathbf{X}_1, \mathbf{X}_2, u) \\ R = R(d, \mathbf{X}_4, v) \end{cases}$ 

Observe that variables  $X_3$  can be arbitrarily included into one of the two equations to complete the model.



Ministero dell'Università e della Ricerca





## Counterfactual econometric methods for RDI ex-post evaluation















Finanziato dall'Unione europea







Why do we make use of a "counterfactual analysis"?

An instructional example











### **Observed Effect = Causal Direct Effect + Selection Bias**

#### **DIM** = (Average outcome on *treated*) – (Average outcome on *untreated*)

- If the policy is randomized --- > causal direct effect = DIM ---- > Selection Bias = 0
- If the policy is not randomized --- > causal direct effect ≠ DIM ---- > Selection Bias ≠ 0



Finanziato dall'Unione europea





Consiglio Nazionale delle Ricerche

#### The origin of the selection bias

#### Self-selection

It regards the choice of the individuals to apply for a specific program. This entails a cost-benefit calculus, as applying for a policy program can be costly to some extent. This choice may not be assumed to be done at random, as firms are *"endogenously"* involved in this decision.

#### Selection mechanism

It is more intuitively following a non random assignment, as the agency is generally characterized by the pursuit of various objectives, such as *direct* (on target-variable) and *indirect* (welfare) objectives. For instance, in order to maximize the final effect of an investment supporting program, the agency could apply the principle of "picking-the-winner", that is choosing to support those firms having an already high propensity to invest. This is a sufficient condition to make the sample of beneficiaries far from be randomly built. Similar conclusions can be drawn from other type of policy contexts.









#### Selection on Observables vs. Selection on Unobservables

On the part of the evaluator the factors affecting the non random assignment of beneficiaries could have an *observable* or an *unobservable* nature defining two situations:

#### **Selection on observables**

In this case the analyst knows what drives the *self-selection* of individuals and the *selection* of the agency. The knowledge of **x**, the structural variables that are supposed to drive the non-random assignment to treatment, are assumed to be sufficient to identify the actual effect of the program.

#### Selection on unobservables

In this case factors driving the non random assignment are impossible or difficult to observe, then the only knowledge of the vector  $\mathbf{x}$  is not sufficient to identify the effect of the policy.

These two pre-assumptions ask for "*different methodologies*" to identify the actual effect of policy programs









# An assessment of *advantages* and *drawbacks* of methods for econometric evaluation of policy programs

A definitive answer to which is the alleged "best" method to apply is far from being found.

Each method presents relative *advantages* and *drawbacks* that the analyst, according to his specific context of analysis, has to ponder very carefully.

By and large, at least three elements are necessary to consider in program evaluation before choosing a specific econometric approach:

- 1. program institutional set-up and operation
- 2. subjects' behaviour and interaction
- 3. data availability and consistency









Relative advantages and drawbacks of the econometric methods for estimating causal effects in program evaluation

| Method           | Advantage                                       | Drawback                                          |
|------------------|-------------------------------------------------|---------------------------------------------------|
| Control Function | Selection on observables                        | No good under selection on unobservables          |
| Regression       | No distributional hypothesis                    | Linearity                                         |
| Matching         | Selection on observables                        | No good under selection on unobservables          |
|                  | No distributional hypothesis                    | Availability of "good twins"                      |
|                  | No linearity (non parametric)                   |                                                   |
| Reweighting      | Selection on observables                        | No good under selection on unobservables          |
|                  | No distributional hypothesis                    | Choice of the weights                             |
| Selection Model  | Selection on observables and                    | Fully parametric (u and v have a bivariate normal |
|                  | unobservables                                   | distribution)                                     |
|                  |                                                 | Linearity                                         |
| Instrumental     | Selection on observables and                    | Need for at least one instrument (i.e., one       |
| Variables        | unobservables                                   | "exclusion restriction")                          |
|                  | No distributional hypothesis                    | Linearity                                         |
| Regression       | Selection on observables (sharp RD) and also on | Knowledge of a good "forcing or selecting         |
| Discontinuity    | unobservables (fuzzy RD)                        | variable" (s)                                     |
| Design           | No distributional hypothesis                    | Choice of the cut-off and of the right window     |
|                  | Extendable to non-parametric techniques         |                                                   |
| Difference-In-   | Selection on unobservables                      | Specific form of the error term                   |
| Differences      | No distributional hypothesis                    | Need for before/after treatment observation       |
|                  |                                                 | Linearity                                         |









# Learning and risk- analysis for RDI policies











- When a public authority decides to entrust private entities with public money it assumes a responsibility towards the community.
- Since many alternative uses of the same amount of money are generally possible, any misuse of a sum allocated to a given purpose is seen as a waste (especially under severe budget constraints).
- This means that a public agency supporting private entities with money bears a risk, similar to that of a bank providing a private company with a loan, as the company might ultimately be unable to pay back the credit.
- it seems appropriate to refer to the literature on *credit-risk assessment* in order to derive a related approach to risk assessment in the case of public support.









# *Learning in the Logical Framework*









Consiglio Nazionale delle Ricerche

#### IMPROVING EX-ANTE CHOICE OF BENEFICIARIES BY EXPLOITING PAST EX-POST EVALUATION

- **different set of indicators**: not only financial indicators
- **different estimation model**: counterfactual treatment models
- different prediction output: level of firm additionality instead of failure probability











### RDI policy-risk analysis and its link with firm-specific effect

- The literature on policy evaluation (not only RDI) focuses on estimation of AVERAGE EFFECT of the policy (α)
- But estimating idiosyncratic firm-specific effects (*heterogeneous effect*) is key both for POLICY LEARNING and RISK ANALYSIS
- Indeed, I will show you how relying just on an average (or mean) effect might lead to misleading (or very partial) conclusions about the policy effect







Consiglio Nazionale delle Ricerche

Distribution of policy-effects (*additionality*) and policy probability of success/failure













 $\alpha$ =additionality



















### Some comments

- All things equal, both the RETURN and the VARIANCE of the RDI policy effect might depend on agency SELECTION.
- In principle, higher return and lower riskiness seem to be preferable.
- But: the peculiar characteristics of the program and of the beneficiaries (size, sector, location, RDI experience, age, etc.) highly constrain both policy return and risk.
- Country comparisons would be of great interest in showing their different combination of return and riskiness









### Some open questions in ex-post program evaluation

- Role of unobservables
- Heterogeneity
- Subsidy measurement
- Multiple and mix of treatment
- Long-term effect
- Relation between input and output additionality
- Policy spillovers
- Data availability
- Policy full cost-benefit analysis
- General robustness











## **THANK YOU!**



fossr.dissemination@ircres.cnr.it



@fossrproject





fossr-eu



@fossr

