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Abstract. NULL is a special marker used in SQL to indicate that a value for an
attribute of an object does not exist in the database. Its aim is a representation of
“missing information and inapplicable information”. Although NULL is called null
‘value’ is not at all a value. It is a marker. It is only an annotation of incomplete
data. Since it is typically interpreted as a value, NULL has led to controversies and
and debates because of its treatment by 3-valued logics, of its special requirements
for its use in SQL joins, and the special handling required by aggregate functions
and SQL grouping operators.

The three-valued logics does not properly reflect the nature of this special marker.
Markers should be based on their specific data type. This data type is then different
from any other data types used in relational database technology. Due to this or-
thogonality we can combine any type with the special type. To support this we in-
troduce a non-standard generalisation of para-consistent logics. This logics reflects
the nature of these markers. This paper aims in developing a general approach to
NULL ‘values’ and shows how they can be used without changing database tech-
nology.
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1. Introduction

In the early 1970s E. F. Codd introduced the relational database model including the re-
lational calculus, relational algebra, and relational database normalization. Later he also
introduced an approach to handle queries in the presence of NULL ‘values’ in a rela-
tional database and proposed a 3-valued logic with truth values ‘True’, ‘False’, and ‘Un-
known’. When a NULL value appears in a table, its evaluation in a condition produces
the ‘Unknown’ truth value. He gave truth values to complex conditions by giving truth-
tables for the connectives ‘AND’, ‘OR’, and ‘NOT’. For example, ‘True OR Unknown’ has
the truth value ‘True’ because a disjunction is true if one of its disjuncts is true. Codd
evaluated ‘Unknown OR Unknown’ to ‘Unknown’. This specific Łukasiewicz logic L3

was the starting point for a rather difficult treatment of missing or incomplete values in
the database literature and technology.

[8] states that “nulls are ipso facto nonsense”. “I apologize for the wording “contains
a null”; as I’ve written elsewhere, to talk about anything “containing a null” actually
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makes no logical sense. Indeed one of the problems with nulls is precisely that you can’t
talk about them sensibly! ... the entire topic is a perfect illustration of The Principle of
Incoherence ... ”. The third manifesto [7,9] is an attempt to clarify and bring up to date
E.F. Codd’s 1970 model. It requires every tuple of a relation to contain exactly one value
for each attribute of that relation, the value being “drawn from the domain” (Codd) or,
synonymously, “of the declared type” (Date and Darwen) of that attribute.

1.1. NULL ‘Values’ in the Relational Database Model

NULL ‘values’ can be used for attributes in the relational model. They are often con-
sidered to be a programmer’s nightmare. Allowing NULL ‘values’ into attribute values
introduces a whole new degree of uncertainty into your database. Qualified guesses must
be made by the SQL programmer to counter for erroneous results of NULL values in a
database. We need to distinguish at least between the following kinds of NULLs:

• NULL ‘values’ represent currently unknown values that may be replaced later
with values when we know something. These NULL values can be represented
by specific default values. For example, Gender can be coded by the following
scheme: 0 (unknown), 1 (male), 2 (female), 9 (inapplicable).

• Domain-specific NULL ‘values’ are used to denote ordinal or cardinal numbers.
Ordinal numbers measure position. Cardinal numbers measure quantity or mag-
nitude. There is a difference between the quantity 0 and an unknown quantity. 0
is the common default value for all numeric domain types. The blank can be used
as a default type for character types. Date and time is specified by relative values
and required by the schema to be absolute. In this case, NULL ‘values’ are not
the appropriate solution. We split the corresponding attributes.

• NULL ‘values’ are also used to represent inapplicability of a characterization for
a given object. In this case, hierarchies can be used for separation of aspects.

NULL ‘values’ can be derived. For instance, if two values are incomparable then the
comparison evaluates to ‘unknown’ or ‘null’. For example, the color of a car and the
color of hair can be incomparable in the application. From the other side, NULL ‘values’
used for characterization of properties of different objects can be equal. In this case,
marked NULL ‘values’ or variables should be used.

The treatment of NULL ‘values’ is different in DBMS. Some of them treat NULL
‘values’ as missing or unknown values. Evaluation of expressions with NULL ‘values’ is
different in DBMS. For this reason, it is a good idea to restructure all relations to relations
without NULL ‘values’ whenever possible. Since this approach is an implementation
approach we are not using it during conceptual modelling.

[30] proposed a specific treatment of missing information. NULL ‘values’ can be
used based on the interpretations ‘value does not exist’, ‘no information neither on ex-
istence nor on values’ or ‘value exists but is currently unknown’[3,18]. This concept
can be introduced in HERM in a shortened form. Since NULL ‘values’ can also be
used in keys [28], the identification property is not lost in general. We can use NOTEX-
IST for null-valued components in the first approach. We can use UNKNOWN for ‘un-
known’ and NOINFORMATION for ‘no information’. The ‘value exists but is unknown’
approach can be represented by a formula ∃xPR(..., x, ...). The ‘no-information’ ap-
proach is based on the projection of R to the defined components compon(R) \ {A},



i.e. Pπ(compon(R)\{A})(...). The non-existence of values on A can be represented by
¬∃xPR(..., x, ...)∧Pπ(compon(R)\{A})(...). We are going to extend this approach in this
paper.

Often the use of NULL ‘values’ is forbidden for the primary keys or for all keys.
This restriction is an implementation restriction which is required by most commercial
DBMSs. Default values or initial values can be used for specific values. The entity in-
tegrity rule forbids nulls in primary key columns. Primary keys cannot contain NULL
(missing) data. The reason for this rule should be obvious for keys with a singleton at-
tribute. An object cannot uniquely identified or referenced in a table if the primary key of
that table can be NULL and there is more than one object with this property. It’s impor-
tant to note that this rule must not be applied to composite keys. The entity integrity rule
requires however for composite keys that none of the individual columns can be null.

1.2. The SQL Standard and NULL ‘Values’

The SQL:1999 standard defines NULL values in a similar way as the SQL2 standard.
In detail, we find the following statements: “A null value (NULL) is a special value or mark that

is used to indicate the absence of any data value. ... Values are either null values or non-null values. A null

value is an implementation-dependent special value that is distinct from all non-null values of the associated

data type. There is effectively only one null value and that value is a member of every SQL data type. There is

no <literal> for a null value although the keyword NULL is used in some places to indicate that a null value

is desired. ... Two sets are equal if they contain the same elements and those elements are all non-null values.

The equality of two sets is unknown if the sets contain null values and the replacement of those null value with

appropriate non-null values would make the two sets equal. Otherwise, two sets are unequal. ...

Every domain, column in a base table, SQL variable, and SQL-supplied parameter, has a null class. If no null

class is specified, it is the general null class (which contains only the general null value); otherwise it is the

defined null class that is specified.

A defined null class, is created by a <null class definition> and is a named set of possible null values known as

null states, together with the general null value. A null state is a named, implementation-dependent null value

that is distinct from both the general null value and all other null states of the same null class.

The null values of a null class are ordered on their position number, the general null value having position

number one in every null class. This ordering is used to determine the result of an operation when more than

one of its operands are null values.

Except in the few cases where the null substitution principle yields a different result, if one or more operands

of an expression is a null value then the result is a null value.

The result of an attempted transfer of any null value between objects having different null classes is the general

null value.

The null class of the result of an operation is determined as follows.

Case:

- If no operand is null, then the result is as determined by the application of other General Rules.

- If the operator is AND and either operand is false, then the result is false.

- If the operator is OR and either operand is true, then the result is true.

- If the result has a defined null class, and one or more operands are null, then:

Case:

* If the operator is OR then the result is the null value having the maximum position number;

* Otherwise, the result is the null value having the minimum position number.

Note: The general null value effectively has the position number one.



- Otherwise, the result is the general null value.
... Every column an stored attribute has a nullability characteristic that indicates whether any attempt to store
a null value into that column or stored attribute will inevitably cause an exception to be raised, and whether
any attempt to retrieve a value from that column or stored attribute can ever result in a null value. The possible
values of the nullability characteristic are known not nullable and possibly nullable. ... ”

SQL follows the semantics of predicate logic also in the case of missing values
and thus cause a number of problems: The interpretation of nulls ‘values’ is not easy
to adapt to a particular intuition; the meaning of relational operations when applied to
both null values and certain data values is not well-defined; and the treatment of integrity
constraints in databases containing null values is not completely defined.

1.3. 14 (or 20) Kinds of NULL ‘Values’ in Databases

The ANSI/Sparc report [1] has been introducing 14 different kinds of incomplete data
that could appear as a result of queries or as attribute values. This collection is not com-
plete. We may distinguish the following kinds of NULL ‘values’:

1. The property is not applicable for this object but belongs to this class of objects.
1.1. Independently from the point of time t. “not applicable”
1.2. At the current point of time t. “currently not applicable”

2. The property does not belong to the object.
2.1. The property is not representable in the schema.

2.1.1. Due to changes of value type (temporarily, fuzzy, ...). “many-typed”
2.2. The property is representable in the schema.

2.2.1. But there is no value for the object. “unknown”
2.2.1.1. Because it has not been transferred from another database.
2.2.1.2. Because is has not yet inserted into the database. “existential null”

2.2.2. The value for the property exists but is “under change”.
2.2.2.1. However the value is trackable.

2.2.2.1.1. But is at the moment forbidden.
2.2.2.1.2. At the moment permitted.

2.2.2.1.2.1. But not defined for the database.
2.2.2.1.2.1.1. Because it is currently under change.
2.2.2.1.2.2. The value is defined for the system.

2.2.2.1.2.2.1. But is currently incorrect.
2.2.2.1.2.2. But is currently doubtful.

2.2.2.2. The value is not trackable.
2.2.2.2.1. Because of changes.
2.2.2.2.2. Because of reachability. “place-holder null”

2.2.3. There are several values for the property of this object. “partial null”
(2.2.3.1., 2.2.3.2.1, 2.2.3.2.2. similarly to 2.2.2.) “nondeterministic”
2.2.4. There is no value for the property of this object. “not exists”
2.2.5. There is never a value for the property of this object. “never exists”

3. The property is may-be applicable for this object but it unknown whether it is true for
the object in this case. “may-be null”

3.1. It is not known whether the property is applicable to the given object. If it is
applicable then its value for this property is taken from certain domain. “partial
may-be null”



The nondeterministic and the many-typed cases are caused by wrong modelling of the
database. If we abstract from temporarily not available values then we need to distin-
guish at least the NULL ‘values’ into UNKNOWN, NOT APPLICABLE, NOT EXISTS, and
NEVER EXISTS.

Finally, we should separate NULLs from other real values. Therefore we call these
values either NULL ‘values’ or better NULL markers.

1.4. An Application Example

It has often been claimed that specific markers are not necessary for relational databases.
We need however to consider also schema parsimony as a schema quality criterion. Large
schemata are a burden for users and programmers. They increase the possibility of inher-
ent schema errors. Therefore, practicians tend to denormalise schemata for performance
reasons and to combine types of common behaviour and shared structures into singleton
types. As a surprise for theoreticians, the schema becomes easier to maintain and the
theory of integrity constraints is not much more complex. We call this phenomenon the
efficiency unapprehensiveness.

Let us consider a simple example of a relational type Enrolls associating the Student
and Course within a Program. A student might obtain a grading if this is applicable after
the examination. The grading is however different for each type of student. A natural
separation of concern would be the following one.

UNKNOWN
for Diploma student

with certificate

NEVEREXISTS
for Diploma student
without certificate

NOTAPPLICABLE
for Guest student

UNKNOWN
for Bachelor/Master student

Grade value
during teaching term

KNOWN
for Diploma student

with graded certificate

NOTEXISTS
for Diploma student

with normal certificate

NEVEREXISTS
for Diploma student
without certificate

NOTAPPLICABLE
for Guest student

KNOWN
for Bachelor

/Master student

Grade value
after examination

1.5. Research on NULL Values

Database research that tackles the null value problem is fairly rich, e.g. [2,5,10,11,12,
19,21,23,25,26,17,27,31,33]. Research on null values is not yet complete. Most papers
cover two or three kinds of null markers. The most comprehensive survey on some kinds
of null values (existential, may-be, place-holder, partial, partial may-be) is given by [6].
The situation is different for efficient query computation with null-valued object. [20]
discusses in detail whether sure and potential answers can be generated from databases
with different kinds of nulls (unknown, no information). Comprehensive data-complexity
analysis for querying databases with null values has led to a deep understanding of the
reasons for complexity increase. There is no extensive research on database modelling
techniques for null values. [14,15] provides an insight into treatment of different nulls
through variables and equational logics. [28] shows that the entity integrity rule can also
be weakened in the case of primary keys.



[7,9] claim that NULLs are a disaster and explains how we can use SQL without
any utilisation of NULL values. The proposal is based on horizontal and vertical de-
composition. Each relational database structure R is decomposed for each nullable at-
tribute A into a relational structure that contains all objects with no-NULL values and
into another one R.WithoutA without this attribute for objects that have a NULL value.
This approach directly leads to a combinatorial explosion of database schemata since
relationship types are also decomposed as a consequence.

It is surprising to see that in almost all approaches to solve the null value problem
by many-valued logics the truth values form a lattice with F being minimal with respect
to a partial order on truth values – an exception is the recent paper [13] . In this paper we
propose a logic that combines a para-consistent logic with a null value smaller than F
and fold it into a four-valued logic. Thus, besides U (unknown) we consider values NE
(does not exist) and NA (not applicable) as completely legal truth values. In the logic all
six binary operators of Peirce’s triadic logic are present.

Using NE states that it does not make sense to consider the conjunction with other
truth values, which implies NE ∧ F = NE and NE ∨ F = F. Therefore, it makes sense
to apply Kleene’s conjunction alteration [16] to this null value. For NA it makes sense
to adopt Turquette’s definitions for conjunction and disjunction, which means that it is
ignored in conjunctions and disjunctions.

1.6. Brief Survey on this Paper

We are going to develop another logical and algebraic foundation for different kinds of
null markers and show that these markers can be implemented in SQL:1999. This paper
discovers that classical 3-valued logics does not provide a good foundation. Instead we
introduce a specific para-consistent logics and fold it into a many-valued logics. Since
we do not target on a full-fledged treatment of all twenty different kinds of null markers
we restrict the consideration to four main types.

2. NULL ‘Value’ Logics

2.1. NULL Types

A base type is an algebraic structure B = (Dom(B), Op(B), P red(B)) with a name,
a set of values in a domain, a set of operations and a set of predicates. A class BC on the
base type is a collection of elements from Dom(B). Usually, BC is required to be set.
It can be also a list, multi-set, tree etc. Classes may be changed by applying operations.
Elements of a class may be classified by the predicates.

The value set can be discrete or continuous, finite or infinite. We typically assume
discrete value sets. Typical predicates are the comparison predicates <,>,≤, ̸=,≥,=.
Typical functions are arithmetic functions such as +,−, and ×.

The NULL type is a nominal type, i.e. a specific kind of intension based data types
beyond the extension based types such as absolute types or ratio types [30]. It can also
be an ordinal type.We use the following truth values:
U = unknown: This results, when a value for a property exists, but is not known.
NA = not applicable: This results, when a property is not applicable.



NE = not exists: This results, when a value for a property does not exist.

The NULL type is an enumeration type with Dom(NULL) = {U,NA,NE }3,
with two predicates Pred(NULL){=NULL, ̸=NULL} and an empty set of operations.
We require that Dom(NULL) is disjoint with any other type we are using for modelling.

2.2. NULL Logics

In the following we will present an integrated propositional logic combining the three-
valued logics of Łukasiewicz and Turquette with para-consistent logic based on Kleene
[16]. The syntax is standard with conjunction ∧, disjunction ∨ and negation ¬, but we
will also add a weak negation [32]. For the semantics will use truth tables. On these
grounds we can then define different types of implication. We first show that negation
¬ and Łukasiewicz implication are sufficient to express all constructs, then we extend
Wajsbergs axiomatisation for L3 to our logic.

We base interpretations of propositional formulae on five-valued interpretations us-
ing truth values NE,F,NA,U,T, i.e. we assume a total order on the truth values.

The most commonly known approaches to handle null values concentrate on three-
valued Łukasiewicz logic L3, in which ∧ corresponds to building the minimum, while
∨ requires taking the maximum. In particular, this applies to U, in which case we obtain
the following Łukasiewicz truth tables with the classical Peirce negation ¬. In addition,
we define weak negation ∼. Note that the truth table definitions for conjunction and
disjunction correspond to the operators Z and Θ in Peirce’s triadic logic.

∧ T U F
T T U F
U U U F
F F F F

∨ T U F
T T T T
U T U U
F T U F

¬
T F
U U
F T

∼
T F
U T
F T

For NA it makes more sense to adopt Turquette’s conjunction and disjunction, which
correspond to the operators Ψ and Φ in Peirce’s triadic logic:

∧ T NA F
T T T F

NA T NA F
F F F F

∨ T NA F
T T T T

NA T NA F
F T F F

¬
T F

NA NA
F T

∼
T F

NA T
F T

The main difference is that both in conjunction and disjunction the result is NA only,
if both factors are NA. This results from the simple consideration that if a property is not
applicable, then it can be omitted in a conjunction or disjunction. This argument can be
used to combine this two three-valued logics, i.e. U∧NA = U, and U∨NA = U hold.

For the truth value NE, however, it makes sense to adopt Kleene’s weak conjunction
and alteration [16] – these correspond to the operators Ω and Y in Peirce’s triadic logic
– which define the following para-consistent logic:

3We restrict the treatment of null markers to these four values. The value NEVEREXISTS and other NULL
markers can be treated in a similar way.



∧ T NE F
T T NE F

NE NE NE NE
F F NE F

∨ T NE F
T T NE T

NE NE NE NE
F T NE F

¬
T F

NE NE
F T

∼
T F

NE NE
F T

If NE is involved, this reflects the consideration that if a value for a property does
not exist, a conjunction or disjunction does not make sense. We can integrate this para-
consistent logic with the other two three-valued logics. Using the arguments above for
disjunction we only have to add NE ∨ L = NE for all L. Thus, we obtain the following
truth tables, which complement the truth tables above:

∧ NE NA U
NE NE NE NE
NA NE NA U
U NE U U

∨ NE NA U
NE NE NE NE
NA NE NA U
U NE U U

Let L5 denote the propositional logic with junctors ∧,∨,¬,∼, and the five-valued
semantics defined by the truth tables above. Using these tables it is easy to verify the
following result.

Proposition 1 The following equivalences hold in the five-valued propositional logic
L5:

¬¬α = α ¬(α ∧ β) = ¬α ∨ ¬β ¬(α ∨ β) = ¬α ∧ ¬β

In particular, conjunction can be expressed by disjunction and strong negation,
which implies the following result.

Proposition 2 The system {∨,¬,∼} is complete for L5.

2.3. Folding NULL Types with Other Types

Any ordinary domain type B = (Dom(B), Op(B), P red(B)) can be used to extend
to a new type
BWithNULL = (Dom(B) ∪ Dom(NULL), Op(B), P red(B) d Pred(NULL))
with partial operations that are defined for Dom(B) and undefined for arguments from
Dom(NULL) and with combined predicates =, ̸= that inherit these predicates from
the component types if they exist there and stating that values from Dom(B) and
Dom(NULL) are different in the specific form explained above.

3. NULL ‘Values’ and Integrity Constraint Logics

3.1. Dependencies with Unknown NULLs

Dependencies can be generalized to relations containing null ‘values’. Two tuples t and
t′ are strongly equivalent with respect to X (denoted by t ≈X t′) if both are defined on
X and are equal on X . They are weakly equivalent on X (denoted by t ∼X t′) if they
are both equal on A whenever both are defined on A for any A ∈ X , i.e. if they are



both equal on A whenever both are defined on A or both are undefined for any A ∈ X .
Now we can define different kinds of validity for the functional dependency X → Y in
a relation RC with null ‘values’. Some of them are as follows:

• The relation RC 1-satisfies the functional dependency X → Y if all pairs of
strongly X-equivalent tuples are strongly Y equivalent.

• The relation RC 2-satisfies the functional dependency X → Y if all pairs of
weakly X-equivalent tuples are weakly Y equivalent.

• The relation RC 3-satisfies the functional dependency X → Y if all pairs of
strongly X-equivalent tuples are weakly Y equivalent.

• The relation RC 4-satisfies the functional dependency X → Y if all pairs of
weakly X-equivalent tuples are strongly Y equivalent.

We conclude with [30]:

(1) 2-satisfiability implies 3-satisfiability.
(2) 1-satisfiability implies 3-satisfiability.
(3) 4-satisfiability implies 1-satisfiability and 2-satisfiability.

The classical Armstrong axiomatisation [30] for functional dependencies can be directly
applied to the axiomatisation of 1- and 2-satisfiability. The augmentation axiom X∪Y →
Y is not valid for 4-satisfiability. The transitivity rule does not apply to 3-satisfiability,
i.e., the 3-satisfiability of X → Y and Y → Z in a relation RC does not imply the
3-satisfiability of X → Z.

A key K is called a sure key of RC if RC 4-satisfies K → attr(R). The key is
called a possible key of RC if RC 3-satisfies K → attr(R).

In the same manner multivalued, join and other dependencies can be generalized for
relations with null ‘values’.

3.2. Dependencies with Inapplicable NULLs

There are several kinds of null values which should be distinguished in this case, de-
pending on whether a property is applicable to an object, whether a property is under
change (incomplete, not committed), whether a value is available, whether a value is
stored, whether a value is derivable from inconsistent or incomplete data and whether
a value is secured. Context-dependent null values [28,29] are semantically defined null
values.

3.3. Possible Worlds Semantics for Unknown and Inapplicable NULLs

Another approach to null values is based on possible world semantics [2,25,24]. A tuple
t without null values is a completion of a tuple t′ which uses null values if the tuples t, t′

are weakly equivalent. A relation RC′
is a completion of a relation RC with null values

if it is obtained by substitution of null values by non-null values from the corresponding
domains. A functional dependency is weakly satisfied in RC if it is satisfied in one of
the completions of RC . We observe that a functional dependency can be weakly satisfied
in RC but is not i-satisfied for i ∈ {1, 2, 3, 4}. Weak satisfaction leads to the additivity
problem [24], i.e. RC weakly satisfies a functional dependency α and weakly satisfies a
functional dependency β but does not weakly satisfy {α, β}.



3.4. Towards a Logic for Integrity Constraints

Integrity constraints are typically specified using the B(erri)V(ardi) frame Q(α → β)
where α and β are quantor-free formulas with a set of variables X and Q is a sequence of
quantifiers on X . We therefore need to introduce implication if we wish to use integrity
constraints.

In classical logic implication α → β is only a shortcut for ¬α ∨ β. In our logical
treatment of null values, however, we introduced two different kinds of negation: strong
Peirce negation ¬, and weak negation ∼. Accordingly, we have to permit at least two
kinds of implication to capture integrity constraints: (strong) logical implication α →
β = ¬α ∨ β, and (weak) material implication α ⊃ β =∼ α ∨ β. Then we also obtain
two different kinds of equivalence: α ↔ β = (α → β)∧ (β → α) (logical equivalence),
and α ≡ β = (α ⊃ β) ∧ (β ⊂ α) (material equivalence). The following truth tables
indicate these two forms of implication – they can be easily verified from the definition
of ∨, ¬ and ∼ in the previous subsection:

⊃ T U NA F NE
T T U F F NE
U T T T T NE

NA T T T T NE
F T T T T NE

NE NE NE NE NE NE

→ T U NA F NE
T T U F F NE
U T U U U NE

NA T U NA F NE
F T T T T NE

NE NE NE NE NE NE

For the three-valued Łukasiewicz logic L3, which we adopted for the truth value U,
we have a third implication α ⇒ β, which we call the Łukasiewicz implication. This is
defined by the following truth table:

⇒ T U F
T T U F
U T T U
F T T T

Then it is easy to see that disjunction α ∨ β can be expressed as (α ⇒ β) ⇒ β,
and weak negation ∼ α as α ⇒ ¬α. Thus, both logical and material implication can be
expressed by strong negation ¬ and Łukasiewicz implication ⇒. With the following truth
table we extend the definition of the Łukasiewicz implication to the other null values.

⇒ T U NA F NE
T T U NA F NE
U T T U U NE

NA T T T T NE
F T T F T NE

NE NE NE NE NE NE

So the logic L5 will have an additional implication operators →, ⊃ and ⇒. At the
same time we preserve the equivalences for disjunction and weak negation, which again
can be easily verified by using the truth tables. This gives the following result.



Proposition 3 In L5 the following equivalences hold:

α ∨ β = (α ⇒ β) ⇒ β ∼ α = α ⇒ ¬α

In particular, all operators of the logic L5 can be expressed by using only
Łukasiewicz implication and Peirce negation.

Proposition 4 The system {¬,⇒} is complete for L5.

4. SQL Realisation

4.1. User-Defined Domain Types and Functions for NULL Markers

SQL:1999 supports user-defined domain types and user-defined functions. This support
can be used for the development of extensions that can easily be integrated into any
database application. We do thus not need an extension of SQL. Instead we use tem-
plates for generation of supplements to database schemata that can be integrated into any
application. We therefore proceed in a way different from classical SQL handling.

The first template we use is the definition of a user-defined domain. For instance,
CREATE DOMAIN BOOLExt AS VARSTRING(14)

[ DEFAULT value ]
CHECK (VALUE = ’TRUE’ OR VALUE = ’FALSE’

OR VALUE IS ’UnknownNULL’
OR VALUE IS ’NotExistNULL’
OR VALUE IS ’NeverExistNULL’
OR VALUE IS ’NotApplNULL’);

GO;

This example is only one realisation. We might also use such domain type extensions
for other kinds of null values.

The next extension is the explicit support for connectives. Since the theory presented
above uses a conservative extension of conjunction, disjunction and negation, we may de-
fine functions that can be used instead of Boolean expressions in WHERE-clauses. These
functions can directly be generated while parsing a query. Therefore, there is no need for
SQL programmers to change their style of writing Boolean expressions.
CREATE FUNCTION [dbo.]OrExtend (@FirstBool BOOLExt , @SecondBool BOOLExt)

RETURNS BOOLExt WITH ENCRYPTION AS
BEGIN
DECLARE @ResultBool BOOLExt

....
RESULT @ResultBool
END;

GO;

The function directly encodes the truth table for the connective ∨. In a similar way
we may implement the truth table for negation and conjunction.

4.2. Treatment in Predicates

There are two special operands used to test for the presence of the NULL. ISNULL re-
turns TRUE only when the supplied operand has a NULL. Conversely, IS NOT NULL



returns TRUE when the supplied operand does not have a NULL. These are quite im-
portant functions. One of the most common database mistakes is to test an operand for a
NULL by comparing it to the empty string or zero. Instead we reprogram this function
as well and use a number of user defined functions.

SQL allows also set predicates. These set predicates can consider in better detail the
meaning of elements in a set if our proposal for handling NULL markers is used. In this
case also observe that NOT IN and NOT EXISTS are becoming different and cannot be
transferred to each other by simply applying double negation and collection. Compare
the following two variants for these predicates.

treat as value

KNOWN

treat as NULL marker

UNKNOWN

remove object from result

NOTAPPLICABLE

questionable query

NOTEXISTS

NOT IN
predicate

treat as value

KNOWN

treat as NULL marker

UNKNOWN

treat as empty object

NOTAPPLICABLE

remove object from result

NOTEXISTS

NOT EXISTS
predicate

4.3. Support for Aggregation

Most aggregate functions eliminate NULL in calculations; one exception is the COUNT
function. When using the COUNT function against a column containing NULLs, the
NULL will be eliminated from the calculation. However, if the COUNT function uses an
asterisk, it will calculate all rows regardless of NULLs being present.

A formal and coherent framework to aggregation handling has been developed in
[22]. Aggregation functions may be either distributive (MAX, MIN, COUNT, SUM) or alge-
braic (AVG) or holistic (MEDIAN, RANK). For instance, SUM is reprogrammed by using
the following options:

use value

KNOWN

use expectation value

UNKNOWN

use 0

NOTAPPLICABLE

questionable sum

NOTEXISTS

SUM
aggregation

Distributive aggregation functions are defined by structural recursion and can thus
be directly derived from the logic discussed above. Distributive functions can also be cor-
rected for correct computation. for instance, we might use the ISNULL function for re-
placing the NULL marked attributes with a valid value (COUNT(ISNULL(Attribute,0))).

Algebraic aggregation functions need a corrective. For instance, the AVG function
must then separate objects for which a value is known from objects for which a value is



marked by a NULL marker. In this case we derive a split of the answer that corresponds
to this separation. Instead we might also use completion strategies for algebraic func-
tions. For instance, unknown but applicable and existing values may be completed to the
expectation value if the distribution function is known. Holistic aggregation functions
are far more difficult.

5. Concluding

Null ‘values’ are often considered to be the nightmare for programmers and database pro-
cessing. We claim that they are an opportunity for better treatment of real world things. It
is often natural in an application domain that null markers are attached to an object. This
situation is similar to the reluctance of exceptions in programming. Since the application
world is never perfect we need an explicit exception handling [4] that is implementable.
Null markers are a means to handle exceptions for the occurrence of values in objects.

Null markers are a very powerful weapon for database modelling. NULL is not the
number zero and NULL is not the empty string (‘’) value. They allow to combine object
collections with a general common behaviour into a class. We do not require to separate
objects of the same natural kinds into different classes depending on a missing value.
If we consider, for instance, the Enroll type for Student then we might have use other
null-marked attributes beside the attribute Grade. Examples in real applications are Lab-
oratory (Students may participate in practical courses and thus improve their grading.),
Project (Students may submit a project and thus be graded in a different way.), Bonus
(Students may use a bonus system for final examinations and thus improve their chance
for good grades in final examinations.), and History (Students may have already enrolled
a similar course and thus might be given a credit for their history.). If we would model
all these different kinds by subtypes then we might easily have to use 5 × 5 different
types instead of the singleton type Enroll together with complex integrity constraints.
The nightmare is then complete if Enroll is used in other relationship types.

It is surprising that logic users consider the logical value 0 as the minimal value. It
is a value that has an infological value and a meaning, namely the truth value ‘False’ that
is known to us. We consider the value NE as completely legal value since it states that it
never makes sense to consider the truth value. It is thus valuable information for query
processing.
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