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A B S T R A C T   

The integration of AI technology with digital transformation has profoundly shaped the evolution towards digital 
triplet architecture, grounded in human-centric methodologies. By infusing human intellectual activities into 
both physical and cyberspace, innovative links between humans and machines are established. Despite limita
tions in transitioning from tangible human presence to the digital realm in cyberspace, extensive efforts are 
underway to harness emotional, visual, and oral responses, thereby enhancing the reasoning and predictive 
capabilities of digital twins. These advancements aim to elevate real-time human interactions with physical and 
virtual systems by integrating intelligent AI algorithms and cognitive computing systems into digital twins. This 
paper meticulously analyses recent trends in digital twins, tracing their evolution from traditional concepts and 
applications to a nuanced digital triplet hierarchy that incorporates human intuition, knowledge, and creativity 
within cyberspace. we delve into the hierarchical framework of the digital triplet, resonating with maturity, 
domination, and volition levels, enhances cognitive and perceptual capabilities in cyberspace. The study provides 
a systematic overview of the development of ultra-realistic digital models, incorporating real-time data-driven 
artefacts that integrate intelligent activities with multidomain, multiphysics, and multiscale simulations. The 
research scope is focused on augmenting the perceptive and heuristic capabilities of the digital triplet framework 
by utilizing AI in data analytics, retrieving heterogeneous data from virtual entities using semantic artificial 
intelligence technologies, and amalgamating AI and machine learning with human insight and perceptual 
knowledge. The proposed digital triplet hierarchy aims to enhance cyberspace’s capacity for learning, cognitive 
skills, and knowledge transfer. It can be a guideline for the researcher to promote cognitive augmentation of the 
human brain through brain-machine/computer interface, virtual, augmented, and extended reality, fostering a 
symbiotic relationship between humans and machines in the industrial metaverse and industry 5.0. The paper 
discusses future directions for research and the challenges involved in developing intelligent digital twins to
wards the digital triplet paradigm, aiming to embody intelligent activities and cognitive capabilities within the 
framework of human–machine symbiosis.   

1. Introduction 

In recent decades, tremendous advancements have occurred across 
various technological domains, such as the Industrial Internet of Things 
(IoT), Cloud computing, sophisticated sensors and actuators, and Arti
ficial Intelligence (AI) (Errandonea et al., 2020; Munir et al., 2023). 
These innovations have fundamentally altered the digital evolution of a 
multitude of systems, assets, and processes in diverse industries 

(Errandonea et al., 2020). These progressions have transformed indus
trial operations, profoundly enhancing their efficiency, productivity, 
and overall performance. 

Digital technologies, known as the key components of the fourth 
industrial revolution or I 4.0, enable the simple conjunction of concat
enated smart technologies within the new generation of industrial sys
tems (Da Xu et al., 2018; Liao et al., 2017; Melesse et al., 2021; Vial, 
2019; Tao et al., 2019). Smart technologies, such as the Internet of 
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Things (IoT), digital twins (DTs), big data analytics (BDA), and cloud 
computing (CC), play a crucial role in flourishing the cyber-physical 
systems (CPS), which form the core and foundation of Industry 4.0 
(Sahoo and Lo, 2022; Borangiu et al., 2023; Tao et al., 2019; Wang et al., 
2016). CPS is a multidimensional and complex system that aggregates 
the physical world with 3C cyber components, which encompass con
trol, computing, and communication. The second stage, after 2000, of 
manufacturing evolution, known as “smart manufacturing,” was ful
filled by leveraging networking and enabled by improved digital models 
to adapt to dynamic environments (Tao et al., 2019; Liao et al., 2017; 
Zhou et al., 2018). 

The next stage in smart manufacturing, known as Intelligent 
manufacturing, will emerge after 2020. This advanced manufacturing 
process will incorporate artificial intelligence, big data, and IIoT to 
amalgamate the knowledge and creativity of human factors with ma
chine learning (ML) for better integrations of humans, physical world 
and cyberspace (Zhou et al., 2018; Zhou et al., 2019; Wang et al., 2021). 
This advanced manufacturing process is increasingly trending in the 
literature, referring to intelligent activities with human cyber-physical 
systems in the context of Industry 4.0 (Tao et al., 2019; Zhou et al., 
2019; Wang, 2019). Recently, research and industrial communities have 
been arousing more attention to smart networking and intelligent digi
talization to upgrade society and industry with deep integration of 
cyber-physical systems, advanced cyber technologies, machine learning, 
and artificial intelligence (Zhou et al., 2019; Wang et al., 2021; Zhou 
et al., 2020). 

These technologies facilitate the smooth integration and coordina
tion of physical, virtual, cyber, and network entities, leading to rapid 
advancements in modeling virtual replicas of the corresponding physical 
entities. In this context, intelligent monitoring of assets has played a 
crucial role in the evolution of the digital twin concept (Onaji et al., 
2022; Catarci et al., 2019). Digital twins, serving as enablers of Industry 
4.0, contribute significantly to the ongoing advancement of smart sys
tems in conjunction with other intelligent and smart technologies (Wang 
et al., 2021). The combination of digital twins with these advanced 
technologies enhances the capabilities of industrial systems, paving the 
way for improved efficiency, productivity, and innovation (Melesse 
et al., 2021; Tao et al., 2019; Tao et al., 2018; Uhlemann et al., 2017). 

Digital twin inevitably embraces the generation of a digital imitating 
and mirroring of physical entities. It can adapt to conversions in the real 
environment or operations while affording the best possible outcome. It 
improves data flow and collaboration between the virtual counterpart 
and their physical twin by means of digital transmission protocols or the 
Internet of Things (IoT) (Enders, 2017). Despite the fact that research 
communities and industrial sectors have introduced several definitions 
to describe the concept of DT- incidentally, up to date, there is no clear 
vision of DT definition to be elucidated with the viable digital trans
formation and critical flourishing from the fourth industrial revolution I 
4.0 towards the fifth industrial revolution I 5.0 (Uhlemann et al., 2017; 
Trauer et al., 2020; Eramo et al., 2022; Mourtzis et al., 2022; Olaniba 
et al., 2023). 

The majority of Industry 4.0 research has focused on employing 
digital twins for smart automation and adaptable manufacturing, uti
lizing them as digital simulators to generate computable virtual ab
stractions of Cyber-Physical Systems (CPS). This approach emphasizes 
the simulation aspect, rather than viewing Digital Twins as multifaceted 
interfaces capable of providing realistic digital depiction of processes, 
systems, and even operators or assets with viable fidelity (Aheleroff 
et al., 2021; Phuyal et al., 2020; Montini, 2022). DT imparts real-time 
information to engineers and assists operators in helping them transfer 
their knowledge and creativity with digital transformation for critical 
transformation in the context of Industry 4.0 from traditional digital 
manufacturing to smart and intelligent manufacturing (Tao et al., 2019; 
Alves et al., 2023; Ghosh et al., 2020). 

Consequently, in the context of Industry 5.0, Digital Twins (DT) play 
a pivotal role as prominent bi-directional dynamic mappings that 

transform physical systems and associated processes into virtual envi
ronments within the realm of h-CPI (human cyber-physical integration), 
which serves as the cornerstone of smart manufacturing. This contri
bution underscores the significance of artificial intelligence and ma
chine learning, acting as crucial precursors and catalysts for intelligent 
manufacturing. This transformative process is poised to shatter barriers 
across all levels of the Product Life Cycle (PLC) (Friederich et al., 2022), 
enabling real-time monitoring, control, and management of physical 
entities. It empowers the generation of intelligent and autonomous de
cisions, positively influencing every aspect of the manufacturing pro
cess. Therefore, the evolution from the flourishing Industry 4.0 era 
towards Industry 5.0 necessitates a synergistic and dynamic integration 
of humans and machines, marked by complexity and agility, as high
lighted in references (Tao et al., 2019; Zhou et al., 2019; Aheleroff et al., 
2021; Alves et al., 2023; Kaasinen et al., 2022; Xu et al., 2021; Rossi 
et al., 2024). 

Concretely, in the integration of industry 4.0 reference architecture 
with the S/I5RA framework of Industry 5.0 and Society 5.0, digital 
transformation (DX) with data-based technologies such as ML, 5G, and 
industrial Internet of things (IIoT) can be dedicated to improving the 
intelligent activity in the CPS and enhancing the collaboration of the 
CPS with humans and at all levels in which the industry 5.0 and the 
Operator 4.0 paradigms elucidate the human–machine symbiosis 
framework for pairing human and machines to optimize process effi
ciency (Montini, 2022; Romero and Stahre, 2021), enhance the 
problem-solving literacy and intensively affording imperative support 
for all activities in the smart factory (Umeda et al., 2022), including 
planning, design, operation, maintenance, continuous improvement and 
management (Zhou et al., 2020; Xu et al., 2021; Fernández et al., 2019; 
Sparrow et al., 2019; Gerber et al., 2020; Tran et al., 2022; Romero et al., 
2017; Villalba-Diez and Ordieres-Meré, 2021; Yin et al., 2015). There
fore, to realize this integration, recognizing human consciousness as a 
valuable and insightful source of information, the digital twin paradigms 
integrating cognitive skills and intelligent activities were developed in 
several research in both academia and industry. In this context, two 
paradigms have surged in major countries and developed by academic 
and industry researchers towards describing the integration of human 
knowledge and creativity with intelligent digitalization: cognitive digi
tal twin CDT and digital triplet D3 (Lutters and Damgrave, 2019; Lutters 
et al., 2019; Umeda et al., 2019; Umeda et al., 2020; Umeda et al., 2021; 
Gichane et al., 2020; Sjarov et al., 2020; Alimam et al., 2023; Jinzhi 
et al., 2022; Kharlamov et al., 2018; Zeb et al., 2022; Goto et al., 2021). 

The Digital Triplet D3, an advanced iteration of digital twin tech
nology, incorporates Artificial Intelligence (AI) and Machine Learning 
(ML) based on human knowledge and awareness. D3 introduces an 
additional intelligent activity layer that represents the analysis, 
decision-making, and enhanced execution carried out through human 
understanding of technological advancements. This paradigm allows 
digital twins to develop perceptual abilities, enabling them to anticipate 
the current and future states of their physical and digital counterparts. 

Since 2018, the Digital Triplet architecture has been actively inte
grated into digital systems by various research centers, conference 
communities, and mechatronic training centers in countries such as 
Japan, Netherlands, South Africa, Germany, Kenya, and Italy. This 
implementation stems from a development cycle wherein deploying the 
Digital Triplet concept results in a sophisticated hierarchy of complex 
digital twins. This is achieved by integrating holistic knowledge inter
operability into a virtual environment within the human cyber-physical 
system (h-CPI). This integration embraces the aggregation of machine 
learning with human insight and perceptual knowledge in the realm of 
intelligent activity within cyberspace (Lutters et al., 2019; Alimam et al., 
2023; Goto et al., 2021; Subramanian et al., 2021). 

Whereas, the Cognitive Digital Twin (CDT) represents the perspica
cious imitating and insightful evolution of digital twins, aligning with a 
sophisticated computable virtual abstraction of systems (Jinzhi et al., 
2022; Kharlamov et al., 2018; Ullah, 2020; Sharif Ullah, 2019). It excels 
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in integrating and retrieving diverse data from virtual entities using 
semantic artificial intelligence technologies such as meta-heuristic al
gorithms, knowledge graph, semantic web, ontology, reinforcement 
learning, knowledge discovery, and deep learning (Ghosh et al., 2020; 
Banerjee et al., 2017; Bécue et al., 2020; Ghosh et al., 2019; Ullah et al., 
2013; Acosta et al., 2019; Lu et al., 2022; Ullah, 2019). These technol
ogies empower the cognitive capabilities of interconnected digital 
models, transforming the cognitive entity into a dynamic phenomenon 
that encompasses stochastic dynamical virtual models, knowledge graph 
models, and historical data. This intricate approach enhances the sys
tem’s management capability complexity, providing robust support for 
decision-making throughout the system’s entire lifecycle (Bécue et al., 
2020; Zheng et al., 2021; D’Amico et al., 2022; Du et al., 2020). 

Pursuant to the rationales and motivations outlined in the intro
duction, this paper anticipates to significantly influence the definition of 
digital twins within the paradigm of intelligent manufacturing systems. 
The evolution from digital twins to digital triplet architecture, rooted in 
human-centric approaches, signifies a transformative digital shift in 
both intelligent manufacturing and human cyber-physical systems. 
Derived from numerous examples of research initiatives and applica
tions from various sectors and perspectives, this paper is contrived at 
deducing and clarifying significance of the digital triplet architecture in 
the emergence of Industry 5.0. It also explores the contribution of 
intelligent digital twin concepts to the digital triplet paradigm, sym
bolizing intelligent activities and cognitive capabilities within the 
framework of human–machine symbiosis. Considering these points, this 
article addresses the following research questions:  

1. What are the definitions of Digital twins DT, Cognitive digital twins 
CDT, and Digital triplets D3 that have been published in the 
literature? 

2. What cardinal respects should be resonated with cognitive/intelli
gent digital twin for the critical transition from traditional digital 
twin to digital triplet? 

3. What are the application domains in which human–machine inte
gration has been enhanced and developed by the digital twin?  

4. What is the better concept for digital transformation in the context of 
Industry 5.0? 

We define from the above the profound impact of integrating AI 
technology with digital transformation on defining digital twins within 
intelligent systems. This evolution towards digital triplet architecture, 
rooted in human-centric approaches, represents a transformative shift in 
both intelligent and human cyber-physical systems. By infusing human 
intellectual activities into physical and cyberspace, innovative connec
tions between humans and machines are forged. However, the shift from 
tangible human presence to the digital realm in cyberspace has been 
limited thus far. Extensive efforts are being made to harness emotional, 
visual, and oral responses, enhancing the reasoning and predictive ca
pabilities of digital twins. These advancements aim to enrich real-time 
human interactions with both physical and virtual systems by incorpo
rating intelligent machine-learning algorithms and cognitive computing 
systems into digital twins. Drawing on diverse research initiatives and 
applications across various sectors, this paper elucidates the significance 
of the digital triplet architecture in the emergence of Industry 5.0. It 
examines the contribution of intelligent digital twin concepts to the 
digital triplet paradigm, embodying intelligent activities and cognitive 
capabilities within the framework of human–machine symbiosis. This 
endeavour strives to achieve a system inspired by brain intelligence 
within the digital triplet paradigm. 

The main contributions of this paper can be summarized as follows:  

• We deliberated the identification of key co-occurring keywords such 
as “Digital triplet” or “Intelligent digital twin,” “Artificial intelli
gence and Digital twin,” “Cognitive digital twin,” and “Digital twin 
and human–machine symbiosis/integration,” as well as “Digital twin 

and Industry 5.0,” and definition of the most frequent research topics 
related to Industry 5.0 and digital twins. 

• We delved into the distinctions between digital twins and simula
tions, exploring the historical background and evolution of the dig
ital twin concept.  

• We traced the transition from the traditional model of digital twin to 
the advanced stages of the cognitive digital twin.  

• We discussed the integration of intelligent activities and cognitive 
capabilities with current and previous digital triplet paradigms.  

• We clearly defined the concept of digital triplet.  
• We elaborated on a framework with hierarchical levels (“Maturity, 

Domination, Volition”) of the digital triplet, aiming for Industry 5.0.  
• We determined the enabling technology of digital triplets within the 

framework of human–machine symbiosis and brain-like intelligence- 
inspired systems.  

• We discussed limitations and current research gaps in developing 
digital twins toward the digital triplet paradigm. 

The portions of this paper are elucidated as follows: a bibliometric 
analysis of the literature in Section II, an introduction to the digital twin 
concept and an exploration of distinctions between digital twins and 
simulations in Section III. Section IV delves into the migration to the 
advanced stages of the cognitive digital twin, while Section V defines the 
contribution of intelligent activities within the digital triplet and clar
ifies the hierarchical levels (“Maturity, Domination, Volition”) of the 
digital triplet striving for Industry 5.0. Section VI classifies and analyses 
enabling technologies of Intelligent digital twins based on application 
domains from the literature. Section VII explores the quest for a digital 
triplet hierarchy based on application domains within human–machine 
integration and the context of Industry 5.0. Lastly, Section VIII addresses 
limitations and knowledge gaps in developing the digital triplet hier
archy, followed by the concluding remarks in Section IX. 

2. Research strategies and methods 

In order to compile this review, we conducted extensive searches 
using major scientific search engines, databases, and digital libraries, 
including Scopus, Web of Science, Google Scholar, and the IEEE Xplore 
databases. The purpose was to locate significant scientific research 
publications related to digital triplets and Industry 5.0 enabling tech
nology based on digital twins. We adhered to the “PRISMA” (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) principles 
for conducting this review, ensuring a rigorous and systematic approach 
to their review process. The search encompassed articles published be
tween 2018 and July 2023, focusing on keywords and terms associated 
with digital triplet, the digital twin concept, and Industry 5.0. These 
keywords included, among others, phrases such as “Digital triplet” or 
“Intelligent digital twin,” “Artificial intelligence and Digital twin,” 
“Cognitive digital twin,” and “Digital twin and human–machine sym
biosis/integration,” as well as “Digital twin and Industry 5.0.” The 
search strategy was designed to include press releases and articles from 
scientific journals or conference proceedings, ensuring a comprehensive 
understanding of successful case studies the development of intelligent 
digital twin and digital triplet paradigm. Notably, report and conference 
abstracts were excluded from the search, emphasizing a focus on in- 

Table 1 
Search terms and corresponding number of selected data.  

Keyword combinations: IEEE Web of 
Science 

Google 
Scholar 

Scopus 

Digital Twin and Digital Triplet 4 9 98 20 
Cognitive Digital Twin 75 191 283 137 
Digital Twin and Industry 5.0 

including Digital twin and 
human–machine symbiosis/ 
integration 

30 61 1830 81  
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depth, peer-reviewed academic content. In Table 1. We provided spe
cific details regarding the search terms used and the corresponding 
number of search results, demonstrating transparency in their method
ology. Additionally, the authors independently conducted the search, 
further enhancing the credibility of the review process. 

The search process involved several steps, as outlined in Fig. 1. 
Initially, duplicates were removed using Mendeley reference manage
ment software, leaving a total of 2299 unique papers. Subsequently, 
each paper underwent two general screening steps: first with its title and 
then with its abstract, to determine the relevance of the research 

outcomes. After these screening steps, 186 papers were identified as 
relevant. The authors independently classified these 186 papers based 
on their level of relevance. In cases where there was ambiguity 
regarding the classification of a specific paper, at least two authors 
engaged in discussions to resolve the ambiguity and assign an appro
priate classification. This rigorous classification process ensured the 
accuracy and integrity of the selected papers for the review. 

For retrieving peer-reviewed articles, bibliometric analysis was uti
lised with relevant input data obtained from the comprehensive data
bases Scopus and Web of Science. The literature search was conducted 

Fig. 1. The PRISMA-based flowchart diagram of the selection process for describing the conducted scoping review of the retrieved resources.  
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online in March 2023 using the following search query: “Digital & Twin 
& Industry 5.0″ from the Scopus database. The study’s publication year 
range was limited to 2018–2023 to concentrate on outcomes related to 
Industry 5.0. This decision was based on the fact that the initial efforts to 
implement Industry 5.0 as an extension of Society 5.0 were initiated in 
2015, primarily by the Japanese Government. Furthermore, the first 
online discussions and publications on Industry 5.0 were introduced in 
2018 (Fukuyama, 2018). A preliminary inquiry conducted on Scopus 
pertaining to the themes of digital twins and Industry 5.0 compiled a 
cumulative count of 54 scholarly articles. The title-ABS-key is ”Digital & 
Twin & Industry 5.0″ and the preponderance of the records pertains to 
the fields of computer science, engineering, mathematics, and 
manufacturing. The aforementioned publications consist of 25 articles 
published in academic journals, 3 papers that underwent a review pro
cess, 18 papers presented at academic conferences, and 8 reviews of 
conference proceedings. Subsequently, CSV files will be accomplished 
through the conversion of the database in order to facilitate the visu
alisation and analysis of bibliometric data using the VOS viewer soft
ware. Concretely, VOSviewer facilitates the extraction of keyword maps 
by utilising shared networks, thereby enabling the construction of maps 
with a vast number of keywords. 

A co-occurrence map comprising 189 keywords was compiled by 
prioritising the top 109 most frequently used keywords with the greatest 
co-occurrence in the database pertaining to the concepts of “Industry 
5.0,” and “Digital Twin”. Fig. 2 indicates the outcomes through the 
interpretation of the keyword cluster map. The top 109 items were 
categorised into nine clusters based on their frequency of occurrence in 
classified hot nodes. The red cluster encompasses a total of thirty-five 
distinct items, namely digital twin, society 5.0, human cyber physical 
system, blockchain technology, explainable artificial intelligence, vir
tual data set, extended reality, human cantered manufacturing, human 

machine interaction, human robot interaction, metaverse, personaliza
tion industry 5.0, industrial internet of thing, semantic reasoning 
simulation, virtual commissioning, cobots, crane, dielectrics, virtual 
reality, digitization of the industries, deep learning, data models, 
computational modelling, deep learning, machine learning, smart 
manufacturing, manufacturing, management, optimisation, a system of 
things, simulation, IoT and architecture. The red cluster illustrates the 
digital twin concept as the highest frequency of occurrence with a large 
node. The assemblage of the keywords related to industry 5.0 denoted as 
the “yellow cluster” encompasses a total of twenty-two distinct concepts, 
namely Industry 5.0, industrial metaverse, human digital twin, human 
intelligence, consensus protocol, cyber physical system, industrial 
internet of things, machine learning, cognitive, smart manufacturing, 
operator 5.0, security, food security, smart contract, privacy, human 
cyber physical system, extended reality, human centric manufacturing, 
human in the loop, CPS, IIoT, and sustainability. The industry 5.0 
concept is prominently represented by the yellow cluster, which is 
characterised by a large node and the highest frequency of occurrence. 
The green cluster encompasses distinct keywords indicates the related 
items to industry 4.0 context and the blue cluster replicates perpetual 
large size node related to digital twin, those clusters including as an 
illustration, among other keywords: industry 4.0, virtualization, in
dustry 5.0, flexible assembly, 5 g, agent based simulation, confidential 
information, deterministic, digital human modelling, digital technology, 
digitization of the industries, discrete event simulation, disruptive 
technologies, ergonomics 5.0, explainable artificial intelligence, 
extended reality, human centric manufacturing, human in the loop, 
digital twin, big data analysis, building information model, cloud stor
age, control system, cyber physical system, edge cloud computing, 
human centred, knowledge graph, node-red, ontology, semantic, smart 
society, information, knowledge, and learning. In addition, the 

Fig. 2. The co-occurring keywords of the cluster map in the field of digital twins and industry 5.0. Based on node size, the “Digital Twin,” “Industry 5.0,” and 
“Industry 4.0″ keywords are depicted as significant search terms. The curvatures that are associated with the nodes are obtained through co-occurrences within the 
same cluster, whereby the proportion of corresponding co-occurrences escalates as the distance between two nodes decreases. The vast bulge in node size, is the most 
listed frequency item. 
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moderate cooccurrence of the portion keywords is illustrated in the re
sidual of five clusters “purple, orange, light blue, pink and brown clus
ters”- apropos of which, but not limited to, 6 g mobile communication, 
cyber physical human cantered system, edge computing, artificial in
telligence, mist computing, human factors, knowledge and skills of the 
engineer, blockchains industries, augmented reality, robotics, deep 
reinforcement learning, human-robot interaction, MqTT, path planning, 
process control, cognitive systems, green manufacturing, supply chain, 
brownfield industry 4.0, operator 4.0, human digital twin, retrofitting, 
wearable devices, and intelligent space. 

Moreover, to elucidate the essential components of coincident 
analysis pertaining to the overlay visualisation of the digital triplet 
concept. The VOS viewer software is used to generate a map based on 
the reviewed network data from the Scopus database, the title-ABS-key 
is “Digital & triplet”. Any kind of network data can be used by this 
programme to generate maps, visualisations, and explorations. More
over, the programme is employed to determine the interconnections of 
pivotal elements as proxies for the significance of systematic research. 
Overlay visualisation, as depicted in Fig. 3, was elected as a more 
effective method of investigating the relationships between the time 
scale elements and the selected vital items. In regard to the map, 34 key 
items encountered the threshold-apropos which, included digital triplet, 
deep learning, digital twin, artificial intelligence and learning systems, 
semantics, knowledge graph, neural networks, convolution neural 
network, e-learning, deep neural network, large dataset, classification, 
computer vision, image analysis, and embeddings, were classified as the 
vital key items with the highest incidence at average publications above 
the year 2020, indicating a new hotspot as digital triplet in the digital 
twin based artificial intelligence field. The distance between items in
dicates the strength of the relationship between them; the shorter the 
distance, the stronger the connection among them. A huge circle rep
resents the item that appears in most publications on the map. Never
theless, vital items were colour-coded based on the year of publication, 
with red circles indicating key items found in the most recent publica
tions above the year 2020 and green circles with the items that appear in 

publications between the period of 2010–2015, indicating computer 
simulation as the most concepts refer to the digital twin. 

In addition, to exemplify the wide range of research topics pertaining 
to the digital triplet paradigm. The breadth of the research topics per
taining to the digital triplet concept is depicted in Fig. 4 and derived 
from the CSV file generated by a total of 168 academic articles limited to 
the field of computer science and engineering indexed in the Scopus 
database pertaining to the themes of “digital triplet” since 2017 and up 
to March 2023. The recurrent pattern that is currently under investi
gation by scholars was unveiled through node size visualising. The au
thors’ keywords served as a co-occurring cluster map. The recurrent 
pattern that is currently under investigation by scholars was unveiled 
through node size visualising. The vast bulge in node size observed in 
the co-occurrence analysis was primarily composed of frequently 
occurring keywords centred around terms related to digital storage, 
digital triplet, deep learning, learning systems, digital twin, and digital 
communication systems. Those nodes comprised 73 items that were 
categorised into 7 clusters. The most frequent co-occurrence keywords 
minted the following clusters: the green cluster with the hotspot of 
digital storage included: classification, codes cross-modal retrieval, deep 
neural network, deep neural networks, hash function, image classifica
tion, image retrieval, metric learning, multi-case classification, seman
tics, teaching, and triplet. The purple cluster of the digital triplet is the 
most frequent keyword that consists of the immediate items: cyber- 
physical system, cyber-physical, digital twin, e-learning, engineering 
process, industry 4, industry 5, artificial intelligence, neural network, 
intelligent activity, knowledge, kaizen, learning factory, and production 
system. And the light blue cluster includes deep learning, computa
tionally efficient, computer vision, learning systems, object detection 
object recognition, speech recognition, and transfer learning. The re
sidual clusters comprise concomitant keywords related to embedding 
capacity, entropy, feature extraction, brain-computer interface, wave 
late transforms, neuromorphic engineering, computer simulation, neu
rons, brain-machine interface, decision making, detection, discrimina
tion, digital communication systems, digital elevation model, face 

Fig. 3. Overlay visualisation as a coincident analysis of the pivotal items pertaining to the digital triplet concept. VOSViewer programme created the map from the 
Scopus database. The size of the circle was decided by the frequency of each vital item. According to the colour scale, the colours of the circles reflected the critical 
item’s score since publication. 
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recognition, internet of things, knowledge graph, and large dataset. 

3. The evolution of the digital twin definition 

3.1. The digital twin concept 

In responding to the initial query, we will delve into the distinctions 
between the digital twin and simulation. Additionally, we will explore 
the historical background and evolution of the digital twin concept, 
tracing its transformation from the traditional model to the advanced 
stages of the cognitive digital twin and digital triplet paradigms. 

The notion of the digital twin was initially introduced within 
research communities in 2002, with a draft version of the technology 
roadmap proposed by NASA in 2010 (Shafto et al.); However, the 
research community has actively pursued the development of a virtual 
representation of physical assets for manufacturing activities 
throughout the entire product life cycle since as early as 1989. During 
this time, a research team at Osaka University made significant strides in 
this field by devising a proposal for virtual representations of physical 
assets. This proposal covered a wide range of aspects, including process 
modelling, time information modelling, responses to control commands, 
and the interconnection of physical systems. It entailed integrating 
product models and factory models within a real-time virtual 
manufacturing system, utilizing the Intelligent CAD framework and time 
information modelling, both implemented in both computer systems 
and the physical world (Onosato and Iwata, 1993). 

In a related development, the concept of Mirror Worlds preceded the 
digital twin idea in 1991. Introduced by David Gelernter, Mirror Worlds 
represented a replicated model of reality based on information trans
mitted from the actual world. It aimed to provide a lucid and humanistic 
understanding of software models interacting with reality (Gelernter, 
1992). 

Consecutively, a comparable concept, known as the “Mirrored 

Spaces Model” (MSM), was introduced at the University of Michigan. 
Coined by Michael Grieves in 2002, this concept involved creating 
software models that imitate reality based on data input from the 
physical world. Grieves presented a model comprising three compo
nents: physical space, digital space, and a network and interaction 
mechanism for exchanging data and knowledge among physical assets 
and their digital counterparts. This framework was named the ’Mirrored 
Spaces Model’. It featured multiple virtual spaces corresponding to a 
single physical space, allowing for the exploration of various layout 
options (Grieves, 2005). 

In 2003, Kary Främling and colleagues introduced an agent-based 
architecture to address the inadequacies in information transmission 
during the production process. This innovative architecture involved 
associating a virtual agent with each product item, thereby enhancing 
efficiency in “Product Lifecycle Management” (PLM) (Främling et al., 
2003). Eventually, in 2006, Grieves made modifications to the concep
tual framework previously known as the “Mirrored Spaces Model”, now 
termed the “Information Mirroring Model”. This revised model placed 
significant emphasis on the bidirectional transmission mechanism. It not 
only enabled bidirectional communication but also facilitated the cre
ation of multiple virtual spaces within a single physical space, thereby 
enhancing the system’s capabilities (Grieves, 2009). 

In the initial phases of the Digital Technology (DT) era, practical 
applications of digital twins were restricted due to technological limi
tations. These constraints encompassed factors such as limited or absent 
internet connectivity for devices, underdeveloped machine algorithms, 
insufficient data storage and management capacities, and low 
computing power. However, after 2010, NASA formulated a precise 
definition for the digital twin concept. They described it as a virtual copy 
or model of a physical entity, referred to as a physical twin, mimicking 
the state of its real counterpart through real-time data interaction 
(Shafto et al.). This marked a significant milestone in the evolution of 
digital twin technology. 

Fig. 4. Co-occurrence cluster map, the co-occurring keywords related to “Digital triplet“.  
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This concept represents an evolution of its ancestral paradigm, which 
traces back to the Apollo program, where two identical space vehicles 
were constructed to mirror each other between space and Earth. This 
historical context laid the foundation for the digital twin concept. It was 
articulated as “an integrated multi-physics, multi-scale, probabilistic 
simulation of a vehicle or system that utilizes the best available physical 
models, sensor updates, fleet history, etc., to replicate the life of its flying 
twin.” Following this conceptualization, the paradigm gained traction, 
especially in the realm of the US Air Force. They adopted Digital Twin 
technology for designing, maintaining, and predicting the performance 
of their aircraft. The proposed framework involved leveraging Digital 
Twin technology to recreate the physical and mechanical attributes of 
the aircraft, with the goal of predicting potential fatigue or structural 
issues. This proactive approach ultimately aimed to extend the aircraft’s 
remaining useful life (Glaessgen and Stargel, 2012). 

Furthermore to ensure comprehensive control over aircraft 
throughout its entire operational life (Tuegel et al., 2011), a digital twin, 
described as an “ultra-high fidelity model of individual aircraft,” was 
developed by E. Tuegel and colleagues. This digital twin model was not 
only instrumental for aircraft control but also held potential for future 
applications, including real-time monitoring of aeronautical vehicles 
and fostering sustainable space exploration initiatives. 

Originally, the digital twin framework was proposed to anticipate 
the product life cycle, without necessarily encompassing the entire 
manufacturing process. However, based on literature findings, it is 
evident that before 2017, the digital twin concept primarily found 
application in product design. Since then, its scope has significantly 
expanded to cover the entire manufacturing life cycle. This expansion 
involves creating digital twins not only for products but also for 
manufacturing processes, system performance, and services (Zhang and 
Zhu, 2019). Despite variations in definitions and descriptions, as high
lighted in Table 2, the fundamental elements of the digital twin concept 
remain consistent across diverse industries and applications. While 
definitions may differ, the core concepts of digital twins are comparable, 
providing a foundational framework regardless of the specific industry 
or context. 

In fact, since 2016, the concept of the digital twin has evolved into a 
strategy for establishing a collaborative, flexible, and integrated 
manufacturing environment. This achievement is made possible through 
a closed-loop, bidirectional communication platform that facilitates the 
simultaneous evolution of assets in three pivotal domains: within the 
physical realm, between the physical and virtual realms, and between 
historical and real-time data sources (Canedo, 2016; Gabor et al., 2016; 
Schroeder et al., 2016). All entities within the manufacturing system 
must be interconnected, monitored, and controlled utilizing state-of-the- 
art automation technology, information technologies, network in
frastructures, and software, collectively known as integrated physical 
assets. This interconnected framework forms the basis for the modern 
approach to manufacturing and underscores the importance of seamless 
integration across various technological domains. 

A significant obstacle and challenge in achieving the objectives of 
smart manufacturing has been the seamless integration of the virtual 
realm with the actual operational space. The digital twin framework 
serves as a vital solution, providing the essential connectivity to effort
lessly link data streams within a manufacturing chain. This bridging of 
the gap between the virtual space and the physical realm in real-time 
reshapes the dynamics of demand and supply, enabling the automa
tion of tedious tasks related to information transfer within a system and 
governing how this information is perceived and transmitted. Assets in 
the digital twin framework include work-in-progress and active re
sources such as machinery, robots, workers, vehicles, intelligent devices, 
manufacturing equipment, sensors, and communication gateways. 
However, what sets digital twins apart during their development is their 
reliance on real-time data to accurately replicate system performance. 
This enables predictive, dominant, and intelligent activities. In contrast, 
computer models and simulations are primarily used to understand 

Table 2 
The digital twin concept across various industries and applications.  

No year reference definition 

1 2015 (José Ríos et al., 2015) “Digital counterpart of a physical product” 
2 2015 (Bielefeldt et al., 2015) “Multi-physical computational and ultra- 

realistic models associated with each 
unique aircraft and combined with known 
flight histories” 

3 2016 (Kraft, 2016) "An integrated multi-physics, multi-scale, 
probabilistic simulation of an as-built 
system, enabled by Digital Thread, that 
uses the best available models, sensor 
information, and input data to mirror and 
predict activities/performance over the 
life of its corresponding physical twin" 

4 2016 (Canedo, 2016) “Digital representation of a real object” 
5 2016 (Gabor et al., 2016) “The simulation of the physical object to 

predict its future behaviour” 
6 2016 (Schroeder et al., 

2016) 
“Virtual representation of a real product in 
the Cyber-Physical Systems context” 

7 2016 (Boschert and Rosen, 
2016; Rosen, 2015) 

“A comprehensive physical and functional 
description of a component, product or 
system, which includes all information of 
the current and subsequent lifecycle 
phases” 

8 2017 (Grieves and Vickers, 
2017) 

“A set of virtual information constructs 
that fully describes a potential or actual 
physical manufactured product from the 
micro atomic level to the macro 
geometrical level” 

9 2017 (Brenner and Hummel, 
2017) 

“A digital copy of a real factory, machine 
and worker that is created and can be 
independently expanded automatically 
updated as well as being globally available 
in real-time” 

10 2017 (Stark et al., 2017) “The digital representation of a unique 
asset (product, machine, service, product 
service system or another intangible 
asset), that compromises its properties, 
condition and behaviour using models, 
information and data” 

11 2018 (Liu et al., 2018) “The digital twin is actually a living model 
of the physical asset or system, which 
continually adapts to operational changes 
based on the collected online data and 
information, and can forecast the future of 
the corresponding physical counterpart". 

12 2018 (Talkhestani et al., 
2018) 

"A Digital Twin is an always sync digital 
model of existing manufacturing cells that 
can be used to reduce time and risk of 
reconfiguration by early detection of 
design or process sequence flaws of the 
system in virtual commissioning and 
simulation" 

13 2018 (Tao, 2018) “A real mapping in the product life cycle of 
all constituents using physical data, virtual 
data and interaction data among them” 

14 2018 (Eisentrager et al., 
2018) 

“digital model of a real object containing 
lifecycle that dynamically synchronized 
data in real-time, in order to gain 
knowledge that can be transferred to the 
real object” 

15 2018 (Zhuang et al., 2018) “Virtual model in the virtual world that 
can dynamically simulate its physical 
counterpart’s characteristics, behaviour, 
life, and performance in a timely fashion” 

16 2018 (Tharma et al., 2018) “A virtual reflection describes the 
exhaustive physical and functional 
properties of the product among the whole 
life cycle for data streaming of product 
information” 

17 2019 (Biesinger et al., 2019) "Digital twin is an automatic creation of a 
digital production system that should 
contain knowledge of the current cycle 
times of each station and production line 
and integrate the data and information 
about each asset coming from the cyber- 

(continued on next page) 
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general trends and generate broad predictions. These models are rarely 
utilized to precisely represent the current state of a system in real time. 
The reason for this limitation lies in the absence of instant data, 
rendering these models or simulations inert. They cannot adapt or 
generate new predictions unless novel data is supplied to them. 

Merely having real-time data is not sufficient for digital twins to 
function effectively. It is crucial that the data is automatically integrated 
into the digital twin, and the transition from physical to digital and vice 
versa is bidirectional. However, as highlighted in studies by Liu et al. 
and W. Kritzinger et al. (Liu et al., 2021; Kritzinger et al., 2018), there 
are instances where academic papers refer to digital models or shadows 
as digital twins. These references often focus on the investigation and/or 
characterization of the ’Digital Model’ or ’Digital Shadow’, despite the 
authors’ claims that these constructs were digital twin technologies. To 
address this issue, the key distinctions between digital twins and simu
lations are explained in the following section. 

3.2. Digital twin and simulation 

To gain a thorough understanding and comprehensive comprehen
sion of the digital twin concept, it is imperative to clarify the relation
ship between digital twins and simulations within the broader context of 
digital transformation. Resolving the ongoing debates and establishing a 
clear understanding is essential. By defining and exploring the various 
viewpoints that exist, we can eliminate ambiguities in the debates and 
achieve a more comprehensive comprehension of the topic. 

The profound transformation induced by digitalization in the in
dustrial landscape is provoked by extensive data collection and analysis. 
This transformation operates within a paradigm that intricately in
tertwines and eminently integrates digital space, physical space, and 
cyberspace (Mourtzis et al., 2022; Aheleroff et al., 2021; Adel, 2022). At 
the heart of this transformation lies the digital twin, which essentially 
serves as a digital representation of real-time components, processes, 
systems, and even interconnected systems. It achieves this by harnessing 
and updating a continuous stream of real-time data acquired from 
Internet of Things (IoT) enabled devices in the physical space. This 
influx of data enables the digital twin to imitate and simulate the po
tential, current, and future interactions between the physical counter
part and its digital representation. This high-level information must be 
integrated with remarkable fidelity into digital replicas within virtual 
environments. The seamless synchronization of real-time data between 

the digital space and physical realm should be achieved (Aheleroff et al., 
2021; Bohlin et al.; Boschert and Rosen, 2016; Hehenberger and Brad
ley, 2016). This synchronization forms the backbone of the digital twin, 
facilitating bidirectional and multiplexing data modulations between 
the tangible and its virtual counterpart. These interactions are vital, 
enhancing the simultaneous applicability of dynamic operations and 
ensuring sufficient synchronization of twins’ interactions. This syn
chronization is contingent upon the aggregation of holistic real-time 
data through Cybertronics interfaces (Zheng et al., 2021; Fukuyama, 
2018; Shafto et al.; Boschert and Rosen, 2016). In contrast, simulation 
serves as a static functionality and sedentary interface within a systemic 
approach, replicating potential real-world scenarios through “what-if 
scenarios” rather than replicating the current state and present cir
cumstances (D’Amico et al., 2022; Shafto et al.; Lu et al., 2020). The 
digital twin, on the contrary, demystifies not just what is happening, but 
also what might happen. It extends beyond design limits and boundary 
conditions, elaborating on the entire design and encompassing contin
uous macro activities and enhancing the simultaneous applicability of 
dynamical operations and sufficient synchronization of twins’ interac
tion contingent upon adjacent aggregation of holistic real-time data. 
These activities include monitoring, execution, modification, adapta
tion, optimization, and domination the entire lifecycle of the system, 
process, and product in real-time. The digital twin, therefore, offers a 
comprehensive and dynamic understanding of the ongoing processes, 
providing insights that stretch beyond the scope of traditional simula
tion methodologies. 

Prior to 2016, the research community regarded simulation as a 
fundamental enabling function of digital twins. This approach involved 
developing digital models that relied on mathematical equations and 
terminology to create reliable purely data-driven models. However, the 
essence of the digital twin lies in its virtual counterpart, which serves as 
the core. This virtual counterpart must encompass integrated Multi
physics, multidomain, multiscale simulations, creating an ultra-realistic 
digital model of the physical system and meta-model with high-accuracy 
data-driven elements rather than relying solely on physics-based models 
(Schleich et al., 2017; Wright and Davidson, 2020; Nakagawa et al., 
2021). Expanding the interoperability of this virtual counterpart in
volves continuous efforts to minimize harm or deterioration. This in
cludes generating, managing, and utilizing metadata, real-time data, 
and information obtained from reliable sources across the system’s 
entire lifecycle. Through this approach, a digital surrogate model can be 
developed, which integrates seamlessly with the physical space, forming 
a comprehensive digital twin (Wright and Davidson, 2020). Even though 
the functionality and applicability of the digital twin are elaborately 
dedicated and derived from the previous clues, we can enumerate the 
wide margins that discriminate the digital twin against simulation:  

• Ultra-Realistic Digital Model: Digital twins must encompass highly 
realistic digital models capable of imitating and emulating the 
physical world. These models should evolve with reliable fidelity, 
optimizing the interaction of data-driven digital artifacts by inte
grating multiphysics, multidomain, and multiscale simulations.  

• Dynamic Data Synchronization: Synchronization between the 
digital twin and its physical counterpart, including components, 
subsystems, and systems of systems, will thrive with highly dynamic 
holistic data acquisition, optimisation, interpretation, preservation, 
and bi-directional data transmission. This encompasses real-time 
data, metadata, historical data, probabilistic data, and virtual 
sensor data. The digital twin should retain a high response rate and 
low latency of data transmission, integrating digital interfaces and 
data repositories in cyberspace. In this iterative retrieving of real 
time data, digital threads, acting as a shield for digital twin 
computation and network capability, must be streamlined to cope 
with AI and IoT in big data analytics and to enhance the maturity of 
digital twins. 

Table 2 (continued ) 

No year reference definition 

physical system on the shop floor for time 
reduction during the integration process of 
a new product" 

18 2019 (Madni et al., 2019) “a virtual instance of a physical system 
that is continually updated with the 
latter’s performance, maintenance, and 
health status data throughout the physical 
system’s life cycle” 

19 2019 (Kabaldin et al., 2019) “A set of mathematical models together 
with statistical methods and machine 
learning characterizing in real-time the 
different states of the equipment, 
processes, and business framework in 
production conditions” 

20 2019 (Negri et al., 2019) “An integrated simulation of a complex 
product/system through physical models 
and sensor updates” 

21 2019 (Liu et al., 2019) “a virtual object or a set of virtual things 
defined in the digital virtual space, which 
has a relationship with real things in the 
physical space” 

22 2019 (Wang et al., 2019) “paradigm with online measurements that 
are dynamically assimilated into the 
simulation world for guiding the real 
world adaptively in reverse”  
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• Integration with Cyberspace: With DT’s unique framework and 
holistic functionality, it should not be limited to embedded software 
systems for simulation and monitoring. They should be seamlessly 
integrated with cyberspace, exceeding AI expectations. This inte
gration contributes to the convergence of human insights and pro
ductivity within digital societies, fostering intelligent industry and 
smart cities in a metaverse environment (Wang et al., 2022; Aloqaily 
et al., 2022). Incorporating artificial intelligence into data analytics, 
specifically digital threads, and leveraging advanced machine 
learning techniques and cognitive computing capabilities in the 
development of intelligent digital twins (Saracco, Dec. 2019)are 
especially pertinent to achieving cognitive abilities and a dominant 
framework (Bouachir et al., 2022; Zolotová et al., 2020).  

• Leveraging Human Insights: Digital twins should go beyond 
imitating their physical counterparts. They should leverage aware
ness and knowledge from humans for adaptation and influencing 
heuristics strengths, allowing them to transcend boundaries and 
sustain in different cyberspace domains (Wang et al., 2022; Saracco, 
2019).  

• Integration of Virtual and Augmented Reality: Utilizing virtual 
reality and augmented reality technologies as a link between the 
physical, digital, and cyberspace realms, alongside AI, facilitates the 
convergence of human insights, knowledge, and productivity into 
the digital counterpart (Siemens, 2022). This integration erases the 
distinction between the digital twin and its physical realm, leading to 
seamless integration (Saracco, 2019). The symbiosis between digital 
twins, humans, and the intelligent activity world gives rise to a 
cyber-superorganism species referred to as a digital triplet (Aloqaily 
et al., 2022; Umeda, 2019; Wang et al., 2022; Saracco et al., 2019). 
This concept blurs the lines among physical, digital, and cyber 
worlds, forming a community of Cyberbiont through the industrial 
metaverse, specifically in Industry 5.0. 

4. Cognitive digital twin 

The Cognitive Digital Twin (CDT) epitomizes an amplified and 
elevated iteration of the Digital Twin (DT). With three essential con
stituents, the digital twin seamlessly reconciles the virtual and physical 
domains; the tangible world encompassing systems, subsystems, and 
components; the digital or virtual representation, also known as 
shadows; and the intricate interconnections that seamlessly bridge the 
virtual and physical domains. 

Contrarily, CDT typically encompasses a multitude of DT models that 
encompass integrated semantics and topology definitions. In the realm 
of industrial systems, it is imperative for the CDT to incorporate digital 
representations of the diverse subsystems and components. It is note
worthy that each of these entities assumes a distinct status throughout 
the system’s entire lifecycle. As evidenced in the literature, several re
searchers have investigated the viability of enhancing the cognitive 
abilities of digital twins using semantic technologies. In 2013, the Kitami 
Institute of Technology’s research group (Ullah et al., 2013) pioneered 
the integration of human and machine cognition. Their approach aimed 
to enhance the heuristic capabilities of an internet-based semantic 
model of the manufacturing process for representing newly acquired 
knowledge. The model improved the machine’s comprehensibility of the 
concept maps related to the system’s knowledge (Ullah et al., 2013). 
Following that, Ahmed El Adl presented the inaugural notion of 
“Cognitive Digital Twins” during a prominent industry symposium in 
2016 (El Adl, 2016), In his discourse, he delved into the cognitive pro
gression of Internet of Things (IoT) technologies and put forth the 
concept of Cognitive Digital Twins, elucidating their distinctive attri
butes and classifications (Jinzhi et al., 2022; Banerjee et al., 2017). El 
Adl provided a precise definition of Cognitive Digital Twins as “a 
comprehensive digital counterpart, enhancement, and astute compan
ion to its physical counterpart, encompassing all subsystems across its 
lifecycle and evolutionary stages.” Subsequently, in 2017, during the 

cognitive computing and artificial intelligence workshop held at IBM 
(FarizSaracevic, 2017), a related term, denoted as CDT, emerged with 
distinct envisioned functionalities. These Cognitive Digital Twins 
leverage real-time data from Internet of Things (IoT) sensors and other 
pertinent sources to facilitate heuristic, logical analysis, automated 
adaptation, and reasoning thereby enhancing decision-making pro
cesses. Furthermore, Banerjee et al. conducted a thorough investigation 
into the capabilities of knowledge graph technology in supporting the 
flourishing of Digital Twins (DT) within the contrivance of intricate 
systems (Banerjee et al., 2017). Their study aimed to extract and infer 
knowledge from comprehensive data within production systems, 
demonstrating the potential of knowledge graphs as a valuable tool in 
this context. Moreover, during the year 2018, the amalgamation of 
knowledge graph and semantic modelling methodologies was employed 
to retrieve comprehensive data from intricate systems and augment the 
capabilities of digital twins to amalgamate exhaustive information 
(Kharlamov et al., 2018), Kharlamov et al., the scholars behind this 
research, introduced a conceptual paradigm for an enriched digital twin 
that heavily relies on semantic modelling and ontologies. This frame
work facilitated the capture of the distinctive attributes and circum
stances associated with a particular system, as well as its 
interconnectedness with other subsystems within a multifaceted 
domain. On the contrary, Boschert et al. embarked on a research 
endeavour that delved into a groundbreaking notion of digital twins 
attuned to capitalizing on knowledge graphs as a fundamental tech
nology (Rosen et al., 2018, 2019). This innovative paradigm referred to 
as the next-generation digital twin (nextDT), posited that individual 
digital twin models in isolation lack the capacity to encompass all the 
requisite activities throughout the entirety of the lifecycle. During the 
early stages of a fleet’s operations, this hybrid paradigm combines 
physics-based models with sensor data to optimize performance. As the 
fleet matures and gathers a substantial block of data, data-centric ap
proaches become increasingly significant, and take on a heightened 
level of importance in enhancing decision-making and improving 
overall efficiency. Hence, the research strongly endorsed the integration 
of these models to efficiently tackle a diverse array of business goals, 
while harnessing the potential of knowledge graphs as a core technology 
to establish connections among simulated models and descriptive 
models by retrieving diverse data blocks. In the subsequent year, the 
authors (Rosen et al., 2019) put forth a visionary perspective on the 
future of Digital Twin technology and delved into the economic aspects 
of the Digital Twin and explored whether it could evolve into a dynamic 
mechatronics ecosystem. The forthcoming iteration of the Digital Twin 
is envisioned to heavily rely on semantic technologies, such as ontol
ogies, to establish seamless connectivity among diverse sources of in
formation with flexible utilization of semantic technologies to empower 
a network of digital components by harmonious integration between the 
physical and virtual realms necessitated the effective synchronization of 
measured data, even when confronting with massive and intricate 
datasets, with their corresponding virtual representations. 

Researchers embarked on an exploration of the notion of collabo
rative symbiosis between humans and machines, with a particular focus 
on a cognitive digital counterpart. In their study, fernández et al 
(Fernández et al., 2019). delved into the practical application of the 
cognitive digital twin as an Associative Cognitive Digital Twin (AC-DT). 
This framework sought to facilitate a seamless and harmonious 
convergence between the augmentation of human capabilities and the 
capabilities of machines, progressively enhancing intellectual capacity 
and awareness. The primary objective was to devise a cognitive archi
tecture tailored to Symbiotic Autonomous Systems, leveraging a graph 
data model supporting artificial consciousness manifestation. This 
model played a pivotal role in developing a higher-level cognitive 
framework that catered specifically to critical safety systems, ensuring 
the precise execution of machine operations and process workflows. 
Additionally, there were dedicated investigations aimed at evaluating 
human safety aspects, with a particular emphasis on integrating human 
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cognition and behaviour into the environment of the Associative 
Cognitive Digital Twin. The cognitive digital twin (CDT) was charac
terized as a digital collaborative-based AI, possessing the heuristic ca
pacity to acquire knowledge, dynamically adjust, and seamlessly 
assimilate diverse information sources to accomplish specific objectives 
(Fernández et al., 2019). 

By 2020 (Lu et al., 2020), the capacity of digital twins to enhance 
decision-making in IoT system development was accomplished by Lu, 
Zheng et al. They availed the concept of Cognitive Twins, which referred 
to a Knowledge Graph (KG) oriented framework based on digital twins. 
This framework incorporated augmented ontology and semantic ten
dency to evaluate IoT systems and comprehend the evolution of virtual 
models, thereby enhancing the interconnectedness among these models. 
The Cognitive Twins (CT) approach was supported by Knowledge Graph 
frameworks, utilizing contemporary software and platforms to facilitate 
the integration of CT model components. The authors proposed CT as a 
solution to address the challenge faced by digital twins in identifying 
interrelationships across different domains. In the CT framework, each 
virtual model was assigned a timestamp at various stages of its lifecycle, 
distinguishing it from traditional digital twins. 

To enhance the intelligent capabilities of a manufacturing system 
and enable autonomous decision-making, Ali et al. (Intizar Ali et al., 
2021), employed a framework comprising three tiers: access, analytic, 
and cognitive tier. The architecture aimed to transform conventional 
digital twins into intelligent agents capable of accessing, analysing, 
comprehending, and responding to their current state. The primary 
objective was empowering manufacturing resources to possess cognitive 
functions, such as critical thinking, knowledge acquisition, and under
standing dynamic industrial environments. This was achieved through 
the integration of human cognition (Intizar Ali et al., 2021), AI tech
nologies, and Semantic Web techniques. The cognitive tier, facilitated 
by domain expertise, edge computing and global knowledge bases (Lu 
et al., 2020), played a pivotal role in enabling advanced cognitive 
functionalities. The cognitive digital twin (CDT) also established intri
cate communication networks to seamlessly integrate multiple digital 
twins, enabling autonomous decision-making processes. 

Furthermore, Al Faruque et al. (Al Faruque et al., 2021) inaugurates 
the concept of cognitive digital twins, which canvasses a significant 
advancement in the realm of digital twins. The authors propose Cogni
tive Digital Twins (CDTs) as an innovative approach for manufacturing 
systems, capitalizing on cutting-edge advancements in cognitive sci
ence, artificial intelligence, and machine learning (Lu et al., 2021). This 
paradigm avails digital twins to embody key aspects of human cognition, 
including attention, perception, and memory. By assimilating these 
cognitive capabilities, CDTs possess the ability to selectively concentrate 
on pertinent information, provoke meaningful depictions of data, fetch 
knowledge and encode data (Intizar Ali et al., 2021). This evolutionary 
stride in digital twin technology sets the stage for heightened abilities in 
decision-making and problem-solving within manufacturing systems, 
propelling us closer to the realization of Industry 4.0 goals. According to 
the literature, the Cognitive Digital Twin (CDT) is described as an 
enhanced digital replica that encompasses advanced cognitive capabil
ities. This evolution of the current Digital Twin (DT) concept aims to 
provide a more intelligent, comprehensive, and holistic representation 
of complex systems throughout their entire lifecycle. Semantic tech
nologies, such as ontology and knowledge graphs, play a crucial role in 
empowering DTs with augmented cognitive abilities. These cognitive 
capabilities include perception, which involves continuously evolving 
representations of data related to the physical twin and its surrounding 
environment. Attention, another cognitive function, allows for selective 
focus on specific tasks, goals, or sensory information, either through 
intentional actions or in response to environmental cues and conditions. 
Memory is yet another cognitive function that encompasses the pro
cesses of encoding, storing, maintaining, and retrieving information. 
The reasoning is the cognitive process of deriving outcomes that align 
with a given starting point or set of conditions, while problem-solving 

involves identifying solutions for specific challenges or achieving 
desired objectives. Lastly, learning is the transformative process of 
converting the experiences of the physical twin into tacit knowledge, 
which can be applied to future encounters and situations. 

5. Digital triplet 

Digital twins embody a significant development in anticipating 
future system interactions and elucidating observed real-time perfor
mance of the operation. During the initial flourishing of the digital twin 
paradigm, the research community was delicate to duplicate a 
straightforward elucidation of the digital twin in contrast to the 
modelling and simulation. However, in the pursuit of a rejuvenated 
paradigm that encompasses heuristic abilities for advanced knowledge 
extraction and maturation, researchers and scientists have undertaken 
extraordinary endeavours to delineate novel concepts and paradigms of 
the digital twin. These endeavours aim to fulfil the demands for intel
ligent and cognitive capabilities, as well as the convergence of the 
intelligent world, digital world, and human interaction, forming what is 
referred to as the digital triplet. 

Although the notion of the digital triplet remains nascent in the 
literature and lacks a lucid explication, the initial proposition of the 
’digital triplet’ paradigm emerged from a Japanese research team at the 
University of Tokyo, aiming to bolster intelligent activities with digital 
engineering operations. The pioneering work of Umeda et al. (Umeda 
et al., 2022; Umeda et al., 2019; Umeda et al., 2020), introduced the 
term “digital triplet” or D3, referring to this concept. Recently, the 
digital triplet framework for integrating decision-making and incorpo
rating the intelligent activity world of skilled engineers with the 
generalized production system consulting process model (GCPM) was 
proposed in the article (Sato et al., 2023), in which the iterative 
framework facilitated a holistic comprehension of knowledge transfer 
and tools utilised in the entire process of energy-saving system im
provements. For augmenting human’s cognitive, perceptual capabilities 
during interactions between humans and robots, R. Niiyama and col
leagues introduced the digital triplet framework. This framework facil
itates the remote control of humanoid robots through Cybernetic avatars 
(CAs) (Niiyama et al., 2023; Ishiguro, 2021), encompassing both robotic 
and three-dimensional (3D) graphic avatars. These avatars, along with a 
suite of technologies, augment individuals’ physical, cognitive, and 
perceptual capabilities. Notably, In the realm of digital twins, inflatable 
cybernetic avatar (CA) featuring a humanoid upper body and having the 
potential to serve as a bridge connecting the virtual cyber world with the 
tangible real world and function as the tangible representation of a 
virtual agent in the real world (Niiyama et al., 2023). Furthermore, to 
enhance the integration of individuals into cyberspace and effectively 
process, structure, and acquire human knowledge, a new generation of 
digital twins, evolving from the initial digital triplet concept, was 
introduced by N. Uchihira et al. (Uchihira et al., 2023) This innovative 
approach aims to enrich the behavioural and vital information related to 
human knowledge, with a specific emphasis on their interactions within 
physical environments. This goal is achieved by organizing “Gen-Ba 
knowledge”, which encompasses not only explicit but tacit and latent 
knowledge (Nonaka and Takeuchi, 1995), seamlessly blending the realm 
of human intellectual activities into both physical and cyberspace di
mensions. The researchers employed an intelligent “voice messaging 
system (SVM)” to capture this “Gen ba knowledge” and digitally 
developed a human interface incorporating human data, including vital 
and behavioural aspects, within cyberspace (Uchihira et al., 2023; 
Uchihira and Yoshida, 2020). 

The digital triplet serves as a unifying framework that seamlessly 
integrates smart technologies with intelligent activities world within 
both the cyber and physical domains. It empowers engineers to 
streamline and enhance streamlined engineering procedures through 
digitization that encompasses both virtual and tangible realms. 
Furthermore, Dutch researchers at the University of Twente have put 
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forth a logical interpretation of the digital system reference in the 
context of production environments, conceptualizing it as a digital 
triplet (Lutters and Damgrave, 2019; Lutters et al., 2019). This paradigm 
elucidates the pivotal role and responsibility of the digital twin para
digm in facilitating predictive modelling, adaptive decision-making, and 
leveraging machine learning techniques to dedicate digital trans
formation. The intention behind these depictions is to demonstrate the 
significance of the digital twin paradigm’s capacity to consolidate digital 
transformation. The three interconnected components correspond to the 
interactive paradigm that constitutes digital systems: the digital twin, 
encompassing an amalgamation of data, information, models, methods, 
tools, and techniques, serves as a faithful replication of the system. The 
digital prototype embodies the envisaged and desired state of the 
emulated system, while the digital master corresponds to the anticipated 
state of the system’s validity, integrity and adaptation through the 
application of machine learning in imitating endeavours (Lutters and 
Damgrave, 2019; Lutters et al., 2019). This entails leveraging advanced 
algorithms and data-driven approaches to continually refine and opti
mize the system’s performance, making informed decisions based on 
accumulated knowledge and feedback. Furthermore, the vital procedure 
of retrieving data from the offline testing environment to the online 
production facility involves redefining interfaces and standardizing the 
exchange of data, information, and knowledge between physical and 
digital systems. This ensures a smooth transition of knowledge acquired 
offline to real-world applications in a verifiable manner. To bridge the 
knowledge gap during digital system training and ensure the reliability 
of data transfer for real-time intelligent decision-making, E. Wescoat and 
colleagues (Wescoat et al., 2023) introduced the Surrogate Digital 
Triplet framework. This framework incorporates a third system, known 
as the surrogate triplet, facilitating data transfer between the laboratory 
(offline) and production (online) environments. It refines the D3 para
digm proposed by Umeda et al., evolving into the Surrogate Digital 
Triplet with three distinct systems. The prementioned approach sup
ports the training of digital and decision-making systems by assimilating 
additional data and knowledge from offline environments, similar to 
physical equipment. This augmentation enhances model confidence and 
accuracy by effectively addressing data and knowledge gaps. Moreover, 
the imperative need for automating and controlling embedded systems 
in real-time, without direct or indirect human intervene, is crucial, 
particularly in ensuring the safety of working environments, especially 
during the critical pandemic periods. This digitalised model is especially 
vital in tasks such as disinfecting laboratories and classrooms within 
university context. D. Niyonkuru and G. Wainer (Niyonkuru and Wainer, 
2021)introduced a versatile platform that enables models to be utilized 
for simulation (in virtual time), visualization, or real-time execution, all 
rooted in the digital triplet concept, functioning as a discrete-event 
formal model tailored to the specific system. The digital triplet model 
draws upon information from digital twin models to evaluate students’ 
comportment through releasing CO2 in classrooms. Additionally, it in
tegrated digitalised automation studies of the entire system with a 
formal model for real-time embedded controllers (Niyonkuru and 
Wainer, 2021). 

In addition, in the context of enhancing the cognitive capabilities of 
digital models and emulating human interactions with a product effec
tively and support human-centred product development. Digital triplet 
based cognitive modelling entails enabling mental planning of spatial 
transformative actions linked to object interactions. This new paradigm 
seeks to enhance spatial cognition by providing digital models with the 
ability to recognize objects in three-dimensional space and strategically 
plan interactions with these objects. In In this context, cognitive pro
cesses must incorporate perceptual dependencies to emulate human 
interactions with a product effectively and support human-centred 
product development (Preuss, 2023; Preuss and Russwinkel, 2021). 
The authors of research paper (Preuss, 2023) developed a comprehen
sive cognitive digital twin to integrate digital product systems and 
human digital twins. This cognitive digital twin comprises three key 

components: a digital twin of the physical systems in real-time, a digital 
shadow for data retrieval, and a cognitive digital twin of human 
behaviour with reasoning and predictive capabilities for human in
teractions with both physical and virtual systems in real time. 

The intelligent activities world and the master component of the 
digital system represent the elevated stages within the digital twin 
paradigm. These aspects signify the progression towards more sophis
ticated and intelligent capabilities. The digital triplet concept, originally 
conceived, is a manifestation of this evolutionary advancement, show
casing the implication of intelligence in the realm of digital systems. It 
emphasizes the integration of intelligent technologies and processes to 
enhance system performance and decision-making. Consequently, it 
promotes the convergence of the tangible, virtual, and cognitive realms, 
as well as human cognition, to propel visionary investigations into 
diverse research approaches for harnessing the intelligent and ingenious 
capabilities of this digital transformation. In our previous research 
conducted in 2023 (Alimam et al., 2023). We delineated the definition of 
the digital triplet concept as an executable system encompassing a versatile 
and multifaceted digital interface, these interfaces undergo iterative revital
ization to facilitate virtual deployment by ensuring the seamless real-time 
transmission of two-dimensional data, effectively integrating the realms of 
physical, digital, and cyberspace through appropriate digital twin to elevate 
the full potential of D3, and allowing for the anticipation of scalability, au
tonomy, innovation, optimization, and predictive analytics, to accomplishing 
the cognitive and perceptive potency with the comprehensive data aggregation 
by synergistically leveraging human cognitive capability, knowledge and 
creativity, artificial intelligence, and advanced machine-learning techniques 
(Alimam et al., 2023). 

The authors expounded upon the prospective progression of digital 
systems in exerting heightened command over artificial intelligence (AI) 
and furnishing valuable semantic insights for discerning the Digital 
Triplet, D3. The proposed levels, as delineated by us (Alimam et al., 
2023), can be succinctly encapsulated as follows:  

• Volition: the perceptive level, this entails harnessing the human 
experience and ingenuity, coupled with the application of artificial 
intelligence and machine learning through the comprehensive ag
gregation of data to obviate the necessity for direct intervention in 
intricate decision-making and analytical tasks, synergistically 
harness the cognitive capability, and to attain complete autonomous 
validation and optimization of the process. It integrates human 
expertise and AI technologies to enhance its problem-solving and 
decision-making abilities. In which, the perceptive level learns from 
historical data, patterns, and experiences to improve its performance 
and provide valuable insights to establish a strong basis of cognitive 
capabilities and knowledge-based systems. The twin not only dom
inates its domain but also exhibits a sense of purpose and inten
tionality assigns initiative to drive progress and demonstrates self- 
awareness, autonomy, and the ability to align its actions towards 
achieving its objectives (Alimam et al., 2023).  

• Domination: This level signifies a seamless integration where the 
physical system is regulated and governed based on predictions 
derived from its virtual counterpart and real-time sensor inputs. This 
concatenated approach allows for fine-tuning and control of the 
physical system. It gains a deeper understanding of the system that 
imitates and becomes capable of autonomously controlling and 
optimizing various aspects (Alimam et al., 2023).  

• Maturity: The iterative stage pertains to the real-time scrutiny and 
observation of the tangible actions demonstrated by the physical 
system, facilitated by the deployment of cutting-edge sensors. The 
data acquired from these sensors is subsequently utilized to emulate 
and imitate the system, ensuring a synchronized representation of its 
interaction in real-time. The interrelationship between domination 
and volition level lies in the progression from perception capabilities 
at the maturity level to cognitive abilities at the domination level and 
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finally to a higher level of autonomy and intentionality at the voli
tion level.  

• Sedentary: This duplicating level involves a meticulous replication 
process that encompasses the spark of consciousness of tasks in 
physical space. It entails visualizing and emulating their corre
sponding physical counterparts’ virtual attributes and 
characteristics. 

The term “perceptive” pertains to the digital twin’s capacity to 
observe and comprehend the interactions within its surrounding envi
ronment. It encompasses the capability to anticipate future interactions 
by employing a broader range of cognitive abilities. This includes a 
heightened level of heuristics and reasoning, accompanied by an 
enhanced perception of maturity level. These abilities enable the digital 
twin to actively process information, draw conclusions, and make well- 
informed decisions based on its cognitive capacities. In the context of 
achieving domination and volition levels, the term “perceptive” serves 
as an alternative concept to describe the digital twin’s capabilities at this 
level. It encapsulates the discernment and interconnectedness among 
perception, cognition, and maturity, thereby encompassing the notions 
of domination and volition as a strict combination of intelligent activity 
(Alimam et al., 2023). The intelligent activity world encompasses the 
cognitive aptitude to seamlessly assimilate a diverse array of informa
tion and actively acquire knowledge to support the collaborative nature 
of digital-based artificial intelligence. This facilitates the functioning of 
the digital realm, where information is stored, processed, and commu
nicated. The digital space primarily pertains to the revival and organi
zation of data and information, encompassing digital files, databases, 
software systems, networks, and various other digital resources. The 
digital space is centred around the storage, transmission, and processing 
of digital data and content. Whereas a higher level of discernment and 
interconnectedness of intelligent activities world and digital realm 
serves as cyberspace to seamlessly augment the high level of intelligent 
communication, collaboration, and interaction among humans, digital 
space and physical space through an interconnected network of com
puter systems and the internet, facilitating digital communication and 
interaction. Cyberspace is a smart virtual environment that enables 
communication, collaboration, and interaction that encompasses the 
online world where human integrates into intelligent activities, and 
actively participate in smart virtual environments known as the 
metaverse. 

6. Enabling technologies to enhance the intelligent activity and 
heuristic level of digital twin 

In this section, we aim to address the second research question. In 
Table 3, we classified the enabling technologies of the highlighted dig
ital twin according to the application domain and the definition pro
posed in 66 papers. 

Based on the previous classification, advanced technologies such as 
artificial intelligence, cognitive computing, semantic technologies, 
augmented reality, brain-computer interface (BCI), and the Industrial 
Internet of Things (IIoT) play a crucial role in the development of 
intelligent industrial systems. These cutting-edge technologies are 
essential components for achieving intelligent industrial systems. In this 
regards, digital triplet is an extension of the DT, incorporating advanced 
levels of perceptive, volition and intelligence. Therefore, all the enabling 
technologies necessary for intelligent digital twins are equally vital for 
evolving the cognitive capabilities and perceptual abilities of the digital 
triplet. These technologies serve as the foundation upon which the 
digital triplet’s advanced cognitive and perceptive functions are built, 
enabling a higher level of understanding and interaction within complex 
systems and environments in industrial metaverse. 

6.1. The Industrial Internet of Things (IIoT) 

The Industrial Internet of Things (IIoT) encompasses the infrastruc
ture that facilitates the gathering and transmission of data Through 
interconnected devices and sensors. This data is subsequently employed 
for monitoring and regulating industrial operations, with the aim of 
enhancing productivity, efficiency, and overall performance. In the 
integration of the digital space with the physical space into compre
hensive IoT systems, establishing bi-directional communication with 
operational technology (OT) from the Industrial Internet of Things 
(IIoT) framework is crucial. This tailored approach ensures secure 
communication across the entire IIoT system (Edge-fog-Cloud) and 
fosters interoperability with other IP-based messaging methods like 
OPC-UA to MQTT (Etz et al., 2020; Sierla et al., 2022; Dorofeev et al., 
2020; Zeid et al., 2019). Achieving full integration of industrial IoT in
volves employing emerging technologies such as edge/fog computing, 
5G, machine learning, and wireless sensor networks (WSN) (Özdemir 
and Hekim, 2018). This approach guarantees flexibility, scalability, and 
dependable computation, storage, and network capabilities, thereby 
enabling a wide array of intelligent activities. These activities culminate 
in the development of artificial intelligence of things (AIoT) applications 
(Dai et al., 2022; Zhang, 2020), specifically enhancing the digital 
maturity of digital twins, which imitate the real physical assets in cy
berspace (Aloqaily et al., 2022; Bouachir et al., 2022; Zhang and Tao, 
2021). 

The structure of IIoT enables interoperability for perceiving the 
physical world and transmitting the data of the digital twin in real-time, 
reliably, and efficiently through the wired or wireless network among 
the intelligent activity world, digital, and physical world. With tri tier 
structure of IIoT, the edge computing layer pertains to the computation 
of data at the periphery of a network, in proximity to the origin of the 
data in the physical world, in which the emulation of real-world 
behavior in real-time with minimal latency will be accomplished. 
Edge computing has the capability to perform real-time filtering, spec
ification, and processing of data obtained from the physical world on 
edge devices. The immediacy of data processing enables retrieving the 
data to be utilized in real-time for prompting maturity in digital twins 
when the digital counterpart of the real system will leverage this data for 
training and testing cognitive capabilities. With this ability to transmit 
data with low latency, collaborative processing of data between cloud 
computing and edge computing layers will enhance data processing 
efficiency, minimizing cloud data load, and reducing data transmission 
delay. In which, retrieving data from the terminals of IIoT serves as input 
for the data at maturity levels of digital triplets. 

Furthermore, the integration of diverse data sources and types, as 
well as the expanded storage needs of data generated from edge devices, 
necessitates efficient computing capacities within the realm of combined 
data IoT, cognitive computing, artificial intelligence, and machine 
learning (Singh et al., 2022). To achieve this, a connection between 
physical systems and the social world must be established, leading to the 
development of an intelligent physical-cyber-social system (Wu, 2014; 
Jalali et al., 2017; Bhat et al., 2023; Arunachalam et al., 2022). This 
requires a new paradigm within the cognitive internet of things, relying 
on edge intelligence and cognitive computing to create intelligent al
gorithms for sensing and analysing IoT big data in real time. This 
paradigm is essential to meet the 4C requirements: flexible communi
cation to enhance interoperability among various networks and con
nected devices, scalable computing capable of handling diverse 
computation-intensive tasks to augment human communication with 
interconnected computational infrastructures, prompt decentralized 
control to support and enhance intelligent services and human–machine 
interaction, and a cognitive engine to achieve machine intelligence 
within the IoT connected world. In various research articles, the fusion 
of cognitive computing technology with data generated from Internet of 
Things (IoT) devices has led to the proposition of a cognitive internet of 
things (CIoT) framework. This framework emphasizes the vital role of 
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Table 3 
Enabling technologies of digital twins highlighted in the literature based on the application domain and intended definition.  

No Definition Keywords Reference Application Enabler 

1 “Approach for the management of the 
product models and data of all virtual 
and physical product instances along 
the entire product lifecycle, according 
to the requirements of Smart Product 
reconfiguration processes” 

Virtual 
product twins 

(Abramovici et al., 
2017) 

Product lifecycle management (PLM)/ 
Cloud-based Smart Product 
reconfiguration 

Internet of everything IoX/ 
Cloud 

2 “3D acquisition with high- 
performance processing tools that 
facilitate rapid generation of 
digital models for large production 
plants and factories for optimizing 
and improving human operator 
effectiveness, safety and ergonomics” 

digital simulation (Arisoy et al., 2016) Simulation for production planning/ 
A data-driven approach for mimicking 
human interaction 

Machine learning, Multilayer 
Perceptron 
(MLP) / CAD 

3 “a coupling of the production 
system with its digital equivalent as a 
base for an optimization with a 
minimized delay between the time of 
data acquisition and 
the creation of the Digital Twin” 

Real-life model/digital 
twin 

(Uhlemann et al., 2017) Data acquisition with Multimodal / 
Cyber-Physical Production System 
(CPPS)/ System Optimizing CPS 

Cloud-solution/IoT 

4 “Emerging technology to achieve 
physical–virtual convergence” 

Digital mirror model (Tao et al., 2018) Prognostics and health management 
(PHM) 

Machine Learning/ Extreme 
Learning Machine (ELM) 

5 “Evolved models with high fidelity, 
continuous interactions between 
physical and virtual 
spaces and fused data converging 
those two spaces” 

Digital twin shop-floor 
(DTS)/ physical-virtual 
convergence 

(Tao and Zhang, 2017) Smart Manufacturing Virtual Reality (VR)/Big Data 
Fusion/ Jupiter Tessellation/ 
Augmented Reality (AR) 

6 “Merging and effective method for 
real- 
time interaction and further 
convergence between physical 
space and information space” 

Cyber and physical 
convergence 

(Tao et al., 2018) Product lifecycle management (PLM) IoT/ Big Data Fusion 

7 “Ultra-high fidelity simulation 
characterised by 
their ability to accurately simulate 
events on different scales 
of space and time, based 
on not only expert knowledge, but 
also collecting data from all deployed 
systems 
of their type and thus aggregate the 
experience gained in the field” 

Cognitive System/ 
digital twin model 

(Gabor et al., 2016) Complex smart cyber-physical 
systems/Planning 
and prediction architectural 
framework 

Expert systems/Machine 
learning 

8 “Integrated multi-physics, multi-scale, 
probabilistic simulation of an as-built 
system, enabled 
by Digital Thread, that uses the best 
available models, sensor information, 
and input data to mirror and 
predict activities/performance over 
the life of its corresponding physical 
twin” 

Digital System Model/ 
Digital Thread 

(Kraft, 2016) Analytical framework for aircraft’s life 
cycle/Service life extraction/Real- 
time modelling airframe of the 
multidomain system 

Integrated 
Computational Structural 
Engineering (ICSE)/ 
Computational fluid dynamics 
(CFD) 

9,10 “virtual substitutes of real world 
objects consisting 
of virtual representations and 
communication capabilities making 
up smart objects acting as intelligent 
nodes inside the internet of 
things and services” 

Experimentable Digital 
Twin/Virtual Testbed 

(Schluse and 
Rossmann, 2016; 
Grinshpun et al., 2016) 

Soft Robotics/ holis- 
tic development cycle for control 
engineering/safe working 
environment for man–machine 
interaction 

Versatile Simulation Database 
(VSD)/The microkernel 
architecture 

11 – Flexible digital twin (Guo et al., 2019) Smart Factory design including 
(Conceptual design, elaborate design 
and finalized design)/ Product 
Lifecycle Management(PLM) 

IoT, Big data 

12 – Digital twin/ 
Information modeling 

(Zhang et al., 2020) Intelligent manufacturing/ 
Hierarchical configuration of CPPS 
based on DT 

Cloud Computing/ IIoT/AI/ 
Big Data 

13 “Embedded framework for cross- 
system, discipline, and application 
development on a system level to gain 
insight into the complex system by 
having a bidirectional online data 
stream and interaction between 
human, digital counterpart, and Real 
Twin (RT)” 

Digital Twin/ Virtual 
Testbed/ Interacting DT 

(Cichon and Robmann, 
2018) 

human-robot cooperation/ intelligent 
fusion of human and machine 
capabilities / Human information 
processing HIP (perception, cognition, 
and action) 

Machine learning/Virtual 
Reality (VR), Augmented 
Reality (AR), Mixed Reality 
(MR) 

(continued on next page) 
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Table 3 (continued ) 

No Definition Keywords Reference Application Enabler 

14,15 – Digital counterpart/ 
digital human modelling 

(Malik and Bilberg, 
2017; Malik and 
Bilberg, 2018) 

Lean automation/ human-robot 
hybrid assembly system / Human 
ergonomic analysis/ Virtual 
Commissioning 

AI/ human–machine interface 
(HMI) 

16 “One of the pillars of smart 
manufacturing where by the physical 
and virtual worlds can be synced and 
mimicked each others’ behaviour” 

Digital Twin/ Connected 
Digital Twin 

(Huynh et al., 2019) Prognostics control/Real time 
monitoring in serial or parallel 
manipulator 

IoT/M2M communication/ 
Message Queuing Telemetry 
Transport MQTT/ Open 
Platform Communications 
(OPC) 

17 – Digital twin/ digital 
human model 

(Havard et al., 2019) Human-centred design of 
manufacturing process/ human and 
robotic arm collaboration/ 
Ergonomics Assessment 

Virtual Reality (VR), 
Augmented Reality (AR)/ 
M2M communication 

18 “Practically viable 
industrial solution, which can start 
driving control and management 
systems of enterprises in the nearest 
future” 

Digital Twin/Digital 
twin controller/Digital 
clone 

(Kuts et al., 2019) Human-robot integration/ 
synchronised control between virtual 
and real space. 

Virtual Reality (VR), 
Augmented Reality (AR), 
Mixed Reality (MR) 

19 – Digital twin (Jin, 2020) Soft-robotic gripper system/ 
human–machine interfaces (HMIs)/ 
real-time object recognition and 
prediction 

Machine learning, Support 
vector machines (SVMs)/ 
patterned-electrode tactile 
sensor 

20 – Digital Twin/Digital 
modelling 

(Liang et al., 2020) Human-robot collaboration/Real-time 
synchronisation of virtual space and 
physical space 

BIM Building information 
modelling/ IoT / Message 
Queuing Telemetry Transport 
MQTT 

21 – Digital twin (Burghardt et al., 2020) Human-robot interaction/trajectory 
optimization 

IoT/Virtual reality/Human- 
computer interaction 

22 – Digital Twin/ Virtual 
Testbed 

(Pérez et al., 2020) lean automation/real-time 
monitoring/ Human-robot 
collaboration and interaction 

Point cloud/ BIM Building 
information modelling/ IoT/ 
Virtual reality/virtual 
commissioning 

23 – Digital Twin/virtual 
system 

(Coelho et al., 2020) in-house virtual logistics 
systems/ real-time information, 
automation, and collaborative 
environment 

IoT 

24 “A dynamic, virtual representation of 
a corresponding physical system, that 
can be used for testing and verifying 
the control system in a simulated 
virtual environment to achieve rapid 
set-up and optimization prior to 
physical commissioning” 

Digital twin/ Emulator (Mykoniatis and Harris, 
2021) 

Mechatronics system configurations 
and validations 

Virtual Commissioning (VC) 

25 – Digital twin/ DT smart 
models 

(Kousi, 2021) Design and control of Human-Robot 
Collaborative (HRC) system/ Human- 
robot interaction 

IoT/AI 

26 – Digital twin/ 
knowledge-based DT 

(Tuli et al., 2021) Ontological human intention 
prediction in Human-robot 
collaboration / human-robot 
interaction 

IoT/AI/ML-CNN/Virtual 
Reality/ Semantic information 

27 – Digital twin/ Cyber 
Model/Cognition model 

(Grazioso et al., 2021) Soft Robotics/ 
GPS-denied environments/cyber- 
physical measurement system 
(CPMS)/Remote monitoring 

IoT/ Embedded system 

28 – Digital twin (Sun, 2021) Human-machine interactions/Soft 
robotics/ Online Virtual Shop 
Application 

Artificial intelligence of things 
(AIoT) technology/IoT/ 
Machine learning/flexible 
sensor/smart tactile sensor/ 
cloud big data/5G 

29 “A virtual portrayal, is used to design, 
simulate, and optimize the complexity 
of the assembly system” 

Intelligent Digital Twin (Ahmad, 2021) Lean manufacturing/smart assembly/ 
Human-robot collaboration/Human 
machine interaction 

Deep learning/convolutional 
neural network (CNN)/ 
parallel processing 

30 “A virtual counterpart of a physical 
human-robot assembly system, is built 
as a ‘front-runner’ for validation and 
control throughout its design, build 
and operation” 

Digital Twin (Malik and Brem, 2021) Human-robot collaboration (HRC) 
can/Flexible automation for complex 
assembly tasks/Human-machine 
interaction 

IoT/CAD, For Future 
development AI/Smart 
glasses/VR/ Big Data analytics 

31 – Digital Twin (Udugama et al., 2021) Biomanufacturing industry/ Human 
Machine Interface (HMI)/ Human 
factors in optimization cycle 

IoT/Machine learning/ Model 
predictive control (MPC) 

32 – Digital twin (He et al., 2021) Intelligent detection robot/ 
Sustainable product design 

Data Fusion/Machine learning 

33 – Digital Twin (Hagmann et al., 2021) Surgical robotics training Haptic devices 
34 – Digital Twin model/ 

Digital Twin state 
(Weistroffer et al., 
2022) 

Human-robot collaboration (HRC)/ 
Human-robot interaction 

Virtual reality/Mixed Reality 

(continued on next page) 
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Table 3 (continued ) 

No Definition Keywords Reference Application Enabler 

35,36 “A digital replica of a living or non- 
living entity, whose virtual 
representation reflects all the relevant 
dynamics, characteristics, critical 
components and important properties 
of the original entity throughout its 
life cycle” 

Human-Centric 
Industrial Digital Twins 

(Han and Schotten, 
2022; Uusitalo, 2021) 

HMI solutions for human-centric 
industry 5.0/ 6G-empowered Human- 
machine integration 

Bio Electromagnetic 
Compatibility/ 
Brain–Computer 
Interface/Virtual reality/ 
mixed reality/Smart tactile 
sensor 

37 – Digital twin (Pabolu et al., 2022) Human-in-the-loop decision-making 
system/ Human-Robot Collaboration 
(HRC) 

IoT/Big data analytics/ML 

38 – Human body Digital 
twin 

(Dai et al., 2022) Metaverse extended reality/ 
Human–robot interaction (HRI). 

Artificial intelligence of things 
(AIoT) technology /Bio 
Electromagnetic 
Compatibility/ 
Brain–Computer 
Interface/Virtual reality/ 
mixed reality/Smart tactile 
sensor 

39 – Digital twin (Choi et al., 2021) Cyber-physical integration/Human- 
Robot Collaboration (HRC)/Human- 
robot interaction 

Mixed Reality/Machine 
learning/IoT/ 3D point Cloud 

40 – Robot digital twin/ 
human digital twin 

(Lee et al., 2022) Human Machine integration/Human 
robot interaction/ Real-time 
teleoperation controls 

AI/Deep Learning/ imitation 
learning/ virtual reality 
modeling language/IoT 

41 – Digital human (Zhang, 2020) Smart City / Smart class room/Real 
time activity monitoring/real time 
identity recognition. 

Artificial intelligence of things 
(AIoT) technology /Deep 
Learning/ Smart tactile sensor 

42 – Digital twin/Operator 
Digital Twin 

(Ramasubramanian 
et al., 2022) 

Human–robot interaction/ human- 
robot Collaboration 

IoT/wearable device/Digital 
Threads (MQTT,OPC) 

43 – Digital twin/Dynamic 
digital twin 

(Zhou et al., 2022) Mobile manipulator/ Human–robot 
interaction/ 

IoT/Machin learning 

44 “Realistic digital model for product 
designing, simulating, and 
troubleshooting, which should be 
obtained by accurately collect point 
could data in the complex 
environment affected by light, sound, 
and electromagnetic fields” 

Digital twin (Zhang, 2022) Intelligent manufacture, Intelligent 
medical care 

Point cloud/smart tactile 
sensor 

45,46 “A digital representation of a physical 
system that is augmented with certain 
cognitive capabilities and support to 
execute autonomous activities; 
comprises a set of semantically 
interlinked digital models related to 
different lifecycle phases of the physi- 
cal system including its subsystems 
and components; and evolves 
continuously with the physical system 
across the entire lifecycle”. 

Cognitive Digital Twin 
(CDT)  

(Jinzhi et al., 2022; 
Zheng et al., 2021) 

Complexsystem development and 
management/Predictive analytics and 
decision making/ISO 42,010 standard 
to support CDT Development 

Machine learning/Big Data/ 
Ontology engineering/ 
Knowledge graph/Semantic 
modelling 

47 “A digital expert or co-pilot, which 
can learn and evolve, and that 
integrates different sources of 
information for the considered 
purpose” 

Associative Cognitive 
Digital Twin 

(Fernández et al., 2019) Human machine integration/ 
Symbiotic Autonomous Systems (SAS) 
/Hybrid human–machine cognitive 
systems 

Industrial Internet of Things 
IIoT/Machine learning 

48 “A visionary paradigm evolves with 
the real system along the whole life 
cycle and integrates the currently 
available and commonly required 
data and knowledge in which relevant 
digital artefacts including design and 
engineering data, operational data 
and behavioural descriptions will be 
semantically linked and synchronized 
by a set of well-aligned, descriptive 
and executable models of component, 
product, system or process”. 

Next Generation of 
Digital Twin 

Rosen et al., 2018) Planning, operation, monitoring and 
maintenance of mechatronic and 
cyber-physical systems long the whole 
life cycle 

Semantic technologies/ Big 
Data/ Ontology engineering/ 
Knowledge graph 

49 “Advanced cognitive capabilities to 
the DT artefact that enable supporting 
decisions, with the end goal to enable 
DTs to react to inner or outer stimuli, 
that can be deployed at different 
hierarchical levels of the production 
process, i.e., at sensor-, machine-, 
process-, employee- or even factory- 
level, aggregated to allow both 
horizontal and vertical interplay”. 

Enhanced 
Cognitive Twin (ECT)/ 
Cognitive (Digital) Twin 

(Eirinakis and Lounis, 
2020) 

Cognitive Factory/ Intelligent 
decision- 
making/Detection, prediction and 
real-time monitoring in a fuzzy and 
complex environment 

Knowledge Graphs (KGs)/ 
Machine learning/Big Data/ 
Semantic modelling/Cognitive 
computing 

(continued on next page) 
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Table 3 (continued ) 

No Definition Keywords Reference Application Enabler 

50 “Digital Twins with augmented 
semantic capabilities for identifying 
the dynamics of virtual model 
evolution, promoting the 
understanding of interrelationships 
between virtual models and 
enhancing the decision-making based 
on DT” 

Cognitive twins (Lu et al., 2021) Decision-Making of Internet of Thing 
Systems/ Complexity management 

Knowledge Graphs (KGs)/ 
Semantic modelling 

51,52 “An extension of Hybrid Twin HT 
incorporating cognitive features that 
enable sensing complex and 
unpredicted behaviour and reason 
about dynamic strategies for process 
optimization, leading to a system that 
continuously evolve its own digital 
structure as well as its behaviour” 

Cognitive Digital Twin/ 
Hybrid Twin 

(Abburu et al., 2020; 
Abburu et al., 2020) 

Intelligent factories/ Operational 
optimization, condition monitoring 
and real-time monitoring 

Knowledge Graphs (KGs)/Big 
Data/ Semantic Modelling/ 
Machine learning 

53 “The digital twin which is endowed 
with the critical elements of cognition, 
e.g., attention (selective focusing), 
perception (forming useful 
representations of data), memory 
(encoding and retrieval of information 
and knowledge), etc; will allow 
enterprises to creatively, effectively, 
and efficiently exploit implicit 
knowledge drawn from the experience 
of existing manufacturing systems and 
enable the transfer of higher 
performance decisions and control 
and improve the performance across 
the enterprise (at scale)”. 

Cognitive Digital Twin (Al Faruque et al., 
2021) 

Cyber- 
Physical Manufacturing Systems 

Cognitive science/Machine 
learning/Artificial intelligence 

54 “An extension of existing 
digital twins with additional 
capabilities of commu- 
nication, analytics, and intelligence in 
three layers: 
i) access, ii) analytics and iii) 
cognition, which will convert 
traditional digital twins into smart 
and intelligent agents that can access, 
analyse, understand, and react to their 
current status” 

Cognitive Digital Twin (Intizar Ali et al., 2021) Smart manufacturing Cloud-Big Data analytics/ 
Knowledge Graph/ AI/ 
Semantic Web technologies 

55 “A digital replica of a person’s 
cognitive process in relation to 
information processing, which 
includes a VR platform to collect 
information preference data during 
training, contains the modelling and 
optimization algorithm of digital 
modelling of human cognition and has 
an adaptive user interface design 
based on real-time cognitive load 
measures”. 

Cognitive digital twin (Du et al., 2020) Intelligent information systems of 
smart cities/Testing the human- 
cantered cognitive activities 
pertaining to the complex tasks of 
industrial facility shutdown 
maintenance/ Mitigating the cognitive 
load of the complex tasks at work. 

Cognitive load theory/ 
Neuroimaging/Virtual reality 
VR 

56 – Cognitive digital twin/ 
predictive operator’s 
digital twin 

(Ramos et al., 2021) Drone control/Predictive decision- 
making system/ Robot operating 
system 

Brain-Computer Interface 
(BCI)/Machine learning 

57 “A complex system that 
interacts not only with its real entities 
but also with its sur-roundings and 
other DTS” 

Enhanced Digital twin/ 
cognitive DT 

(Lv et al., 2022) Smart Cities/Multisource 
heterogenous systems/Cognitive 
computing 

Artificial intelligence, 
Brain–computer interface, 
Deep learning, 

58 – Cognitive digital twin (D’Amico et al., 2022) Maintenance management /Prediction 
of remaining useful life (RUL) / 
Product Life cycle Management (PLM) 

Artificial intelligence (AI)/ 
Edge computing /cloud 
computing/ Semantic 
Modelling 

59 – Digital twin, cognitive 
twin 

(D’Amico et al., 2022) Modular production system 
optimisation/ Decision making/ 
failure detection 

knowledge graph (KG)/ 
Semantic technologies / 
Ontology engineering 

60 “Holistic Digital Twin approach is 
comprehensive modelling and 
simulation capacity embracing the full 
manufacturing process including 
external network dependencies and 
integrating models of human 
behaviour and capacities for security 
testing in order to enable new services 

Holistic Digital Twin/ 
Cognative modelling/ 
Cyber-Range (CR)/ 
Human Digital Twin 

(Bécue et al., 2020) Cyber Factory/ Aerospace 
Manufacturing/Process optimization/ 
Anomaly detection/ Security testing 

AI Artificial intelligence/Big 
Data/Cyber security/IoT 

(continued on next page) 
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edge intelligence, focusing on two key infrastructures: collaborative 
sensing and cognitive services. These infrastructures are essential for 
enhancing the cognitive abilities of IoT. It becomes evident that the 
network paradigm plays a crucial role in advancing cognitive computing 
across diverse scenarios, including intelligent transportation, Intelligent 
industry, and environmentally conscious living. Consequently, the CIoT 
system must continually integrate new capabilities in areas like deep 
learning and cognitive sensing to enhance its human-like intelligence 
features (Wu, 2014; Jalali et al., 2017; Zhang et al., 2019). This swift 
advancement of the Industrial Internet of Things (IIoT) and associated 
technologies such as cognitive computing, big data, cloud, and edge 
computing has served as a primary impetus for critical transformation 
from Industry 4.0 to Industry 5.0 and intelligent manufacturing, which 
in turn forms the basis of human/ Cyber-Physical Systems (H-CPS) and 
intelligent Digital Twins (DT) (Mazzuto et al., 2022; Wang et al., 2022; 
Romero and Stahre, 2021; Umeda et al., 2020). 

6.2. Cognitive computing 

Cognitive computing focuses on refining processing techniques, 
challenging the notion that only vast datasets can be effectively pro
cessed. Similar to the human brain, limited memory doesn’t impede 
image cognition. Cognitive computing develops algorithms rooted in 
cognitive science theories, allowing machines to possess brain-like 
cognitive intelligence (Chen et al., 2018). Brain-like computing seeks 
to enable computers to comprehend the world from a human perspec
tive, a crucial aspect of understanding human needs. The integration of 
digital twins into cognitive computing enhances machine decision- 
making, particularly in handling intricate reasoning and emotion pre
diction (Ramos et al., 2021). Coupled with IoT, the cognitive digital twin 
analyzes data from connected sensors, assisting human decisions and 

providing valuable insights. This amalgamate will lie in the realization 
of a human-centered cognitive cycle, encompassing human integration, 
machine, and cyberspace. This approach was introduced in article (Chen 
et al., 2018) as a human-centric cognitive computing approach, inte
grating cloud computing for intelligent computing. The study delved 
deeply into cognitive computing, proposing a comprehensive architec
ture with remarkable accuracy for this field. This identified three pivotal 
technologies within cognitive computing systems: the Internet of Things 
for networking, reinforcement learning and deep learning for data 
analysis, and cloud computing for augmenting the human interaction 
with cyberspace data (Chen et al., 2018). In this context, digital twin 
computing surpasses traditional communication technologies by utiliz
ing precise digital data that mirrors real-world entities. It facilitates 
rapid and in-depth communication, enabling large-scale, high-precision 
predictions and simulations, hastening the advent of intelligent societies 
in cyberspace. The integration of cognitive computing amplifies the 
capabilities of digital twins, employing advanced methods like natural 
language processing and machine learning (Rousopoulou, 2022). 
Cognitive Digital Twins enable the design of future machines beyond 
human intuition, considering not only what is being created but also the 
intended recipients, marking a significant advancement in intelligent 
design and understanding of user needs (Lv and Qiao, 2020; Tagliabue 
et al., 2021). Cognitive Digital Twin (DT) technology empowers us to 
design and enhance future machines in ways that surpass human intu
ition. It elevates traditional engineering skills by enhancing the cogni
tive capabilities of digital replicas through cognitive computing systems. 
In a significant advancement, The authors of the paper (Lv and Qiao, 
2020) improved the accuracy and safety of collaborative robot control 
systems using cognitive computing technology (Lv and Qiao, 2020). 
Their approach involved integrating a cognitive computing system 
model based on deep belief networks into the control system. The 

Table 3 (continued ) 

No Definition Keywords Reference Application Enabler 

for the optimization and resilience of 
the Factories of the Future” 

61 – Cognitive digital twins (Mortlock et al., 2022) Cognitive Cyber- 
Physical Manufacturing Systems 
‘Design/optimization/monitoring’ 

Knowledge Graphs (KGs)/ 
Machine learning/ Graph 
Convolutional Neural Network 
(SGCNN)/ Big Data 

62 – Graph digital twin (Sui et al., 2022) Stability prediction of complex 
industrial systems/Internet of energy/ 
Stable operation/ 

Graph Convolutional Network 
(GCN)/K 
nowledge graph (KG)/ 
Semantic technologies / 
Ontology engineering 

63 – Digital Twin (Feng et al., 2021) Integration of physical space, 
cyberspace and human factors/ 
Product performance evaluation/ 
Noise and Vibration detection based 
on customer’s cognition reflection/ 
detection 
Knowledge Based-Decision-making 

Intelligent psycho- 
physiological analysis/Fuzzy 
Comprehensive Evaluation/ 
Machine learning (SVM 
classifie) 

64  Digital twin (Zhou et al., 2022) Real-Time monitoring/Control 
program simulation and testing/ 
Synchronous mapping simulation/ 
Remote control 

Multi-source heterogeneous 
virtual and real data fusion/ 
Data interaction based on OPC 
UA 

65 “DT is not just a digital model or an 
offline simulation of a physical object. 
Nor does a DT correspond to a digital 
shadow, depicting a PT’s real-time 
states and changes that can just be 
manually modified. The changes in a 
DT automatically mirror and affect 
the status of its PT: the data flows bi- 
directionally and in real time between 
twins in digital and physical worlds, 
possibly without any human 
intervention through the DT-driven 
control of an actuated PT”. 

Digital Twin/ Phygital 
Twin/ physical-digital 
twinning 

(Barresi et al., 2022) Human-system interactions/ Human- 
robot interaction/Human-centered 
design 

Holographic Interface/ 
Augmented reality/ IoT 

66 – Visual digital twin/ 
Cognitive digital twin 

(Ramos et al., 2021) Decision-making system/Drone 
Control 

Brain-computer interfaces/ 
Machine Learning  
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authors meticulously compared and analysed the system’s performance 
using simulation tasks with a seven degree of freedom collaborative 
robot in MATLAB software. By conducting a meticulous analysis of 
variables like the repetition count in the training set, the quantity of 
hidden neurons, and the number of network layers, researchers evalu
ated how these factors influenced algorithm performance. The com
parison encompassed the cognitive computing system model combining 
linear perceptron and deep belief network, (MLP) and the deep belief 
network (Lv and Qiao, 2020). The analysis revealed that the DBNLP 
model outperformed both multilayer perceptron and DBN algorithms 
significantly. Its application to collaborative robots substantially 
enhanced their accuracy and safety. This breakthrough serves as an 
experimental foundation, laying the groundwork for improving the 
performance of future collaborative robots. 

Cognitive computing will elevate the maturity of the digital triplet by 
harnessing the expansive processing capabilities of cognitive data, 
encompassing attention, memory, logic, reasoning, and processing. This 
integration impacts the heuristic functions of machine learning and 
neural networks, incorporating a comprehensive scale of data. The 
fusion of data from virtual networks into cyberspace enhances data 
analysis at a deep algorithmic level of machine intelligence, breaking the 
reliance on traditional data dependencies. This advancement facilitates 
a profound ability of human cognition, enabling the provision of 
exceptionally intelligent cognitive and reasoning capabilities analogous 
to those of the human brain (Chen et al., 2018; Wang, 2020). 

6.3. Artificial intelligence 

The process of enabling computers to perform tasks that typically 
require human intelligence, such as perceiving, reasoning, and decision- 
making, is known as “artificial intelligence” (AI). This involves the use of 
algorithms and other machine-learning techniques. AI, encompassing 
significant technologies like semantic technology, reasoning, machine 
learning, and knowledge representation according to (Fernández et al., 
2019; Huang, 2020; Huang et al., 2021), acts as a catalyst for enhancing 
the cognitive and perceptive abilities of Digital Twins. These sources 
emphasize the vital role of AI in facilitating and advancing the digital 
transformation of engineering processes. By harnessing AI technologies, 
Digital Engineering can make strides in areas such as data analysis, 
pattern recognition, intelligent decision-making, and knowledge man
agement (Groshev et al., 2021; Zhang et al., 2023). AI empowers engi
neers to handle vast datasets, automate tasks, gain insights, and enhance 
the overall efficiency and effectiveness of engineering practices within 
the realm of digital transformation. In this context, the flow of infor
mation, transfer of knowledge, and interaction between humans and 
various lifecycle stages of processes, systems, and machines are 
streamlined by AI-enabled tools capable of extracting information and 
developing ontologies (Zhang et al., 2023; Furini, 2022; Maschler et al., 
2021). By utilizing AI-based machine learning, cognitive abilities are 
harnessed to generate nearly optimal plans. Insights are drawn from the 
Q-learning algorithm to understand the prerequisites and consequences 
of various services within a virtual dynamic setting. In a specific 
approach detailed in the paper (Muller-Zhang et al., 2020), which in
tegrated Q-learning and digital twins, essential prerequisites for effec
tive process planning were delineated. These prerequisites encompassed 
scalability, optimality, and the capability for parallel production. To 
enable the deployment of multiple digital twins within this dynamic 
environment, the authors utilized the specification of asset administra
tion shells. In this virtual environment designed for reinforcement 
learning, intelligent digital twins were meticulously crafted, forming a 
virtual representation of a milling factory. These digital twins utilized 
meta-information and real-time data concerning the overall process, the 
product, the factory, and the available resources. Moreover, integrating 
digital twins with machine learning represents a pivotal technology, 
providing valuable insights into the integration of these devices and 
humans within metaverse environments. This interdisciplinary 

approach, spanning from aerospace to smart healthcare, is garnering 
significant attention from researchers. Specifically, the recognition of 
human behavior and emotions using digital twins is a focal point in these 
studies (Vallejo and El Saddik, 2019; Shengli, 2021). The authors from 
(Al-Zyoud et al., 2022) endeavoured to compare diverse algorithms to 
create a comprehensive digital twin for human health and well-being in 
real-world and metaverse that incorporate Machine Learning (ML) al
gorithms and various psychological signals. D. Ramos et. (Ramos et al., 
2021) enhanced and examined human emotional responses concerning 
drone control. They introduced a cognitive digital twin using brain- 
computer interfaces, proficient in real-time classification-based ML of 
emotional states at both visual expression and cognitive levels. This 
system provides a dependable and secure approach for validating drone 
commands using the mind. The digital replica evaluates if the operator is 
in a suitable emotional state for drone control, ensuring safe and effi
cient operation. 

Leveraging AI-based machine learning to analyze data from digital 
twins enables predictive maintenance, real-time monitoring, and per
formance optimization. Artificial intelligence enhances the precision 
and speed of services by augmenting the vast amount of data obtained 
from digital twins. Machine learning algorithms are employed to auto
matically choose the best algorithm for a given task. In this regard, to 
enhance the rapid prediction and decision-making abilities of digital 
twins, A research team introduced an innovative approach to augment 
the utilization of sequential experimental designs rooted in statistical 
models and efficient designs to bolster the learning capacities of the 
traditional simulation in digital twin system. This involves constructing 
a response surface and layers using machine learning models. Specif
ically, they develop a response surface through machine learning tech
niques. This novel method of constructing the digital triplet efficiently 
comprehends the digital twin’s understanding of the physical system 
(Zhang et al., 2023). The reliability of this approach was demonstrated 
through the application of an ML-based Gaussian process regression 
model, enabling swift predictions and decision-making. However, the 
integration of machine learning and artificial intelligence to enhance 
predictive abilities and achieve a deeper level of understanding of digital 
twins has been explored and implemented in various research studies 
(Mazzuto et al., 2021; Alimam et al., 2023). The utilisation of artificial 
intelligence for algorithm selection results in enhanced accuracy in data 
analysis and fusion (Kharchenko et al., 2020). In general, the utilisation 
of artificial intelligence within the context of digital twin technology has 
the potential to mitigate certain obstacles encountered to develop the 
intelligent level of DT and achieve perceptive and reasoning ability of 
digital triplet paradigm (Siemens, 2022; Wei et al., 2020; Jazdi et al., 
2020), with the potential to enhance the efficiency and dependability of 
the system, while simultaneously mitigating expenses and augmenting 
safety measures within the industrial metaverse environment. 

6.4. Semantic technologies 

The interconnection between the cognitive abilities of the digital 
twin and semantic technology is rooted in their complementary roles, 
which contribute to enhancing data representation, understanding, and 
utilization. Semantic technology, encompassing ontology and knowl
edge graphs, offers a structured framework that organizes and presents 
data in a meaningful manner. It enables the digital twin to capture and 
model intricate relationships, contextual information, and semantic 
nuances associated with the physical system it represents (Sharif Ullah, 
2018). By integrating semantic technology into intelligent digital twins, 
they gain the ability to access, analyze, and interpret data in an intel
ligent and contextually aware manner. In the realm of cognitive auto
mation, integrating processes at a semantic level enhances signal 
analysis and feature extraction through machine learning. This inte
gration fosters seamless interoperability among ML-driven cyber sys
tems and human interaction. Controllers and other field terminals have 
the ability to interpret these signals, propelling cognitive automation 
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towards the realization of fully autonomous industrial systems (Perzylo 
et al., 2019; D’Amico et al., 2022; Xia et al., 2021; Naudet et al., 2023). 
The inclusion of semantic technology enriches the knowledge base of the 
digital twin by adding a semantic layer that imparts semantic meaning 
to the data, thereby facilitating more sophisticated analysis and 
reasoning (Ullah, 2019). This integration also enables effective data 
integration, interoperability, and knowledge sharing among different 
instances of digital twins and across heterogeneous systems. When 
considering data and information representation and processing, se
mantic technologies refer to the application of semantic web standards 
and technologies. Examples of these technologies include ontologies and 
knowledge graphs, which can be leveraged to endow digital twins with 
enhanced cognitive capabilities. To surmount the constraint of the po
tential efficacy of conventional digital twins that can augment their 
capabilities to engage in human communication through the utilization 
of a natural language, The authors of the paper (Siyaev et al., 2023) 
integrate artificial intelligence neural networks with symbolic reasoning 
to enhance the understanding of intricate digital replica structures and 
facilitate interactions with three-dimensional digital replicas using 
natural language. The authors implement the proposed mechanism to 
the aircraft maintenance paradigm of the digital twin of the Boeing 737, 
whereby a compilation of aircraft manuals, three-dimensional models, 
and user inquiries was subjected to training and testing as a practical 
neuro-symbolic dataset. The perceptible, tangible and comprehensible 
interaction capabilities of the proposed digital twin-based artificial in
telligence neuro-symbolic system have been demonstrated to possess a 
heightened level of heuristic capabilities for comprehending novel user 
appeals and contexts, as well as executing tasks with a notable degree of 
accuracy and a minimal occurrence of maintenance procedure failures. 

Ontology serves as a formal representation of information, defining 
concepts and their relationships, while knowledge graphs adopt a graph- 
based approach to represent knowledge through nodes and edges. Both 
ontologies and knowledge graphs serve as forms of knowledge repre
sentation. The combination of the digital twin and semantic technology 
enables more comprehensive and insightful analysis, prediction, and 
optimization of the physical system. It supports advanced functionalities 
such as context-aware decision-making, anomaly detection, and 
knowledge-driven automation. In summary, the interconnection be
tween intelligent digital twins and semantic technology empowers dig
ital twins with enhanced data representation, understanding, and 
decision-making capabilities, enabling them to fully unleash their po
tential in improving performance, efficiency, and decision-making 
across various domains. 

6.5. Ontology engineering 

Ontology, a branch of philosophy, explores the nature of existence 
and the relationships between entities (D’Amico et al., 2022; Zhang, 
2022). It facilitates the integration of diverse knowledge sources and 
data from various domains or systems. By capturing relevant domain 
knowledge and aligning it with the digital twin, ontology engineering 
enables a comprehensive understanding of the industrial system. It aids 
in consolidating and harmonizing information from different sources, 
resulting in a more holistic view of the system. 

In the context of cognitive systems, the ontology of digitalized en
gineering processes entails the formalization of the inherent ontological 
aspects of physical entities in a manner that aligns with human intuitive 
understanding. This allows for automated reasoning and inference ca
pabilities, enabling the digital twin to derive new knowledge and in
sights from existing information. By establishing logical rules and 
axioms, ontology engineering empowers the digital twin to perform 
intelligent reasoning and deduce new relationships or properties. This 
inference capability enhances the digital twin’s maturity level by sup
porting advanced analytics, prediction, and decision-making. Essen
tially, ontology enables the digital twin to understand physical entities 
in a manner like human comprehension (Ghosh et al., 2019; Ullah, 2019; 

Boy, 2023; Rico et al., 2023). 
Integrating diverse knowledge poses a significant challenge when 

evolving CDT (Cognitive Digital Twin) models for intricate systems. 
Ontology promotes interoperability and integration among various 
components of the industrial system. By establishing shared under
standing and standardizing terms, ontologies facilitate seamless 
communication and data exchange between subsystems and entities. 
This interoperability enhances the digital twin’s maturity level by pro
moting the integration of data from diverse sources and facilitating a 
comprehensive system analysis (Arista et al., 2023). 

To mitigate integration difficulties, a hierarchical methodology can 
be employed to consolidate application ontologies into a shared top- 
level ontology comprising a collection of comprehensive vocabularies. 
This approach ensures that different ontologies can work together, 
effectively share knowledge, and guarantee interoperability. It supports 
the development of perceptive and cognitive capabilities in the digital 
twin, empowering it to comprehend all aspects of real-world phenom
ena, such as the behaviour, performance, or characteristics of a physical 
system or process. 

6.6. Knowledge graph 

A knowledge graph functions as a structured representation of in
formation, capturing details and the connections among entities in a 
specific domain. It adopts a graph-like data model, featuring nodes 
(representing entities) and edges (representing relationships) that link 
these nodes. This knowledge graph serves as the foundation for the 
cognitive and heuristic abilities of the digital twin, allowing it to un
derstand, analyze, and make informed decisions. It includes explicit 
knowledge, clearly defined and represented, as well as implicit knowl
edge, deduced or inferred from the relationships and patterns within the 
graph (Wang et al., 2023; Sahlab et al., 2021). Within a knowledge 
graph, each node typically corresponds to a distinct entity, concept, or 
object, while the edges denote the connections or associations between 
them. These connections encompass various types of relationships, such 
as hierarchical, semantic, causal, or other significant connections based 
on the domain of knowledge. 

Designed to efficiently store and organize extensive and heteroge
neous data blocks and knowledge, knowledge graphs streamline the 
process of querying and navigating through data. They allow the 
depiction of complex and interrelated information, enabling effective 
retrieval, analysis, and inference (Privat, 2021). Leveraging the capa
bilities of knowledge graphs, the cognitive digital twin can tap into a 
wide array of information from various origins, including sensor data, 
historical archives, domain-specific databases, and external knowledge 
bases. This equips the digital twin with an improved understanding of 
the system, enabling it to make predictions, perform advanced analytics, 
and facilitate decision-making processes. To enhance the precision of 
decision-making in intricate manufacturing systems, it’s imperative to 
amalgamate virtual and physical spaces, integrating simulated models 
from diverse domains. This integration allows for human-system inter
action and enhances the interoperability of multi-domain models, 
overcoming obstacles through real-time dynamic data assimilation up
dates. In this context, Xia Wang and colleagues (Wang et al., 2023) 
proposed a multi-domain model integration architecture based on 
Knowledge Graph (KG) for the digital twin of a welding workshop. This 
architecture includes elements like Semantic Integration, Models of 
Ontology, and Data connection and network. The fusion of this digital 
twin for welding system is facilitated through KG, comprising three 
principal human–computer interaction modules: knowledge manage
ment and transfer, integrating operator with machine for personalized 
services; inference retrieval, involving real-time data update and veri
fication, input data and output data integration; and simulation opti
mization, incorporating algorithm development for process control and 
optimization. 

Moreover, knowledge graphs can integrate information from various 
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sources, such as databases, documents, web pages, and external 
knowledge bases. This integration provides a comprehensive and 
interconnected perspective of the knowledge domain. In the realm of 
cognitive processes, AI-based knowledge graphs enhance perceptual 
dependencies to simulate human interactions within meta-class models 
and facilitate human interaction in home environments using digital 
twins. The authors of the paper (Fahim et al., 2023) utilized an AI-based 
knowledge graph to analyse the behaviour of elderly individuals. This 
analysis was conducted by simulating interactions within a home envi
ronment using digital twins and the knowledge graph. In which, 
embedding intelligence based deep learning was employed to process 
streaming sensory data, offering insights into human interactions within 
meta class model of the surrounding physical space. Furthermore, the 
drive to enhance patient safety and optimize value-based care has 
spurred the creation of a groundbreaking digital triplet framework 
(Talukder et al., 2022; Talukder et al., 2021). This innovative framework 
seamlessly blends clinical and biomedical expertise, essentially 
imitating the cognitive processes of physicians. It consists of nine 
intricately connected knowledge graphs, empowered by artificial intel
ligence and evidence-based data, covering the full spectrum of medical 
information, from symptoms to treatment options. The methodology 
involved the meticulous construction of a comprehensive knowledge 
graph, deployed within the Cloud AIoT AP. This achievement was made 
possible through the semantic integration of biomedical ontologies and 
the Neo4j property graph database (Talukder et al., 2022). 

Additionally, it facilitates the integration of ontologies, enabling a 
unified representation of domain knowledge and fostering interopera
bility among different components and subsystems of the digital twin. 
The structured framework of the knowledge graph facilitates the orga
nization and connection of relevant information, promoting a compre
hensive and interconnected knowledge base for the cognitive digital 
twin to operate effectively. Consequently, it plays a crucial role in 
enhancing information retrieval, knowledge discovery, and the devel
opment of intelligent systems capable of comprehending and reasoning 
with intricate data and relationships. 

6.7. Brain computer interface 

BCI (Brain-Computer Interface) stands as a pivotal technology that 
merges computer science and neuroscience within the broader realms of 
psychology and biomedical engineering. It integrates human cognitive 
processes with machine intelligence. By seamlessly merging the human 
brain with machines, it transcends current modes of interaction between 
humans and machines, expanding the boundaries of human intelligence 
and interactions within physical spaces. This fusion liberates humans 
from the limitations posed by both physical entities and digital con
straints. BCI technologies offer the potential for diverse and innovative 
applications within the Metaverse. These applications include moni
toring human cognitive states, engaging interactions and controlling 
digital avatars in cyber space (Zhu et al., 2023; Gated, 2023; Christina 
Yan Zhang, 2023). 

Brain-Computer Interface (BCI) harnesses EEG signals generated by 
human perception and intention. Coping with extensive disordered data, 
especially in the context of irregular EEG recordings, introduces un
certainty into humans’ understanding of objective realities. This un
certainty profoundly influences the concepts developed within the 
human brain and, consequently, affects cognitive abilities related to 
decision-making about external phenomena and cognitive workload for 
optimizing human performance (Gated, 2023; Du et al., 2020). In the 
realm of digital transformation, and to delve into the extensive 
dissemination of digital information. EEG analysis grounded in machine 
learning and its diverse applications. Within the psychological impact of 
digital transformation, cognitive abilities such as memory and planning 
undergo externalization, resulting in the transfer of human decision- 
making processes to digital functions. In which, integrating Brain- 
Computer Interface (BCI) technology into the human body, replicating 

human EEG data becomes feasible, thereby guiding decision-making 
processes. Human digital twins, initially a concept rooted in engineer
ing for digitally replicating machines, are now extended to individual 
human beings. This extension involves the creation of a digital simula
tion as a model of a person’s functions. This digital twin allows for the 
monitoring of human’s behaviour, facilitating corrections, improve
ments, or optimizations as necessary (de Kerckhove, 2021; Guerra et al., 
2020; Ramos et al., 2021). 

Building upon this premise, researchers have developed the digital 
twin paradigm for cognitive computing-based BCI. This approach in
volves merging multimodal neural imaging data to simulate large-scale 
brain dynamics accurately (Wang et al., 2021; Wang et al., 2021). It aims 
to unveil brain functional mechanisms, shedding light on how the brain 
operates and fostering brain-like intelligence. Utilizing EEG signal 
analysis within the digital twin cognitive computing framework facili
tates integration between human brain-like intelligence, computational 
neuroscience technologies, and artificial intelligence algorithms. This 
integration allows for the precise and effective analysis of complex and 
uncertain EEG data. A recent exploration focuses on the potential of 
creating a potent computing platform capable of accurately emulating 
communication-intensive and memory-access-intensive systems akin to 
brain cognitive functions. Researchers at Fudan University in Shanghai 
(Lu et al., 2023), China, delved into the realm of the digital twin brain, 
an advanced computing platform adept at simulating human-brain- 
scaled spiking neuronal networks with complex biological architec
tures and vast scale of heterogeneous variables. Unlike traditional sim
ulations, this approach involves a statistical inference of large-scale 
neuronal networks using authentic brain data. This groundbreaking 
technology enables interactions with real-world environments, proving 
invaluable for cognitive and medical tasks, brain-machine interface 
experiments, and the study of human neurobehavioral mechanisms. 
Furthermore, the DTB facilitates digital twin experiments related to 
brain intelligence, pioneering a methodology for reverse engineering 
that enhances our understanding of systems analogous to brain-inspired 
intelligence. Notably, this innovative approach incorporates data 
assimilation, allowing for the investigation of brain cognitive functions 
through reverse engineering methods. The DTB efficiently integrates 
these complexities, highlighting its emphasis on communication and 
memory-intensive processes rather than computational intensity (Lu 
et al., 2023). In this regard, the author of the paper (Lv et al., 2022) 
introduced an advanced digital twin (DT) cognitive computing platform 
tailored for optimizing EEG interface technology and signal classifica
tion. This innovative platform was specifically developed to improve the 
accuracy of the classification algorithm used for feature extraction, 
employing transfer learning based on tangent space selection (TL-TSS) 
(Lv et al., 2022). However, the swift progress in brain-like intelligence 
and neuromorphic computing has encountered challenges due to our 
limited grasp of brain mechanisms and computational techniques. Cur
rent brain-like models often yield imprecise results. In response to these 
challenges, Y. Li et al. (Li et al., 2023) proposed “DTBVis”, a visual an
alytics system meticulously designed for DTB comparison tasks. 
“DTBVis” enables experts to delve into the DTB and the human brain at 
varying levels and granularities. This innovative system incorporates 
automatic similarity recommendations and high-dimensional explora
tion, assisting experts in comprehending the similarities and disparities 
between DTB and the human brain, and empowers experts to refine their 
models and enhance functionality effectively. To address this issue, Lu 
et al. (Lu et al., 2022) introduced the digital twin brain (DTB), an arti
ficial brain mirroring the scale and functionality of a human brain. This 
model simulates extensive neuronal networks and replicates various 
cognitive abilities akin to the human brain. Understanding the DTB’s 
functionality necessitates comparing it to the human brain, a task of 
paramount importance. However, the visualization aspect of DTB re
mains inadequately explored. This intricacy, coupled with diverse types 
of comparison tasks, demands a specialized approach. 

Through the strategic integration of cognitive computing with semi- 
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supervised learning, this approach notably enhanced the recognition 
and analysis of EEG data. The advancements in this area create exciting 
opportunities for a wide range of applications in predictive cognitive 
computing. By combining EEG signals with analysed data from various 
sources in both physical and digital human spaces, intelligent 
prediction-based digital twins enhance the translation of these signals 
into manageable external commands. This innovative approach over
comes the limitations of traditional communication technology, 
enabling effortless control over external physical entities and enriching 
cyberspace with a reflected reality of objects, people, and digital entities 
(Balaji et al., 2023; Borkin et al., 2023; Di Flumeri, 2019). This 
advancement signifies a pivotal shift in the digital twin framework 
within manufacturing and product design stages. It moves beyond the 
constraints of the traditional digital twin, which primarily centres on 
structural analysis derived from digital modelling. Instead, it strives 
towards a multisource digital twin paradigm that incorporates high- 
level interactions among humans, machines, and the digital environ
ment (Du et al., 2020). Moreover, this innovative approach encompasses 
emotional responses and cognitive abilities, bridging the gap between 
data-driven analyses and human experiences. For instance, Feng et al. 
(Feng et al., 2021) introduced an intelligent psycho-physiological 
analysis method driven by digital twin technology to assess the perfor
mance and design of high-speed elevators. This approach systematically 
integrates human factors into the evaluation process, establishing links 
between EEG data and performance levels. The method combines 
various human factors, including electroencephalogram (EEG) data, 
physical data, and emotional feedback such as psychological re
quirements, as well as subjective and objective assessment indicators. 
This integration enables a novel machine learning-based EEG analysis. 
The study explores the feasibility and effectiveness of different implicit 
psychological states, incorporating EEG data into fuzzy comprehensive 
evaluation (FCE) and machine learning techniques for intelligent 
psycho-physiological analysis. 

7. Digital triplet for enhancing human–machine integration 

To respond to research questions three and four, we will discuss the 
application domain based on human–machine integration and Industry 
5.0 context. 

7.1. Digital twin in Industry 5.0 

Industry 4.0 represents the era characterized by automation and 
digitalization, while Industry 5.0 focuses on the collaboration between 
human intelligence and cognitive computing, fostering a harmonious 
partnership between humans and machines. This new vision of Industry 
5.0 emerges from the integration of digital and automation technologies 
with humans within the industrial landscape. As an era of augmentation, 
Industry 5.0 aims to support human tasks within intelligent 
manufacturing systems by harnessing intelligent activities that bolster 
the resilience of human knowledge and facilitate the integration of 
humans with machines in cyberspace (Ma et al., 2023; Lakhan, 2023). 
The fusion of Industry 4.0 into Industry 5.0 paradigms has been 
strengthened through the amalgamation of augmented reality (AR), 
virtual reality (VR), and extended reality (XR) technologies with wear
able sensors (Wang et al., 2022; Du et al., 2020). This integration, 
especially in incorporating operators into the human-metaverse inter
face, plays a crucial and central role in Industry 5.0 (Jagatheesaperumal 
and Rahouti, 2022; Zhou et al., 2022). In this regards, intelligent digital 
twins within the context of the internet of digital twins (IoDT) and the 
intersection of Industry 4.0 and Industry 5.0 paradigms was developed 
to serves as a reference model for the training factory in Industry 4.0, the 
proposed model aligns with Industry 4.0 standards and integrates 
enriching elements from Industry 5.0 objectives. It demonstrates how 
IDTs can be realized, possessing the characteristics of multi-agent sys
tems (MAS) (Lober et al., 2022; Jagatheesaperumal and Rahouti, 2022; 

Lehmann, 2023). The authors of the paper (Balla et al., 2023) empha
sized bidirectional communication between actual systems and their 
digital counterparts. This communication is intended for pilot courses 
and the creation of educational materials. They developed demonstra
tion applications enabling the control of both real and virtual systems 
through seamless two-way communication within the realm of digital 
twins. These digital twins are designed for Industry 4.0 education and 
the development of educational resources. In one instance (Halenar 
et al., 2019), the utilization of digital twin technology in manufacturing 
is explored. The paper discusses employing “AVEVA” software to 
construct a virtual representation of an actual system in production line. 
It underscores the critical nature of precise information about the 
controlled system. Furthermore, a methodology for creating cost- 
effective augmented reality (AR) software is presented in the article 
(Solmaz et al., 2021), this method involves data creation, integration, 
cross-platform development, and digital asset incorporation, and the 
Unity game engine is employed to integrate simulations into AR soft
ware, producing educational digital content (Solmaz et al., 2021). 
Additionally, the integration of digital twin technology and virtual re
ality (VR) in Industry 4.0 settings proves effective in training operators, 
particularly elder workers who find it challenging to adapt to new in
dustrial paradigms (Fallaha et al., 2022). 

Digital twins, powered by smart technology, capitalizing on the ad
vancements in digitization and automation technology witnessed in the 
Industry 4.0 era. Leveraging the Industrial Internet of Things, humans 
now have a heightened perception of Cyber-Physical Production Sys
tems (CPPS) through an array of sensing devices and technologies. The 
wealth of data generated by these devices enables the emulation of the 
system and amplifies the cognitive capabilities required to process, 
comprehend, and analyse the virtual representation of the system. 
Whereas to evoke the intelligent integration of humans with machines in 
cyberspace, The paradigm of the digital triplet emphasizes the harmo
nious integration and collaboration among humans, machines, and AI. 
Its primary objective is to establish seamless interaction and synergy 
between these entities, thereby enhancing productivity, decision- 
making, and problem-solving capabilities. However, achieving a su
perorganism space of this nature requires significant technological ad
vancements and the development of sophisticated interfaces and 
communication channels. To drive the evolution of this space, sub
stantial progress is needed in enhancing the cognitive abilities of both 
humans and machines. This entails advancing AI capabilities, including 
machine learning, semantic-based AI technologies, and advanced 
reasoning. Additionally, it involves augmenting human cognition 
through the utilization of brain-computer interfaces (BCIs) and cognitive 
enhancements. BCIs play a crucial role in establishing a direct commu
nication link between the human brain and machines, enabling the 
transfer of commands, intentions, or thoughts without relying on 
traditional input or output interfaces. By focusing on refining BCI 
techniques and improving signal detection and classification algorithms, 
new avenues for seamless integration between humans and machines 
can be explored. This integration holds the potential to enhance the 
accuracy and reliability of brain-machine communication. When BCIs 
are integrated with digital twin technology, it further enhances the 
integration between humans and machines, enabling more natural, 
adaptive, and immersive interactions. This integration opens up possi
bilities for intuitive control, real-time feedback, and personalized ex
periences, ultimately leading to improved system performance, user 
satisfaction, and safety. 

By incorporating BCIs into the Digital Triplet paradigm, numerous 
advantages can be attained: 

Enhanced Interaction: BCIs offer a more intuitive and direct means 
of human–machine interaction, circumventing conventional input 
devices like keyboards or joysticks. This facilitates a seamless and 
natural control over the digital twin, allowing users to manipulate 
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and influence the virtual representation through their thoughts or 
intentions. 
Real-time Feedback: BCIs have the capability to provide users with 
real-time feedback by monitoring their brain activity and analyzing 
cognitive states, attention levels, or emotional responses. This feed
back can be utilized to adapt and optimize the behavior of the digital 
twin, ensuring it aligns with the user’s intentions and preferences. 
Adaptive Systems: BCIs will enable Digital Triplet systems to 
dynamically adjust their behavior based on the user’s cognitive 
states or physiological responses. For instance, if a user displays signs 
of fatigue or distraction, the related digital twin can autonomously 
modify its operations or provide additional support to maintain 
system performance and user safety. 
Training and Skill Development: BCIs integrated with digital twins 
serve as powerful tools for training and skill enhancement. Users can 
engage in practice and improve their abilities using advanced 
immersive interfaces, such as augmented reality (AR) and virtual 
reality (VR), while receiving real-time feedback from the digital twin 
system. This is particularly valuable in complex and high-risk do
mains like surgery, aviation, or hazardous industrial operations. 

Overall, the integration of BCIs into the Digital Twin framework 
unlocks significant potential for enriched interaction, real-time feed
back, adaptability, and skill development, enhancing the overall per
formance and user experience. Promoting effective human–machine 
integration, engineers strive to create Knowledge-based systems that 
incorporate human expertise, domain knowledge, and artificial intelli
gence into the digital triplet. These systems facilitate the seamless 
transfer of knowledge and experience from human operators to ma
chines. By capturing and formalizing human knowledge, they enable 
machines to emulate human-like cognitive abilities and augment their 
decision-making and problem-solving capabilities. The development of 
advanced immersive interfaces, such as augmented reality (AR) and 
virtual reality (VR), will plays a crucial role in enhancing human
–machine integration within the digital triplet. These interfaces offer 
intuitive visualizations, real-time overlay of information, and immersive 
experiences, thereby enabling humans to interact with digital twins and 
machines in a more effective and intuitive manner. 

8. Discussion, limitation, and knowledge gap 

In addressing the knowledge gap concerning human integration in 
the real world’s cyberspace, the future digital twin paradigm needs to 
advance beyond indirect human intervention in the physical world. It 
should amplify human interaction through a cognitive digital twin. 
Currently, the transition from tangible human presence to the digital 
realm in cyberspace has been limited. However, efforts are underway to 
leverage emotional, visual, and oral responses to develop the reasoning 
and predictive capabilities of digital twins. These advancements should 
aim to enhance real-time human interactions with both physical and 
virtual systems by leveraging the power of embedding intelligence- 
based machine learning algorithms and cognitive computing systems 
at the perceptive level of digital triplet (Niiyama et al., 2023; Uchihira 
et al., 2023; Preuss, 2023; Preuss and Russwinkel, 2021; Fahim et al., 
2023). Furthermore, the progression in the domination level of digital 
twin technology at a perceptive level must guarantee the shift from 
immediate unidirectional interaction, where humans act as mere mon
itors, towards a bidirectional integration in both digital and physical 
spaces. Researchers should focus on this transformation, not just by 
utilizing wearable and portable devices to enhance brain-based control 
in Cyber-Physical Systems (CPS), but also by developing cognitive-based 
machine learning algorithms for extensive knowledge systemizing, data 
assimilation, and classification in the maturity level of the digital triplet 
(Jinzhi et al., 2022; Du et al., 2020; Ramos et al., 2021; Guerra et al., 
2020; Balaji et al., 2023; Borkin et al., 2023; Dehais et al., 2022; Vild
jiounaite, 2023). 

Integrating humans into intelligent applications presents both chal
lenges and opportunities. The challenges arise from the necessity to 
redefine traditional roles in societies and industries, involving humans 
directly in the digital realm and encapsulating human information 
within cyberspace. Unlike merely replacing or enhancing iterative tasks, 
the integration of the space of human intellectual activities into physical 
and cyberspace creates innovative connections between humans and 
machines. 

This integration must involve not only sensor data collected by IoT 
but also the data of human interaction with physical space, merging the 
physical and digital dimensions. Human knowledge, cognitive abilities, 
and emotional data must be seamlessly integrated within the digital 
maturity of the intelligent digital twin. This integration results in out
puts of intelligent activities that amalgamate the digital triplet in cy
berspace (Uchihira et al., 2023; Wu, 2014; Zhang et al., 2019). To 
optimize this interaction, accurately representing humans within the 
digital space necessitates in-depth research and profound experiments 
for merging AI-based cognitive computing with internal data, including 
knowledge, heuristics, and cognitive abilities to achieve a brain 
intelligence-inspired system within the volition level of the digital 
triplet. The subsequent vital step involves developing an interoperable 
digital twin for humans, machines, and surrounding spaces, enabling the 
complete realization of this potential (Wang, 2020; Li et al., 2023; 
Rainey, 2022). The research challenges explore the possibility of 
creating a brain intelligence-inspired system at the profound level of 
intelligence in digital triplet. This system would provoke future research 
to allow humans to transfer their knowledge and creativity directly to 
machines through human–machine telepathy (Reilly, 2020; Sabunchi, 
2023; John et al., 2022), facilitated by a digital twin brain system (Li, 
2023; Xiong et al., 2023). Achieving this level of integration poses a 
significant challenge in practically integrating human minds and senses 
into the metaverse environment alongside other intelligent systems. 
Overcoming this challenge would bridge knowledge gaps, enabling 
seamless communication, understanding, and emulation of human in
telligence in the cyberspace, utilizing both digital and physical spaces. 

The limitation of utilising cognitive computing in the digital triplet is 
the current shortfall in achieving a human-like intelligence system, 
Current advancements face challenges such as  

1. Preliminary Nature of AI Systems: Current industrial AI systems 
are in their early stages, representing preliminary applications. 
Integrating machine learning and artificial intelligence to enhance 
predictive abilities and deepen the understanding of digital twins is 
crucial. This involves transferring digital twins from traditional 
simulations to achieve a perceptive digital triplet level, integrating 
virtual and physical spaces, and enhancing multi-domain model 
interoperability (Wang et al., 2023). Overcoming challenges, espe
cially related to continuous access to significant datasets, is essential 
for sustained discovery of explicit, tacit, and latent knowledge to 
improve machine intelligence (Uchihira et al., 2023). Rising human 
expectations regarding machine capabilities pose a significant chal
lenge in overcoming data limitations for future AI development. 

2. Limited Focus on Human-Centered Intrinsic Information: Ap
plications utilizing neural networks and deep learning in sectors like 
Smart City, Smart Healthcare, Smart Home, and Smart Trans
portation often lack a focus on human-centered intrinsic informa
tion, such as emotions and mentality. Researchers need to refine 
existing methods and develop a comprehensive digital twin incor
porating AI-based Machine Learning algorithms. This includes inte
grating psychological and human interactions with physical space 
signals and sensor data collected by IoT (Du et al., 2020). It is crucial 
to gain valuable insights into the integration of these devices and 
humans within metaverse environments, specifically focusing on 
recognizing human behavior and emotions.  

3. Dependency on Continuous Big Data Provisioning: The challenge 
in advancing machine intelligence lies in the continuous access to 
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substantial datasets. As human expectations of machine capabilities 
increase, overcoming data limitations becomes crucial for future AI 
development. Constructing an intelligent sensing system for AIoT or 
advanced CIoT that mimics human cognitive mechanisms is essential 
(Sun, 2021; Wu, 2014; Zhang and Tao, 2021). This system would 
efficiently connect diverse data types across time and space by 
learning, predicting, memorizing and reasoning, addressing the need 
for sustainable knowledge discovery in enhancing machine 
intelligence.  

4. leverage the abilities of intelligent digital twins and achieve 
human-like intelligence system-based human–machine inte
gration: The challenges in achieving human-like intelligence in 
intelligent digital twins necessitate focused research and develop
ment. Efforts should concentrate on understanding human-centric 
intrinsic information, enhancing AI sophistication, and ensuring ac
cess to diverse datasets. Interdisciplinary collaboration involving 
experts in cognitive computing, artificial intelligence, data science, 
and industrial engineering is crucial. Integrating digital twins 
seamlessly with human capabilities and improving their cognitive 
abilities, especially spatial cognition, is vital. Future research should 
explore spatial computing and digital contact tracing technologies to 
refine the maturity level of digital triplets, addressing knowledge 
gaps in human–machine integration (Preuss and Russwinkel, 2021; 
Zhang et al., 2019; Pacaux-Lemoine et al., 2017; Nica et al., 2023). 

5. Enhancing the domination level of the digital triplet: Re
searchers must focus on enhancing the digital triplet’s capabilities. 
This involves utilizing wearable devices for brain-based control in 
Cyber-Physical Systems (CPS) and developing cognitive-based ma
chine learning algorithms with extensive neural networks. The aim 
should attract attention to develop a powerful computing platform 
that accurately replicates communication-intensive and memory- 
access-intensive systems resembling brain cognitive functions. 
Additionally, attention should be directed towards developing digi
tal twin-based model predictive control (MPC) to dominate entire 
systems, processes, and human interactions beyond the capabilities 
of conventional feedback controllers (Ramos et al., 2021; Borkin 
et al., 2023; Balaji et al., 2023).  

6. BCI-enabled volition level: In the realm of BCI-enabled digital 
triplets, there is a need for extensive research to develop a platform 
with complex neural networks that mimic diverse cognitive abilities 
of the human brain. This digital platform should integrate data from 
machines and the human brain. To achieve effective communication 
in BCI-enabled human integration in the cyber world, researchers 
should delve into the semantic meaning of brain signals, especially 
focusing on the semantic reasoning of EEG signals (Zhu et al., 2023; 
Kim et al., 2023; Wang et al., 2021). This understanding is crucial for 
designing efficient semantic communication frameworks, ensuring 
meaningful transmission of information between humans or com
munities within digital space and cyberspace of the industrial met
averse (Wang et al., 2022).  

7. BCI-enabled maturity level: In the BCI-enabled maturity level of 
digital triplets, a key challenge is real-time synchronization and 
communication between humans and their digital counterparts, 
especially human avatars. This challenge comprises two primary 
communication perspectives:  

• Additional focus on further research is needed to guarantee strong 
and dependable connections for users equipped with BCI and VR/AR 
wearable devices. Achieving this requires low latency and error-free 
transmission of brain signals over network systems (Du et al., 2020).  

• Communication between human avatars and other avatars or digital 
twins in cyberspace should focus on real-time interactions within the 
Metaverse environment. Digital avatars must offer valuable sugges
tions to humans based on analyzed brain signals, thereby enhancing 
the integration of human presence within physical and digital spaces 
(Ramos et al., 2021). 

9. Conclusion 

This paper delved into an extensive and systematic analysis of the 
recent trends and flourishing of digital twins from traditional concept 
and application to a perceptive digital triplet that utilises the intelligent 
activities world to resonate the maturity, domination, and volition level 
of digital twins and augment cognitive and perceptive capabilities by 
leveraging human intuition, knowledge and ingenuity and immersing 
our brain in the cyberspace. From the findings, the digital twin is 
evolved over the last decade into ultra-realistic digital models with real- 
time data-driven digital artefacts that integrate the intelligent activities 
world with multiphysics, multidomain, and multiscale simulations. The 
intelligent activities world has flourished its perceptive and heuristics 
capabilities by utilising AI in data analytics for retrieving heterogeneous 
data from virtual entities with semantic artificial intelligence technol
ogies: meta-heuristic algorithms, Ontology, semantic web, knowledge 
discovery, knowledge graph, and distilling knowledge and awareness by 
aggregating AI and machine learning with human’s insight and 
perceptual knowledge. In which intelligent activities world will elevate 
cyberspace to have its capacities for learning, cognitive skills, and 
knowledge transfer, and will promote the cognitive augmentation of the 
human brain through the machine by leveraging the enabling technol
ogies in brain-machine/computer interface, augmented and extended 
reality for a better symbiosis between a human and a machine towards 
the industrial metaverse, industry 5.0. Despite that, the digital triplet 
concept doesn’t seduce researchers to be the substitutional paradigm of 
the digital twin that encompasses the capabilities of perceptive and 
cognitive skills and augmented human (human brain, computer, and 
cyberspace) functionality of human–machine integration. And derived 
from the following keynotes of this extensive review and the results 
published in the works of literature, the digital triplet paradigm can be 
elucidated and considered the inevitable implication of amalgamation of 
human knowledge into the intelligent activities world with the digital 
twin:  

• Most researchers have assimilated cognitive capabilities into the 
perceptive level of the digital twin as a combination of human 
knowledge and intelligent activities world into cyberspace. 

• It is really triplet in its organisational knowledge transfer, it pro
motes the synergistic intersection of collective intelligence frame
work of tri constituents among human and intelligent activities 
world as a space of expertise/awareness, knowledge/information/ 
data as a data-driven model, and the digital model composed of 
software and hardware.  

• In the context of intelligent manufacturing in Industry 5.0, the 
contribution of the digital twin to the flourishing of the industry 4.0 
era towards industry 5.0 will reflect the role of artificial intelligence 
and machine learning to amalgamate the knowledge and creativity 
of human factors for better integrations of humans, physical world 
and cyberspace towards Human, Cyber, and Physical system HCPs.  

• Digital triplet with its framework encompasses the tri-layer of 
physical space, digital space, and cyberspace. In which the intelligent 
activity world in cyberspace will combine the interoperability among 
digital twins in digital space and physical assets in the physical space  

• It is a triplet at its hierarchal level with maturity, domination, and 
volition levels.  

• The digital triplet paradigm will entail the contribution of the three 
prominent enablers (Cognitive computing based semantic AI and 
machine learning, Brain-computer/machine interface, and 
Augmented/extended reality) of the intelligent activities world. 

In the end, the contribution and framework of this review will evoke 
the researchers to have elevated implications of future research related 
to developing the digital triplet for sustaining the symbiosis between 
digital twins, humans, and the intelligent activity world and fading the 
separation among the physical, digital, and cyberspace as an assemblage 
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of cyber-biont community through the industrial metaverse, industry 
5.0. 
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Bécue, A., Maia, E., Feeken, L., Borchers, P., Praça, I., Jun. 2020. A New Concept of 
Digital Twin Supporting Optimization and Resilience of Factories of the Future. 
Appl. Sci. 10 (13), 4482. https://doi.org/10.3390/app10134482. 

Bhat, J.R., AlQahtani, S.A., Nekovee, M., 2023. “FinTech enablers, use cases, and role of 
future internet of things”, J. King Saud Univ. - Comput. Inf. Sci. 35 (1), 87–101. 
https://doi.org/10.1016/j.jksuci.2022.08.033. 

Bielefeldt, B., Hochhalter, J., Hartl, D., Sep. 2015. “Computationally Efficient Analysis of 
SMA Sensory Particles Embedded in Complex Aerostructures Using a Substructure 
Approach”, in Volume 1: Development and Characterization of Multifunctional 
Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and 
Control of Adaptive Systems. American Society of Mechanical Engineers. https://doi. 
org/10.1115/SMASIS2015-8975. 

Biesinger, F., Meike, D., Kraß, B., Weyrich, M., 2019. A digital twin for production 
planning based on cyber-physical systems: A Case Study for a Cyber-Physical System- 
Based Creation of a Digital Twin. Procedia CIRP 79, 355–360. https://doi.org/ 
10.1016/j.procir.2019.02.087. 

Bohlin, R., Hagmar, J., Bengtsson, K., Lindkvist, L., Carlson, J.S., Söderberg, R., Nov. 
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Gerber, A., Derckx, P., Döppner, D.A., Schoder, D., 2020. Conceptualization of the 
human-machine symbiosis A literature review. Proc. Annu. Hawaii Int. Conf. Syst. 
Sci. vol. 2020-Janua, 289–298. https://doi.org/10.24251/hicss.2020.036. 

Ghosh, A.K., Ullah, A.M.M.S., Kubo, A., 2019. Hidden Markov model-based digital twin 
construction for futuristic manufacturing systems. Artif. Intell. Eng. Des. Anal. 
Manuf. AIEDAM 33 (3), 317–331. https://doi.org/10.1017/S089006041900012X. 

Ghosh, A.K., Ullah, A.S., Kubo, A., Akamatsu, T., D’Addona, D.M., Feb. 2020. Machining 
Phenomenon Twin Construction for Industry 4.0: A Case of Surface Roughness. 
J. Manuf. Mater. Process. 4 (1), 11. https://doi.org/10.3390/jmmp4010011. 

Gichane, M.M., et al., 2020. Digital Triplet Approach for Real-Time Monitoring and 
Control of an Elevator Security System. Designs 4 (2), 9. https://doi.org/10.3390/ 
designs4020009. 

Glaessgen, E.H., Stargel, D.S., 2012. The digital twin paradigm for future NASA and U.S. 
Air force vehicles. Collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct. 
Dyn. Mater. Conf. 1–14. https://doi.org/10.2514/6.2012-1818. 

Goto, J., et al., 2021. Development of a Learning Factory Based on ‘Digital Triplet’ 
Concept. Proc. Int. Conf. Lead. Edge Manuf. 21st Century LEM21 2021 (10), 
183–189. https://doi.org/10.1299/jsmelem.2021.10.189-183. 

Grazioso, S., Tedesco, A., Selvaggio, M., Debei, S., Chiodini, S., 2021. Towards the 
development of a cyber-physical measurement system (CPMS): Case study of a 
bioinspired soft growing robot for remote measurement and monitoring 
applications. Acta IMEKO 10 (2), 104–110. https://doi.org/10.21014/acta_imeko. 
v10i2.1123. 

Grieves, M.W., 2005. Product lifecycle management: the new paradigm for enterprises. 
Int. J. Prod. Dev. 2 (1/2), 71. https://doi.org/10.1504/IJPD.2005.006669. 

Grieves, M., Vickers, J., 2017. “Digital Twin: Mitigating Unpredictable, Undesirable 
Emergent Behavior in Complex Systems”, in Transdisciplinary Perspectives on 
Complex Systems. Springer International Publishing, Cham, pp. 85–113. 

Grieves, M. 2009. “Back to the Future: Product Lifecycle Management and the 
Virtualization of Product Information,” in Product Realization, Boston, MA: Springer 
US, pp. 1–13. doi: 10.1007/978-0-387-09482-3_3. 

Grinshpun, G., Cichon, T., Dipika, D., Rossmann, J., 2016. “From virtual testbeds to real 
lightweight robots: Development and deployment of control algorithms for soft 
robots, with particular reference to industrial peg-in-hole insertion tasks”. 47th Int 
Symp. Robot. ISR 2016 2016, 208–214. 

Groshev, M., Guimaraes, C., Martin-Perez, J., De La Oliva, A., 2021. Toward Intelligent 
Cyber-Physical Systems: Digital Twin Meets Artificial Intelligence. IEEE Commun. 
Mag. 59 (8), 14–20. https://doi.org/10.1109/MCOM.001.2001237. 

Guerra, A., Caceres, D., Merchan, F., Jo, K.H., 2020. Real Time Operator Focus 
Monitoring System Based on a Brain-Computer Interface. IEEE Int. Symp. Ind. 
Electron. 2020-June, 1415–1420. https://doi.org/10.1109/ 
ISIE45063.2020.9152264. 

Guo, J., Zhao, N., Sun, L., Zhang, S., Mar. 2019. Modular based flexible digital twin for 
factory design. J. Ambient Intell. Humaniz. Comput. 10 (3), 1189–1200. https://doi. 
org/10.1007/s12652-018-0953-6. 

Hagmann, K., Hellings-Kuß, A., Klodmann, J., Richter, R., Stulp, F., Leidner, D., 2021. 
A Digital Twin Approach for Contextual Assistance for Surgeons During Surgical 
Robotics Training. Front. Robot. AI 8 (September), 1–14. https://doi.org/10.3389/ 
frobt.2021.735566. 

Halenar, I., Juhas, M., Juhasova, B. and Borkin, D. 2019. “Virtualization of Production 
Using Digital Twin Technology,” in 2019 20th International Carpathian Control 
Conference (ICCC), IEEE, May 2019, pp. 1–5. doi: 10.1109/ 
CarpathianCC.2019.8765940. 

Han, B. and Schotten, H. D. 2022. “Multi-Sensory HMI for Human-Centric Industrial 
Digital Twins: A 6G Vision of Future Industry,” Proc. - IEEE Symp. Comput. 
Commun., vol. 2022-June, doi: 10.1109/ISCC55528.2022.9912932. 

Havard, V., Jeanne, B., Lacomblez, M., Baudry, D., 2019. Digital twin and virtual reality: 
a co-simulation environment for design and assessment of industrial workstations. 
Prod. Manuf. Res. 7 (1), 472–489. https://doi.org/10.1080/ 
21693277.2019.1660283. 

He, B., Cao, X., Hua, Y., 2021. Data fusion-based sustainable digital twin system of 
intelligent detection robotics. J. Clean. Prod. 280, 124181 https://doi.org/10.1016/ 
j.jclepro.2020.124181. 

Hehenberger, P., Bradley, D., 2016. Mechatronic futures: Challenges and solutions for 
mechatronic systems and their designers. Mechatron. Futur. Challenges Solut. 
Mechatron. Syst. Their Des. 1–259. https://doi.org/10.1007/978-3-319-32156-1. 

Huang, J., et al., 2020. Towards digital engineering: The advent of digital systems 
engineering. Int. J. Syst. Syst. Eng. 10 (3), 234–261. https://doi.org/10.1504/ 
ijsse.2020.109737. 

Huang, J., Beling, P., Freeman, L., Zeng, Y., 2021. Trustworthy AI for Digital Engineering 
Transformation. J. Integr. Des. Process Sci. 25 (1), 1–7. https://doi.org/10.3233/ 
JID-210028. 

Huynh, B. H., Akhtar, H. and Sett, M. K. 2019. “A universal methodology to create digital 
twins for serial and parallel manipulators,” Conf. Proc. - IEEE Int. Conf. Syst. Man 
Cybern., vol. 2019-Octob, pp. 3104–3109, doi: 10.1109/SMC.2019.8914195. 

Intizar Ali, M., Patel, P., Breslin, J.G., Harik, R., Sheth, A., Mar. 2021. Cognitive Digital 
Twins for Smart Manufacturing. IEEE Intell. Syst. 36 (2), 96–100. https://doi.org/ 
10.1109/MIS.2021.3062437. 

Ishiguro, H. 2021. “The realisation of an avatar-symbiotic society where everyone can 
perform active roles without constraint,” no. May, 2021, doi: 10.1080/ 
01691864.2021.1928548. 

Jagatheesaperumal, S.K., Rahouti, M., 2022. Building Digital Twins of Cyber Physical 
Systems With Metaverse for Industry 5.0 and Beyond. IT Prof. 24 (6), 34–40. https:// 
doi.org/10.1109/MITP.2022.3225064. 

Jalali, F., Smith, O. J., Lynar, T. and Suits, F. 2017. “Cognitive IoT gateways: Automatic 
task sharing and switching between cloud and Edge/Fog computing,” SIGCOMM 
Posters Demos 2017 - Proc. 2017 SIGCOMM Posters Demos, Part SIGCOMM 2017, 
no. November, pp. 121–123, doi: 10.1145/3123878.3132008. 

Jazdi, N., Ashtari Talkhestani, B., Maschler, B., Weyrich, M., 2020. Realization of AI- 
enhanced industrial automation systems using intelligent Digital Twins. Procedia 
CIRP 97 (March), 396–400. https://doi.org/10.1016/j.procir.2020.05.257. 

Jin, T., et al., 2020. Triboelectric nanogenerator sensors for soft robotics aiming at digital 
twin applications. Nat. Commun. 11 (1), 1–12. https://doi.org/10.1038/s41467- 
020-19059-3. 

Jinzhi, L., Zhaorui, Y., Xiaochen, Z., Jian, W., Dimitris, K., Aug. 2022. Exploring the 
concept of Cognitive Digital Twin from model-based systems engineering 
perspective. Int. J. Adv. Manuf. Technol. 121 (9–10), 5835–5854. https://doi.org/ 
10.1007/s00170-022-09610-5. 

John, E., Fisher, P., John, E. and Fisher, P. 2022. “Neurology - Research & Surgery Direct 
Brain to Brain (B2B) Communication without Interface Applications- Fact or 
Fiction?,” pp. 1–10. 
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