


● Title: TRE-FX Technical Documentation - Primary Implementation

● Date: 2024-01-18

● Authors: Tom Giles, Jonathan Couldridge, Sam Cox, Daniel Lea, Vasiliki Panagi, Simon Thompson, Philip

Quinlan

● Cite as: https://doi.org/10.5281/zenodo.10376658

● Abstract: This report documents the primary TRE-FX implementation, which uses a microservice

architecture, to be deployed with layers outside and inside the Trusted Research Environments.

Primary TRE-FX implementation

This project wanted to illustrate that each of the components in this Microservice architecture is interchangeable

with equivalent components. The Primary TRE-FX implementation is the main implementation to be installed

within the TREs as part of the TRE-FX project. It has been built to interact with mature TRE services. It has an API

based architecture that consists of a number of microservices running on three separate VMs. Alongside the TRE

Controller and Workflow Executor this deployment relies on several additional components, including a Keycloak

server and a Intermediary store that serves as a place to put the crates for job requests, outputs of executions,

| 1

https://doi.org/10.5281/zenodo.10376658


and final results crates.

Figure 1: Diagram illustrating the Primary TRE-FX implementation. The Submission Layer, TRE controller and

Workflow Executor are all VMs running sets of microservices, additional requirements include Keycloak

and the Intermediary MINIO store.

| 2



Components

Each of these components can either be contained within a single virtual machine per component or deployed as

a number of separate sub services within a larger architecture model. The expectation is that in a productionised

service other TRE services will be integrated with these components to ensure that appropriate governance

conditions are met.

Submission Layer

The Submission Layer is external to the Trusted Research Environments (TREs). It serves as the initial point of

contact for incoming analytical tasks. This layer is responsible for receiving user-submitted tasks, performing

preliminary validations, and queuing them for further processing. By positioning the Submission Layer outside the

TREs, the system ensures a level of abstraction that enhances security and task management.

In our primary implementation both power users and federated software vendors interact with the Submission

layer via a User portal / Website and a GA4GH TES API. Before a user / vendor can submit a query to the GA4GH

TES API they must first register for an authentication token in the GUI, this is then used to authenticate following

transactions. All user credentials are stored in Keycloak for cross validation across the platform. An admin API is

provided to allow the TREs to pre-validate whether a query should be ingressed based on user and project

credentials.

When a TES message is submitted, with an embedded link to WorkflowHub (workflowhub.eu) to the Five Safes

RO-Crate, and is stored in a MINIO instance and held for validation. Assuming the checks pass, the TES message is

then staged in a queue ready for collection by the TREs.

A query API is provided to return the results of analyses from TREs. Upon receipt, the results packet (wrapped in a

Five Safes RO-Crate) is stored in the MINIO instance and held for validation. Assuming the output checks pass, the

results packet is made available for collection via the GA4GH TES API and the output Five Safes RO-Crate can be

posted to the HDR Data Use Register for transparency.

The User portal / Website also provides users with a graphical representation of the jobs running across the

federated architecture and displays job status updates. These are reported back to the User portal / Website by

the TRE Controller via a notifications API.

TRE Controller

The TRE-Controller layer acts as an internal administrative and messaging service layer. Situated within the TREs

(and composed of a TRE-Agent and Local Admin Website in the SAIL/SERP implementation), this controller handles

task scheduling, data coordination, and messaging between the different layers and services. It provides a crucial

link between the Submission Layer and the Workflow Execution Layer, ensuring that tasks are executed in the

correct environment and that results are appropriately managed.

In our primary implementation the TRE-Controller employs various dockerised software modules. The use of

Docker containers is mainly to ensure consistent deployment including dependencies, the containers can be

ported to other engines like Podman or Singularity.

The TRE-UI is the user interface, offering an integrated view of ongoing tasks, logs, and system metrics. It also has

a basic disclosure control egress service that can act as an air gap preventing the disclosure of unsafe analyses.

The TRE-API orchestrates between the different layers and services, managing API calls and messaging between

the submission layer, TRE Admin UI and the Workflow Executor (via RabbitMQ). NGINX serves as the gateway for

both the Admin UI and API interfaces, offering a secure access point for TRE controllers and messaging .

| 3

http://workflowhub.eu
https://www.docker.com/


PostgreSQL 14 is used for storing essential data like which users have been authorised to run analyses against

which projects and task statuses and for both debugging and logging, SEQ is utilised.

A MINIO server is also provided as an intermediary storage layer for holding the Five Safes RO-Crates during

ingress and egress.

To facilitate secure and authenticated interactions with the external Submission Layer, the TRE-Controller employs

tokens from a Keycloak server for credential verification. These tokens validate not only the tasks but also the data

transferred between layers.

Workflow Executor

The Workflow Execution Layer also resides within the TREs and is close to the data. This layer is dedicated to the

actual computational work, executing algorithms and analytics tasks on the data. It fetches tasks from the queue

managed by the TRE-Controller and applies the specified analytics workflows and enriches the Five Safes RO-Crate

with the information necessary for it to be used for governance and disclosure assessment. Post-execution, it

returns results to the TRE-Controller, which then manages the return of outputs accordingly. It must also be

capable of posting status updates.

In our primary implementation Hutch (https://github.com/HDRUK/hutch) serves as an open-source "Workflow

Executor". It is designed to interact with a Trusted Research Environment (TRE) Controller over HTTPS via APIs.

TRE Controllers can either post job requests to a Query API endpoint in Hutch or hutch can listen to an endpoint to

receive jobs. For workflow retrieval, Hutch offers flexibility. It can source workflows from publicly accessible

repositories such as WorkflowHub, or, in air-gapped (isolated) environments, can fetch approved workflows from a

local HTTP source. Sonatype Nexus is also integrated into the Hutch system, serving dual roles as a local workflow

store and a container registry. This enables efficient management and storage of both workflow files and container

images, essential for seamless execution. Workflows are expected to be in the Workflow Profile RO-Crate format

(a specific schema designed for workflow representation compliant with WorkflowHub).

The execution of workflows is managed by WfExS (https://github.com/inab/WfExS-backend), a workflow

execution orchestrator. WfExS supports multiple container engines, such as Docker, Podman, and Singularity but in

the case of air-gapped environments Podman is used to ensure compatibility and security.

Hutch communicates with the TRE-Controller using its REST API for various notifications. These include status

updates during workflow execution and a notification when the data analysis is completed (RabbitMQ manages

message queues). Post-analysis, Hutch retains all documents, results and Crates in a holding state until it receives

an explicit approval for disclosure control. Once approved, Hutch moves the data to a designated directory

suitable for data egress.

For intermediary storage needs, Hutch is flexible. It supports either the AWS S3 API (in this implementation a

Minio server is provided) or a traditional mounted filesystem path. This allows it to adapt to different

infrastructure setups. specific workflows may also require local databases for storing the data for analysis, in this

implementation PostgreSQL is used. To facilitate secure and authenticated interactions with the TRE-Controller,

Hutch also employs tokens from a Keycloak server for credential verification. These tokens validate not only the

tasks but also the data transferred between layers.

Transparency layer

The Transparency Layer is an external entity to the Trusted Research Environments (TREs) and functions as a public

interface for research oversight and auditability. Situated outside the secure boundaries of the TREs, this layer

provides researchers and other stakeholders with visibility into executed analytical tasks and their corresponding

| 4

https://github.com/HDRUK/hutch
https://github.com/inab/WfExS-backend


metadata. By offering this transparency, the system not only enhances accountability but also fosters confidence

in the research ecosystem.

In this implementation an API on the HDR gateway has been developed to ingest the output Five Safes RO-Crates

posted by the submission layer, store and display them.

RO-Crate Usage

The components detailed above use the Five Safes RO-Crate profile as outlined by TRE-FX: as a transport format to

bundle metadata for the submission along with required input parameters and everything the implementation

needs to know in order to perform the requested analysis. The components, per the Five Safes RO-Crate Profile,

continually augment the crate data and metadata throughout the process, as means of documenting the

submission’s journey through the process as well as fulfilling the submission’s request by providing analysis

output. This includes: any checkpoints, automatic and manual, that have been passed; metadata surrounding

users and tools that handle the crate; incorporating referenced files, such as the workflow definition; analysis

outputs that have passed disclosure checks for egress; and publishing information such as the origin, licence and

publish date of the outputs. The Five Safes RO-Crate profile helps describe this journey by specifying a series of

phases (https://trefx.uk/5s-crate/0.4/#review-process), referenced throughout the below.

The RO-Crate flows through the system in the following order:

● Submission Layer (initial submission)

○ The RO-Crate is submitted to the Submission Layer (referenced in a TES payload).

○ The Submission is like a partial Five Safes RO-Crate, as that profile outlines several phases and, at

the point of submission, not all of those phases have passed (by design), and therefore not all the

final metadata is present (e.g. when compared to a Results form of the crate).

○ The Submission Layer performs initial validation and authorisation checks, before queuing the

submission for target TRE endpoints.

○ In future, the checks that are done may be recorded in the crate’s metadata - particularly those

expected by the Check Phase (https://trefx.uk/5s-crate/0.4/#check-phase) - this is not currently

implemented due to time constraints.

● TRE-Controller Layer (TRE ingress):

○ The submission is fetched by the TRE-Agent, which interacts with Keycloak and the Local Admin

Website for authorisation checks internal to the TRE, and is then sent to the Workflow Executor

Layer via the Intermediary Store.

○ In future, the checks that are done may be recorded in the crate’s metadata - particularly those

expected by the Validation Phase (https://trefx.uk/5s-crate/0.4/#validation-phase) and the

Sign-off Phase (https://trefx.uk/5s-crate/0.4/#sign-off-phase) - this is not currently implemented

due to time constraints and is planned to be recorded as part of the API interaction.

● Workflow Executor Layer (execution):

○ The RO-Crate arrives at Hutch, which validates that it has reached the expected phase (the

Sign-off Phase and required prior phases should be completed)

○ Hutch internally re-validates the crate’s checksums and structure, then fetches the referenced

workflow per the Workflow Retrieval Phase

(https://trefx.uk/5s-crate/0.4/#workflow-retrieval-phase)

■ note that per the spec this phase can occur immediately before or immediately after the

Sign-off Phase; this implementation does it immediately after.

○ Hutch then triggers the underlying Workflow Execution Service (WfExS) to execute the retrieved

workflow with the provided inputs.

| 5

https://doi.org/10.5281/zenodo.10376350
https://trefx.uk/5s-crate/0.4/#review-process
https://trefx.uk/5s-crate/0.4/#check-phase
https://trefx.uk/5s-crate/0.4/#validation-phase
https://trefx.uk/5s-crate/0.4/#sign-off-phase
https://trefx.uk/5s-crate/0.4/#workflow-retrieval-phase


○ WfExS executes the workflow and outputs the results locally in its execution environment

○ Upon completion of the local workflow execution, Hutch updates the RO-Crate locally per the

Workflow Execution Phase (https://trefx.uk/5s-crate/0.4/#workflow-execution-phase)

○ Assuming successful execution, Hutch stores the outputs in the Intermediary Store for egress

checks and sends information for egress checking back to the TRE-Agent

○ Note that while the RO-Crate is updated locally by Hutch as it goes along, this updated crate

doesn’t leave the Workflow Executor Layer environment at this time – The “raw” workflow

outputs are what is shared for egress checking, not the in-progress crate

● TRE-Controller Layer (egress checks)

○ The workflow outputs are sent to the TRE-Agent, which in turn interacts with the Egress checking

system

○ The results of egress checks are returned to the TRE-Agent, which in turn sends them on to Hutch

○ The RO-Crate is not currently updated at this point – this will be logged by the Disclosure phase.

● Workflow Executor Layer (bundling):

○ Hutch now updates the RO-Crate with all additional information that has come through the

process, completing the Disclosure Phase (https://trefx.uk/5s-crate/0.4/#disclosure-phase) and

the Publishing Phase (https://trefx.uk/5s-crate/0.4/#publishing-phase)

○ At this point, the RO-Crate is an augmented version of the original Submission crate that will now

meet the profile’s requirements for all the “phases”.

○ Hutch uploads this “Results” crate to the Intermediary Store and returns to the TRE-Controller

Layer

● TRE-Controller Layer (response)

○ The TRE-Controller fetches the Results form of the crate from the Intermediary Store.

○ The final RO-Crate is then returned to the user through the Submission Layer

○ The user is then able to perform the any of the steps outlined in the Receiving Phase

(https://trefx.uk/5s-crate/0.4/#receiving-phase) as desirable.

Quickstart Guide for TREs

Within the TREs, both the TRE Controller and the Workflow Executor can be deployed as single virtual machines.

Base specification

1. The TRE Controller: Ubuntu 22.04 x64, 4 vCPU, 16 GB RAM, 30GB disk

2. Workflow Executor: Ubuntu 22.04 x64, 4 vCPU, 16GB RAM, 128GB disk.

Higher specification may be required for productionisation. No commercially licensed software is used, the entire

stack is open source and available on github:

Submission layer and TRE Controller: https://github.com/SwanseaUniversityMedical/DARE-TREFX-Environment1

Workflow Executor: https://github.com/HDRUK/hutch

Deployment

The TRE controller can be Deployed entirely through Docker-compose using versioned built images. The Workflow

Executor relies on tools that can not easily be deployed in a container and thus an ansible script is provided to

facilitate rapid deployment, this configures ASP.NET Core 7 runtime, WfExS, Docker and HostFile Configuration for

| 6

https://trefx.uk/5s-crate/0.4/#workflow-execution-phase
https://trefx.uk/5s-crate/0.4/#disclosure-phase
https://trefx.uk/5s-crate/0.4/#publishing-phase
https://trefx.uk/5s-crate/0.4/#receiving-phase
https://github.com/SwanseaUniversityMedical/DARE-TREFX-Environment1
https://github.com/HDRUK/hutch


Proxying Workflow Retrieval. The remaining Workflow Executor components are deployed via Docker-compose

using versioned built images. To run the Hutch based Workflow Executor application stack from source, there are

multiple components that need installing. They all communicate via TCP, so a data partner can put any

combination of them on the same machine or different machines, provided they are able to talk to one another

on the right ports over a network.

Networking

Only the TRE controller communicates with the outside world. Connectivity is outbound using REST API to a single

submission endpoint running on port 443, web proxy (no auth) can be used to detach the resources.

The TRE controller vm provides a user admin web portal and API server and an Egress web portal. The

expectation is that these resources will only accept local inbound connections, and that calls to these services are

routed through a single NGNIX endpoint, configured for SSL (assuming appropriate certificates are provided). The

default port for this API service is 8072.

The Workflow Executor vm the only component with inbound access is HUTCH. This tool listens via a single HTTPS

NGNIX endpoint that can be configured to bind any unprivileged port above 1024 (By default Hutch is configured

for API communication on HTTP port 5209 and HTTPS port 7239) full details of the HUTCH API can be found on the

swagger https://hdruk.github.io/hutch/swagger.

Both the TRE controller and Workflow Executor host MINIO instances for data storage. These are accessed on

ports 9000/9001.

Authentication Mechanisms and Configuration

Internally, the system employs OpenID Connect for authentication. A dedicated Keycloak server can be either

deployed on-premises or an existing OpenID authentication server can be configured for use. Note that

configuration of specific claim attributes must be properly documented. In the current deployment, an external

test Keycloak server is in use. External authentication to the REST API of the submission layer is facilitated via

OpenID Connect. An account for the TRE is established on the submission layer, and its credentials are registered

within the TRE Agent. These credentials are subsequently utilised to request authentication tokens from an

external authentication server, permitting API interactions.

Database credentials for each authorised project are temporarily housed within the TRE Agent. These credentials

are dynamically conveyed as part of the message to HUTCH upon acceptance of a submission. Currently, these

credentials are stored in encrypted form within the TRE Agent's database. Future iterations (version 2) are planned

to integrate Hashicorp Vault as an alternative, more secure storage solution.

Processes model (from the perspective of a TRE)

The TRE Controller, Submission Layer, The Workflow Executor, MINIO and Keycloak all communicate through REST

API calls, Job progression is driven by status. On each status update TRE Controller calls the Submission layer to

pass status updates back to the query submitter. During data processing and egress, the Workflow Executor calls

to the TRE Controller with the status updates which are then routed back to the Submission layer. This is

illustrated in Figure 2 and detailed in Table 1:

| 7

https://hdruk.github.io/hutch/swagger


Figure 2: Diagram illustrating the port transaction involved in TRE-FX implementation. All connections across the

TRE boundary are “outbound only” to a single IP address; these API communications are managed by

Keycloak authentication which can be either inside the TRE or as a separate entity.

| 8



Table 1: Process flow of all API interaction that occur whilst processing a query:

From To Ports Authentication REST Type Process

TRE Controller Keycloak 443 GET Retrieve a token for other API calls

TRE Controller Submission

Layer

443 GET Retrieve a list of all users and projects

TRE Controller Submission

Layer

443 GET Retrieve a list of Jobs for the TRE

TRE Controller Submission

Layer

443 GET Pull down the input 5 Safes RO-CRATE

TRE Controller Intermediary

MINIO

9000/

9001

PUT Store the input 5 Safes RO-CRATE

TRE Controller Workflow

Executor

7239 PUT Tell workflow executor that a Job ready

to be processed

Workflow

Executor

Intermediary

MINIO

9000/

9001

GET Get the input 5 Safes RO-Crate

Workflow

Executor

Intermediary

MINIO

9000/

9001

PUT Store the results of the analysis and the

output 5 Safes RO-Crate

Workflow

Executor

TRE Controller 8072 PUT Request output 5 Safes RO-Crate Egress

checking

TRE Controller Intermediary

MINIO

9000/

9001

GET Check the output 5 Safes RO-Crate

TRE Controller Workflow

Executor

7239 PUT Tell the workflow executor that the

output 5 Safes RO-Crate has been

checked

Workflow

Executor

Intermediary

MINIO

9000/

9001

PUT Move the output 5 Safes RO-Crate to

per-Egress bucket

Workflow

Executor

TRE Controller 8072 PUT Tell the TRE controller that the output 5

Safes RO-Crate is ready for Egress

TRE Controller Intermediary

MINIO

9000/

9001

PUT Move the output 5 Safes RO-Crate to

the Submission layer

| 9



Dependencies

TRE controller Software Components Deployed via Docker Compose:

● NGINX: Serves the Admin UI and API interface.

● TRE-API: Handles API calls and coordinates between components.

● TRE-UI: Provides the user interface.

● SEQ: For logging and debugging.

● PostgreSQL 14: Used for storing user and project information.

● Optional MINIO: Acts as an intermediary storage bucket.

● RabbitMQ: Responsible for message queuing to ensure asynchronous communication between workflow

components.

Workflow Executor (Hutch+WfExS) Native Software Components:

These components are installed directly onto the VM and are initialised through the Ansible automation scripts.

● Hutch: Implemented on an ASP.NET Core 7 runtime, Hutch serves as the workflow agent passing jobs to

WfExS and managing interactions with external components in the TRE-FX stack via APIs.

● WfExS: This Python 3.10-based component facilitates workflow execution.

● Docker: Utilised for containerization, Docker aids in isolating workflow tasks and ensures a consistent

execution environment, as well as providing the “docker load” functionality for pre-caching approved

container images in the environment

● HostFile Configuration for Proxying Workflow Retrieval: This configuration is imperative for redirecting and

handling workflow retrieval requests, ensuring they are correctly sourced.

● Git

● graphviz

Workflow Executor (Hutch+WfExS) Software Components Deployed via Docker Compose:

These auxiliary components are containerized and deployed using Docker Compose, supplementing the native

elements in specialised functionalities.

● RabbitMQ: Responsible for message queuing to ensure asynchronous communication between workflow

components.

● Sonatype Nexus (Optional): This component can optionally act as a local repository for Workflow Crates

and Container Images. An alternative source can be configured if necessary.

● Nginx (Optional but Required for Air Gapped Workflow Retrieval): Utilised to intercept and redirect

remote workflow calls (e.g., from WorkflowHub) towards the local Nexus filestore or alternative locations,

bypassing the need for public internet access.

● PostgreSQL 14 with OMOP CDM 5.3 Tables (Optional): This relational database, containing tables

formatted according to the Observational Medical Outcomes Partnership Common Data Model (OMOP

CDM) version 5.3, can provide a dataset that is accessible by workflows for data analytics or other

operations.

● Optionally local air gapping services

● Optionally Adminer

● Optional MINIO: Acts as an intermediary storage bucket.

| 10


