


● Title: TRE-FX Technical Documentation - Bitfount Implementation

● Date: 2024-01-11

● Authors: Blaise Thomson, Naaman Tammuz, Thomas Giles, Philip Quinlan, Carole Goble

● Cite as: https://doi.org/10.5281/zenodo.10376572

● Abstract: Bitfount is a platform for data collaboration with privacy-preservation features such as avoiding

direct data sharing. This report describes how the Bitfount submission layer was modified to dispatch Five

Safes RO-Crates, and Bitfount Pod, an open-source component of their stack, was modified to serve as the

TRE-Controller and made capable of interacting with Hutch. Although an alternative implementation,

Bitfount maintains interoperability with the primary TRE-FX submission layer.

Bitfount implementation

This project implements the TRE-FX architecture from the viewpoint of Bitfount.

We aimed to illustrate that each of the components in this Microservice architecture is interchangeable with

equivalent components. Figure 1 below shows the communication diagram in the Bitfount integration. It is clear to

see that almost all components at this level, as well as the structure of the components’ communication are

equivalent to those in the primary implementation.

| 1

https://doi.org/10.5281/zenodo.10376572
https://doi.org/10.5281/zenodo.10055354
https://www.bitfount.com/


Figure 1:

Diagram illustrating the Bitfount implementation. The Submission Layer is a Bitfount managed service, with the

Admin Website hosted at hub.bitfount.com and the job submission service hosted at messaging.bitfount.com. The

TRE agent is equivalent to Bitfount’s “Pod” concept and can run as a Docker image, Windows/Mac Desktop

application or through python (pip install bitfount). The local admin website is Bitfount’s “Access Manager” service,

which can run within the TRE or is available as a managed service at am.bitfount.com. By default, authentication is

managed by Auth0. Additional requirements include the Intermediary MINIO store.

Components

Submission Layer

| 2



In the Bitfount implementation, the Submission Layer consists of the managed services that Bitfount operates:

hub.bitfount.com and messaging.bitfount.com. It serves as the initial point of contact for incoming analytical

tasks. This layer is responsible for receiving user-submitted tasks, performing preliminary validations, and queuing

them for further processing. By positioning the Submission Layer outside the TREs, the system ensures a level of

abstraction that enhances security and task management.

Interaction with the Submission layer is via the Bitfount Hub Website and Bitfount’s GRPC-based Task submission

API, for which there is also an open source python client. Before a user / vendor can submit a query they must first

register for an account with the Submission layer. Authentication is managed by Auth0 and can proceed via any of:

● OpenID Connect (OIDC) Device Authorisation Flow (Default Authentication Method)

● OpenID Connect (OIDC) Authorisation Code Flow

● Security Assertion Markup Language (SAML)

● Private Key

When a Five Safes RO-Crate query is submitted to the task submission API it is validated within the service.

Assuming the checks pass, it is then presented on a task queue ready for collection by the TREs.

Unlike in the primary implementation, on task acceptance, the Bitfount submission layer sets up communication

channels for ongoing communication between TREs and the task submitter through the lifetime of a task. The

primary implementation is currently restricted to a single message for task submission and then a single message

for retrieving results. This ongoing communication enables the Bitfount platform to support use cases such as

Secure Aggregation, Private Set Intersection and Federated Learning, which have all already been built into the

platform.

For RO-Crate based tasks, the results packet (wrapped in a Five Safes RO-Crate) is stored in a MINIO instance and

held for validation. Assuming the output checks pass, the results packet containing the Five Safes RO-Crate is

returned to the task submitter.

The Submission Layer (Bitfount Hub) also provides users with a graphical representation of the tasks they have

running or have run across the federated architecture and displays job status updates. An audit history of all

historical tasks as well as access grants is also provided through the website.

TRE Controller

As in the primary implementation, the Bitfount implementation of the TRE Controller consists of two main

services. The access manager service provides the access controlling system that decides whether tasks should be

accepted. Bitfount’s “Pod” service handles task scheduling, data coordination, and messaging between the

different layers and services.

The Pod service polls the Submission Layer for new tasks to execute. Any new task request is sent to the Access

Manager for two of the five safes checks:

● Does the requesting user have the appropriate permissions? (Safe User)

● Has the TRE joined to this project? (Safe Project)

Once approved, the task is forwarded to the Workflow Executor, which is run in a separate environment to ensure

two more of the five safes are attained:

● The environment has very reduced permissions to minimize risks of data leakage (Safe Settings)

● Only appropriate data is made available within the environment (Safe Data)

| 3



After execution, the resulting RO-CRATE is then sent to an egress service for the final check on whether the data is

approved for release, ensuring the final principle of the five safes:

● Only approved outputs are released from the TRE (Safe Outputs)

Workflow Executor

The Workflow Execution Layer in the Bitfount implementation is the same as the one used in the primary

implementation. We use Hutch (https://github.com/HDRUK/hutch) and WfExS as an open-source "Workflow

Executor”, where Hutch runs as an HTTPS server, receives requests from the Pod via APIs, and forwards them on to

WfExS for workflow execution.

RO-CRATE usage and data flow

The RO-CRATE flows through the system in the following order:

● TRE-Controller Layer (initial submission):

○ The RO-Crate is submitted to the Bitfount Submission Layer.

○ The submission is like a partial 5 Safes RO-Crate, as that profile outlines several phases and, at the

point of submission, not all of those phases have passed (by design), and therefore not all the final

metadata is present (e.g. when compared to a results crate).

○ The submission is transferred to Bitfount’s TRE-Agent, is sent to the Bitfount “Local Admin

Website” for initial authorisation checks, and is then sent to the Workflow Executor Layer

○ In future, the checks that are done may be recorded in the crate’s metadata, but this is not

currently done.

● Workflow Executor Layer (execution):

○ The RO-CRATE arrives at “Hutch”, which then sends it to the WfExS execution system.

○ The WfExS system runs the workflows and outputs the results locally in its execution environment

○ Hutch stores those outputs in Minio for egress checks and sends information for Egress checking

back to the TRE-Controller Layer

○ The RO-Crate is updated locally by Hutch as it goes along but this updated crate doesn’t leave the

Workflow Executor Layer environment at this time – The “raw” workflow outputs are what is

shared for egress checking, not the in progress crate

● TRE-Controller Layer (egress checks)

○ The original RO-CRATE and results information is returned to the Bitfount TRE-Agent, sent to the

Egress checking system, returned to the Bitfount TRE-Agent and then sent back to Hutch for

bundling

○ The RO-CRATE is not updated at this point

● Workflow Executor Layer (bundling):

○ The RO-CRATE is now updated with all additional information that has come through the process

○ This RO-CRATE is an augmented version of the original Submission crate that will now meet the

profile’s requirements for all the “phases”.

○ Hutch uploads the final crate to Minio and returns to the TRE-Controller Layer

● TRE-Controller Layer (response)

○ The final RO-CRATE is then returned to the user through the Submission Layer

| 4

https://github.com/HDRUK/hutch


Quickstart Guide for TREs

Within the TREs, both the TRE Controller and the Workflow Executor can be deployed as single virtual machines.

Base specification

● The TRE Controller = Ubuntu 22.04 x64, 4 cores / 8gb / 16gb disk

● Workflow Executor = Ubuntu 22.04 x64, 4 vCPU, 16GB RAM, 128GB disk.

Higher specification may be required for productionisation. The Bitfount Pod, Hutch and WfExS workflow system

are all open source and available on github.

Deployment

The Bitfount Pod can be deployed using versioned built images, or run as a python service by first installing the

open source `bitfount` library and using the `run_pod` command. The built images are docker images, so for this

route docker must be installed in the TRE environment, and Docker-compose can be used to run the images. If

utilising the `bitfount` library directly, then a suitable python environment must be configured. This can be done

simply by creating a virtual python environment, and then using `pip` to install `bitfount`. For both the docker and

`run_pod` approaches, the Bitfount Pod can be configured via a YAML file, which specifies all the necessary details

of the Bitfount pod. This method ensures that Bitfount pods can be scaled up easily, and more Bitfount Pods can

easily be added based on similar configurations.

Networking

Only the TRE controller communicates with the outside world. Connectivity is outbound using REST and GRPC

APIs to hub.bitfount.com and messaging.bitfount.com, running on port 443. The Bitfount TRE agent (Pod) within

the TRE controller operates on a zero-trust principle such that every request is authenticated, and requests are

only received through polling by the agent in an outbound fashion.

Within the Workflow Executor vm, the only component with inbound access is HUTCH. This tool listens via a single

HTTPS NGNIX endpoint that can be configured to bind any unprivileged port above 1024 (By default Hutch is

configured for API communication on HTTP port 5209 and HTTPS port 7239) full details of the HUTCH API can be

found on the swagger https://hdruk.github.io/hutch/swagger.

The Workflow Executor hosts a MINIO instance for data storage, which is accessed on port 9001.

Authentication Mechanisms and Configuration

The Bitfount system supports authentication via OpenID Connect, SAML or public key. The Submission layer uses

Auth0 for authentication and can be integrated with on-premises or OpenID authentication servers within each

TRE. Every user or TRE has an account established on the submission layer, and the local admin server (Bitfount

access manager) maintains its own checks on users’ permissions.

Processes model (from the perspective of a TRE)

Unlike in the primary implementation, the TRE Agent and Messaging service communicate over GRPC (in order to

benefit from protobuf structured messages). All other communication (between Submission layer, TRE Controller,

the Workflow Executor, MINIO and Authentication services) are all through REST API calls.

Dependencies

TRE controller Software Components

| 5

https://hdruk.github.io/hutch/swagger


● Bitfount TRE agent: ‘Pod’ service used for task scheduling, data coordination (with workflow executor) and

messaging.

● Bitfount optional local access manager: implements access control checks for task acceptance. If not

installed locally, a hosted version at am.bitfount.com can be used

Workflow Executor (Hutch+Wfexs) Native Software Components:

These components are as in the primary implementation, and installed directly onto the VM and are initialised

through the Ansible automation scripts.

● Hutch: Implemented on an ASP.NET Core 7 runtime, Hutch serves as the workflow agent passing jobs to

WfExS and managing interactions with external components in the TRE-FX stack via APIs.

● WfExS: This Python 3.10-based component facilitates workflow execution.

● Podman: Utilised for containerization, Podman aids in isolating workflow tasks and ensures a consistent

execution environment.

● HostFile Configuration for Proxying Workflow Retrieval: This configuration is imperative for redirecting and

handling workflow retrieval requests, ensuring they are correctly sourced.

● Git2

● graphviz

Workflow Executor (Hutch+Wfexs) Software Components Deployed via Docker Compose:

These auxiliary components are containerized and deployed using Docker Compose, supplementing the native

elements in specialised functionalities.

● RabbitMQ: Responsible for message queuing to ensure asynchronous communication between workflow

components.

● Sonatype Nexus (Optional): This component can optionally act as a local repository for Workflow Crates

and Container Images. An alternative source can be configured if necessary.

● Nginx (Optional but Required for Air Gapped Workflow Retrieval): Utilised to intercept and redirect

remote workflow calls (e.g., from WorkflowHub) towards the local Nexus filestore or alternative locations,

bypassing the need for public internet access.

● PostgreSQL 14 with OMOP CDM 5.3 Tables (Optional): This relational database, containing tables

formatted according to the Observational Medical Outcomes Partnership Common Data Model (OMOP

CDM) version 5.3, can provide a dataset that is accessible by workflows for data analytics or other

operations.

● Git 2

● Optionally local air gapping services

● Optionally Adminer

● Optional MINIO: Acts as an intermediary storage bucket.

| 6


