
UNIVERSITY OF TORINO

DOCTORAL SCHOOL ON SCIENCE

AND HIGH TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

DOCTORAL THESIS

Parallel Programming with Global
Asynchronous Memory: Models,
C++ APIs and Implementations

Author:
Maurizio DROCCO

Cycle XXIX

Supervisor:
Prof. Marco ALDINUCCI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

ii

“Thinking doesn’t guarantee that we won’t make mistakes. But not thinking guar-
antees that we will.”

Leslie Lamport

iii

UNIVERSITY OF TORINO

Abstract
Computer Science Department

Doctor of Philosophy

Parallel Programming with Global Asynchronous Memory: Models,
C++ APIs and Implementations

by Maurizio DROCCO

In the realm of High Performance Computing (HPC), message passing
has been the programming paradigm of choice for over twenty years. The
durable MPI (Message Passing Interface) standard, with send/receive com-
munication, broadcast, gather/scatter, and reduction collectives is still used
to construct parallel programs where each communication is orchestrated
by the developer-based precise knowledge of data distribution and over-
heads; collective communications simplify the orchestration but might in-
duce excessive synchronization.

Early attempts to bring shared-memory programming model—with its
programming advantages—to distributed computing, referred as the Dis-
tributed Shared Memory (DSM) model, faded away; one of the main issue
was to combine performance and programmability with the memory con-
sistency model. The recently proposed Partitioned Global Address Space
(PGAS) model is a modern revamp of DSM that exposes data placement to
enable optimizations based on locality, but it still addresses (simple) data-
parallelism only and it relies on expensive sharing protocols.

We advocate an alternative programming model for distributed com-
puting based on a Global Asynchronous Memory (GAM), aiming to avoid
coherency and consistency problems rather than solving them. We ma-
terialize GAM by designing and implementing a distributed smart pointers
library, inspired by C++ smart pointers. In this model, public and pri-
vate pointers (resembling C++ shared and unique pointers, respectively)
are moved around instead of messages (i.e., data), thus alleviating the user
from the burden of minimizing transfers. On top of smart pointers, we pro-
pose a high-level C++ template library for writing applications in terms of
dataflow-like networks, namely GAM nets, consisting of stateful processors
exchanging pointers in fully asynchronous fashion.

We demonstrate the validity of the proposed approach, from the ex-
pressiveness perspective, by showing how GAM nets can be exploited to
implement both standalone applications and higher-level parallel program-
ming models, such as data and task parallelism. As for the performance
perspective, preliminary experiments show both close-to-ideal scalability
and negligible overhead with respect to state-of-the-art benchmark imple-
mentations. For instance, the GAM implementation of a high-quality video
restoration filter sustains a 100 fps throughput over 70%-noisy high-quality
video streams on a 4-node cluster of Graphics Processing Units (GPUs),
with minimal programming effort.

v

Acknowledgements
Walking all the way through a meaningful PhD program is an act of pure
masochism. In addition to “the willingness to fail all the time” (cit. J.
Backus), one needs to get comfortable with the constant feeling that your
understanding on anything is wrong or, at best, incomplete. Therefore, get-
ting some proper teachers along the way is essential to survive.

First, I would like to thank professor Tremblay for his inestimable help
with this thesis. Guy, I hope to have eventually acquired, by osmosis,
a small fraction of your impressive ability in building visions over any
research topic.Furthermore, if native English readers can read this thesis
without getting hurt to death, it is due to your corrections and lessons, that
I hope to have learned, at least partially.

I would like to thank the reviewers for dedicating part of their time, im-
pressive knowledge, and experience to improve this thesis. I perceived all
your suggestions and remarks as a privilege, that made me feel “standing
on the shoulders of giants”.

I owe special thanks to professor Aldinucci for being much more than
my supervisor during the last seven years. Marco, in your shop I built my
special glasses for seeing both computer science and the world under a dif-
ferent light. You assisted me throughout the whole spectrum of my endless
torments, from false sharing to teenage heartaches. Last but not least, it is
your fault if I felt in love with the two most dangerous and beautiful beasts
I met so far: parallel computing and Claudia.

My walk would not have been that funny without my colleagues, as
masochist as me. Guys, together we went through a bunch of though chal-
lenges, from squeezing twenty hours of working plus five hours hanging
around into a twenty-four day, to mastering the art of collecting receipts,
which were never enough. I really enjoyed each step with you all.

Back to where my walk began, I owe a mix of thanks and apologies to
my relatives. Dad, I spent whole days trying to mimic your artisan’s hands,
I steadily failed but at least I learned the concept of a job well done. Mom,
thank you for showing me how honesty, humbleness, and solidarity can be
more that beautiful words. Emi, you have always been my favorite brother,
I have to thank you at least for all the advices and recipes that made me a
slightly better cooker along the way.

Besides playing with doughs, I tend to be a theoretician, in the sense I
like to spend hours searching for the right way to describe things, and of
course I got accustomed to the feeling of not being completely happy with
the descriptions I build. Walking with you, Claudia, has always been a dif-
ferent story: every day you gift me the exact colors that I need to define the
perfect world. I wish I had a fraction of your wiseness and I will never ever
understand “perché fra i tanti, bella, che hai colpito, ti sei gettata addosso
proprio a me” (cit. F. Guccini).

vii

Contents

1 Introduction 1
1.1 Results and Contributions . 2
1.2 Limitations . 5
1.3 List of Papers . 6

1.3.1 Publications by Topic 6
1.3.2 Publications by Type 8

2 Background 13
2.1 Parallel Computing Platforms 13

2.1.1 SIMD computers . 14
2.1.2 Shared-Memory Multiprocessors 15
2.1.3 Many-Core Processors 16
2.1.4 Distributed Systems, Clusters, and Clouds 17

2.2 Parallel Programming Models 18
2.2.1 Types of Parallelism 18
2.2.2 Memory and Communication Model 19
2.2.3 Low-Level Programming Models 20
2.2.4 High-level Programming Models 22

2.3 Parallel Memory Models . 26
2.3.1 Cache Coherence . 26
2.3.2 Memory Consistency 27

2.4 Libraries Used by our Implementation 28
2.4.1 C++ Smart Pointers . 28
2.4.2 FastFlow . 29
2.4.3 Libfabric . 32

3 Global Asynchronous Memory 35
3.1 System Model . 35

3.1.1 Journey of a Global Memory Slot 36
3.1.2 Comparison with Cache-Coherent Systems 37

3.2 Operational Semantics . 37
3.2.1 Memory States . 38
3.2.2 Memory Transitions 38
3.2.3 State Machine Representation 40

3.3 Parallelism . 43
3.3.1 Intra-Executor Parallelism 43
3.3.2 Inter-Executor Parallelism 44
3.3.3 Parallel Memory Model 45

3.4 C++ Implementation . 46
3.4.1 Programming Environment 47
3.4.2 Runtime Architecture 48
3.4.3 Primitives . 50

viii

4 Smart GAM Pointers 55
4.1 Public Pointers . 55

4.1.1 Distributed Reference Counting 56
4.1.2 API . 57

4.2 Private Pointers . 59
4.2.1 Distributed Memory Releasing 60
4.2.2 Two Flavors of Private Pointers 61
4.2.3 API . 62

4.3 Smartness . 63
4.3.1 Memory Leaks . 64
4.3.2 Dangling Pointers . 65

5 Parallel Programming with GAM Nets 67
5.1 GAM Nets . 67

5.1.1 Communicators . 68
5.1.2 Processors . 70
5.1.3 Execution Model . 71

5.2 C++ Implementation . 72
5.2.1 API . 72
5.2.2 Implementation . 75

5.3 Net Patterns . 80
5.3.1 Pipeline . 82
5.3.2 Farm . 83
5.3.3 Active Communicators 86

6 Higher-Level Programming Models on top of GAM 89
6.1 Accelerated Data Structures 89

6.1.1 Cluster-as-Accelerator Paradigm 90
6.1.2 C++ Library of Accelerated Containers 91
6.1.3 Implementation . 91

6.2 Task-based Parallel Programming 92
6.2.1 Universal Model of Parallelism 93
6.2.2 Implementing a Task-based RTS 93

7 Experimental Evaluation 99
7.1 Expressiveness . 99

7.1.1 Two-Phase Video Restoration 99
7.1.2 High-Frequency Stock Option Pricing 100
7.1.3 CWC Systems Biology Simulator 101
7.1.4 PiCo Data Analytics Framework 102

7.2 Performance . 105
7.2.1 Setting . 105
7.2.2 Results . 106
7.2.3 Discussion . 107

8 Conclusions 117

1

Chapter 1

Introduction

In parallel computing, the message-passing and shared-memory programming
models have been influencing programming at all levels of abstraction,
from hardware to application design. These models have been traditionally
considered a dichotomy, often mapped onto another dichotomy: scalability
versus productivity.

In the shared-memory programming model, tasks share a common ad-
dress space, which they read and write asynchronously. Various synchro-
nization mechanisms may be used to control access to the shared memory.
An advantage of this model from the programmer’s viewpoint is that the
notion of data distribution is absent, so there is no need to explicitly specify
the mapping between data structures and Processing Elements (PEs). Thus,
program development is generally simpler. For this to happen, the shared-
memory model must exhibit a “natural” behavior to the programmer, in
the sense that it should enable the programmer to design parallel code
without data races and exhibiting a deterministic behavior. This require-
ment amounts to having a reasonably strong memory consistency model. This
implies guaranteeing some global order of access to the shared memory
from many PEs, which requires (at some level in the system stack) synchro-
nizations and results into latency of memory accesses. Here, the strength
of shared memory becomes a weakness already at a moderate scale: a
strong memory consistency model over a shared memory is hardly scalable,
whereas a weak model makes programming counterintuitive, eventually
deteriorating the major strength of the shared-memory model, that is, sim-
plicity of programming. The Distributed Shared Memory (DSM) hype cy-
cle, which entered in the “trough of disillusionment” in the late nineties, is a
paradigmatic example of the complexity of designing both an efficient and
easy to use shared-memory model. More recently, the Partitioned Global
Address Space (PGAS) approach, that couples shared memory with data
parallelism, revitalized the research on DSM models. Is distributed shared
memory entering the Gartner’s hype cycle [82] “slope of enlightenment”?

By contrast, in the message-passing model, tasks use their own local
memory during computation. Multiple tasks can reside on the same phys-
ical machine as well as across an arbitrary number of machines. Tasks ex-
change data through communications by sending and receiving messages.
Data transfers usually require cooperative operations to be performed by
each process (e.g., a send operation must have a matching receive opera-
tion). More recently, one-sided communications gained progressive interest
because they admit zero-copy hardware-accelerated data movements and
promote loose orchestration of tasks.

2 Chapter 1. Introduction

The durable MPI (Message Passing Interface) standard, with send/re-
ceive communication, broadcast, gather/scatter, and reduction collectives
is still used to construct parallel programs composed of tens to hundreds
of thousands of communicating processes. Each communication is orches-
trated by the developer-based precise knowledge of code and overhead;
collective communications simplify the orchestration but induce excessive
synchrony due to barriers and global synchronization induced by blocking
collective operations. An MPI application is really a monolith where each
single process may become a bottleneck or a single point of failure. This
programming model is effective for highly regular data parallel kernels but
difficult to exploit for other patterns, where dealing with data locality is
difficult and beyond the control of the average user.

The endeavor for extreme scale computing, also catered by the Big Data
analytics hype, certainly revamped the research on high-level parallel pro-
gramming models and languages. Skeletal approach [51] evolved and,
eventually, went mainstream with Intel TBB and Google MapReduce. Task-
based approaches are ruling the game of large scale distributed program-
ming; we shall discuss some of them. Notwithstanding, the run-time sup-
port of all these programming environment eventually relies on a either
a message-passing or a shared-memory layer. We mainly focused on this
level of abstraction, at the hardware-software interface.

In this thesis, we propose to overcome the aforementioned dichotomy,
advocating a hybrid model where data is shared and data races are ad-
dressed by way of asynchronous message passing. On this cornerstone,
we build an entire stack of programming models of increasing abstraction
level.

The main objective of the present thesis is to define a novel program-
ming approach for distributed (possibly large) heterogeneous platforms,
covering the complete software stack from low-level runtime systems to
application programming. The main contributions of the thesis directly
match the tiers of the proposed stack, which is sketched in Fig. 1.1. Each
tier of the stack defines either a novel programming model or the evolution
of an existing one.

1.1 Results and Contributions

Global Asynchronous Memory

At the bottom layer of the stack in Fig. 1.1, the Global Asynchronous Mem-
ory (GAM) model consists in a set of executors1 that share a global address
space and that can make memory operations on the global addresses. A
global address refers to a GAM slot, i.e., a binary object with either public
or private attribute, according to the associated access capabilities. A single
GAM slot is not distributed. A public slot can be accessed by any execu-
tor via load or store operations, although it cannot be updated once a
value has been stored into it—i.e., GAM public slots are single-assignment.
A public GAM slot can be replicated (cached) across different executors.
Conversely, a private slot can be accessed via load and store operations,

1In this thesis, the executor is an abstract concept, that should be thought as a mere syn-
tactic component in the GAM model formalization.

1.1. Results and Contributions 3

C
+

+

Global Asynchronous
Memory (GAM)

libfabric

Hardware Cluster

Smart GAM Pointers

GAM Nets

Higher-Level Parallel
Programming Models

im
p

le
m

en
te

d

FIGURE 1.1: Contributions of this thesis.

but only by its owner, that is, in any given moment, by the executor own-
ing exclusive access capability over the slot. Ownership can be atomically
passed from one executor to another. Overall, the GAM obeys the sequential
consistency memory model.

Inspired by the FastFlow programming model [17], the GAM exploits
both shared memory and message passing programming models. In this
new model, the executors synchronize with each other by passing messages
that are capabilities, i.e., global memory references enriched with slot access
attributes.

As discussed in Chapter 3, the GAM model avoids the problem of effi-
ciently enforcing an adequately strong consistency model rather than solv-
ing it (as happened for DSMs). Also, it clearly differentiates itself from the
PGAS approach since the partitioning, i.e., the data parallel commitment, is
not deeply embedded in its definition. Nevertheless, as discussed in Chap-
ter 6, GAM can be used to support a PGAS approach.

Smart GAM Pointers

The GAM fits in the modern C++ realm by way of Smart GAM Pointers.
They are a novel abstraction that extend C++11 smart pointers toward dis-
tributed memory platforms, such as multicomputers and clusters, with or
without hardware-assisted remote memory access. As in the traditional
shared-memory setting of C++11, smart pointers aim at facilitating the de-
velopment of correct code. Smart pointers prevent most situations of mem-
ory leaks by making the memory deallocation automatic. In this setting,
they support dynamic GAM slot allocation and make their deallocation au-
tomatic: a memory slot controlled by a smart pointer is automatically de-
stroyed when the last (or only) owner is destroyed. Smart pointers also
eliminate dangling pointers by postponing destruction until an object is no
longer in use.

4 Chapter 1. Introduction

As discussed in Chapter 4, along the same line as the distinction be-
tween shared and unique pointers in C++, we propose two classes of point-
ers, namely public and private. Public pointers resemble shared pointers, in
the sense that different copies of a public pointer, distributed among the ex-
ecutors, share the control over the underlying (public) memory slot. Sym-
metrically, private pointers resemble unique pointers, in the sense that each
pointer has exclusive control over the underlying (private) memory slot.
Private pointers are designed to be strictly coupled with move semantics.

Smart GAM Pointers are implemented by a C++11 template library. It
distinguishes itself from other libraries by its attempt to minimize the con-
ceptual gap against shared-memory programming in C++. Being simple
and orthodox should be one of its strengths. We envision distributed com-
puting as a mainstream feature of standard C++. For this, complex aspects
of sharing (such as data races) should be tamed through familiar concepts
by way of graceful abstractions, which do not require an exceptional ex-
pertise to be used to build distributed C++ applications. The forthcoming
C++ standard releases are clearly moving toward a full embedding of paral-
lel transformations into the Standard Template Library (STL). This effort is
currently limited to (cache-coherent) shared-memory programming model.
This thesis aims forward and attempts to build on the embedding of dis-
tributed memory in mainstream C++.

GAM Nets

The programming model exposed by the Smart GAM Pointer tier envi-
sions a collection of executors that exchange C++ smart pointers to (shared)
data in a global, sequentially consistent distributed memory. According to
the memory model, data can be accessed without data races (and without
serialization). This crucially depends on capabilities and their movement
among executors. Observe that this happens in a purely message passing
style—indirect addressing of smart pointers is (deliberately) not supported
by the GAM.

As discussed in Chapter 5, GAM Nets provide executors with message
passing mechanisms to exchange pointers. In principle, they can be substi-
tuted with any message passing machinery, including MPI, as explored in
preliminary work [74]. GAM Nets distinguish themselves from MPI along
three main directions: 1) Computations and communications are clearly
distinguished; GAM Nets provide a communication layer for executors
rather than collective operations; executors have no role in supporting col-
lective communications. 2) Communications are described by compound-
able parametric patterns that can be statically evaluated for correctness and
performance, e.g., mapped onto a fixed degree network such as a 2D torus.
3) GAM Nets realize fully asynchronous collective communications by de-
sign; no barriers, global or group synchronizations are necessary.

Furthermore, the GAM Nets tier represents a novel design of the “Dis-
tributed FastFlow” model [8], which addresses a number of weaknesses of
the previous design (e.g., dynamic memory allocation). Moreover, the de-
pendency on the ZeroMQ library has been replaced with a design based on
the more general OFI (OpenFabrics Interface) framework.

1.2. Limitations 5

Higher-Level Parallel Programming Models

GAM Nets naturally target stream-parallel programming. However, as
widely demonstrated in the literature, stream parallelism can be fruitfully
exploited to implement other models. For instance, several frameworks
for high-level parallel programming, such as OpenMP [116], FastFlow [17],
and Flink [79], exploit stream parallelism for implementing data-parallel
operations.

To exemplify the depicted approach, in Chapter 6, we discuss how GAM
nets can be exploited to implement a library of containers with data-parallel
operations, along the same line as the transformations—and their parallel
variants—recently introduced in C++. We also discuss how GAM programs
can be regarded as runtime systems in the context of task-based processing,
targeting distributed platforms. Examples of recently proposed task-based
frameworks include OCR [101] and HPX [90].

In addition to the considered examples, other models could be easily
implemented in terms of GAM programs, from low-level PGAS languages
(e.g., UPC [77], Chapel [45], X10 [46]) to high-level Domain-Specific Lan-
guages (DSLs).

1.2 Limitations

The main limitation of this thesis is the lack of a full-fledged experimental
evaluation on large-scale High Performance Computing (HPC) clusters. In-
stead, we focused on variety and heterogeneity when selecting the platforms
for the evaluation. For the former aspect, we considered three different net-
working hardware, namely, Ethernet, InfiniBand, and A3Cube RONNIEE;
moreover, we considered both commodity and high-end workstations as
cluster nodes. For the latter aspect, we considered the cluster-of-Graphics
Processing Units (GPUs) architecture, including the case of multiple GPUs
per cluster node, in addition to plain multi-core nodes.

Another limitation, from the programmability perspective, is the lack
of any mechanism for automatizing the serialization (and de-serialization)
of objects to be sent over the network by the GAM runtime. In this thesis,
we assume that each value stored in the GAM memory has a representa-
tion in memory that allows the value to be copied by simply replicating
its byte sequence. However, it would be easy to provide some mechanism
for (semi-)automatic serialization, on top of a serialization library such as
Boost.Serialize [39] or Google Protobuf [98].

Moreover, although we present smart global pointers by analogy with
C++ smart pointers (see Chap. 4), we do not provide weak global pointers,
that express non-owning references in their shared-memory counterparts.
Consequently, in its current version, the proposed implementation does not
support circular references of smart global pointers.

Finally, the current implementation does not exploit Remote Memory
Access (RMA) primitives, though they are provided by most networking
hardware nowadays. To this aim, we envision an improved implemen-
tation, in which we allocate GAM memory from RMA-capable regions of
GAM executors’ address space, to enable implementing GAM accesses as
direct calls to RMA primitives.

6 Chapter 1. Introduction

1.3 List of Papers

In this section, I report the complete list of my publications, in reverse
chronological order. Although the listed publications do not directly re-
fer to the contributions included in the present thesis, most of them acted
as either inspiration, preliminary study, or use case for the GAM stack, as
we detail in the following.

We organize the publications along two dimensions. In Sect. 1.3.1, we
categorize them based on the targeted topic, whereas in Sect. 1.3.2, we cat-
egorize them based on the publication type (i.e., journals, conferences, and
others).

1.3.1 Publications by Topic

High Performance Tools for Big Data

In recent years, an increasingly inter-connected ecosystem of heterogeneous
devices has been producing larger volumes and variety of digital data.
Those large volumes of dynamically changing data ought to be processed,
synthesized, and eventually turned into knowledge. High-velocity data
brings high value, especially to volatile business processes, mission-critical
tasks, and scientific grand challenges. Some of this data lose their opera-
tional value within a short time frame, some other are simply too much to
be stored. Because of this, data science is destined (sooner or later) to meet
high-performance computing beyond parallel processing of batches on the
file system.

In this context, we recently proposed a novel C++14-based DSL based
on a layered dataflow model for processing data collections, called PiCo
(Pipeline Composition). The main entity of this programming model is the
Pipeline, basically a Direct Acyclic Graph (DAG)-composition of process-
ing elements. This model is intended to give the user a unique interface
for both stream and batch processing, hiding completely data management
and focusing only on operations, which are represented by Pipeline stages
(see Sec. 7.1.4). Designing and coding an application with PiCo is easier
than in Spark or Flink, and, on tested cases, PiCo is faster (sometime much
faster) because it is designed according to HPC best practices. PiCo is built
on top of the FastFlow library, and currently runs on shared-memory plat-
forms. The GAM Nets tier, being fully compatible with FastFlow, will make
it possible to easily port PiCo to distributed platforms. An extensive perfor-
mance benchmarking of PiCo on top GAM Nets is among our future work.
Related papers are the following: J1, J2, C1, C2, C3, O1.

High-level Programming Models

Parallel programming models are concerned with abstractions for parallel
computing. The value of a programming model is primarily related with its
expressiveness (for a given target class of algorithms) and its performance.
The implementation of a parallel programming model can take the form
of a library invoked from a sequential language, i.e., as an extension to an
existing language, or as an entirely new language (even if the language does
not necessarily define a new programming model).

1.3. List of Papers 7

We approached parallel programming convinced of the need to raise
the level of abstraction with respect to the state of the art. By definition, the
raison d’être for high-performance computing is. . . high performance. But
peak Floating Point Operations Per Second (FLOPS) count is not the only
measure to evaluate the impact of these technologies. Human productivity,
total cost, time-to-market, reliability, energy consumption, etc., are equally,
if not more important factors for any industrial follow-up. To date, attempts
to develop high-level programming abstractions, tools, and environments
for HPC have mostly failed. Suitable abstractions, however, are the keys
to induce an industrial impact. Over the past twenty years, Web service
programmers have built and embraced an ecosystem of libraries, scripting
languages, software services, and tools that allowed them to create complex
systems while hiding most of the underlying details of networks and com-
puter systems. Their focus is on composition, abstraction, rapid deploy-
ment, software scaling, and human productivity. In sharp contrast, in the
realm of HPC, message passing has remained the programming paradigm
of choice for over twenty years.

Following the experience of algorithmic skeletons [51, 53], and using Fast-
Flow as a laboratory [17], we experimented a number of parallel patterns
to simplify the development of applications running on heterogeneous plat-
forms, including multi-core platforms attached to multiple GPUs. Probably
the most relevant is the hybrid Stencil-Reduce pattern, presented at Nvidia
GPU Technology Conference (GTC) 2014 in San Jose, CA, USA. This ap-
proach (ported to OpenCL) significantly evolved during the “REPARA” EU
FP7 to become the run-time engine of a high-level parallel programming
approach based on “parallelization hints” over a standard C++ language.
Differently from the mainstream OpenMP approach that uses compiler di-
rectives, in REPARA, parallelization directives are introduced as C++ at-
tributes, which are part of the C++ standard rather than an extension to the
language. A similar spirit motivated part of the present work, advocating
the evolution of the C++ language to distributed systems rather than build-
ing on it yet another extension. Related papers are the following: J3, J5, J7,
C4, C5, C9, C12, C16.

Applications

In parallel computing, benchmarks and applications are the standard tools
to validate the research work. Parallel programming models are often con-
cerned with several aspects of software engineering, such as scalability,
portability, programmability, dependability. For this, we often invested
on (complex) applications rather than kernels, as they make it possible to
have a thorough evaluation of the proposed technique. Some of those ap-
plications have became research topic per se:

• Image and Video Restoration. This application is based on a novel al-
gorithm for edge-preserving image processing based on variational
analysis. The algorithm exhibits an exceptionally high restoration
capability for images with high level of noise (e.g., 90% of impul-
sive noise, see Fig. 7.15) at the price of a high computational cost.
The application can exploit both stream and data parallelism and is
compute-bound. Also, it can greatly benefit from GPU acceleration.

8 Chapter 1. Introduction

The application is also one of the use cases of this thesis (see Sec. 7.1.1).
Related papers are the following: J3, J5, J8, C5, C10, C13, O2, O3.

• Next-generation Sequencing (NGS). Sequencing costs are rapidly de-
creasing because of new massively parallel sequencing technologies.
The number of sequences available during the last years has experi-
enced an amazing growth, making most of the existing analysis tools
obsolete. In testing parallel programming models, and specifically
FastFlow, a tool for the analysis of Chromosome Conformation Capture
data has been proposed (called NuChart-II). Interestingly enough from
the parallel computing viewpoint, this analysis requires to represent
genomic information as a very large graph. The construction of the
graph from raw DNA data is an irregular and memory-bound prob-
lem that is challenging to be coded in a scalable way. Its implementa-
tion on top of GAM Nets is among our possible future work. Related
papers are the following: J4, J6, C6, C7, C8.

• Systems Biology. The CWC (Calculus of Wrapped Compartments) Sys-
tems Biology Simulator provides stochastic simulation of biological
systems, which is a popular technique in Bioinformatics, in particular
for its superior ability to describe transient and multi-stable behaviors
of biological systems. However, stochastic simulation is computation-
ally expensive, and the cost increases if the whole simulation-analysis
workflow is considered. The efficient design of such a workflow is an
interesting problem of parallel computing, since the frequency and
size of data moved across the workflow strictly depend on the re-
quired accuracy. Indeed, it involves the merging of results from dif-
ferent simulation instances and possibly their statistical description or
mining with data reduction techniques. The implementation of this
application on top of GAM Nets is discussed in Sect. 7.1.3. Related
papers are the following: J7, J8, J9, J10, C12, C14, C15, C16, C17, C18.

1.3.2 Publications by Type

Journal Papers

(J1) C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison
of big data frameworks on a layered dataflow model. Parallel Process-
ing Letters, 27(01):1740003, 2017

(J2) M. Torquati, G. Mencagli, M. Drocco, M. Aldinucci, T. De Matteis, and
M. Danelutto. On dynamic memory allocation in sliding-window par-
allel patterns for streaming analytics. Journal of Supercomputing, 2017.
To appear

(J3) M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, C. Misale, G. Pe-
retti Pezzi, and M. Torquati. A parallel pattern for iterative stencil +
reduce. Journal of Supercomputing, pages 1–16, 2016

(J4) F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, M. Tor-
quati, and M. Aldinucci. NuChart-II: the road to a fast and scalable
tool for Hi-C data analysis. International Journal of High Performance
Computing Applications (IJHPCA), pages 1–16, 2016

1.3. List of Papers 9

(J5) M. Aldinucci, G. Peretti Pezzi, M. Drocco, C. Spampinato, and M. Tor-
quati. Parallel visual data restoration on multi-GPGPUs using stencil-
reduce pattern. International Journal of High Performance Computing Ap-
plications, 29(4):461–472, 2015

(J6) I. Merelli, F. Tordini, M. Drocco, M. Aldinucci, P. Liò, and L. Milanesi.
Integrating multi-omic features exploiting Chromosome Conforma-
tion Capture data. Frontiers in Genetics, 6(40), 2015

(J7) M. Aldinucci, C. Calcagno, M. Coppo, F. Damiani, M. Drocco, E. Sci-
acca, S. Spinella, M. Torquati, and A. Troina. On designing multicore-
aware simulators for systems biology endowed with on-line statistics.
BioMed Research International, 2014

(J8) M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, C. Misale, C. Cal-
cagno, and M. Coppo. Parallel stochastic systems biology in the cloud.
Briefings in Bioinformatics, 15(5):798–813, 2014

(J9) M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca, S. Spinella,
and A. Troina. Simulation techniques for the calculus of wrapped
compartments. Theoretical Computer Science, 431:75–95, 2012

(J10) M. Coppo, F. Damiani, M. Drocco, E. Grassi, M. Guether, and A. Troina.
Modelling ammonium transporters in arbuscular mycorrhiza sym-
biosis. Transactions on Computational Systems Biology (TCS), 6575(13):85–
109, 2011

Conference Papers

(C1) M. Drocco, C. Misale, G. Tremblay, and M. Aldinucci. A formal se-
mantics for data analytics pipelines. Technical report, Computer Sci-
ence Department, University of Torino, May 2017

(C2) C. Misale, M. Drocco, G. Tremblay, and M. Aldinucci. Pico: a novel
approach to stream data analytics. In Euro-Par 2017 Workshops - Auto-
nomic Solutions for Parallel and Distributed Data Stream Processing (Auto-
Dasp), Santiago de Compostela, Spain, 2017. (Accepted)

(C3) C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A compari-
son of big data frameworks on a layered dataflow model. In Proc.
of HLPP2016: Intl. Workshop on High-Level Parallel Programming, pages
1–19, Muenster, Germany, July 2016. arXiv.org

(C4) M. Drocco, C. Misale, and M. Aldinucci. A cluster-as-accelerator ap-
proach for SPMD-free data parallelism. In Proc. of Intl. Euromicro PDP
2016: Parallel Distributed and network-based Processing, pages 350–353,
Crete, Greece, 2016. IEEE

(C5) M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, G. Peretti Pezzi,
and M. Torquati. The loop-of-stencil-reduce paradigm. In Proc. of
Intl. Workshop on Reengineering for Parallelism in Heterogeneous Parallel
Platforms (RePara), pages 172–177, Helsinki, Finland, Aug. 2015. IEEE

10 Chapter 1. Introduction

(C6) F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, and
M. Aldinucci. Parallel exploration of the nuclear chromosome confor-
mation with NuChart-II. In Proc. of Intl. Euromicro PDP 2015: Parallel
Distributed and network-based Processing. IEEE, Mar. 2015

(C7) M. Drocco, C. Misale, G. Peretti Pezzi, F. Tordini, and M. Aldinucci.
Memory-optimised parallel processing of Hi-C data. In Proc. of Intl.
Euromicro PDP 2015: Parallel Distributed and network-based Processing,
pages 1–8. IEEE, Mar. 2015

(C8) F. Tordini, M. Drocco, I. Merelli, L. Milanesi, P. Liò, and M. Aldinucci.
NuChart-II: a graph-based approach for the analysis and interpreta-
tion of Hi-C data. In C. D. Serio, P. Liò, A. Nonis, and R. Tagliaferri,
editors, Computational Intelligence Methods for Bioinformatics and Bio-
statistics - 11th International Meeting, CIBB 2014, Cambridge, UK, June
26-28, 2014, Revised Selected Papers, volume 8623 of LNCS, pages 298–
311, Cambridge, UK, 2015. Springer

(C9) M. Aldinucci, M. Drocco, G. Peretti Pezzi, C. Misale, F. Tordini, and
M. Torquati. Exercising high-level parallel programming on streams:
a systems biology use case. In Proc. of the 2014 IEEE 34th Intl. Con-
ference on Distributed Computing Systems Workshops (ICDCS), Madrid,
Spain, 2014. IEEE

(C10) M. Aldinucci, G. Peretti Pezzi, M. Drocco, F. Tordini, P. Kilpatrick, and
M. Torquati. Parallel video denoising on heterogeneous platforms. In
Proc. of Intl. Workshop on High-level Programming for Heterogeneous and
Hierarchical Parallel Systems (HLPGPU), 2014

(C11) M. Drocco, M. Aldinucci, and M. Torquati. A dynamic memory allo-
cator for heterogeneous platforms. In Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES)
– Poster Abstracts, Fiuggi, Italy, 2014. HiPEAC

(C12) M. Aldinucci, F. Tordini, M. Drocco, M. Torquati, and M. Coppo. Par-
allel stochastic simulators in system biology: the evolution of the spec-
ies. In Proc. of Intl. Euromicro PDP 2013: Parallel Distributed and network-
based Processing, Belfast, Nothern Ireland, U.K., Feb. 2013. IEEE

(C13) M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati, and S. Palazzo.
A parallel edge preserving algorithm for salt and pepper image de-
noising. In K. Djemal, M. Deriche, W. Puech, and O. N. Ucan, editors,
Proc. of 2nd Intl. Conference on Image Processing Theory Tools and Appli-
cations (IPTA), pages 97–102, Istambul, Turkey, Oct. 2012. IEEE

(C14) M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, E. Sciacca, S. Spinella,
M. Torquati, and A. Troina. On parallelizing on-line statistics for
stochastic biological simulations. In Euro-Par 2011 Workshops, Proc.
of the 2st Workshop on High Performance Bioinformatics and Biomedicine
(HiBB), volume 7156 of LNCS, pages 3–12, Bordeaux, France, 2012.
Springer

(C15) C. Calcagno, M. Coppo, F. Damiani, M. Drocco, E. Sciacca, S. Spinella,
and A. Troina. Modelling spatial interactions in the arbuscular myc-
orrhizal symbiosis using the calculus of wrapped compartments. In

1.3. List of Papers 11

I. Petre and E. P. de Vink, editors, Proc. of Third International Workshop
on Computational Models for Cell Processes (CompMod), volume 67 of
EPTCS, pages 3–18, Aachen, Germany, Sept. 2011

(C16) M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, M. Torquati, and
A. Troina. On designing multicore-aware simulators for biological
systems. In Y. Cotronis, M. Danelutto, and G. A. Papadopoulos, edi-
tors, Proc. of Intl. Euromicro PDP 2011: Parallel Distributed and network-
based Processing, pages 318–325, Ayia Napa, Cyprus, Feb. 2011. IEEE

(C17) M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca, S. Spinella,
and A. Troina. Hybrid calculus of wrapped compartments. In G. Cio-
banu and M. Koutny, editors, Proc. of 4th Workshop on Membrane Com-
puting and Biologically Inspired Process Calculi (MeCBIC), volume 40 of
EPTCS, pages 102–120, Jena, Germany, Aug. 2010

(C18) M. Coppo, F. Damiani, M. Drocco, E. Grassi, and A. Troina. Stochastic
calculus of wrapped compartments. In A. D. Pierro and G. Norman,
editors, Proc. of the 8th Workshop on Quantitative Aspects of Program-
ming Languages (QAPL), volume 28 of EPTCS, pages 82–98, Paphos,
Cyprus, Mar. 2010

Other (Technical Reports, Posters, Talks, etc.)

(O1) M. Drocco, C. Misale, G. Tremblay, and M. Aldinucci. A formal se-
mantics for data analytics pipelines. Technical report, Computer Sci-
ence Department, University of Torino, May 2017

(O2) M. Aldinucci, M. Torquati, M. Drocco, G. Peretti Pezzi, and C. Spamp-
inato. Fastflow: Combining pattern-level abstraction and efficiency in
GPGPUs. In GPU Technology Conference (GTC 2014), San Jose, CA,
USA, Mar. 2014

(O3) M. Aldinucci, M. Torquati, M. Drocco, G. Peretti Pezzi, and C. Spamp-
inato. An overview of fastflow: Combining pattern-level abstraction
and efficiency in GPGPUs. In GPU Technology Conference (GTC 2014),
San Jose, CA, USA, Mar. 2014

Funding

This work has been partially supported by the Italian Ministry of Educa-
tion and Research (MIUR), by the EU-H2020 RIA project “Toreador” (no.
688797), the EU-H2020 RIA project “Rephrase” (no. 644235), the EU-FP7
STREP project “REPARA” (no. 609666), the EU-FP7 STREP project “Para-
phrase” (no. 288570), and the 2015-2016 IBM Ph.D. Scholarship program.
Experimentation was made possible thanks to the A3Cube Inc. donation
of RONNIEE networking boards, and to Compagnia di SanPaolo for the
donation of the OCCAM heterogeneous cluster.

13

Chapter 2

Background

In this chapter, we provide the background that will help the reader go
through the arguments of the thesis. In particular, we discuss concepts and
approaches from the literature on parallel computing, which acted as both
inspiration and basis for comparison with respect to the contributions of
the thesis.

This chapter proceeds as follows. In Sect. 2.1, we review the most com-
mon parallel computing platforms. In Sect. 2.2, we review state-of-the-art
approaches for parallel programming. In Sect. 2.3, we introduce and dis-
cuss parallel memory models. Finally, in Sect. 2.4, we present the frame-
works and libraries that we actually exploited for concretizing the contri-
butions of the thesis.

2.1 Parallel Computing Platforms

Computing hardware has evolved to sustain the demand for high-end per-
formance along two basic ways. On the one hand, the increase in clock
frequency and the exploitation of instruction-level parallelism boosted the
computing power of single processors. On the other hand, collections of
processors have been arranged in multi-processors, multi-computers, and
networks of geographically distributed machines.

After decades of continual improvement of single core chips trying to
increase instruction-level parallelism, the majority of hardware manufac-
turers realized that the huge effort required for further improvements is no
longer worth the benefits eventually achieved, notably because of power
consumption. Thus, microprocessor vendors have shifted their attention
to thread-level parallelism by designing chips with multiple internal cores,
known as multi-cores (or chip multiprocessors). More generally, parallelism
at multiple levels is now the driving force of computer design across all
classes of computers, from small desktop workstations to large warehouse-
scale computers.

We briefly recap Hennessy and Patterson’s review of existing parallel
computing platforms [84]. Following Flynn’s taxonomy [80], we can define
two main classes of architectures supporting parallel computing:

• Single Instruction Multiple Data (SIMD): the same instruction is exe-
cuted by multiple processors on different data streams. SIMD com-
puters support data-level parallelism by applying the same operations
to multiple items of data in parallel;

• Multiple Instruction Multiple Data (MIMD): each processor fetches its
own instructions and operates on its own data, and generally targets

14 Chapter 2. Background

task-level parallelism. In general, MIMD is more flexible than SIMD
and thus more generally applicable to larger classes of problems, but
it is inherently more expensive than SIMD.

The MIMD class can be further subdivided into two subclasses:

• Tightly coupled MIMD architectures, which exploit thread-level par-
allelism since multiple cooperating threads operate in parallel on the
same execution context (e.g., multi-cores, discussed in Sect. 2.1.2, and
many-cores, discussed in Sect. 2.1.3);

• Loosely coupled MIMD architectures, which exploit parallelism at
coarser grain, where many independent tasks can proceed in parallel
with little need for communication or synchronization (e.g., clusters,
discussed in Sect. 2.1.4).

Although the SIMD/MIMD is a common classification, it is becoming
more and more coarse, as many processors are nowadays “hybrids” of
the classes above. For instance, in recent years, one of the most popular
approach specifically targeting data-level parallelism consists in the use
of GPUs for general-purpose computing, known as the General-Purpose
computing on Graphics Processing Units (GPGPU) paradigm. Most of the
GPGPU processors (cf. Sect. 2.1.3) are based on Single Instruction Multi-
ple Thread (SIMT), a model of parallelism similar to SIMD, in which the
same instruction is possibly executed by multiple processors on different
data streams.

We proceed by providing a brief survey of the parallel platforms that
can be found nowadays in HPC environments, in ascending order of par-
allelism degree. in Sect. 2.1.1, we discuss SIMD computers, the earliest
form of parallel platforms. In Sect. 2.1.2, we discuss Symmetric Multipro-
cessors (SMPs), the most common form of standalone parallel computer.
In Sect. 2.1.3, we discuss many-core computers, that are usually attached
to standalone computers for accelerating specific computations. Finally, in
Sect. 2.1.4, we discuss distributed systems, consisting in networks of inter-
connected computers, thus possibly aggregating all the discussed forms of
parallelism.

2.1.1 SIMD computers

The first use of SIMD instructions was in 1970s with vector supercomputers
such as the CDC Star-100 and the Texas Instruments ASC. Vector-processing
architectures are now considered separate from SIMD machines: vector
machines processed vectors one word at a time exploiting pipelined pro-
cessors (though still based on a single instruction), whereas modern SIMD
machines process all elements of the vector simultaneously [117].

Simple examples of SIMD computers are Intel SSE (Streaming SIMD Ex-
tensions) [87] for the x86 architecture. Processors implementing SSE (usu-
ally with a dedicated unit) can perform simultaneous operations on multi-
ple operands in a single register. For example, SSE instructions can simul-
taneously perform eight 16-bit operations on 128-bit registers.

SSE evolved into AVX (Advanced Vector Extensions). Specifically, AVX-
512 are 512-bit extensions to the 256-bit AVX instructions for x86 Instruction

2.1. Parallel Computing Platforms 15

PP P

Cache

Levels

P

Shared Cache

Cache

Levels

Cache

Levels

Cache

Levels

Main Memory

FIGURE 2.1: Structure of a 4-processor SMP.

Set Architecture (ISA), proposed by Intel in July 2013, and supported in In-
tel’s Xeon Phi x200 (a.k.a. Knights Landing) processor [88]. Programs can
pack various number of elements all within a single 512-bit vectors—e.g.,
eight double precision or sixteen single precision floating-point numbers,
or eight 64-bit integers, or sixteen 32-bit integers. This enables processing
twice the number of data elements that AVX/AVX2 can process with a sin-
gle instruction and four times that of SSE.

Advantages of such approaches consist in almost negligible overhead
and low hardware cost. However, they are difficult to integrate into ex-
isting code, as they actually require writing code in assembly language.
Moreover, although many compilers provide automatic vectorization (e.g.,
collapsing independent loop iterations in a single SIMD instruction), the
applicability of this technique is limited to extremely regular code.

2.1.2 Shared-Memory Multiprocessors

Thread-level parallelism implies the existence of multiple program coun-
ters, hence it must be exploited primarily through MIMDs. Threads can
also be used to support data-level parallelism, but some overhead is intro-
duced at least by thread communication and synchronization. This over-
head means the grain size (i.e., the ratio of computation to the amount of
communication), a key factor for efficient exploitation of thread-level par-
allelism, must be properly selected.

The most common MIMD computers are multiprocessors, defined as
computers consisting of tightly coupled processors that share memory. SMPs
typically feature small numbers of cores (nowadays from 12 to 24), where
processors can share a single centralized memory, to which they all have
equal access (Fig. 2.1). Among them, single-chip systems with multiple
cores are known as multi-cores. In multi-core chips, the memory is effec-
tively centralized, and all existing multi-cores are SMPs. SMP architectures
are also sometimes called Uniform Memory Access (UMA) multiproces-
sors, arising from the fact that all processors have a uniform latency from
memory, even if the memory is organized into multiple banks.

16 Chapter 2. Background

The alternative “asymmetric” design approach consists in using mul-
tiprocessors with physically distributed memory. To support larger num-
bers of processors, memory must be distributed rather than centralized—
otherwise, the memory system would not be able to support the bandwidth
demands of processors without incurring excessively long access latency.
Such architectures are known as Non-Uniform Memory Access (NUMA),
since the access time depends on the location of data in memory.

Multiprocessors usually support the caching of both shared and pri-
vate data, reducing the average access time as well as the required memory
bandwidth. Unfortunately, caching shared data introduces a new problem
because the view of memory held by two different processors is through
their individual caches, which could end up seeing two different values.
This problem is generally referred to as the cache coherence problem and sev-
eral protocols, referred to as cache coherence protocols, have been designed
to guarantee cache coherence.

From the performance perspective, guaranteeing cache coherence intro-
duces a number of pitfalls. For instance, false sharing is a subtle source of
cache miss, which arises from the use of an invalidation-based coherence
algorithm and multiple words block. False sharing occurs when a block is
invalidated (and a subsequent reference causes a miss) because some word
in the block, other than the one being read, is written into. In a false sharing
miss, the block is shared, but no word in the cache is actually shared, and
the miss would not have occurred if the block consisted of a single word.

On top of cache coherence, each ISA specifies a memory consistency model,
that addresses the general problem of defining the behavior of multiple pro-
cessors with respect to the memory they are attached to.

We discuss cache coherence and memory consistency in more detail in
Sects. 2.3.1 and 2.3.2, respectively.

2.1.3 Many-Core Processors

Many-Core processors are specialized multiprocessors designed to exploit
a high degree of parallelism, containing a large number of simpler, inde-
pendent processor cores. They are often referred to as hardware accelera-
tors. A many-core processor contains at least tens—if not hundreds—of
cores and usually distributed memory, which are connected (but physically
separated) by an interconnect that has a communication latency of mul-
tiple clock cycles [118]. A multiprocessor architecture (e.g., a multi-core)
equipped with hardware accelerators is a form of heterogeneous architecture.

We can compare multi-core to many-core processors as follows:

• Multi-core: a SMP architecture containing tightly coupled identical
cores that all share memory, where caches coherence is guaranteed.

• Many-Core: specialized multiprocessors designed for a high degree
of parallel processing, containing a large number of simpler, inde-
pendent processor cores (e.g., tens up to thousands) with a reduced
cache coherency to increase performance. Indeed, as the core count
increases, cache coherency is unlikely to be sustained by the hard-
ware [48].

Although broadly different types of accelerators have been proposed,
they do share some features. For instance, cores in many-core processors

2.1. Parallel Computing Platforms 17

are typically slower with respect to multi-core processors, and the high per-
formance is obtained by high level of parallelism rather than high speed of
each core. Moreover, data transfer from the host to the accelerator is typi-
cally slower than the memory bandwidth within the host processor, there-
fore exploiting locality is mandatory to achieve good performance.

In the following, we recap some of the accelerators that can be found in
several HPC scenarios.

• GPUs include a large number of small processing cores (from hun-
dreds to thousands) in an architecture optimized for highly parallel
workloads, paired with dedicated high performance memory. They
are accelerators, used from a general purpose CPU, that can deliver
high performance for some classes of algorithms.

• Intel Xeon Phi is a brand name given to a series of massively-parallel
multi-core co-processors designed and manufactured by Intel, tar-
geted at HPC. A crucial component of each co-processor’s core is the
Vector Processing Unit (VPU), for the execution of AVX-512 SIMD in-
structions. Currently, the Knights Landing family (the successor of the
first Xeon Phi) features 64 to 72 cores, with 4 thread contexts per core,
organized as interconnected tiles, each containing two CPU cores and
two VPUs per core (i.e., four VPUs per tile).

• Field Programmable Gate Arrays (FPGAs) are semiconductor devices
based around a matrix of configurable logic blocks, connected via
programmable interconnects. FPGAs can be reprogrammed to de-
sired application or functionality requirements after manufacturing.
The FPGA configuration is generally specified using a hardware de-
scription language, similar to that used for an application-specific in-
tegrated circuit.

2.1.4 Distributed Systems, Clusters, and Clouds

In contrast with shared-memory architectures, distributed systems look like
individual computers, each owning exclusive access to its private memory,
connected by a network. With respect to Flynn’s categorization, distributed
systems are examples of loosely coupled MIMDs.

Clusters are generally defined as homogeneous distributed systems, in
the sense that the computers in the network are identical. Therefore, both
program binaries and data are represented in the same manner (e.g., en-
dianness) on each computer in the cluster, thus allowing the computers to
exchange and process data without introducing additional layers of data
conversion. Moreover, users of a cluster typically have direct access to the
computing resources, possibly mediated by some allocation mechanism.
The mentioned aspects leads clusters to be considered the reference model
of distributed system in the context of HPC.

Conversely, large-scale distributed systems are typically heterogeneous
and they form the basis for cloud computing, in which an infrastructure is of-
fered by providers according to a pay-per-use business model. In a common
cloud model, referred to as Infrastructure-as-a-Service (IaaS), providers of-
fer computers—either physical or (more often) virtual machines—and other
resources on-demand. End users are not required to (or, depending on the

18 Chapter 2. Background

viewpoint, allowed to) take care of hardware, power consumption, reliabil-
ity, robustness, security, and the problems related to the deployment of a
physical computing infrastructure.

2.2 Parallel Programming Models

Shifting from sequential to parallel platforms, as discussed in the previous
section, does not always translate into greater performance. For instance,
sequential code (i.e., code not exploiting any form of parallelism) will get no
performance benefits from a workstation equipped with a quad-core CPU:
in such a case, running sequential code is wasting 3

4 of the machine compu-
tational power. Developers are then faced with the challenge of achieving
a trade-off between performance and human productivity (total cost and
time to solution) in developing and porting applications to parallel plat-
forms.

Therefore, effective parallel programming happens to be a key factor
for exploiting parallel computing, but efficiency is not the only issue faced
by parallel programmers: writing parallel code that is portable on differ-
ent platforms and maintainable are also issues that parallel programming
models should address.

We proceed by recalling, in Sect. 2.2.1, the forms of parallelism that can
be expressed in the most common parallel programming models and, in
Sect. 2.2.2, some shared memory and communication models, regarded as
orthogonal aspects in this thesis. Finally, in Sects. 2.2.3 and 2.2.4, we pro-
vide a survey of low-level and high-level parallel programming models,
respectively, with a focus on the C++ realm.

2.2.1 Types of Parallelism

Parallel programming models allow to express parallelism in programs. In
the following, we recall some common types of parallelism, as provided
by the models proposed in various well-established parallel programming
models.

• Task Parallelism consists of running independent computations (i.e.,
tasks) on different executors (cores, processors, etc.), according to a
task-dependency graph. Tasks are concretely processed by threads or
processes, which may communicate with one another as they execute.
Communication takes place usually to pass data from one thread to
the next as part of a graph.

• Data Parallelism is a method for parallelizing a single task by process-
ing independent data elements in parallel. The flexibility of the tech-
nique relies upon stateless processing routines, implying that the data
elements must be fully independent. Data Parallelism is often real-
ized in terms of Loop-level Parallelism, where successive iterations of
a loop working on independent or read-only data are parallelized in
different flows-of-control (according to the model co-begin/co-end) and
concurrently executed.

• Stream Parallelism is a method for parallelizing the execution (aka. fil-
tering) of a stream of tasks by segmenting each task into a series of

2.2. Parallel Programming Models 19

sequential1 or parallel stages. This method can be also applied when
there exists a total or partial order in a computation, preventing the
use of data or task parallelism. This might also come from the suc-
cessive availability of input data along time (e.g., data flowing from
a device). By processing data elements in order, local state may be
either maintained in each stage or distributed (replicated, scattered,
etc.) along streams. Parallelism is achieved by running each stage
simultaneously on subsequent or independent data elements.

2.2.2 Memory and Communication Model

From a programming perspective, memory is represented in terms of ad-
dress spaces, accessed by processing units (e.g., processes or threads). In the
space of parallel programming models, shared-memory models yield pro-
grams composed of a single address space, shared by all processing units.
This shared space is also referred as Global Address Space (GAS). Con-
versely, distributed-memory models yield programs in which each executor
is attached to a private address space, that cannot be accessed by any other
executor.

A further categorization of parallel programming models can be formu-
lated in terms of the communication model among processing units. In mod-
els based on message passing, communications among processing units are
performed via explicit messages. When processing units need to exchange
data among each other, this exchange is done by sending and receiving mes-
sages, which typically requires cooperative operations among the two units
involved in the communication (namely, the sender and the receiver). This
aspect induces tight coupling of processing units: any send operation must
have its corresponding receive operation, otherwise a deadlock can occur,
since the process can be waiting indefinitely for completion.

In distributed-memory models, message passing is the only viable op-
tion for exchanging data among processing units, therefore all distributed-
memory models are based on message passing as communication model.
Note that exchanging data in the form of messages induces some extra ef-
fort. For instance, it typically requires data to be serialized and de-serialized,
which introduces complexity and possible performance penalties, in partic-
ular when working with complex data structures.

In shared-memory programming, processing units share the GAS, in
which they communicate implicitly via load/store primitives. The mem-
ory locations of the GAS can be used to effectively exchange data among
threads, but the access to memory locations must always be coordinated
(e.g., by locks/semaphores) to prevent data races, starvations or deadlocks.
Some shared-memory programming model also provides communication
by means of message passing, that can be exploited as an alternative syn-
chronization and coordination mechanism, with respect to semaphores and
atomic instructions.

We remark that shared-memory models can be implemented on top of
distributed platforms (cf. Sect. 2.1.4), with the assistance of software pro-
tocols. In the simplest realization of this approach, which is historically
referred as DSM, the memory interface (i.e., the Application Programming

1In the case of total sequential stages, the method is also known as Pipeline Parallelism.

20 Chapter 2. Background

Interface (API) provided to processing units to access the GAS) is the same
as a shared-memory model based on physically shared memory. According
to DSM models, the GAS can be accessed by the processing units using a
plain load/store API and some form of strong consistency (cf. 2.3.2) is guar-
anteed. Although retaining the simplicity of shared-memory models when
programming distributed platforms seems attractive, the DSM approach
faded away, mainly because of the inherent limits to scalability imposed
by keeping memory consistent. Nevertheless, in recent years, a number of
GAS models have been proposed for distributed platforms, both enriching
the memory interface and relaxing the consistency model. For instance, the
PGAS paradigm (cf. Sect. 2.2.3) revamped the DSM approach by adding
syntactic mechanisms to control data locality.

2.2.3 Low-Level Programming Models

We denote as low-level parallel programming models that provide the pro-
grammers with a thin abstraction over the underlying parallel platform
to be programmed. For instance, on top of a shared-memory multipro-
cessor, a low-level programming model typically provides primitives for
managing the lifetime of processing units (i.e., threads), their synchroniza-
tion and data sharing, typically accomplished through critical regions ac-
cessed in mutual exclusion. Low-level languages are usually extensions to
well-established sequential languages, such as C/C++, Java, or Fortran, by
means of external libraries, linked at compile time to the application source
code (e.g., Pthreads, MPI), or enriched with specific constructs (e.g. C++
Threads).

Shared-Memory Platforms

POSIX Threads (or Pthreads) [43], one of the most used low-level parallel
programming API for shared-memory environments, are defined by the
POSIX.1c standard, Threads extensions (IEEE Std 1003.1c-1995). They are
present in every Unix-like operating system (Linux, Solaris, Mac OS X, etc.)
and other POSIX systems, giving access to OS-level primitives for creation
and synchronization of threads.

From the programming model perspective, with respect to the cate-
gorization discussed above, Pthreads provides shared-memory program-
ming. Since no primitives are provided for explicit communication among
threads, the user has to implement implicit communication by means of
concurrent data structures (i.e., data structures accessed concurrently by mul-
tiple threads) as, for instance, First-In First-Out (FIFO) queues.

Since Pthreads is a C library, it can be used in C++ programs as well.
However, a well-known report by Boehm [37] provides specific arguments
that a pure library approach, in which the compiler is designed indepen-
dently of threading issues, cannot guarantee correctness of the resulting
code, for instance with respect to the parallel memory model (cf. Sect. 2.3).
The report shows simple cases (e.g., concurrent modification, adjacent data
rewriting and register promotion) in which a pure library-based approach
is incapable of expressing a correct and efficient parallel algorithm. For
these and similar reasons, the C++11 standard, published in 2011, intro-
duced multithreaded programming. We remark that ISO C++ is completely

2.2. Parallel Programming Models 21

independent from POSIX and it is provided also in non-POSIX platforms.
In a similar fashion, Java provides multi-threading for writing parallel ap-
plications according to a shared-memory programming model [113].

In contrast to Pthreads, multithreading in ISO C++ includes a complete
parallel memory model (abbr. memory model), that defines the behavior of
parallel programs with respect to memory accesses. The C++ memory
model has been formulated by Boehm et al. [38], on the same line as the Java
memory model [99]. As we discuss in more detail in Sect. 2.3.2, the key con-
cept is guaranteeing safe memory behaviors for safe programs, where pro-
gram safeness is ensured by either avoiding concurrent stores to the same
memory location or mediating them by special operations.

CUDA (Compute Unified Device Architecture) [111] is the reference lan-
guage for programming Nvidia GPUs, according to the GPGPU paradigm.
Although there have been recent efforts (e.g., Nvidia Thrust library [112],
discussed in Sect. 6.1.2) for partially reducing the gap between high com-
putational power, provided by GPUs, and easiness of programming, we
still regard CUDA as a low-level parallel programming approach, since,
in the general case, the user has to deal with close-to-metal aspects like
memory allocation and data movement between the GPU and the host
platform. Moreover, CUDA programming is thread-centric, which induces
non-trivial consequences when programming data-parallel applications, as
discussed by Drocco et al. [74].

OpenCL (Open Computing Language) [93] is an API designed to write
parallel programs that execute across heterogeneous architectures, includ-
ing GPUs. It is implemented by different hardware vendors such as Intel,
AMD, and Nvidia, thus making programs portable with respect to hard-
ware accelerators. For instance, OpenCL applications are seamlessly re-
verted to the CPU for execution when there is no GPU in the system, and
its portability makes it suitable for hybrid CPU/GPU environments. More-
over, OpenCL allows the implementation of applications onto FPGAs, al-
lowing software programmers to write hardware-accelerated kernel func-
tions in OpenCL C, an ANSI C-based language with additional OpenCL
constructs. OpenCL represents an extension to C/C++ but, as CUDA, must
be considered a low-level language, focusing on low-level features manage-
ment rather than high-level parallelism exploitation patterns. Nevertheless,
as for CUDA, recent efforts (e.g., SYCL [94]) aim at raising the program-
ming level by hiding low-level details.

Distributed Platforms

MPI [115] is a language-independent communication protocol, as well as a
message-passing API, that supports point-to-point and collective commu-
nication. Many general-purpose programming languages have bindings to
MPI functionalities, among which: C, C++ (e.g., notably, Boost.MPI [40]),
Fortran, Java, and Python. Mainly targeted to distributed architectures,
MPI offers specific implementations for almost any high-performance in-
terconnection network. At the same time, implementations exist that allow
to use MPI even on standalone multiprocessor systems.

From the programming model perspective, with respect to the catego-
rization discussed above, MPI provides message-passing communication
on top of a distributed-memory model. Moreover, programming in MPI

22 Chapter 2. Background

implicitly follows the Single Program Multiple Data (SPMD) paradigm [63],
in which all processing units execute the same program, each operating on
its local chunk of data.

MPI allows to manage synchronization and communication functional-
ities among a set of processes, and provides mechanisms to deploy a vir-
tual topology on top of the system upon which the program is executing.
These features, supported by a rich set of capabilities and functions, clearly
require high programming and networking skills. Nevertheless, MPI has
long been the lingua franca of HPC, supporting most of the supercomput-
ing scientists and engineers have relied upon for the past two decades.

Shifting from the distributed-memory to the shared-memory program-
ming model, UPC (Unified Parallel C) [77] is a long-standing example of the
PGAS approach, expressed through a C language extension. In UPC, any
processor can directly read and write variables on the partitioned address
space, while each variable is physically associated with a single processor.
Each thread is associated to a partition of the GAS, which is subdivided into
a local portion and a shared portion. Local data can be accessed only by the
thread that owns the partition, while data in the shared portion are acces-
sible by all threads. Since PGAS is a shared-memory model, threads access
shared memory addresses concurrently through standard read and write
instructions. This programming model is still a low-level shared-memory
environment, and uses barriers and locks to synchronize the execution flow.

Several PGAS languages and libraries have been proposed. Such lan-
guages can be categorized along a number of orthogonal dimensions, in-
cluding relationship between local and shared data, model of communi-
cation among processors, representation of global memory reference (e.g.,
global pointers), supported forms of parallelism, and level of memory con-
sistency. Among the most successful PGAS languages, we can mention
Global Arrays [110], UPC (Unified Parallel C) [77], UPC++ [131], Chapel [45],
and X10 [46].

On the same line as the DSM paradigm, several Global Object Space
(GOS) languages have been proposed. For instance, Charm++ [91] is a C++
variant providing objects with parallel semantics and supporting compila-
tion for both shared-memory and distributed platforms. Similarly, ADHOC
(Adaptive Distributed Herd of Object Caches) [15] provides virtualization of
local memories (i.e., partitions) into an unique distributed object reposi-
tory. Also the popular memcached [102] caching system is based on dis-
tributed memory objects, thus it can be regarded as a realization of the GOS
paradigm.

2.2.4 High-level Programming Models

Parallel programming is intimately related to HPC environments, where
programmers write low-level parallel code to retain complete control over
the underlying platform, allowing them to manually optimize the code in
order to exploit at best the parallel architecture. This programming method-
ology has become unsuitable with the fast move to heterogeneous architec-
tures, that encompass hardware accelerators, distributed shared-memory
systems and cloud infrastructures, highlighting the need for proper tools to
easily implement parallel applications. Indeed, it is widely acknowledged
that the main problem to be addressed by a parallel programming model

2.2. Parallel Programming Models 23

is portability: the ability to not only compile and execute the same code on
different architectures [65], but also—and generally even more complex—
the challenge of performance portability, that is, implementing applications
that scale on different architectures.

A high-level approach to parallel programming is a better way to go to
address this problem, so that programmers can build parallel applications
and be sure that they will perform reasonably well on the wide range of
parallel architectures available today [120]. For instance, threads might be
abstracted out in higher-level entities that can be pooled and scheduled in
user space possibly according to specific strategies to minimize cache flush-
ing or maximize load balancing of cores. Synchronization primitives can be
also abstracted out and associated to semantically meaningful points of the
code, such as function calls and returns, loops, etc. Intel TBB (Threading
Building Blocks) [89], OpenMP (Open Multi-Processing) [116], and Cilk [50] all
provide those kinds of abstraction, each in its own way. A complete review
of these parallel programming models is proposed by Sanchez et al. [119],
where it is provided a comparative study and evaluation of OpenMP, TBB,
Cilk, Intel ArBB (Array Building Blocks) and OpenCL. The study covers sev-
eral capacities, such as task deployment, scheduling techniques, or pro-
gramming language abstractions.

Arguably, the most basic form of abstraction to raise the level of abstrac-
tion and reduce the programming effort is based on tasks. As we discuss
in more detail in Sect. 6.2.1, any parallel computation can be described in
terms a graph of tasks, where independent tasks (i.e., not linked) can be per-
formed in parallel. Following this principle, a number of frameworks for
task-based parallel programming have been proposed. For instance, OCR
(Open Community Runtime) [101, 71, 29] is a recently proposed task-based
runtime system, targeting future extreme-scale applications.

Further along the direction of raising the level of abstraction, notable
results have been achieved by the algorithmic skeleton approach [52] (aka.
pattern-based parallel programming), that has gained popularity after be-
ing revamped by several successful parallel programming frameworks. Al-
gorithmic skeletons have been initially proposed by Cole [53] to provide
predefined parallel computation and communication patterns, hiding par-
allelism management from the user. Algorithmic skeletons capture common
parallel programming paradigms (e.g., Map+Reduce, ForAll, Divide and
Conquer, etc.) and make them available to the programmer as high-level
programming constructs equipped with well-defined functional and extra-
functional semantics [12]. Ideally, algorithmic skeletons address the diffi-
culties of parallel programming (i.e., concurrency exploitation, orchestra-
tion, mapping, tuning) by moving them from the application design to
development tools, which is done by capturing and abstracting common
paradigms of parallel programming and providing them with efficient im-
plementations. This idea can be considered at the core of structured par-
allel programming: expressing the parallel code as a composition of simple
“building blocks”.

Over the last two decades, many skeletons have been proposed, cover-
ing many different usage schema of the three classes of parallelism, on top
of both message passing [54, 64, 18, 11] and shared memory [5, 89] models.
In the following, we briefly present some frameworks for high-level parallel

24 Chapter 2. Background

programming, from the C/C++ world, focusing in particular on skeleton-
based approaches. For a broader presentation of algorithmic skeletons, see
the survey by González-Vélez and Leyton [83].

Skeletons for Shared-Memory Platforms

OpenMP [116] is widely considered the de facto standard API for shared-
memory parallel programming. OpenMP is an extension that can be sup-
ported by C, C++ and Fortran compilers and that defines an “accelerator-
style” programming, where the main program is run sequentially while
code is accelerated at specific points, in “parallel regions”, specified using
special preprocessor instructions known as pragmas. Compilers that do not
support specific pragmas can ignore them, making an OpenMP program
compilable and runnable on every system with a generic sequential com-
piler.

While Pthreads are low-level and require the programmer to specify
every detail of the behavior of each thread, OpenMP allows to simply state
which block of code should be executed in parallel, leaving to the com-
piler and run-time system the responsibility to determine the details of
the thread behavior. In addition to the parallel_for construct, that can
be used to express data parallelism, OpenMP has been recently enriched
with pragmas targeting task parallelism, allowing the user to simply iden-
tify which block of code should be considered a separate task, leaving to
the runtime the burden of efficient scheduling and execution of tasks.

TBB [89] defines a set of high-level parallel patterns that permit to ex-
ploit parallelism independently from the underlying platform details and
threading mechanisms. It targets shared-memory multi-core architectures,
and exposes parallel patterns for exploiting data parallelism, stream paral-
lelism, as well as task parallelism. For example, the parallel for and
parallel for each functions may be used to parallelize independent it-
erations of a definite (for) loop. C++11 lambda expression can be used as
arguments to these calls, so that the loop body function can be described as
part of the call, rather than being separately declared. The parallel for
uses a divide-and-conquer approach, where a range of iterations is recur-
sively split into sub-ranges until each sub-range is sufficient small that it
can be processed as a separate task using a serial for loop.

SkePU [78] is an open-source framework for skeleton programming on
multi-core CPUs and multi-GPU systems. It is a C++ template library with
data-parallel and task-parallel skeletons (map, reduce, map-reduce, farm)
that also provides generic container types and support for execution on
multi-GPU systems, both with CUDA and OpenCL.

SkelCL [122] is a skeleton library targeting OpenCL. It allows the dec-
laration of skeleton-based applications hiding all the low-level details of
OpenCL. The set of skeletons is currently limited to data-parallel patterns—
map, zip, reduce, and scan—and it is unclear whether skeleton nesting
is allowed. A key limitation stems from the library’s target, which is re-
stricted to the OpenCL language: it likely benefits from the possibility to
run OpenCL code both on multi-core and on many-core architectures, but
the window for tunings and optimizations is restricted.

Similarly to SkePU and SkelCL, a set of parallel patterns in the form of a
pattern-based library for OpenCL has been proposed in [70], where authors

2.2. Parallel Programming Models 25

exploring issues and opportunities encountered by attempts to provide pat-
terns such as like parallel for-loops or pipelines. Due to very different per-
formance characteristics of the different OpenCL devices, authors state that
it is necessary to include some kind of dynamic work allocation technique,
or adaptive static strategies.

GrPPI (Generic Parallel Pattern Interface) [69] is a generic high-level pat-
tern interface for stream-based C++ applications. Thanks to its high-level
C++ API, this interface allows users to easily expose parallelism in sequen-
tial applications using already existing parallel frameworks, such as C++
threads, OpenMP, and TBB. It is implemented using C++ template meta-
programming techniques to provide interfaces of a generic, reusable set of
parallel patterns without incurring runtime overheads. GrPPI targets the
following stream parallel processing patterns: Pipeline, Farm, Filter, Stream-
Reduce, and Stream-Iteration. Parallel versions of the proposed interfaces
are implemented by leveraging C++11 threads and OpenMP, as well as the
pattern-based parallel framework Intel TBB. As for the parameter functions,
they are specified as user lambdas.

FastFlow [17] is a parallel programming framework originally designed
to support streaming applications on cache-coherent multi-core platforms.
Since it plays a key role in our project, it is described more in detail in Sec-
tion 2.4.2.

Skeletons for Distributed Platforms

HPF (High Performance Fortran) [92] is among the first attempts of raising
the abstraction level in the context of distributed-memory programming. It
provides an annotation-based syntax similar to OpenMP focused on data
parallelism, thus allowing to express parallel iterative computations in a
compact way.

P3L [59] is one of the earliest proposals for pattern-based parallel pro-
gramming. P3L is a skeleton-based coordination language that manages the
parallel or sequential execution of C code. It comes with a proper compiler
for the language, and uses implementation templates to compile the code
into a target architecture. P3L provides patterns for both stream parallelism
and data parallelism.

SKELib [60] builds upon the contributions of P3L by inheriting, among
other features, the template system. It differs from P3L because a coordina-
tion language is no longer used, and skeletons are provided as a C library.
It only offers stream-based skeletons (namely farm and pipe patterns).

SkeTo [100] is a C++ library based on MPI that provides skeletons for
distributed data structures, such as arrays, matrices, and trees. The current
version is based on C++ expression templates, used to represent part of
an expression where the template represents the operation and parameters
represent the operands to which the operation applies.

Muesli [49] is a C++ template library that supports SMPs and distributed
architectures using MPI and OpenMP as underlying parallel engines. It
provides data parallel patterns such as map, fold (i.e., reduce), scan (i.e.,
prefix sum), and distributed data structures such as distributed arrays, ma-
trices, and sparse matrices. Skeleton functions are passed to distributed
objects as pointers, since each distributed object has skeleton functions as

26 Chapter 2. Background

internal member of the class itself. The programmer must explicitly indi-
cate whether GPUs are to be used for data parallel skeletons, if available.

Other High-Level Programming Frameworks

In addition to skeleton-based approaches, a number of frameworks, target-
ing both shared-memory and distributed platforms, have been proposed as
DSLs. For instance, Google MapReduce [68] and Thrill [36] have been pro-
posed within the domain of data analytics in C++. From the perspective
of categorizing parallel programming models, we regard such approaches
as high-level models, in which even the parallelism itself is hidden by the
APIs, usually yielding programs that look like plain sequential code.

Moreover, in recent years, a number of frameworks have been proposed
that provide a task-based Run-Time System (RTS), coupled with a higher-
level programming model, to hide the complexity of managing task graphs.
This class of frameworks includes OCR [101], OmpSs [42], CAF (C++ Ac-
tor Framework) [47], HPX (High Performance ParalleX) [90], UPC++2, and
Legion [32]. From the API perspective, for instance, both HPX and UPC++
focus on tight integration with task-based constructs in modern C++ (e.g.,
async), whereas the CAF API is based on the actor model [2].

2.3 Parallel Memory Models

A memory model—also known as a memory consistency model—defines the
semantics of a shared-memory system. That is, the memory model spec-
ifies the values that a shared variable read in a multi-threaded program
is allowed to return. The memory model affects programmability, perfor-
mance, and portability by constraining the transformations that any part of
the system may perform. In short, as expressed by Sorin et al. [121], such
“models define correctness so that programmers know what to expect and
implementors know what to provide”.

A memory consistency model typically defines the shared memory be-
havior in terms of loads and stores (memory reads and writes), without any
reference to caches. However, cache coherence can play a key role in imple-
menting the most basic form of consistencies. Therefore, we first describe
cache coherence, in Sect. 2.3.1, before discussing memory consistency, in
Sect. 2.3.2.

2.3.1 Cache Coherence

A cache coherence problem can arise if multiple actors (e.g., cores) have
access to a copy of a datum in their cache and at least one actor performs a
write on that datum: the value written by the writing core must be returned,
when a read is performed, to the other cores. Access to a wrong (incoherent)
value of the datum can be precluded using a coherence protocol, which must
ensure certain appropriate conditions.

More precisely, Sorin et al. [121] characterize coherence using the fol-
lowing two conditions:

2We already mentioned UPC++, in Sect. 2.2.3, as a low-level PGAS framework; indeed,
as many other PGAS frameworks we mentioned, UPC++ can be regarded from both low-
level (i.e., DSM-oriented) and high-level (i.e., C++ task-oriented) perspectives.

2.3. Parallel Memory Models 27

C2C1 Cn

Cache-Coherent

Memory System

…

FIGURE 2.2: Implementing SC with cache coherence; cores
issue memory instructions in parallel, according to the re-

spective program order (from Sorin et al. [121]).

• The Single Writer Multiple Reader (SWMR) invariant: given a mem-
ory location, at any moment in time 1) there is a single core that may
write (and also read) it or 2) there are some number of cores that
may read it. As a consequence, there is never a time in which that
memory location may be written by a core and read or written by
other cores. Thus, the lifetime of this memory location is divided into
epochs. Within each epoch, it happens that: 1) a single core has read
and write access or 2) zero, one or more cores have read-only access.

• The Data-Value (DV) invariant: after a write by a core, the value is
correctly propagated from an epoch to the next, that is, the value of a
memory location at the start of an epoch is the same as the value of
the memory location at the end of its last read-write epoch.

2.3.2 Memory Consistency

Sorin et al. define a memory consistency model as follows [121]:

A memory consistency model, or, more simply, a memory model, is
a specification of the allowed behavior of multi-threaded pro-
grams executing with a shared memory. For a multi-threaded
program executing with specific input data, it specifies what
values dynamic loads may return and what the final state of
memory is.

The most basic form of consistency is Sequential Consistency (SC), in
which “the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified
by its program” [95]. Hence, the execution order within a single processor
(or thread) is the same as the program order, while the execution order of
program between processors (or threads) is undefined.

Although they may appear similar, there is a key difference between co-
herence and consistency: whereas coherence is specified on a per-memory
location, consistency is specified with respect to all memory locations—that

28 Chapter 2. Background

is, also in terms of possible interactions among distinct locations. Fur-
thermore, as discussed by Sorin et al. [121] and as illustrated in Fig. 2.2,
cache coherence can be used to provide completely parallel implementa-
tions of SC.

Since the introduction of explicit constructs for expressing parallelism
(e.g., threads), memory consistency has become a first-class citizen of pro-
gramming languages. Indeed, memory consistency models are part of the
semantics, with respect to parallelism, of such parallelism-aware program-
ming languages. For instance, SC is guaranteed for a well-formed subset
of C++ and Java multi-threaded programs through their respective mem-
ory models [38, 99]. In particular, SC is guaranteed for race-free programs,
where a race is defined as a situation in which the same memory location
may be read and written concurrently by different threads.

For performance gains, to fully utilize resources, modern CPUs often
execute instructions out of order. Furthermore, the compiler can also op-
timize the code by reordering instructions. Since the hardware enforces
instructions integrity, this cannot be noticed within a single thread execu-
tion. However, in a multi-threaded execution, reordering may lead to un-
predictable behaviors. SC also restricts many common compiler and hard-
ware optimizations and to overcome the performance limitations of this
model, hardware vendors and researchers have proposed several relaxed
memory models, as reported in [1], up to the extreme totally relaxed model,
in which any memory ordering has to be forced by means of special fence in-
structions. Between SC and the totally relaxed model, a plethora of partially
relaxed models have been proposed at ISA level, including, for instance, the
widespread Total Store Order (TSO), in which write-to-read dependency is
dropped to allow store buffers. We remark that the mentioned C++ memory
model encompasses different ISA memory models, by optionally associat-
ing a consistency level to atomic memory accesses.

2.4 Libraries Used by our Implementation

In this section, we provide some details about the libraries that we use for
implementing the stack in Fig. 1.1.

In Sect. 2.4.1, we briefly present smart pointers, an approach to autom-
atize dynamic memory management that we adopted in our implemen-
tation of smart global pointers (cf. Ch. 4). In Sect. 2.4.2, we describe the
FastFlow library for structured parallel programming. Although we do not
specifically use FastFlow in any layer of the stack, the parallel programming
model that we propose (cf. Ch. 5) is based on the same ideas as FastFlow.
Finally, in Sect. 2.4.3, we briefly describe the libfabric library for large-scale
network programming, that we used at the very bottom of the stack to sup-
port arbitrary networking environments.

2.4.1 C++ Smart Pointers

Since most programming languages support dynamic memory allocation,
the problem of automating memory allocation (and deallocation) has been
around for decades. A commonly used approach, adopted for instance in
Java, is referred as garbage collection and relies on a component (i.e., the

2.4. Libraries Used by our Implementation 29

garbage collector) of the language RTS that periodically checks if some non-
referenced memory exists and eventually reclaims it. Although drastically
simplifying the programmer’s task, who can indeed safely forget about
freeing the allocated memory, garbage collection induces non-negligible
performance costs. In particular, in case of multithreaded dynamic memory
allocation, garbage collection usually implies some locking mechanism to
coordinate the concurrency over the involved data structures, therefore ex-
acerbating performance drawbacks. As a matter of fact, it is a common
practice to switch off garbage collection whenever performance matters
(e.g., in HPC environments), thus possibly exposing execution to the prob-
lem of memory explosion.

Smart pointers represent a dual approach with respect to garbage collec-
tion: instead of allowing non-referenced memory and relying on an addi-
tional software component to collect it, smart pointers prevent memory to
become non-referenced. This invariant—at any time during the program
execution, no non-referenced memory exist—is maintained by binding the
lifetime of memory locations to the lifetime of their respective references.
For instance, in an object-oriented context, such “active” references are ob-
jects (i.e., smart pointers) that implement a cooperative reference counting
over the respective memory location they control. The counter for a mem-
ory location m is decremented when the destructor a smart pointer referenc-
ing m is called, thus realizing the mentioned location-reference binding.

C++ supports this approach, based on reference counting, by means of
shared pointers—i.e., objects of the shared_ptr class. In addition to shared
pointers, unique pointers—i.e., objects of the unique_ptr class—guarantee
an additional exclusiveness invariant: at any time during the program execu-
tion, no two unique pointers exist that reference the same memory location.
From the programming perspective, C++ smart pointers are implemented
using templates and operator overloading, which generally allows those
smart pointers to be used almost as ordinary pointers.

Based on this principle, it can be shown that the two following condi-
tions hold during the lifetime of a program based on smart pointers:

• Leak-freeness: if a memory location m is allocated, then there exists a
reference to m;

• Dangling-freeness: if a reference exists to a memory location m, then m
is allocated.3

Considering a memory location m, the absence of leaks is guaranteed by
freeing m before the last standing reference to m gets destructed, while the
absence of dangling pointers is guaranteed implicitly by the existence of a
reference to m.

2.4.2 FastFlow

FastFlow [62] is an open source programming framework for structured
parallel programming, targeting shared-memory multi-core and support-
ing the exploitation of GPU accelerators. Its efficiency stems from the op-
timized implementation of the base communication mechanisms and from

3For the sake of simplicity, we consider the basic formulation of dangling-freeness,
whereas more refined definitions (that still hold for C++ smart pointers) take into account,
for instance, the type of the referenced value.

30 Chapter 2. Background

Core patterns
pipeline, farm, feedback

High-level patterns
parallel_for, parallel_forReduce, …

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

FIGURE 2.3: Layered FastFlow design.

its layered design (cf. Fig. 2.3), based on C++ templates. FastFlow provides
a set of algorithmic skeletons addressing both stream parallelism (e.g., farm
and pipeline) and data parallelism (e.g. map, stencil, reduce), along with
their arbitrary nesting and composition [25]. Map, reduce, and stencil pat-
terns can be run on multi-cores or can be offloaded onto GPUs. In the latter
case, the user code can include GPU-specific code (i.e., CUDA or OpenCL
kernels).

For instance, leveraging the farm skeleton, FastFlow exposes a Paral-
lelFor pattern [61], where chunks of a loop iterations are streamed to be exe-
cuted by the farm workers. Just like TBB, FastFlow’s parallel_for pattern
uses C++11 lambda expression as a concise way to create function objects:
lambdas can “capture” the state of non-local variables, by value or by ref-
erence, and allow functions to be syntactically defined where and when
needed.

From the performance viewpoint, one distinguishing feature at the core
of FastFlow is that it supports lock-free (fence-free) Multiple Producer Mul-
tiple Consumer (MPMC) queues [20], thus providing low overhead high
bandwidth multi-party communications on multi-core architectures for any
streaming network, including cyclic graphs of threads. The key intuition un-
derlying FastFlow is to provide the programmer with fast lock-free Multi-
ple Producer Single Consumer (MPSC) queues and Single Producer Multi-
ple Consumer (SPMC) queues—that can be used in pipeline to build MPMC
queues—to support fast streaming networks.

Traditionally, MPMC queues are built as passive entities: threads con-
currently synchronize (according to some protocol) to access data; these
synchronizations are usually supported by one or more atomic operations
(e.g., Compare-And-Swap) that behave as memory fences. FastFlow design
follows a different approach: to avoid any memory fence, the synchroniza-
tions among queue readers or writers are arbitrated by an active entity (e.g.,
a thread). We call these entities Emitter (E) or Collector (C) according to their
role; they actually read an item from one or more lock-free Single Producer
Single Consumer (SPSC), queues and write onto one or more lock-free SPSC

2.4. Libraries Used by our Implementation 31

queues. This requires a memory (pointer) copy but no atomic operations.
The advantage of this solution, in terms of performance, comes from the

higher speed of the copy operation compared with the memory fence; this
advantage is further increased by avoiding cache invalidation triggered by
fences. This behavior also depends on the size and the memory layout of
copied data. The former point is addressed using data pointers instead of
data, ensuring that the data is not concurrently written: in many cases this
can be derived by the semantics of the skeleton that has been implemented
using MPMC queues—for example, this is guaranteed in a stateless farm as
well as many other cases.

Shared-memory FastFlow

The FastFlow implementation for shared-memory platforms provides two
basic abstractions:

• Process-component, i.e., an active control flow entity, implemented by
means POSIX threads;4

• 1-1 channel, i.e., a communication channel between two components,
realized with wait-free SPSC queues [16].

The 1-1 channel is “state of the art” in its class, in terms of both latency
and bandwidth. For instance, the SPSC queue exhibits a latency down
to 10 nanoseconds per message on a standard Intel Xeon @2.0GHz [16].
Dolz et al. [72] tested the correctness of FastFlow SPSC queue benign data
races over a set of µ-benchmarks and real applications on a dual-socket Intel
Xeon CPU E5-2695 platform.

FastFlow design is a layered one (see Fig. 2.3). On top of the mentioned
basic abstractions, the bottom layer (Building blocks in Fig. 2.3) provides the
following entities:

• FastFlow node, i.e., the basic unit of parallelism that is typically iden-
tified with a node in a streaming network. Such a node is used to
encapsulate sequential portions of code implementing functions (i.e.,
process-components), as well as higher-level parallel patterns, such
as pipelines and farms; From the API viewpoint, a FastFlow node is
an object of the ff_node class;

• Collective channel, i.e., a communication channel among two or more
ff_nodes, of arbitrary type (e.g., SPSC, MPMC).

The second layer (Core patterns in Fig. 2.3) provides basic streaming pat-
tern (i.e., farm and pipeline) and some common variants (e.g., ordering
farm).

On top of core patterns, High-level patterns are provided to target dif-
ferent types of parallelism. For instance, parallel_for and map allow to
express data parallelism in a similar manner as other popular frameworks,
such as OpenMP and TBB.

4Porting to C++ threads is under investigation.

32 Chapter 2. Background

Pattern Description

unicast Send the input data to the (unique) connected peer
(unidirectional point-to-point communication)

broadcast Sends the input data to all connected peers

scatter Sends different parts of the input data, typically par-
titions, to all connected peers

onDemand Sends the input data to one of the connected peers,
chosen at runtime on the basis of the actual workload

fromAll (aka. all-gather) Receives different parts of the data
from all connected peers combining them in a single
data item

fromAny Receives one data item from one of the connected
peers

TABLE 2.1: Communication patterns among ff_dnodes.

Distributed FastFlow

An experimental extension, targeting distributed systems, has been imple-
mented on top the ZeroMQ library [130]. Briefly, ZeroMQ is an LGPL open-
source communication library providing the user with a socket layer that
carries whole messages across various transports: inter-thread communi-
cations, inter-process communications, TCP/IP, and multicast sockets. Ze-
roMQ offers an asynchronous communication model, providing a quick
construction of complex asynchronous message-passing networks with rea-
sonable performance.

A ff_dnode (distributed ff_node) provides an external channel that can
support various patterns of communication. The set of communication
patterns allows one to provide exchange of messages among a set of dis-
tributed nodes, using well-known predefined patterns. The semantics of
each communication pattern currently implemented are summarized in Ta-
ble 2.1. Graphs of ff_nodes can be connected by way of ff_dnodes, thus pro-
viding a homogeneous abstraction for programming both multi-core and
distributed platforms.

2.4.3 Libfabric

OFI (OpenFabrics Interfaces) is a framework focused on exporting fabric5

communication services to applications. Libfabric [97] is a core component
of OFI, that defines the user API, enabling a tight semantic link between ap-
plications and underlying fabric services. More specifically, libfabric soft-
ware interfaces have been co-designed with hardware providers (the bot-
tom layer of the stack in Fig. 2.4) with the goal of giving access to different
hardware for HPC users and applications.

5Fabric is an industry term to denote a network of interconnected devices in a tightly
coupled environment.

2.4. Libraries Used by our Implementation 33

FIGURE 2.4: OFI interfaces overview [97].

A distinguishing feature of libfabric is that it is agnostic with respect
to the underlying hardware provider, thus allowing programmers to write
applications that can exploit any supported hardware. Based on this prin-
ciple, we use the libfabric API for implementing the communication among
GAM executors. In this setting, considering Fig. 2.4, the GAM runtime sits
among the “libfabric-enabled middlewares”, at the same level as MPI or
UPC.

Libfabric provides two different APIs for transferring data among net-
work nodes (the “Data Transfer Services” block on the right of Fig. 2.4):
Message Queues and RMA. According to the former API, usually referred
as two-sided communication, nodes communicate via intermediate queues
by means of send and receive primitives, as in any message-passing envi-
ronment. With the latter API, usually referred as one-sided communication,
nodes exchange data by accessing memory locations from some shared
space. For both APIs, libfabric enforces asynchronism by means of user-level
notifications (the “Completion Services” block in the middle of Fig. 2.4),
through which the user can query the runtime about the completion of is-
sued data transfers, for instance, to safely reuse memory involved in trans-
fers.

In addition to asynchronous operations, libfabric focuses its support on
HPC environments through a number of design choices, described in detail
in the “High Performance Network Programming with OFI” guide [114].
Among these, we based the implementation of GAM topologies on connect-
ion-less communication (“Address Vectors” within the “Communication
Services” block in Fig. 2.4), that targets large-scale environments by reduc-
ing the amount of memory required to maintain large address look-up ta-
bles, thus eliminating expensive address resolution.

Summary

In this chapter, we provided a review of the most common parallel comput-
ing platforms and programming models for such platforms, with a focus
on HPC environments. We also provided a brief review of parallel memory
models, in particular SC, that we used to characterize the memory model

34 Chapter 2. Background

proposed in this thesis. Finally, we described the libraries that we exploited
in developing the contributions of this thesis, namely C++ smart pointers,
the FastFlow framework for structured parallel programming, and the lib-
fabric library for large-scale, high-performance networking.

35

Chapter 3

Global Asynchronous Memory

In this chapter, we present the first novel contribution in this thesis.
We introduce the GAM programming model, based on a memory space

shared among a set of executors (i.e., a GAS). A GAM memory location
is either public or private. Public memory is accessed in a single-assignment
fashion, whereas private memory is accessed exclusively by the respective
owner. Therefore, GAM programs are Data Race Free (DRF) by construc-
tion. By proposing GAM, we advocate to trade off some expressiveness—
GAM memory is more limited than an arbitrary load/store memory—in
exchange of an efficient yet user-friendly memory consistency model (i.e.,
SC).

With respect to the categorization in Sect. 2.2, GAM is a shared-memory
model, thus based on a shared address space. Moreover, GAM provides
message-passing communication along with shared-memory primitives, by
which executors exchange capabilities over memory locations, thus over-
coming the traditional dichotomy between shared-memory and message-
passing paradigms.

We materialize the proposed GAM model in a C++ library, implemented
on top of libfabric (cf. Sect. 2.4.3) to target multiple networking hardware in
the context of large-scale HPC environments.

This chapter proceeds as follows. In Sect. 3.1, we introduce GAM as ab-
stract model, together with an operational semantics for GAM programs,
in Sect. 3.2. In Sect. 3.3, we discuss some aspects related to parallel execu-
tion of GAM systems, including the GAM parallel memory model. Finally,
in Sect. 3.4, we present the C++ library that we implemented based on the
GAM abstract model.

3.1 System Model

A GAM system consists in a set e1, . . . , en of executors issuing memory op-
erations over a global address space. If a global address is mapped, it points
to a memory slot of arbitrary size.

Moreover, each slot is either public or private, according to the associ-
ated access capability. A public slot can be accessed by any executor via
load or store operations, although it cannot be updated once a value has
been stored into it—i.e., GAM public slots are single-assignment. Conversely,
a private slot can be accessed via load and store operations, but only by
its owner, that is, the executor owning exclusive access capability over the
slot.

A capability represents the way in which a given memory slot can be
accessed by a given executor. For a public slot, a load-only capability is

36 Chapter 3. Global Asynchronous Memory

Operation Meaning

map Allocate a slot, either public or private
unmap Free a slot
load Retrieve the value stored in the slot
store Store a value into the slot
pass Transfer the slot capability to another executor
publish Make the (private) slot public

TABLE 3.1: GAM memory operations.

associated to some executors, whereas no executor has store capability on
the slot. Conversely, for a private slot, a load-store capability is associated
to exactly one executor, that owns exclusive access to the slot.

In addition to memory access operations, executors may issue opera-
tions for managing capabilities, namely, pass and publish When a slot is
passed from an executor ei to another executor ej, the associated capability
is transferred to ej. In the case of a public slot, ei also retains the read-only
capability, whereas in the case of a private slot, the read-write capability is
lost by ei. Finally, a private slot may be published to make it public, whereas
the converse operation is not possible. Table 3.1 summarizes the operations
that may be issued by GAM executors.

We proceed by describing step by step a simple execution of a GAM
system (Sect. 3.1.1) and by informally comparing GAM systems with those
based on cache coherence (Sect. 3.1.2).

3.1.1 Journey of a Global Memory Slot

At the beginning of the system execution, all global memory slots are un-
mapped, thus they do not contain any valid information.

When an executor ei issue a map operation for a public slot, a global
address γ pointing to a slot of suitable size is made visible to (only) ei. At
this point, any operation involving address γ issued by an executor ej 6= ei
is not allowed, since ej has no capability over γ. Also, any load issued
by ei to the mapped slot would return an undefined result until ei issues a
store to it, that assigns a value v to the slot. Once v has been stored, no
more store operations to γ are allowed. Instead, ei may pass the slot to
any other executor ej, giving to ej both visibility and read-only capability
over the slot, while ei retains the same capability itself. Thereafter, the slot
may spread over executors by being passed pairwise. Any load operation
issued by an executor that has read-only capability over the slot will return
the value v that was stored by ei into the slot.

Let us now consider the case of ei mapping a global address a′ to a private
slot. Similarly to the public slot case, any load issued by ei to the mapped
slot would return an undefined result until ei issues a store to it. But,
differently from the public case, ei may keep updating and reading the slot
arbitrarily since it has (exclusive) read-write capability over it. If ei passes
the slot to another executor ej, the capability is lost by ei and gained by ej,
that may arbitrarily access the slot until it passes it to some other executor.
At some point, the slot may be converted to a public one by its owner, by
means of the publish operation.

3.2. Operational Semantics 37

A slot, either public or private, may be finally released by means of the
unmap operation. Upon un-mapping, the global address γ associated to the
slot is freed and may be reused for mapping a brand new slot.

3.1.2 Comparison with Cache-Coherent Systems

By considering a generic shared-memory multi-processor system, we may
set an analogy between GAM executors accessing global slots and proces-
sors accessing memory locations through a caching memory system, en-
dowed with a cache-coherence protocol.

In this setting, the concept of capability associated to each global mem-
ory slot resembles that of state associated to each cache line. For instance,
in the simple Modified Shared Invalid (MSI) protocol, a cache line is either
modified, shared, or invalid. Shared lines resemble public slots in that they
can be accessed in a read-only fashion by any cache (executor in GAM)
with no need for coordination. Modified lines resemble private slots in that
only a specific executor has the exclusive responsibility over the most recent
value for that cache line (slot in GAM).

Despite the depicted similarities, a GAM system differs fundamentally
from any cache-coherent system for at least two reasons. First, not all mem-
ory operations are allowed on a given global slot at a given time instant
(e.g., a private slot may be neither read nor written by an executor other
than its owner), whereas shared-memory models allow arbitrary access to
any memory location by any processor. Second, capabilities are managed
explicitly by the executors via special memory operations, namely pass
and publish, whereas in cache-coherent memory systems such aspects
are hidden in the cache-coherence protocol.

3.2 Operational Semantics

In this section, we characterize the semantics of a GAM system from the
perspective of its global memory component. With this abstraction, a sys-
tem execution is totally described by the effects it produces over the global
memory, which we refer to as the memory evolution of the system. We repre-
sent such evolutions in terms of the Labeled Transition System (LTS) for-
malism.

Formally, a LTS is a tuple (S,Λ,T), where S is the set of system states, Λ is
the set of transition labels and T ⊆ S×Λ×S is the set of labeled transitions.
Each transition (s, λ, s′), causes the system to change its state from s to s′

due to λ.
We rely on the notion of trace to denote a sequence of transitions within

an evolution. Formally, a trace θ is a sequence from T ∗. In our setting, we
refer to LTS system states as memory states, since they represent the state of
the global memory component of the system at hand. Similarly, we refer to
LTS transitions as memory transitions.

We formalize memory states and transitions in Sects. 3.2.1 and 3.2.2,
respectively.

38 Chapter 3. Global Asynchronous Memory

3.2.1 Memory States

In our setting, a system state is a mapping from addresses to associated
contents and capabilities. To formalize the transition rules, we use the fol-
lowing atomic domains :

• γ ∈ Γ: the global addresses;

• C = {public, private}: the allowed capabilities;

• d ∈ D: the generic values that can be stored in memory;

• E = {e1, . . . , en}: the executors issuing memory operations over the
global memory system.

The global state of the memory, denoted by s, is given by a function
having the following signature, where the first component indicates the ca-
pability, the second indicates the associated (data) content, and the third
indicates the executors having the capability for that address:

s : Γ 7→ (C,D,P≥1(E))

We also make use of the following syntactic shortcuts to characterize the
memory states:

• s(γ) = ⊥ indicates that γ is not part of s’s domain;

• s[γ 7→ s′] denotes the state built from s and modifying solely γ as
defined by s′;

• v(s, γ) denotes the value stored into γ at state s, i.e., π2 s(γ) if s(γ) 6= ⊥,
otherwise ⊥.1

3.2.2 Memory Transitions

A GAM system evolves with respect to its global memory whenever ex-
ecutors issue operations over the global memory. We map memory opera-
tions to (memory) transition labels, therefore successive operations identify
a trace, that is, a memory evolution. Namely, we map a memory operation
issued by executor ei to a transition label of the following form, where the
arguments and return sections depend on the specific operation:

λ = [ei] operation 〈arguments〉 〈return〉

Table 3.2 summarizes the meaning of arguments and return values for
each operation when mapped to LTS transition labels.

We proceed by introducing the rules that define which transitions are
allowed to occur within the memory evolution of a GAM system. We rep-
resent transition rules in the standard form where premises are expressed
in terms of predicate on the initial state and conclusions are valid transi-

tions, represented as s
λ−→ s′, which is syntactically equivalent to (s, λ, s′).

Transition rules are described in Figure 3.1.

1In general, given a tuple t = (t1, t2, . . . , tk), πi t = ti, for i such that 1 ≤ i ≤ k.

3.2. Operational Semantics 39

operation arguments return

map public/private capability allocated address
unmap address to un-map -
load address to read stored value
store address and value to store -
pass address to pass and target executor -
publish address to publish -

TABLE 3.2: Mapping of memory operations to LTS transi-
tion labels.

Upon a map operation, yielding either a map-public or map-private
transition, a new global memory address is mapped and made visible to the
issuing executor with proper capability. The operation returns the mapped
address, that must be non-mapped in the original state s.

Dually, an unmap operation, yielding an unmap transition, frees the ar-
gument global address so that it can be safely reused. Note that the un-
mapping can be performed by any executor that holds a capability over the
argument address.

The publish operation, yielding a publish transition, simply casts from
private to public the capability associated to the argument address, pro-
vided the address is owned by the issuing executor in the original state.

Capabilities are exchanged through the executors by means of pass op-
erations, yielding either pass-public or pass-private transitions, depending
on the issuing executor’s capability, in the original state, associated to the
address being passed. Moreover, in case of pass-private transition, the issu-
ing executor loses its access permissions over the address, so in the resulting
state it does not have capability over the address anymore.

Values are stored to global memory slots by means of store operations,
yielding either store-public or store-private transitions. Storing a value to
a public address is allowed only once, as expressed in the premise of the
store-public transition, thus requiring that the address is mapped to the
undefined value by the memory function. Moreover, as an additional con-
straint, the store-public transition must occur before the slot is ever pushed,
i.e., when there is a single executor having an associated capability. Con-
versely, a private address may be freely updated at any time by its owner.

Finally, when an executor issues a load operation to a memory slot—
over which it has an associated capability—and yielding a load transition, it
gets in return the value that has been stored most recently to the slot. Since
the load transition is not producing any visible effect over the memory state,
the resulting state is the same as the original state.

In the following, we informally say that γ is public (resp. private) in
state s, defined as α(s, γ) = public (resp. private) where α, the access
level, is given by the following function:

40 Chapter 3. Global Asynchronous Memory

Definition 1. Given a global address γ and a state s, the access level for γ in s,
denoted as α(s, γ), is:

α(s, γ) =


⊥ if s(γ) = ⊥
public if π1 s(γ) = public

private if π1 s(γ) = private

From the above rules, it is straightforward to show that, among others,
the following properties hold, for any state s:

• A mapped global address γ is either public for a non-empty set of execu-
tors or private for a single executor.

• A mapped global address γ that is public for a non-singleton set of
executors has been stored into (6= ⊥).

Finally, we formalize the notion of ownership for private addresses.

Definition 2. Given a global address γ and a state s such that γ is private in s,
the owner of γ in s is the executor ei ∈ E such that:

π3 s(γ) = {ei}

From the properties introduced above, we know that, for any state, an
owner exists for any private address.

3.2.3 State Machine Representation

In Sect. 3.1.1, we informally described a simple execution of a GAM system,
by following the journey of a memory slot in both public and private cases.
Fig. 3.2 illustrates a graphic version of the journey, in terms of state machine
diagram, a formalism syntactically equivalent to the presented LTS. In par-
ticular, each state (i.e., a node in the diagram) is labeled with a compact
representation of the memory state function (cf. Sect. 3.2.1), whereas each
transition (i.e., an edge in the diagram) is labeled with a memory transition
(cf. Sect. 3.2.2).

Fig. 3.2a represents the public pointer case. From the initial state, in
which all addresses in Γ are unmapped, a map-public transition makes the
system evolve into a state in which the returned address γ is mapped to a
memory slot, with undefined stored value and public capability associated
to the issuing executor ei. A store-public transition changes the stored value
to the argument value d, also prohibiting any further store-public transition
to be observed on γ. Finally, a pass-public transition adds the argument
executor ej to the set of executors holding load-only capability over γ.

Fig. 3.2b represents the private pointer case. With respect to the previ-
ous case, multiple store-private transitions can be issued on the same ad-
dress γ. Finally, a publish transition converts the capability over γ from
load-store to load-only.

As for load transitions, they are represented as loops, since they do not
induce any change to the memory state.

3.2. Operational Semantics 41

s(γ) = ⊥

s
[ei]map 〈public〉 〈γ〉
−−−−−−−−−−−→ s[γ 7→ (public,⊥, {ei})]

map-public

s(γ) = ⊥

s
[ei]map 〈private〉 〈γ〉
−−−−−−−−−−−−→ s[γ 7→ (private,⊥, {ei})]

map-private

s(γ) = (c, d, e) ∧ ei ∈ e

s
[ei]unmap 〈γ〉
−−−−−−−−→ s[γ 7→ ⊥]

unmap

s(γ) = (private, d, {ei})

s
[ei]publish 〈γ〉
−−−−−−−−→ s[γ 7→ (public, d, {ei})]

publish

s(γ) = (public, d, e) ∧ d 6= ⊥ ∧ ei ∈ e ∧ ej 6∈ e

s
[ei]pass 〈γ,ej〉−−−−−−−−→ s[γ 7→ (public, d, e ∪

{
ej
}

)]

pass-public

s(γ) = (private, d, {ei})

s
[ei]pass 〈γ,ej〉−−−−−−−−→ s[γ 7→ (private, d,

{
ej
}

)]

pass-private

s(γ) = (public,⊥, {ei})

s
[ei] store 〈γ,d〉−−−−−−−−→ s[γ 7→ (public, d, {ei})]

store-public

s(γ) = (private, d′, {ei})

s
[ei] store 〈γ,d〉−−−−−−−−→ s[γ 7→ (private, d, {ei})]

store-private

s(γ) = (c, d, e) ∧ ei ∈ e

s
[ei] load 〈γ〉 〈d〉−−−−−−−−→ s

load

FIGURE 3.1: Memory semantics rule.

42 Chapter 3. Global Asynchronous Memory

∀ γ ∈ Γ, γ 7→ ⊥

start

γ 7→
(
p+,⊥, {ei}

)
γ 7→

(
p+, d, {ei}

)

γ 7→
(
p+, d,

{
ei, ej

})

[ei] map 〈p+〉 〈γ〉

[ei] store 〈γ, d〉

[ei] load 〈γ〉 〈⊥〉
[ei] pass 〈γ, ej〉

[ei] load 〈γ〉 〈d〉

[ei] load 〈γ〉 〈d〉
[ej] load 〈γ〉 〈d〉

(A) Public slot.

∀ γ ∈ Γ, γ 7→ ⊥

start

γ 7→
(
p−,⊥, {ei}

)
γ 7→

(
p−, d, {ei}

)
γ 7→

(
p−, d′, {ei}

)

γ 7→
(
p−, d′,

{
ej
})

γ 7→
(
p+, d′,

{
ej
})

[ei] map 〈p−〉 〈γ〉

[ei] store 〈γ, d〉

[ei] load 〈γ〉 〈⊥〉

[ei] store 〈γ, d′〉

[ei] load 〈γ〉 〈d〉

[ei] pass 〈γ, ej〉

[ei] load 〈γ〉 〈d′〉

[ei] publish 〈γ〉

[ej] load 〈γ〉 〈d′〉

(B) Private slot.

FIGURE 3.2: State machines for the journals of memory
slots from Sect. 3.1.1. For brevity, we denote public and
private capabilities as p+ and p−, respectively. Diagrams
evolve horizontally when the state change concerns the
stored value, whereas they evolve vertically when the state

change concerns the capability.

3.3. Parallelism 43

executor 0

Global Asynchronous Memory

thread

shared-memory SC

thread

executor 1

thread

shared-memory SC

thread

pass publish

load store

pass publish

load store

FIGURE 3.3: A simple GAM system composed of two ex-
ecutors with two threads each. For each executor, a logical
SC box indicates that SC is provided by the multi-thread

shared-memory model within the executor.

3.3 Parallelism

In the previous section, we proposed a semantics for GAM systems in terms
of LTS traces, in which all the memory operations issued by executors are
linearized. Therefore, according to this abstraction, within a valid execu-
tion, all executors agree on a global order over the visible effects on mem-
ory. In this section, we evaluate the impact of such a strong abstraction over
the available parallelism. More specifically, we show how parallelism can
be “neutralized” even in presence of multi-threaded executors.

Figure 3.3 illustrates a simple system, as executed by a hypothetical
GAM implementation, composed of two executors, each internally contain-
ing two threads. As can be visualized in the example, parallelism with re-
spect to the global memory is exhibited by a system at two levels, namely,
within each executor and between executors. We discuss the two forms of
parallelism in Sects. 3.3.1 and 3.3.2, respectively. In Sect. 3.3.3, we put all
together by defining the parallel memory model for GAM programs.

3.3.1 Intra-Executor Parallelism

The intra-executor form of parallelism arises as different threads may have
simultaneous interactions with the global memory. For the sake of sim-
plicity, in the following we avoid targeting this aspect by assuming single-
threaded executors. Since in this case all the global memory operations
from an executor are issued sequentially, their effects are already linearized
into a global order. Moreover, such order respects the order between op-
erations as specified within the program being executed (i.e., the program
order).

44 Chapter 3. Global Asynchronous Memory

Nevertheless, it would be straightforward to fulfill the same require-
ments while retaining multi-threading by integrating the global memory
operations into some well-studied multi-threaded memory model. Namely,
we would need a multi-threaded memory model providing SC (that we
briefly recap in Sect. 3.3.3) as suggested by the SC-like box in Figure 3.3.
For instance, SC is guaranteed for a well-formed subset of C++ and Java
multi-threaded programs through their respective memory models [38, 99].
In particular, SC is guaranteed for race-free programs, where a race is de-
fined as a situation in which the same memory location may be read and
written concurrently by different threads.

In order to integrate GAM operations into one of the mentioned shared-
memory models, GAM load and store operations may be treated as their
shared-memory counterparts, thus possibly leading to races unless they are
properly synchronized by some special memory operations. From the per-
spective of the effects over the global memory, all the other operations may
be treated as shared-memory load operations, since they do not modify
the memory map for their argument global addresses. Therefore, given
a GAM store operation and another operation of any kind targeting the
same global address, they must be properly synchronized in order to main-
tain SC.

We remark that SC does not implies correctness with respect to the
memory transition rules defined in Figure 3.1. Indeed, SC only allows to
regard executions as LTS traces ordered according to the program order,
whereas the memory rules discriminate valid traces from invalid ones.

3.3.2 Inter-Executor Parallelism

The inter-executor form of parallelism arises as different executors may
have simultaneous interactions with the global memory.

The key principle underlying the proposed memory semantics is that
the effects over the global memory can be induced locally by each executor.
This can be easily visualized from the memory rules in Figure 3.1 for all
operations except for load and store. For instance, map and publish
operations induce a local update to the capability function for the issuing
executor. Similarly, performing a pass on an address induces only local
updates to the capability functions for the involved executors.

The load and store operations apparently require more effort. As a
side effect of abstracting executions into (linear) LTS traces, the proposed
memory semantics also provides a strong notion of store atomicity [121]:
a store issued by an executor is logically seen by all executors at once.2

However, if we consider for instance the case of an executor ei performing
a store to a private slot γ, only the executor ej that will get the read-write
capability over γ (upon a pass by ei) will have access to the stored value.
Therefore, for a valid implementation it would be sufficient to guarantee
that the effect of the store is visible to ej once γ has been passed, in order to
maintain store atomicity. The same reasoning applies also in case of passing
public slots, which is an even simpler case since their value is assigned once
and never changed, allowing them to be cached.

2As mentioned in [121], a weaker notion of store atomicity is generally adopted, requir-
ing a store issued by an executor is logically seen by all other executors at once.

3.3. Parallelism 45

In the context of defining the parallel memory behavior, enabling the ef-
fects on memory to be localized allows to release any restriction on the par-
allelism between executors. We remark that such a simplification is driven
by the definition of memory rules, that prevents any form of inter-executor
conflicting memory accesses [38], thus excluding data races between differ-
ent executors.

3.3.3 Parallel Memory Model

From the memory semantics defined in terms of LTS traces, we extract an
abstract memory model that specifies the behavior of multi-executor pro-
grams attached to the global memory. To this aim, we proceed along the
same line as the discussion on shared-memory memory models by Sorin et
al. [121], addressing separately the aspects of coherence and consistency.

Coherence

We deal with coherence by adapting the formulation of Sorin et al. [121]
(cf. Sect. 2.3.1). We define a GAM system as coherent if and only if it respects
the following invariants:

• The SWMR invariant states that, for any given global memory slot, it
can be divided up into epochs such that, in each epoch, either a single
executor has read-write access or some number of executors (possibly
zero) have read-only access;

• The DV invariant states that the value of the memory location at the
start of an epoch is the same as the value of the memory location at
the end of its last read-write epoch.

From the memory rules in Figure 3.1, we discuss how the memory se-
mantics deals with coherence. A public address γ is mapped in an initial
epoch in which only the executor that mapped γ owns both visibility and
read-write capability over γ. After it has been stored, it passes to an epoch
in which all the executors that have visibility on γ also have read-only ca-
pability over γ. As for a private address γ, each time it gets passed by an
executor ei to another executor ej, it passes from an epoch in which ei owns
exclusive read-write capability to another epoch in which it is owned by ej.
Therefore, the SWMR invariant is respected.

As for the DV invariant, it holds trivially: at the start of an epoch identi-
fied by a transition for the address γ, the value of the memory location (i.e.,
v(s, γ) in Figure 3.1) is the same as the value of the memory location at the
end of its last read-write epoch, identified by the last store transition for γ.

Therefore, the memory semantics we provided for GAM respects both
invariants. Note that we do not need any additional effort in order to define
memory epochs, since they are already provided by the linear nature of the
LTS traces.

Sequential Consistency

The problem of defining a memory model for GAM programs is more gen-
eral. By adapting the definition of Sorin et al. [121], a memory (consistency)
model is a specification of the allowed behavior of multi-executor GAM

46 Chapter 3. Global Asynchronous Memory

programs executing with global memory. In general, a memory consistency
model gives rules that partition executions into valid and invalid ones with
respect to the model, that in turn partitions implementations.

The simplest memory model is sequential consistency, which was first
formalized by Lamport [95]. By adapting the original definition, we define
a GAM implementation to respect SC if the result of any execution is the
same as if the operations of all executors were executed in some sequen-
tial order, and the operations of each individual executor appear in this
sequence in the order specified by its program. This (total) order of opera-
tions is called memory order and in SC it respects the program order of each
executor.

The most relevant consequence of relying on the proposed semantics,
based on linear traces, is that it allows to reason about consistency in a
straightforward way, as we show in the following.

We first prove that any GAM execution fulfills the first requirement for
SC, that is, it provides a global order for load and store memory opera-
tions. To this aim, given an execution, it is sufficient to consider its trace θ
(see Section 3.2) and remove all transitions except for those involving load
and store operations. From the rules in figure 3.1, the resulting trace θ′ ⊆ θ
is a sequence of transitions with either of the following two forms, where
the capability c in the second rule is either private or public:

s
[ei] load 〈γ〉 〈v(s,γ)〉−−−−−−−−−−−→ s

s
[ei] store 〈γ,d〉−−−−−−−−→ s[γ 7→ (c, d, {ei})]

By mapping θ′ to a plain sequence of load and store operations over the
shared address space, we obtain an execution that defines by construction
a global order over these operations.

As for the requirement about respecting program orders, we already
discussed in Section 3.3.1 how program orders can be honored for each ex-
ecutor by a sequential execution, in case of single-threaded executors. Since
the interleaving of ordered sequences produces a sequence that respects
each of the components order, any GAM execution in which each executor
provides internal SC is itself sequentially consistent. Therefore, the GAM
implementation we depicted in Sections 3.3.1 and 3.3.2 is SC, at least in the
case of single-threaded executors.

In the case of multi-threaded executors, each executing according to
some shared-memory SC memory consistency model, the same SC model
would be inherited by the whole GAM implementation. For instance, a
GAM implementation with C++ multi-threaded executors would be SC
for data-race-free programs, according to the simple extension of the C++
memory model that we depicted in Section 3.3.1.

3.4 C++ Implementation

In this section, we present a C++ implementation that partially realizes the
system model introduced in Sect. 3.1. In particular, it respects the semantics
presented in Sect. 3.2 and supports the forms of parallelism discussed in
Sect. 3.3.

3.4. C++ Implementation 47

The implementation we present is not intended to be used directly by
a user application. Instead, it should be regarded as a low-level software
support for higher-level libraries. In this perspective, we remark that the
presented implementation is not meant to be neither strictly correct nor
complete with respect to the proposed semantics. For instance, as a coun-
terexample for correctness, the implementation allows a malicious user to
get around the ownership rules and keep writing to an address after it has
been passed to another executor. And as a counterexample for complete-
ness, the implementation does not allow to map an address without storing
an initial value into it—as we will see below, the only way of mapping an
address is via mmap_public, which takes a local pointer and implicitly ini-
tializes the content of the address being mapped with the local argument
pointer.

We opted for this design choice since it is along the very same lines as
the C++ philosophy of keeping the bottom runtime layer as lightweight as
possible. For instance, the C++ runtime provides limited support for cap-
turing invalid memory accesses, simply marking as undefined all such pro-
grams that violate the memory semantics (e.g., data races or accesses to un-
allocated memory). Along the same lines, we propose an implementation
that, instead of providing a fully featured management and control of each
global memory access, simply exhibits undefined behavior in some cases of
semantic violation. The simplified rationale behind this choice is freeing the
runtime from performing cumbersome sanity checks—thus enabling extra
optimizations—by pushing some responsibilities to the programmer over
correctness.

According to this approach, in the following chapters we show in a con-
structive manner that the implementation we propose is powerful enough
to serve as baseline for higher-level libraries, where both correctness and
completeness issues are progressively hidden. Again, according to the C++
philosophy, we rely on abstraction in form of higher-level APIs (cf. Ch. 4),
providing correctness in terms of constructive programming rather than
heavyweight runtime.

We proceed in Sect. 3.4.1 by describing at high level the user interaction
with the implemented library. Then we shift to the implementation, by
showing, in Sect. 3.4.2, the general architecture of the library RTS. Finally,
in Sect. 3.4.3, we detail the library API in an analytic manner, providing also
some implementation details for each primitive.

3.4.1 Programming Environment

In the proposed implementation, an executor is a process that eventually
issues calls to a C++ library that we refer to as the GAM runtime. We provide
a simple programming environment inspired by SPMD environments (e.g.,
MPI), in which each process is marked with a unique rank ranging from 0
to n− 1, where n is the number of executing processes, that we refer to as
the cardinality. The rank and the cardinality may be obtained from the
runtime by calling the functions rank and cardinality, respectively.

On the same line as an MPI-like environment, we provide a simple
launcher that reads a topology from a user-provided file and takes care of
launching processes, either locally or remotely via ssh. The launcher also

48 Chapter 3. Global Asynchronous Memory

1 #include <iostream>
2 #include <gam.hpp>
3

4 // Define each executor’s callable.
5 void c0() { ... }
6 void c1() { ... }
7

8 int main(int argc, char * argv[])
9 {

10 // Print executor rank.
11 std::cout << "My rank is " << gam::rank() << std::endl;
12

13 // Execute rank-specific code.
14 switch (gam::rank())
15 {
16 case 0:
17 c0(); // Invoke rank 0 callable.
18 break;
19 case 1:
20 c1(); // Invoke rank 1 callable.
21 break;
22 }
23

24 return 0;
25 }

LISTING 3.1: Skeleton of a minimal GAM application with
two executors.

sets some environment variables, so that they can be reached by the GAM
runtime during the initialization phase.

The code snippet in Listing 3.1 shows the skeleton of a minimal applica-
tion with two executors, each printing its rank and executing a rank-specific
callable object. The associated program should be launched by a command
line similar to the following, where the topology file is a list of network
hosts, the binary is reachable at the same path by each host (e.g., as absolute
path in a distributed file system) and the -n option specifies the cardinality:

gamrun -n 2 -f topology.conf /path/to/binary

3.4.2 Runtime Architecture

During the execution of a GAM program, each executor process is attached
to an instance of a GAM context that wraps all runtime components and
represents, for each executor, its local interface to the global memory. Each
time the executor needs to interact with the global memory, it issues a call
to a context function. We discuss the most relevant context functions in
Sect. 3.4.3.

Fig. 3.4 illustrates the architecture of the GAM runtime in a scenario
with two executors and shows some typical interactions between the user
thread and runtime components. In the following, we discuss the meaning
of each component.

3.4. C++ Implementation 49

GAM view 0

process 0

GAM queues 1→0

user
thread

GAM
thread

cap
1→0

mrq
1→0

mrp
1→0

GAM queues 0→1

cap
0→1

mrq
0→1

mrp
0→1

enqueue

local
memory

GAM view 1

process 1

user
thread

GAM
thread

dequeue

local
memory

FIGURE 3.4: Architecture of the GAM runtime with only
two executors.

View

For each executor ei, its knowledge about the global memory is managed
by a runtime component that we call the GAM view. Globally, the views
attached to all executors realize a distributed implementation of the mem-
ory states, as defined in Sect. 3.2.1. First, a local view maps each global
address γ to its respective capability (α(s, γ)). Moreover, it is responsible
for storing and providing the value v(s, γ) for such addresses that ei is the
author3 of, in the sense that it performed the most recent store operation
for γ. Namely, if (and only if) ei is the author for γ, a stored pointer is associ-
ated to γ, that points to the local memory slot containing the value v(s, γ).

Communication

The memory semantics that we proposed in Sect. 3.3.2 is less expressive
than traditional DSM models but allows to minimize the interaction be-
tween the executors. As a constructive proof, in Sect. 3.4.3 we present an im-
plementation such that exchanging capabilities and data requires the asyn-
chronous interaction of up to two executors, whereas all other primitives
are performed locally by the issuing executor.

The communication between executors is realized by means of asyn-
chronous operations over communication queues, as provided by the libfab-
ric library. The runtime associates three queues for each pair of executors,
namely a capability queue, a memory request queue and a memory reply

3We remark that the authorship concept is irrelevant for the operational semantics for-
malized in Sect. 3.2, whereas it arises at implementation level.

50 Chapter 3. Global Asynchronous Memory

home offset

31 bits 32 bits

FIGURE 3.5: Layout of a GAM global address in the pro-
posed C++ implementation.

queue, denoted respectively as cap, mrq and mrp in Figure 3.4. For such
queues, both directed and undirected popping primitives are provided, re-
alizing respectively pop-from and pop-from-any semantics.

Finally, an additional GAM thread is associated to each executor, with
the purpose of serving remote load requests.

3.4.3 Primitives

Among the functions provided by each context to the attached executor, we
present the most relevant ones with respect to the semantic rules in Fig. 3.1.
We proceed in ascending order of complexity, in terms of number of com-
ponents involved in each function.

Basic Types

A global address is represented by a 64 bit value, whose bitwise layout is
illustrated in Fig. 3.5. To enable the freshness of an address to be guaran-
teed locally, we partition the global address space into disjoint subspaces
by halving each address and encoding the rank of the mapping executor
in the most significant region (the home region in figure). Moreover, as in
the virtual memory layout provided by many operating systems, we re-
serve a portion of the address space for storing arbitrary values rather than
memory locations to be mapped. Namely, any address for which the most
significant bit (highlighted in gray in figure) is set to 1 is non-mappable,
thus resulting in 263 mappable addresses partitioned among 231 executors
(each providing 232 addresses) plus 263 non-mappable values. As we show
in Ch. 5, non-mappable values are meant to be exploited by applications on
top of the GAM stack.

In this setting, the implementation we propose is based on two fun-
damental types, representing, respectively, global addresses and executor
identifiers:

class GlobalPointer {
/* ... */
uint64_t descriptor;

};

typedef uint32_t executor_id;

Mapping

Global memory slots can be mapped by means of the following primitives,
for public and private slots, respectively:

3.4. C++ Implementation 51

template<class T, typename Deleter>
GlobalPointer mmap_public(T *lp, Deleter d);

template<class T, typename Deleter>
GlobalPointer mmap_private(T *lp, Deleter d);

Both functions take as argument a local memory pointer lp whose content is
used to initialize the value associated to the global address γ being mapped.
Under the hood, both functions perform the very same actions with respect
to the runtime when invoked by an executor ei, namely:

1. Find a fresh global address γ to map;

2. Bind the memory value v(s, γ) to (the content of) lp;

3. Set the authorship of γ to ei;

4. Set the capability (α(s, γ)) to either public or private.

All the above actions can be performed locally by ei: after a fresh address
has been selected (item 1), an implicit store is performed (item 2) by setting
the stored pointer for γ to lp within the view associated to ei; then, both
authorship and capability for γ are updated (items 3 and 4, respectively),
again within the view associated to ei.

Upon mapping, the responsibility over lp is logically transferred to the
runtime, similarly to what happens for C++ smart pointers. Therefore,
again in line with smart pointers, the local pointer should not be accessed
anymore outside the runtime to ensure correctness with respect to the GAM
semantics.

Both mapping primitives also take as input a destructor object that will
be used to free the memory associated to lp when γ is un-mapped by calling
the function:
void unmap(const GlobalPointer &)

In the implementation we propose, un-mapping a slot amounts to clearing
the corresponding entry from the view associated to the issuing executor.

Upon un-mapping, according to the transition rules in Fig. 3.1, any ac-
cess to the address γ associated to the un-mapped slot results in invalid
behavior, unless another slot is mapped to γ due to address reusing. How-
ever, as we anticipated at the beginning of this section, the implementation
we propose does not provide any mechanism for preventing such unde-
fined behaviors.

Passing Capabilities

The following primitives implement the pass operation for exchanging ca-
pabilities between executors, where the two variants for pull serves for
pulling from either any executor or a specific executor from, respectively:
void push(const GlobalPointer &p, const executor_id to);

GlobalPointer pull();
GlobalPointer pull(const executor_id from);

Upon pushing, the issuing executor performs the following actions:

1. In the case of a private address, the local view is updated such that
the ownership is set to the target executor;

52 Chapter 3. Global Asynchronous Memory

2. A message—including global address, authorship and capability—is
pushed to the capability queue (i.e., cap in Fig. 3.4) associated to the
target executor.

Dually, upon pulling, the issuing executor (i.e., the target) performs the fol-
lowing actions:

1. A message is popped from one of its capability queues, either a spe-
cific one (in case of pulling from a specific executor) or any of them
(in case of pulling from any executor);

2. The local view is updated such that the popped address is mapped
and all the information match the content of the message.

As for the mapping/un-mapping operations, the actions for pushing and
pulling are performed locally by the respective executors.

Note that, although the implementation performs only local changes to
the state of the issuing executor, the push primitive corresponds itself to
the semantic rule for passing (either pass-public or pass-private in Fig. 3.1).
Nevertheless, the actual updating regarding the capability at the target side,
as required by the semantic rule, is deferred until the capability is retrieved
by means of the pull primitive.

Note also that pushing a private address may induce some staleness. In
general, if a private address γ is pushed from ei to ej and then from ej to ek, ei
does not get notified about the new ownership, therefore its view contains
stale information. Nevertheless, the effect of such staleness is neutralized
by the weak sharing semantics of the GAM model, since an executor is
prevented from accessing private pointers owned by another executor.

Finally, we remark that the communication schema for passing capabil-
ities is fully asynchronous, since neither the issuing nor the target executor
needs to interact with its peer in order to complete the action, as can be
visualized from the push and pop edges in Fig. 3.4.

Loading, Storing and Publishing

The proposed implementation does not provide explicit mechanisms for
loading and storing data from and to global memory. Instead, it provides an
implicit mechanism based on converting global addresses to local pointers.

Public addresses are loaded by means of the following function:

template<typename T>
std::shared_ptr<T> local_public(const GlobalPointer &p);

This produces a fresh copy of the memory pointed by p, allocated from the
local memory of the issuing executor.

Note that the return type is a C++ shared pointer, so that the entire life-
time of the resulting copy is managed by the runtime. Producing a new
copy upon each access forces a read-only semantics for public pointers,
since there is no mechanism to reflect the modifications made to a local
copy back to the public address from which the copy was generated. For
the same reason, we safely implemented a caching infrastructure for public
addresses, so that remote interactions between executors for reading con-
tents of public addresses are minimized.

When issued, local_public performs the following actions:

3.4. C++ Implementation 53

process 1 (author)

GAM queues 1→0

enqueue

process 0

user
thread

GAM
thread

cap
1→0

mrq
1→0

mrp
1→0

GAM queues 0→1

cap
0→1

mrq
0→1

mrp
0→1

enqueue

local
memory

user
thread

GAM
thread

dequeue

local
memory

dequeue

FIGURE 3.6: Runtime actions for remote loads, with only
two executors.

1. A memory chunk of sizeof(T) bytes is allocated from local memory;

2. Memory pointed by p is loaded into the allocated copy:

• If the issuing executor is also the author, memory is loaded from
the stored pointer, as for the load edge in Fig. 3.4;

• If the issuing executor is not the author but the memory pointed
by p has already been cached, the cached memory is loaded;

• If memory has not been cached, then a remote load is issued to
the author executor and performed with the collaboration of the
GAM thread at the author side, as illustrated in Fig. 3.6;

3. A C++ shared pointer is prepared with a custom deleter that reflects
the allocation primitive used in item 1.

We remark that the allocated copy is independent from the original global
pointer, therefore it may safely be manipulated without compromising the
correctness with respect to the GAM semantics.

A similar interface is provided for converting private addresses, where
the only difference with respect to the public case is the return type, in this
case a raw pointer:
template<typename T>
T *local_private(const GlobalPointer &p);

According to a zero-copy design principle, the runtime associates a local
memory chunk (i.e., the chunk pointed by the stored pointer) to each pri-
vate address and it keeps such chunk unique across the aggregated space of
the local memories of all executors. Indeed, converting a private address γ
to a local pointer yields the stored pointer for γ, which allows to arbitrarily
read and write γ by accessing the memory chunk associated to γ.

54 Chapter 3. Global Asynchronous Memory

The zero-copy approach also precludes using smart pointers as return
values for local_private, since the destruction of a memory chunk at some
executor side must be deferred until the executor is no more an author for
the corresponding address. Such change in the authorship for an address
γ is triggered upon receiving a remote load for γ, which from that point
may safely un-map its local memory chunk associated to γ, as we explain
in Sect. 4.2.

Therefore, when the conversion is issued by the author executor, it sim-
ply returns the stored pointer. On the other hand, when the issuing execu-
tor is not the author, the following runtime actions are performed:

1. A memory chunk of sizeof(T) bytes is allocated from local memory;

2. A remote load (Fig. 3.6) is performed, that also triggers un-mapping
at the receiver side;

3. The authorship of γ is set to the issuing executor.

Finally, publishing performs the same actions as converting, plus changing
the capability to public after both the ownership and the authorship have
been transferred (if needed) to the issuing executor. Publishing a private
address is provided by the following function:

template<typename T>
void publish(const GlobalPointer &p);

Summary

In this chapter, we introduced GAM (Global Asynchronous Memory), a
shared-memory model with limited interface (i.e., not a generic load/store)
for distributed platforms, providing sequential consistency on top of non-
coherent hardware. We presented a C++ API and implementation of GAM,
based on libfabric for targeting a variety of large-scale HPC platforms.

55

Chapter 4

Smart GAM Pointers

In this chapter, we introduce smart GAM pointers on top of the GAM model
and implementation presented in Chapter 3. Smart GAM pointers are the
core components of the API for coding GAM programs. We designed both
the API and its implementation as a porting of the C++ smart pointers API
to a distributed programming environment.

Following the distinction between C++ shared and unique pointers, we
propose two classes of pointers, namely public and private. Public point-
ers resemble shared pointers, in the sense that different copies of a public
pointer, distributed among the executors, share the control over the un-
derlying (public) memory slot. Symmetrically, private pointers resemble
unique pointers, in the sense each pointer has exclusive control over the
underlying (private) memory slot.

Public pointers provide automatic management of public memory slots
on top of a distributed protocol for reference counting. Similarly, private
pointers provide management of private memory slots, on top of a dis-
tributed protocol for memory releasing. The abstraction induced by au-
tomatic global memory management is at the core of the smartness pro-
vided by smart GAM pointers. We target smartness on two dimensions,
each corresponding to a class of memory errors, namely, memory leaks (i.e.,
unreachable global slots) and dangling pointers (e.g., useless global refer-
ences). In a sense, we extend the notion of smartness provided by C++
smart pointers to the context of global memory programming.

This chapter proceeds as follows. We present public and private point-
ers in Sects. 4.1 and 4.2, respectively, while we discuss the aspects related to
smartness in Sect. 4.3.

4.1 Public Pointers

We propose (smart) public pointers as an abstraction, in terms of C++ tem-
plate class, for managing public memory slots. They provide automatic
memory management for public slots, from their creation to their destruc-
tion, which is automatically triggered when the slot is not accessible any-
more by any executor. They also emulate raw global pointers, in the sense
that they provide functions for seamlessly accessing the managed memory
slots.

Under the hood, a public pointer contains a (raw) global pointer that
points to a public slot. In cooperation with all the other copies of the public
pointer, that are possibly spread among all the executors, the public pointer
maintains the control over the contained pointer. To this aim, it maintains
a count of the references to its contained pointer. The referenced slot will

56 Chapter 4. Smart GAM Pointers

+/-1

+/-1

A

rt

B

C
ref. cnt

author

context unmap

FIGURE 4.1: Schema for the distributed reference counting
protocol.

be unmapped, causing the corresponding stored memory to be freed, when
and only when all the copies of the public pointer have released the con-
trol over the contained pointer. Since multiple copies of a public pointer
may exist among the executors, we refer to such counting mechanism as
distributed reference counting.

We proceed by first presenting an implementation of the distributed
reference counting in Sect. 4.1.1. Then we detail the most relevant func-
tions provided by the public pointer API in Sect. 4.1.2. For each function,
we present the signature along with a brief description of its implementa-
tion. In particular, we detail the interaction between the implementation of
the public pointer API and the functions provided by the runtime context
(cf. Sect. 3.4.3).

4.1.1 Distributed Reference Counting

In order to support efficient automatic memory management for public
slots, we implemented a mechanism for counting references to public slots
in a distributed manner. Namely, we defined and implemented a proto-
col for distributed reference counting, based on the cooperation of all the
executors that control each public slot.

Figure 4.1 illustrates the basic schema of the implemented protocol. For
each public slot at global address γ, the author executor (A in the figure)
associates to γ a reference counter that is initialized to 1 when γ is mapped.
The counter is either incremented or decremented each time a reference
to γ is created or dropped, respectively, on any executor. According to the
distributed protocol, non-author executors (B and C in the figure) send in-
crement and decrement requests to the author, that processes such requests
by means of a service thread (rt in the figure) running along with the other
executor threads.

Since the author too may create and drop references to a public slot, both
the service thread and the other author threads may try to update a refer-
ence counter concurrently. Therefore, we implemented reference counters
as atomic values that, according to the C++ memory model [38], provide au-
tomatic support for concurrent accesses. Moreover, we designed the com-
munication between (non-author) executors and service threads according
to the same approach described in Sect. 3.4 for remote loads. Namely, a
libfabric queue is associated to each service thread and the communication

4.1. Public Pointers 57

is carried in terms of asynchronous push and pop operations over such
queues.

From the performance perspective, the discussed reference counting
protocol potentially induces non-negligible overhead, depending on the
frequency at which protocol requests (i.e., increment or decrement) are is-
sued to service threads. However, since automatic memory releasing can
be considered a low-priority task with respect to the overall GAM system,
we configure the service threads for relying on the blocking pop libfabric
primitive for consuming the incoming requests. This enables the operating
system of each executor to suspend the service thread until some request is
delivered to its queue, thus releasing the associated resources and making
them available for tasks with higher priority.

More generally, the performance impact of distributed reference count-
ing can be modulated by setting the priority of the service threads. An
extreme scenario is observed with maximum priority, in which protocol re-
quests are served eagerly (thus minimizing the overall memory footprint) at
the price of maximum performance impact. The opposite extreme scenario
is observed with null priority, in which protocol requests are not served
at all (thus maximizing the overall memory footprint) and the impact on
performance is neutralized.

From the considerations above, it follows that the impact of distributed
reference counting on system scalability depends on both the priority as-
signed to service threads and the number of public pointers referencing the
same global address γ. Indeed, each public pointer to γ issues at least one
decrement request (upon destruction), in addition to increment requests
generated upon copying, directed to the same service thread.

4.1.2 API

A public pointer is represented by an object of type public_ptr<T>, where
the template parameter T represents the type of the referenced memory con-
tent. Public pointers can be created by means of the following constructor:

template<typename Deleter>
public_ptr(T * const, Deleter);

The constructor first maps a public slot by calling the mmap_public func-
tion, then stores the returned global pointer as its contained pointer. It also
initializes the reference counter for the mapped slot. We recall that the ar-
gument local pointer and delete are used respectively as stored pointer and
resource release callback.

In addition to explicit construction, a public pointer can be created by
means of the generator function:

template<typename T, typename... Args>
public_ptr<T> make_public(Args&&... args);

This function internally constructs a T-typed object by invoking the T con-
structor with parameters args. Then it invokes the public_ptr constructor
passing as arguments the address of the constructed object and a destructor
that matches the allocation primitive employed for the construction. With
respect to the explicit constructor case, the generator function is more ab-
stract since it does not require the user to encode any knowledge about
the allocation of the local memory referred by the global slots. Note that,

58 Chapter 4. Smart GAM Pointers

since C++ 17, class template arguments can be deduced from the type of
initializers (e.g., constructors). Therefore, the make_public function could
be rewritten as a template constructor.

A public pointer can be copied, producing a new public pointer that is
an additional controller for the contained pointer. Copying a pointer also
leads to incrementing its reference counter, either locally or, when the copy
is generated by an executor different from the author, remotely by send-
ing an increment request to the author, as shown in Figure 4.1. Similarly,
constructing a public pointer by means of the move constructor produces
a new controller for the contained pointer. However, moving does not re-
quire modifying the reference counter since, in compliance with the C++
move semantics, the argument public pointer being moved gets emptied
by the constructor, thus it drops the control over the contained pointer.

We also consider pulling as a form of creation, since it adds the issuing
executor to the set of controlling executors for the pulled slot by creating a
new public pointer:

template<typename T>
public_ptr<T> pull_public() noexcept;

template<typename T>
public_ptr<T> pull_public(executor_id from);

The two variants reflect the variants of the corresponding context function
for pulling from any or from a specific executor, respectively. However,
differently from the previous cases, pulling is agnostic with respect to ref-
erence counting, as it is is instead managed on the pushing side.

Finally, a public pointer may be constructed by converting a private
smart pointer:

template<typename T>
explicit public_ptr(private_ptr<T> &&p) noexcept;

Such conversion is meant to transfer the control over the memory pointed
by p to the public pointer being constructed, thus also making it controlled
cooperatively instead of exclusively by the argument private pointer. In
terms of reference counting, this leads to a new reference counter being
associated to the contained pointer and initialized, whereas the argument
private pointer is released (cf. Sect. 4.2.3) to drop the control over the un-
derlying memory slot. In terms of GAM runtime, the conversion is realized
by calling the publish function.

Dually to construction, a public pointer is destructed when its destruc-
tor is invoked, either by the C++ runtime or explicitly. Destructing a public
pointer represents dropping the control over the contained pointer, there-
fore the associated reference counter has to be decremented, either locally
or remotely. Decrementing the reference counter is provided by the reset

function, that also resets the contained pointer for the public pointer. When
such decrement is triggered by the last existing public pointer controlling
its contained pointer, eventually the author will set the reference counter
to zero. Then it finally un-maps the referenced slot by calling the unmap

function, which internally calls the destructor for T specified at construc-
tion time. Destructing a public pointer is not the only operation that leads
to resetting it. For instance, assigning a public pointer q to a variable p of
the same type (i.e., overwrite) makes p replace its contained pointer with

4.2. Private Pointers 59

+1
A

rt
B C

author

push

FIGURE 4.2: Reference counting protocol in case of pushing
a public pointer from a non-author executor.

the one controlled by q, leading p to implicitly drop the control over the
previously referenced slot.

A public pointer can be converted to a local pointer, for instance to en-
able its value to be processed by regular C++ code:
std::shared_ptr<T> local();

Internally, this simply calls the corresponding runtime function, passing as
argument the contained pointer. As we discussed in Sect. 3.4.3, a copy of
the memory referenced by the contained pointer is generated and returned
in form of plain C++ shared pointer, in order to enforce the read-only se-
mantics for public slots.

Finally, a public pointer can be pushed to another executor to diffuse
the associated read-only capability:
void push(executor_id to);

Figure 4.2 illustrates the case of an executor B pushing to another executor C
a public pointer whose author is a third executor A. As can be visualized
from the example, pushing a public pointer also increments the reference
counter associated to the contained pointer, since the pushed slot will be
wrapped into a new public pointer when pulled. Instead of deferring the
increment at pulling time, we perform the increment at pushing time to
avoid the possibility for the counter to reach zero (thus causing the slot to
be un-mapped) before the slot is pulled.

Table 4.1 summarizes the most relevant functions provided by the pub-
lic pointers API. For each function, the table reports both the corresponding
runtime function that is executed under the hood and its effect with respect
to distributed reference counting.

4.2 Private Pointers

In the same vein as in the previous section, we propose (smart) private point-
ers as an abstraction for managing private memory slots, providing auto-
matic memory management and emulation of raw pointers.

Differently from public pointers, a private pointer has exclusive control
over the contained pointer: once it takes control, it manages the pointed
slot by becoming responsible for its deletion at some point. Indeed, a pri-
vate pointer automatically deletes the associated slot as soon as it loses the
control over the slot (e.g., by destruction or assignment), unless the con-
trol is passed to some other pointer. We implemented a simple distributed
protocol to support the depicted mechanism for memory releasing.

Two types of private pointers are provided by the API, namely, global
and local, in form of different C++ classes. At any time, a private pointer

60 Chapter 4. Smart GAM Pointers

Function Back-end GAM primitive Reference counting

constructor mmap_global initialization
copy cons. - increment
move cons. - -
from-private cons. publish init.
make_public mmap_global init.
pull_public pull -
destructor unmapa decrement
copy assignment unmapa dec. + inc.
move assignment unmapa dec.
local local -
push push inc.

aOnly if the pointer is the last remaining for the controlled slot.

TABLE 4.1: Public pointers API.

x

A
rt

B

author

context unmap

FIGURE 4.3: Schema of the protocol for distributed memory
releasing.

assumes either its global or local form, both having exclusive control of the
same private slot.

We proceed by first presenting the distributed protocol for memory re-
leasing in Sect. 4.2.1. Then, we motivate and present the global and local
flavors of private pointers in Sect. 4.2.2. Finally, we detail the most relevant
functions provided by the private pointer API in Sect. 4.2.3.

4.2.1 Distributed Memory Releasing

In order to support efficient automatic memory management for private
slots, we implemented a simple protocol for distributed memory releasing,
involving up to two executors, namely the author of the slot and its owner.
Each private slot mapped at global address γ is controlled by exactly one
executor, by means of a private pointer object. If the executor drops the
control without passing it to another executor, then the slot can safely be
un-mapped, since at that point it becomes definitively unreachable.

Figure 4.3 illustrates the setting for the implemented protocol. We dis-
tinguish two cases, depending on the identity of the executor that defini-
tively drops the control over a slot it controls by means of a private pointer.
In the simplest case, the slot is dropped by its author, which simply requires
the author to call the runtime function unmap (cf. Sect. 3.4.3) to trigger the
un-mapping of the slot. In the other case, the slot is dropped by a non-
author executor (B in the figure), which requires such executor to notify the

4.2. Private Pointers 61

author by pushing a release request (the x edge in the figure) to a queue at-
tached to the author. Once the author receives the notification, it proceeds
with the un-mapping by calling the unmap runtime function. The process-
ing of release requests at the author side is implemented in the same way
as in distributed reference counting (cf. Sect. 4.1.1): an auxiliary thread (rt
in the figure) pops requests from a libfabric queue by means of blocking
primitives.

From the considerations in Sect. 4.1.1, we can conclude that private
pointers induce less performance impact than public pointers. Indeed, each
private pointer generates at most one release request, upon destruction by a
non-author executor. Therefore, the only scenario in which the distributed
memory releasing protocol may impact scalability consists in multiple ex-
ecutors issuing release requests to the same executor. This scenario results,
for instance, from a GAM program in which a single executor generates a
stream of values and distribute them to a set of downstream executors, as
in the farm pattern (cf. Sect.5.3.2).

4.2.2 Two Flavors of Private Pointers

We designed and implemented the private pointers API, based on the zero-
copy philosophy underlying the access model for private global slots (cf.
Sect. 3.4.3). According to this model, a private address is logically indistin-
guishable from its corresponding stored pointer, therefore a private address
and its stored pointer should be regarded as different references to the same
slot. As a quick demonstration of this concept, no mechanism is provided
by the GAM API to store the content of a local memory value v to a private
slot γ, unless v is referred by the stored pointer for γ. We refer to a private
address and the corresponding stored pointer as, respectively, global and
local references to the same memory slot. Therefore, if a private pointer
exists referencing a private slot, in order to ensure that it retains exclusive
control over the slot, we should prevent the coexistence with any other ref-
erence, either global or local.

To this aim, we represent private pointers by means of two types, rep-
resenting respectively global and local references. A global private pointer
is represented by an object of type private_ptr<T>, where the template pa-
rameter T represents the type of the referenced memory content. Global
private pointers are analogous to public pointers in that they wrap and em-
ulate global pointers. Instead, a local private pointer is represented by an
object of the following type:

template<typename T>
using gam_unique_ptr = std::unique_ptr<T, void(*)(T *)>;

The definition shows how we just exploited the uniqueness semantics of
C++ unique pointers for implementing local private pointers. Namely, we
defined local private pointers as synonyms for C++ unique pointers with
custom deleter. Indeed, as we discuss in Sect. 4.2.3, we embed the release
logic in the deleter attached to each local private pointer.

In this setting, we introduce the following control uniqueness invariant:
given a private slot mapped at global address γ, at any time it exists either
a private_ptr object containing a (global) pointer to γ or a gam_unique_ptr

object containing the (local) stored pointer for γ.

62 Chapter 4. Smart GAM Pointers

4.2.3 API

Similarly to public pointers, global private pointers can be created by means
of either the constructor, the generator function make_private (or an equiv-
alent template constructor, as discussed in Sect. 4.1.2), or the pulling func-
tion pull_private. In all cases, the private pointer being constructed has
exclusive control over the contained slot.

Following the principles underlying C++ unique pointers, we forbid
both copy construction and copy assignment of global private pointers:
private_ptr(const private_ptr &) = delete;
private_ptr &operator=(const private_ptr &) = delete;

Indeed, copying would imply duplication that in turn would break the
uniqueness invariant. Note that copying is forbidden also for local private
pointers since C++ unique pointers are non-copyable objects.

Private pointers can be move-constructed and move-assigned:
private_ptr(private_ptr &&p) noexcept;
private_ptr &operator=(private_ptr &&p) noexcept;

Moving a private pointer p represents the action of transferring the exclu-
sive control over slot controlled by p to another private pointer, which is
either the one being constructed (in case of move construction) or the one
p is being assigned to (in case of move assignment). The effect of a move-
based primitive with argument p is twofold: first it causes the resulting
private pointer to acquire exclusive control over the slot previously con-
trolled by p; second it causes p to release control over the slot. Again, such
move-based primitives are implicitly provided by unique pointers for local
private pointers.

As we anticipated in Sect. 4.2.1, transferring control per se has no effect
on memory releasing. Instead, the implicit overwriting induced by assign-
ment causes the control over the formerly controlled slot to be definitively
dropped and, hence, it triggers the un-mapping of the slot. Therefore, we
identify a first dropping mechanism, that releases control over a slot with-
out un-mapping it. Along the lines of shared pointers, we also provide
the corresponding release primitive, for global private pointers. Releas-
ing simply invalidates the value stored as contained pointer. Most of the
functions moving an argument pointer p (e.g., move constructor and as-
signment) call p.release() to exonerate it from the responsibility over the
slot. Also, pushing a (global) private pointer relies on releasing, since push-
ing is logically equivalent to a deferred control transfer.

The other dropping mechanism, that also un-maps the slot, is provided
by the reset function, which resets the pointer after destructing it. For in-
stance, assigning a private pointer q to a variable p implies resetting of p,
since overwriting leads the controlled slot to become definitively unreach-
able. We remark that both release and reset functions for global private
pointers have the same semantics as their counterparts for unique pointers.

When a private pointer, either global or private, is destructed, it trig-
gers the un-mapping of the controlled slot. Depending on whether the
destruction is performed by the author executor or not, the un-mapping
is performed locally or remotely, according to the distributed protocol for
memory releasing we introduced in Sect. 4.2.1.

Finally, we provide conversion of private pointers, from global to local
and vice versa. Note that, to fulfill the uniqueness invariant, conversion

4.3. Smartness 63

leads control over the controlled slot to be transferred from the pointer be-
ing converted to the resulting one. Therefore, the pointer being converted
is released as part of both directions of conversion. The former direction is
provided by the following function:

template<typename T>
gam_unique_ptr<T> local();

When local is called on a (global) private pointer controlling a global mem-
ory address γ, it returns a unique pointer whose contained pointer is the
stored pointer for γ. This implies that, after the completion, the issuing
executor is the author of γ. Therefore, if local is called by a non-author
executor, it preliminarily performs both a remote load (cf. Sect. 4.1.2) and
a remote un-mapping to withdraw both the slot and its authorship from its
(former) author. We remark that, since local private pointers are regular
C++ unique pointers, the value returned by local can be processed by plain
C++ code, resulting in implicit loads and stores to the global memory slot
referenced by the pointer.

As part of the runtime support for private pointers, the author of each
private address γ tracks the bidirectional mapping between γ and its stored
pointer. For instance, let us consider the return statement in the current
implementation of local:

auto deleter = [](T *lp) {ctx.unmap(ctx.parent(lp));};
return gam_unique_ptr<T>(lp, deleter);

If the local private pointer is destructed, this should trigger the un-mapping
of the corresponding slot, identified by its global address. Therefore the
deleter callback must be able to track a global address back from its stored
pointer (lp in the listing), as provided by the context function parent.

The inverse conversion, namely from local to global private pointers, is
provided by the constructor:

template<typename T>
private_ptr(gam_unique_ptr<T> &&lp);

In addition to releasing the pointer being converted, this simply returns the
global pointer for which lp is the stored pointer, provided by the context
function parent.

Table 4.2 summarizes the most relevant functions provided by the API
for global private pointers. For each function, the table reports both the
corresponding runtime function that is executed under the hood and its
effect with respect to distributed memory releasing. As for local pointers,
the API is implicitly provided by C++ unique pointers and is actually a
subset of the global API where each function has the same semantics as its
global counterpart.

4.3 Smartness

In addition to raising the level of abstraction for the interaction between
programs and memory, C++ smart pointers also provide some smartness in
terms of proper memory management, as we recall in Sect. 2.4.1. In partic-
ular, they target two common problematic memory issues—memory leaks
and dangling pointers—by means of a generic, statically typed interface,
that yield programs that are, by construction, free from those issues.

64 Chapter 4. Smart GAM Pointers

Function Back-end GAM primitive Memory releasing

constructor mmap_global -
move cons. - -
make_private mmap_global -
pull_private pull -
destructor unmapa release
move assignment unmapa release
reset unmapa release
release - -
local local, unmapb releaseb

from-local cons. parent -
push push -

aRemotely if issued by non-author executor.
bRemotely and only if issued by non-author executor.

TABLE 4.2: Global private pointers API.

In the same vein, smart GAM pointers provide smartness in terms of
GAM memory management. As C++ smart pointers facilitate intentional
programming by protecting well formed C++ programs against memory er-
rors, so do smart GAM pointers. Nevertheless, smart pointers—either C++
or GAM—do not target programs that deliberately try to break smartness
mechanisms. For instance, smart pointers do not support address aliasing,
therefore the behavior of a program is undefined in case of aliasing.

In this section we discuss smartness as provided by smart GAM point-
ers, along two dimensions of possible GAM memory errors: memory leaks
(Sect. 4.3.1) and dangling pointers (Sect. 4.3.2). For each dimension, we also
show how smartness could be intentionally broken.

4.3.1 Memory Leaks

Memory leak is a type of memory error that occurs when a program in-
correctly manages dynamic memory allocation in such a way that memory
which is no longer needed is not released. We define GAM memory leaks
by mapping the previous definition to the GAM context, as follows.

Definition 3. A GAM program contains a (GAM) memory leak if at some point
in the program execution there exists a memory slot mapped at address γ such that
none of the executors holds a reference to γ.

A GAM program is leak-free if it does not contain any leak. In the following,
we informally prove that smart GAM pointers guarantee leak-freeness for
all memory slots that are accessed exclusively through smart pointers.

In Sect. 4.1.1, we introduced distributed reference counting for public
pointers. The proposed protocol maintains a global invariant stating that, at
any time, the author of a public address γ knows the number of references
to γ among all the executors. On top of such protocol, we implemented
public pointers in such a way that the memory slot for γ is un-mapped as
soon as the associated counter reaches zero (cf. Sect. 4.1.2). Therefore, public
pointers guarantee leak-freeness by binding the life cycle of each public slot
to the associated reference counter.

4.3. Smartness 65

As for private pointers, we based their implementation on a uniqueness
invariant (cf. Sect. 4.2.2), stating basically that, at any time, exactly one pri-
vate pointer (either global or local) can reference a private slot. When such a
reference is definitively dropped (e.g., destructing the pointer without pass-
ing the reference to another pointer) the un-mapping of the slot is triggered.
Therefore, also private pointers guarantee leak-freeness, by binding the life
cycle of each private slot to the associated object that controls it uniquely.

Nevertheless, as smartness in terms of leak-freeness can be broken in
C++, so it can be done in GAM by misusing smart GAM pointers. For in-
stance, constructing a private pointer p by calling the generator function
make_private and then calling p.release() immediately leads to a mem-
ory leak since the unique reference for the controlled slot gets irreversibly
dropped.

4.3.2 Dangling Pointers

Dangling pointers are commonly defined as pointers that do not point to
a valid destination, where the notions of validity and pointer are inten-
tionally left as generic as possible. For instance, in C++ context, a pointer
(either raw or smart) to a piece of memory becomes dangling if the mem-
ory referenced by the pointer gets freed, typically through another pointer.
Here, the destination pointed by p is invalid in that the referenced mem-
ory should not be accessed in terms of load and store operations through p.
For instance, the freed memory could have been reclaimed by the allocator
and recycled for storing something that has nothing to do with the previous
content.

In GAM context, we give validity a precise meaning in terms of access
level (cf. definition 1), as follows.

Definition 4. Given a GAM system state s, a GAM memory slot at address γ
is valid in s for a smart GAM pointer if the pointer type (i.e., public or private)
matches the access level for γ in s.

For instance, a global slot mapped at the public address γ is valid for a pub-
lic pointer referencing γ. Conversely, a smart GAM pointer to γ is dangling
if the slot at γ is not valid for the pointer. For instance, a slot at γ is not valid
for a private pointer referencing γ if either γ is unmapped or public.

We formalize dangling-free program executions as follows.

Definition 5. An execution θ of a GAM program is dangling-free if and only if,
in any state s ∈ θ, there are no dangling pointers in s.

A program is dangling-free if all its valid executions are dangling-free.
Although we omit exhaustive proofs for the sake of simplicity, we pro-

vide a proof sketch that allows to prove dangling-freeness in a direct man-
ner. Namely, a proof of this property would proceed by contraposition and
would prove the following:

α(s, γ) 6= public ⇒ @ public pointer referencing γ in s
α(s, γ) 6= private ⇒ @ private pointer referencing γ in s (4.1)

Then the proof would proceed by induction on the length of θ. For the
inductive step, we would consider all the semantic rules from figure 3.1

66 Chapter 4. Smart GAM Pointers

yielding such a state s conforming to the premise in 4.1. In the following,
we informally prove dangling-freeness by assuming the outlined structure.

Let us consider public pointers first. The only operation switching the
capability for an address γ from public to non-public (namely ⊥) is the un-
mapping. For proving the conclusion in 4.1, it is sufficient to prove that γ is
un-mapped only when no references for γ exist among the executors, other
than the public pointer that triggers the un-mapping. But this holds triv-
ially, since the un-mapping is triggered only when the reference count for γ
(provided by distributed reference counting) reaches zero (cf. Sect. 4.1.2).

As for private pointers, in addition to un-mapping, also pushing and
publishing operations switch the capability over γ to non-private for the
issuing executor. Namely, both un-mapping and pushing switch it to ⊥,
whereas publishing switch it to public. We recall, from the public point-
ers API in Sect. 4.1.2, that publishing is induced by constructing a public
pointer from a private one. In order to prove that no references for γ exist
among the executors, it is sufficient to observe that:

• All of un-mapping, pushing and publishing make the involved pri-
vate pointer drop control over γ;

• The uniqueness invariant for private pointers (cf. Sect. 4.2.2) guaran-
tees that no references for γ exist among the executors, other than the
involved private pointer.

We remark that, with respect to guaranteeing dangling-freeness, the
condition provided by the uniqueness invariant is sufficient but not nec-
essary. For instance, one could drop uniqueness internally to each execu-
tor by implementing local private pointers as C++ shared pointers and test
for uniqueness upon pushing and publishing. However, such an approach
would result in a more complex API since pushing and publishing would
possibly fail in case they are called on non-unique private pointers, hence
forcing the calling context to manage failures.

Summary

In this chapter, we presented smart GAM pointers, a C++ API and imple-
mentation, in terms of template classes, providing leak-free and dangling-
free dynamic allocation of GAM memory objects.

67

Chapter 5

Parallel Programming with
GAM Nets

In this chapter, we introduce GAM nets, a parallel programming model
based on GAM (cf. Ch. 3) and smart GAM pointers (cf. Ch. 4).

We build upon the well-assessed FastFlow approach (cf. Sect. 2.4.2) by
focusing on stream parallelism as the baseline for expressing a broad range
of parallelism types. A GAM net is a graph of interconnected processors and
communicators, that represent, respectively, active entities that perform com-
putations over data and passive entities that deliver data among processors.
We pursue “performance by design” by letting processors and communica-
tors exchange capabilities (i.e., GAM pointers) rather than data.

We materialize GAM nets in a C++ library. Although we designed the
implementation on the same line as FastFlow, we opted for adhering more
strictly to modern C++ principles, for instance, by avoiding inheritance in
favor of type safe generic programming.

This chapter proceeds as follows. In Sect. 5.1, we introduce the abstract
GAM nets model. In Sect. 5.2, we present a C++ object-oriented API and
implementation of GAM nets. Finally, In Sect. 5.3, we define a series of nets
representing common computation patterns.

5.1 GAM Nets

A GAM net is a directed bipartite graph, in which the nodes represent either
processors (active entities) or communicators (passive entities) and the directed
arcs describe communication links—either from processors to communica-
tors or from communicators to processors.

Formally, let P and C be two disjoint sets of processors and communica-
tors, respectively, and L be a set of links:

L ⊂ (P× C) ∪ (C× P)

Then a GAM net is a triple N = (P,C,L), with further constraints described
below.

The two directions of a communication, as performed by a processor,
represent pushing/pulling a capability over a GAM slot to/from a peer
processor, respectively, via the intermediate communicator. However, dif-
ferently from the basic API presented in Sect. 3.4.3 and the smart pointers
API presented in Sects. 4.1.2 and 4.2.3, a processor does not specify its com-
munication peers when pushing or pulling. Rather, a processor specifies

68 Chapter 5. Parallel Programming with GAM Nets

which communicator is involved, among those it is connected to. In this set-
ting, the logic for routing capabilities is embedded in the communicators.

In the context of theoretical models for representing parallel computa-
tions, GAM nets are based on the same channel-centric view underlying two
classical models, namely Calculus of Communicating Systems (CCS) [104]
and Communicating Sequential Processes (CSP) [85] models. In CCS and
CSP, unnamed active processes communicate through named passive chan-
nels, according to a fixed topology. Similarly, in GAM nets, the topology L
is fixed and the processors refer to communicators rather than peer proces-
sors when communicating.

CSP and CCS were designed to model asynchronous processes, i.e., pro-
cesses that proceed independently at their own speed, with no global clock.
However, as discussed by Brooke [41], processes were assumed to interact
by means of synchronous communication: a process attempting to perform an
input action synchronizes with another process attempting a matching out-
put, waiting if necessary until a match becomes available—and vice versa.
Therefore, we refer to Brooke’s alternative CSP model [41], directly based
on asynchronous communication channels, as the theoretical basis for GAM
nets.

We proceed by defining the components of GAM nets syntax, namely
communicators (Sect. 5.1.1) and processors (Sect. 5.1.2). In Sect. 5.1.3, we
introduce a dataflow-like execution model for GAM nets.

5.1.1 Communicators

In a GAM net, communicator nodes represent passive links between in-
put and output processors. As illustrated in Fig. 5.1, the communication
between any pair of processors is mediated by an intermediate communi-
cator.

Formally, given a net N = (P,C,L) and a communicator c ∈ C, the sets
of input and output processes for c, that we refer to as in(c) and out(c),
respectively, are defined as follows:

in(c) = {p ∈ P : (p, c) ∈ L}
out(c) = {p ∈ P : (c, p) ∈ L}

We exclude from valid nets the case of a process attached to both input
and output side of a communicator:

∀ c ∈ C, (p ∈ in(c)⇒ p 6∈ out(c)) ∧ (p ∈ out(c)⇒ p 6∈ in(c))

This implies that the sets of input and output processors are disjoint:

∀ c ∈ C, in(c) ∩ out(c) = ∅

We also exclude communicators with no processes attached to either input
or output side:

∀ c ∈ C, in(c) 6= ∅ ∧ out(c) 6= ∅

As “passive” entities, the sole role of communicators is to embed some
policies to deliver capabilities from input to output processors. Such dis-
patching policies are implicitly invoked by any processor whenever it calls

5.1. GAM Nets 69

C0

P2

P4

P0

P1

P3

FIGURE 5.1: A communicator C0 in a GAM net, with input
processors P0, P1 and output processors P2, P3, P4.

a communication primitive to perform a communication. Instead of giv-
ing precise constraints about the form in which policies are expressed, we
leave such aspect to the implementation level. Let us consider, as a running
example, a hypothetical purely functional implementation of GAM nets.

Pushing Policies

In a purely functional setting, a policy for pushing a (public) address would
be a function with the following arguments: the address to be pushed, the
input processor, and the sets of output processors. This function would re-
turn a set of output processors—a subset of the possible output processors
(third argument)—to which the address will be delivered. Thus, its signa-
ture would be:

f : Γ× P× 2P → 2P (5.1)

This function would then be invoked, upon pushing address γ via commu-
nicator c by processor p ∈ in(c), as follows:

f (γ, p, out(c)) = o (5.2)

Each of the output processors p′ ∈ o ⊆ out(c) identified by the function
would then be used by the runtime as a destination for delivering the ca-
pability over γ. We refer to the f in the above example as a multicast policy,
since the capability is possibly delivered to multiple destinations.

A common multicast policy, generally referred to as broadcast, delivers
each capability to all the output processors:

f (γ, p, out(c)) = out(c) (5.3)

In a simpler class of pushing policies, that we refer to as unicast or switch
policies, the capability is delivered to a single destination:

f (γ, p, out(c)) = o where |o| = 1 (5.4)

Obviously, only unicast policies make sense for pushing private addresses,
since multicast delivery implies replication of the capability at hand, which
is not allowed for private addresses.

70 Chapter 5. Parallel Programming with GAM Nets

The most basic unicast policy is the constant function, that delivers all
capabilities to the same output processor p′ ∈ out(c). In particular, the con-
stant function is the only viable option for such communicators c attached
to a single output processor, so that |out(c)| = 1.

More complex policies can be defined that take as input additional pa-
rameters for dispatching. A common example is the key-partitioning policy,
that takes as input a key and delivers to the same processor all the capabil-
ities associated to the given key, according to some dispatching function g.
For instance, keys could be mapped to output processors in round-robin
fashion, resulting in the following dispatching policy, where K is the set of
keys and where we assume processors in out(c) are numbered from 0 to
|out(c)| − 1:

f : Γ× P× 2P × K → 2P

f (γ, p, out(c), k) =
{

pk mod |out(c)|
} (5.5)

Pulling Policies

As for pulling, the policy determines which processor to pull from:

g : P× 2P → P (5.6)

This function would be invoked, upon pulling via communicator c by pro-
cessor p ∈ out(c), as follows:

g(p, in(c)) = p′ (5.7)

The input processor p′ ∈ in(c) would then be used by the runtime as the
source for pulling a capability.

On the same line as unicast pushing policies, the most basic pulling
policy is the constant function, in which all capabilities are pulled from
the same input processor p′ ∈ in(c). In particular, the constant function is
the only viable option for such communicators c attached to a single input
processor, such that in(c) = {p′}.

Dually, the nondeterminate merge (as defined by Lee et al. [96]) is a non-
deterministic policy in which any input processor may be selected as the
one to pull from.

5.1.2 Processors

In addition to communicator nodes, a GAM network is composed of pro-
cessor nodes, that represent active processing entities.

As illustrated in Fig. 5.2, processors are attached to a global memory
that they possibly access according to the GAM model. During its lifetime,
each processor performs arbitrary computations, that include exchanging
capabilities with peer processors via intermediate communicators. For the
sake of simplicity, we reduce the set of valid nets by imposing that any
processor is attached to at least one communicator, thus we exclude isolated
processors:

∀ p ∈ P,∃ c ∈ C : (c, p) ∈ L ∨ (p, c) ∈ L

5.1. GAM Nets 71

Moreover, we do not allow processors that are attached to two different
communicators on the same side:

∀ p ∈ P, (∃ c ∈ C : (c, p) ∈ L)⇒ (@c′ ∈ C : (c′, p) ∈ L)

∀ p ∈ P, (∃ c ∈ C : (p, c) ∈ L)⇒ (@c′ ∈ C : (p, c′) ∈ L)

In this setting, we categorize processors in terms of their role with respect
to communication:

• Source and sink processors may only push/pull capabilities to/from
the communicator to which they are attached, respectively;

• Filter processors may communicate with the two communicators they
are attached to, either pulling from one communicator or pushing to
the other.

This categorization can be formalized in terms of attached communica-
tors as follows. Given a net N = (P,C,L) and a processor p ∈ P, exactly one
of the following conditions holds:

p is a source ⇔ ∃ c ∈ C : (p, c) ∈ L ∧ @c′ ∈ C : (c′, p) ∈ L
p is a filter ⇔ ∃ c, c′ ∈ C : (c, p) ∈ L ∧ (p, c′) ∈ L
p is a sink ⇔ @c ∈ C : (p, c) ∈ L ∧ ∃ c′ ∈ C : (c′, p) ∈ L

For brevity, we refer to a communicator c as input communicator for p if
(c, p) ∈ L and, conversely, as output communicator for p if (p, c) ∈ L. In
Fig. 5.2, P0 is a source since it is attached only to output communicator C0;
similarly, P2 is a sink since it is attached only to input communicator C1;
finally, P1 is a filter since it is attached to both input communicator C0 and
output communicator C1.

5.1.3 Execution Model

We recall that, according to the asynchronous CSP model [41] that we con-
sider as reference, processors execute independently and exchange capabil-
ities by means of asynchronous communications.

This allows to naturally define a dataflow-like execution model for GAM
nets, in which each processor is characterized by a kernel that either is acti-
vated each time a capability is delivered to the processor (filters and sinks)
or internally generates capabilities (sources). Within the execution of a ker-
nel, one or more capabilities can be emitted to downstream processors,
via the output communicator of the processor. In this setting, the coor-
dination of processors is driven by the flow of data—representing data
dependencies—rather than through explicit synchronizations.

From the perspective of the proposed dataflow-like execution model,
communicators define the activation policy for the respective output proces-
sors. For instance, let us consider a communicator c with key-partitioning
pushing policy (5.5) and nondeterminate merge pulling policy. This com-
municator, that we refer to as shuffle, leads the kernel of each output proces-
sor p to be activated for each capability γ, emitted with key k by some input
processor pi, such that:

f (γ, pi, out(p), k) = {p}

72 Chapter 5. Parallel Programming with GAM Nets

C0 P1 C1P0 P2

GAM

FIGURE 5.2: A GAM net composed of processors P0, P1, P2
attached to a GAM memory, communicating pairwise via

intermediate communicators C0, C1.

The activation policy also defines the order in which capabilities are pro-
cessed by the output processors. For instance, the shuffle communicator
guarantees that, given an output processor p, the capabilities emitted by an
input processor pi are presented to p in the order in which they were emit-
ted. Note that the mentioned order, as seen by a given output processor p,
is partial in case of multiple input processors, whereas it is total in case of
single input processor.

5.2 C++ Implementation

In this section, we present a C++ API for GAM nets, together with its im-
plementation.

Targeting zero-overhead abstraction, in fulfillment of modern C++ prin-
ciples, we designed both the API and the implementation around generic
programming, thus avoiding any overhead arising from dynamic polymor-
phism.

Since both GAM nets and their implementation are based on the same
principles as FastFlow (cf. Sect. 2.4.2), we refer to the proposed implementa-
tion as GFastFlow (for GAM-FastFlow) and we enclose the associated C++
code in a the gff namespace.

We proceed by introducing the GFastFlow API (Sect. 5.2.1), followed by
some details about the implementation (Sect. 5.2.2).

5.2.1 API

In Sect. 5.1.3, we introduced a dataflow-like execution model for GAM nets,
in which a processor is characterized by its role with respect to communica-
tion (i.e., source, filter, or sink) and by a kernel that processes delivered or
generated capabilities, one at a time. Moreover, according to the proposed
execution model, a communicator describes how the emitted capabilities
lead to activating the kernels of output processors.

In the following, we present the API of GFastFlow, a C++ library that
implements GAM nets, from the perspective of the proposed execution
model.

5.2. C++ Implementation 73

Processors

GFastFlow processors are objects of either Source, Filter, or Sink template
classes, each representing processors with the corresponding role:

template<typename OutComm,
typename out_t,
typename ProcessorLogic>

class Source;

template<typename InComm, typename OutComm,
typename in_t, typename out_t,
typename ProcessorLogic>

class Filter;

template<typename InComm,
typename in_t,
typename ProcessorLogic>

class Sink;

The InComm and OutComm template parameters represent the type of, respec-
tively, the input and output communicator to which the processor is at-
tached. The in_t parameter represents the smart pointer type correspond-
ing to the capabilities delivered to the processors (via the input communi-
cator) and processed by the kernel. Conversely, the out_t parameter rep-
resents the smart pointer type corresponding to the capabilities emitted by
the processor (to the output communicator) within each kernel execution.
Finally, the ProcessorLogic parameter represents the type of the business
logic of the processor, that we discuss in the following.

The complete specification of a processor includes its kernel (i.e., the
way it processes or generates capabilities) and its termination logic. Indeed,
according to the process network execution model, that in turn underlies
the dataflow model we are considering, processors execute their kernels as
long as some termination condition is not met. Within the business logic
of a processor, both the kernel and the termination logic are embedded in a
single svc function, along with svc_end for post-termination processing, as
we discuss later.

Termination

The termination logic is expressed in terms of special values to be returned
by svc functions, that we refer to as termination tokens in accordance with the
token-based dataflow terminology. A termination token is a value of type
token_t and, in the current API, it can be either go_on or eos, represent-
ing the fact that the processor should keep executing or should terminate,
respectively, after the svc instance at hand is completed.

Based on those termination tokens, the termination protocol is then as
follows: when a svc function from a processor p returns an eos token, that
token is propagated to all the processors downstream of p via the interme-
diate communicators; furthermore, when a processor receives an eos token,
its svc function is not called anymore. Conversely, a go_on token is returned
by a svc instance to indicate that the respective processor should keep exe-
cuting.

74 Chapter 5. Parallel Programming with GAM Nets

Communicators

The API provides a set of built-in communicators, each characterized by
an activation policy (cf. 5.1.3). For instance, the OneToOne communicator is
characterized by the simplest activation policy, stating that the svc func-
tion of the output processor is activated for each capability emitted by the
input processor, and the emission order is respected. We remark that the
activation policy is a semantic characterization of each communicator, de-
fined in terms of the underlying execution model, thus invisible from the
API viewpoint.

Communicators are accessed within the svc function of source and filter
processors, in order to emit capabilities. To this aim, each communicator
type provides an emit function. In case of emitting processors (i.e., sources
and filters), the attached output communicator is passed to the svc function
as input parameter, so that the emit function can be called.

In its simplest form, the emit function takes as input only the capability
to be emitted. In this case, the signature for private pointers is as follows:

template<typename T>
void emit(gam::private_ptr<T> &&);

However, some communicators rely on more sophisticated pushing poli-
cies, leading to a richer signature for emit. For instance, the emit func-
tion for the Shuffle communicator, whose activation policy we described
in Sect. 5.1.3, requires a parameter of type K, representing the key type. In
this case, the signature for private pointers is as follows:

template<typename T, typename K>
void emit(gam::private_ptr<T> &&, const K &);

The signatures of the emit functions provided by a communicator type
also determine which types of capabilities can be emitted. In particular,
multicast communicators (cf. Sect. 5.1.1) allow to emit only public pointers,
therefore no signatures for private pointers must be provided by multicast
communicators.

In Sect. 5.3, we provide some examples in order to show the expressive-
ness of various built-in communicators.

Processor Logic

From the discussion above, the svc signatures for source, filter, and sink
processors are as follows, where in_t is the type of the input capability to
be processed (e.g., gam::private_ptr<int>) and OutComm is the type of the
output communicator:

gff::token_t svc(OutComm &); //source
gff::token_t svc(in_t &, OutComm &); //filter
void svc(in_t &); //sink

Note that the in_t parameter is missing in the source case, since sources do
not receive capabilities—they generate them. Conversely, both the return
and the communicator types are missing in the sink case, since sinks have
no downstream processors.

In addition to the svc function, that embeds both the kernel and the
termination logic of the processor, the specification of the processor logic
includes the svc_init and svc_end functions. The former is called by the

5.2. C++ Implementation 75

runtime before entering the main loop (i.e., the loop in which svc is repeat-
edly invoked), whereas the latter is called after exiting the main loop.

In order to compose a processor logic, the functions svc, svc_init, and
svc_end are packed into a single ProcessorLogic object, whose type param-
etrizes the processor type. Objects representing processor logic are con-
structed by the runtime by means of their default constructors, therefore
they must be default-constructible.

In this setting, we refer to processors of type Source, Filter, or Sink as
stateful processors, where the state is represented by the data members of
the processor logic. In particular, the svc function may access the state to
implement non-functional behaviors, whereas svc_init and svc_end func-
tions may perform custom initialization and finalization of the state, respec-
tively.

Nets

For the sake of simplicity, in the current API we only support programs
consisting of a single GAM net. Therefore, the API for building nets con-
sists in a single function add, which takes as argument the processor object
(of parametric template type) to be added. Once all processors have been
added, the execution of the net can be triggered by calling the run function,
that executes the net composed by the processors that have been add-ed.

The topology of a net is defined in an incremental manner by passing
(references to) communicator objects to processor constructors, whose sig-
natures are as follows:

Source(OutComm &);
Filter(InComm &, OutComm &);
Sink(InComm &);

In particular, two processors p and q are attached to the same communica-
tor c if a reference to c is passed to both constructors for p and q.

For instance, let us consider the simple topology consisting of a single
source processor (of type P) attached to a single sink processor (of type Q)
through a communicator with the constant function as both push and pull
policies. Listing 5.1 shows how such a topology is defined and executed.
Note that the processor’s logic is not described: some examples will be
provided in Sect. 5.3; note also that a reference to communicator c is passed
to the constructors of both source and sink objects.

5.2.2 Implementation

In the following we provide some details about the implementation of the
GFastFlow library, whose API we presented in Sect. 5.2.1. In particular,
we focus on the modular implementation of communicators, based on tem-
plate programming, which allows to define custom communicators with
limited effort.

As the fundamental abstraction underlying the implementation of GAM
nets, processors are implemented as GAM executors (i.e., entities exchang-
ing capabilities), whereas communicators represent sets of logical links con-
necting executors. Therefore, at implementation level, GAM net processors
are identified by their respective executor’s identifier.

76 Chapter 5. Parallel Programming with GAM Nets

/* The producer processor. */
using P =
gff::Source<gff::OneToOne, // out communicator type
gam::private_ptr<int>, // out capability type
PLogic>; //processor logic

/* The consumer processor. */
using Q =
gff::Sink<gff::OneToOne, // in communicator type
gam::private_ptr<int>, // in capability type
QLogic>; //processor logic

int main()
{

/* Construct a one-to-one communicator. */
gff::OneToOne c;

/* Build a procuder-consumer net. */
gff::add(P(c));
gff::add(Q(c));

/* Execute the net. */
gff::run();

return 0;
}

LISTING 5.1: Skeleton of a producer-consumer GAM net.

Communicators

In the proposed implementation, an object implementing a GAM commu-
nicator includes some variants of the emit function (e.g., for public and pri-
vate pointers) and an object of the template class CommunicatorInternals,
whose (partial) signature is shown in Listing 5.2. Objects of this class repre-
sent the communication back end for the respective enclosing communicator.
We remark that, at implementation level, processors are identified by GAM
executors, as in line 22.

Note that the primitives provided by CommunicatorInternals objects
deal with any kind of pointer, thus they support any form of communi-
cation between processors. Namely, a pointer can be:

• pulled by an output processor from an input processor, via the inter-
mediate communicator, by means of the get primitive;

• pushed by an input processor to an output processor, via the interme-
diate communicator, by means of the put primitives;

• pushed by an input processor to all the output processors by means of
the put_to_all primitives.

As for the implementation of emit functions, it typically consists in a
single call to put, with the same arguments as the calling emit. Different
signatures for emit are supported by means of the template parameter pack
PolicyArgs, that allows to forward the additional arguments from the emit

call to the dispatching policy call, as we discuss later.

5.2. C++ Implementation 77

1 template<typename PushDispatcher, typename PullDispatcher>
2 class CommunicatorInternals {
3 public:
4 template<typename T, typename ... PolicyArgs>
5 void put(const gam::public_ptr<T> &p, PolicyArgs&&...);
6

7 template<typename T, typename ... PolicyArgs>
8 void put(gam::private_ptr<T> &&p, PolicyArgs&&...);
9

10 template<typename T>
11 void put_to_all(const gam::public_ptr<T> &p);
12

13 template<typename T>
14 void put_to_all(gam::private_ptr<T> &&p);
15

16 template<typename ptr_t>
17 ptr_t get();
18

19 private:
20 PushDispatcher push_dispatcher;
21 PullDispatcher pull_dispatcher;
22 std::vector<gam::executor_id> input, output;
23 };

LISTING 5.2: Prototype of the Communicator template class.

Dispatchers

Internally, back end objects rely on push and pull dispatchers, that are rep-
resented by objects of template type PushDispatcher and PullDispatcher,
respectively. Dispatchers embed both the communication logic (i.e., the in-
teraction with the GAM runtime) and the dispatching policy (cf. Sect. 5.1.1).
In particular, put and put_to_all primitives in Listing 5.2 rely on the push
dispatcher, while get relies on the pull dispatcher.

When invoking a dispatcher primitive, the calling communicator primi-
tive passes as argument the set of either input or output processors, in form
of vectors (i.e., input and output in Listing 5.2) that represent numbering.
Again, additional arguments of the calling function (i.e., a back end primi-
tive) are forwarded as parameter pack.

Two different families of push dispatchers are represented by objects of
the Switch and Multicast template classes, embedding switch and multi-
cast policies as defined in (5.4) and (5.2), respectively. Since the duplication
of private pointers is not allowed, only public pointers can be exchanged
via multicast dispatchers. Therefore, a communicator composed of a multi-
cast dispatcher does not implement the put primitive for the private pointer
case. Indeed, we refer to such a communicator as a public-only communica-
tor.

As for pull dispatchers, they are represented by objects of the Merge tem-
plate class, embedding a pulling policy as defined in (5.6).

Dispatching Policies

Dispatching policies are represented by C++ callable objects, thus they are
expressed in a generalized functional style, similar to those introduced in
Sect. 5.1.1.

78 Chapter 5. Parallel Programming with GAM Nets

For instance, a simplified1 implementation of a constant switch pol-
icy, always selecting the processor with index 0, is the following lambda:

auto ConstantSwitchPolicy =
[] (const vector<gam::executor_id> &d) {

return d[0];
};

Another common policy is the round-robin switch, that can be imple-
mented in a compact way by exploiting the flexibility of callable objects, as
shown in the following listing:

class RoundRobinSwitchPolicy {
public:
gam::executor_id operator()(const vector<gam::executor_id> &d) {
gam::executor_id res = d[rr_cnt];
rr_cnt = (rr_cnt + 1) % d.size();
return res;

}

gam::executor_id rr_cnt = 0;
};

Built-in dispatchers are listed in Table 5.1. We remark that, as can be
seen in the table, dispatchers embedding policies that differ only by their
input signatures (e.g., RRTo and ByKeyTo) are represented by the same fam-
ily, that is, the same template class (e.g., Switch). This form of polymor-
phism is based on C++ variadic templates, that allows to define parametric
functions with respect to the input signature (e.g., the put functions in List-
ing 5.2). In particular, input arguments are expressed as universal references
(denoted by &&), that allows perfect forwarding (i.e. preserving value cate-
gories). For each push communication, (parametric) input arguments are
forwarded from the outermost call at processor side to the innermost invo-
cation of the dispatching policy.

Moreover, in the proposed implementation, the output signatures of
switch and multicast policies differ in that the former returns a single pro-
cessor, whereas the latter returns a set of processors, as suggested by the
definitions in Sect. 5.1.1. Therefore, a basic policy (i.e., with no additional
arguments) for a multicast dispatcher would have the following format,
where the second parameter represents the set of output processors selected
by the policy:

auto CustomMulticastPolicy =
[](const vector<gam::executor_id> &, vector<gam::executor_id> &) {

/* */
};

Custom Communicators

The dispatching policy is embedded into dispatcher types as a template
parameter. Therefore, defining a custom dispatcher in addition to the built-
in ones amounts to defining a policy in the form of a C++ callable, whose
output signature complies with the dispatcher family. Since policy objects
are built based on their respective default constructor, according to C++

1For the sake of simplicity, we implemented dispatching policies with limited signatures
with respect to their functional counterparts in Sect. 5.1.1. Namely, we omitted all the pa-
rameters but input and output processors from, respectively, signatures (5.1) and (5.6).

5.2. C++ Implementation 79

Type Family Policy Signature Peer(s) Selection

Push Dispatchers

To Switch 2P → P constant
RRTo Switch 2P → P round robin
Broadcast Multicast 2P → 2P all
ByKeyTo Switch 2P × K→ P key-based hashing
RRMulti Multicast 2P → 2P group-wise round robin

Pull Dispatchers

From Merge 2P → P constant
RRFrom Merge 2P → P round robin
FromAny Merge 2P → P any

TABLE 5.1: Built-in dispatchers. For each dispatcher, the ta-
ble shows, from left to right, the C++ type, the family of dis-
patchers it belongs to, the logical signature of its dispatch-

ing policy, and a brief description of its behavior.

they must be DefaultConstructible, that is, they must provide a default
constructor. Note that future C++ versions will allow to directly associate
this kind of compile-time constraints to template classes (and functions), by
means of the concepts language feature.

Given a custom policy of type policy, with its specific input signature,
defining a custom communicator is straightforward and amounts to assem-
bling a class including, as public member named internals, a back end
object of template class CommunicatorInternals, parametrized with the de-
sired pushing and pulling dispatchers. In particular, the type of the pushing
dispatcher should be a family (e.g., Switch) parametrized with policy, such
that the output signature identified by the family complies with the out-
put signature of policy. Finally, some variants of emit should be provided,
with signatures that match the input signature(s) of callable policy objects.
As an example, Listing 5.3 shows the definition of a custom variant of the
Shuffle communicator, where the mapping from keys to output processors
is encoded by a custom hashing function h.

Processors

The implementation of a GAM processor consists mainly in a routine, called
run in the current implementation, that realizes the required dataflow-like
behavior for each type of processor—i.e., Source, Filter, and Sink.

Listing 5.4 shows the run routine for Filter processors. The first and last
instructions (lines 2 and 30) call the initialization and finalization functions
svc_init and svc_end, respectively. As discussed in Sect 5.2.1, both func-
tions are provided by the ProcessorLogic type, that represents the business
logic of the processor. Within the object implementing the processor, an in-
stance of the business logic is constructed and stored as the member object
named logic.

Then the routine enters a loop that repeats the following steps until ter-
mination is detected by receiving an appropriate eos token:

1. Obtain a capability by pulling it from the input communicator (line 9);

80 Chapter 5. Parallel Programming with GAM Nets

/* Custom hash-based dispatching policy. */
auto HashPolicy =
[](const vector<gam::executor_id> &d, const K &key) {

return h(key) % d.size();
};

class CustomShuffle {
public:

/* emit function for private pointers */
template<typename T, typename K>
void emit(gam::private_ptr<T> &&p, const K &key) {

internals.put(std::move(p), key);
}

/* emit function for public pointers */
void emit(const gam::public_ptr<T> &p, const K &key) {

internals.put(p, key);
}

/* Communication back end object */
CommunicatorInternals<Switch<HashPolicy>, FromAny> internals;

};

LISTING 5.3: Custom variant of the Shuffle communicator.

2. Call the svc function (i.e., the kernel) with the obtained capability as
argument (line 14);

We remark that, since communicator objects only provide emit functions,
pulling of capabilities is performed exclusively by the runtime. Conversely,
pushing has to be explicitly invoked within the svc function and no implicit
pushing is performed by the runtime.

The remaining code in run is dedicated to handling termination, accord-
ing to the protocol depicted in Sect. 5.2.1. Exiting the indeterminate loop
occurs either because the svc function returns an eos token (line 17) or be-
cause all the upstream processors have terminated (line 26). To this aim, a
termination token is propagated by broadcasting it to all downstream pro-
cessors, as non-mappable GAM values2 (cf. Sect. 3.4.3), upon exiting the
loop (line 33).

5.3 Net Patterns

In this section, we show how GAM nets can be exploited to implement two
well-known patterns in the context of structured parallel programming,
namely, pipeline (Sect. 5.3.1) and farm (Sect. 5.3.2). On top of the presented
patterns, we introduce active communicators (Sect. 5.3.3) as a mechanism for
providing scalable communication among GAM processors.

2Non-mappable GAM values do not represent references to memory locations, therefore
they are not subject to memory rules. For instance, a non-mappable value wrapped into a
private pointer can be passed to multiple processors, as with broadcasting eos tokens.

5.3. Net Patterns 81

1 void run() {
2 logic.svc_init(); //prelude user code
3

4 in_t in;
5 token_t out;
6

7 while (true) {
8 /* Pull a capability via input communicator. */
9 in = in_comm.internals.template get<in_t>();

10

11 if (!is_eos(in)) { //meaningful input capability
12

13 /* Process the capability by invoking the kernel. */
14 out = logic.svc(in, out_comm);
15

16 if (is_eos(out)) //flagged termination
17 break;
18

19 //kernel returned go_on: continue
20

21 } else { //got eos from input communicator
22 ++got_eos;
23

24 /* Check if all upstream processors terminated. */
25 if (got_eos == in_comm.internals.in_cardinality())
26 break;
27 }
28 }
29

30 logic.svc_end(); //postlude user code
31

32 /* Propagate eos token. */
33 out_comm.internals.broadcast(make_eos<out_t>());
34 }

LISTING 5.4: Routine of Filter processors.

82 Chapter 5. Parallel Programming with GAM Nets

5.3.1 Pipeline

Among the common forms of parallelism, pipelining is a method for par-
allelizing sequential computations by segmenting them into a series of se-
quential stages. Parallelism is achieved by running each stage simultane-
ously on consecutive data elements, that are processed in the same order as
the one in which they enter the pipeline.

Mapping a pipeline to a GAM net is straightforward, since it amounts to
mapping each stage of the pipeline to a GAM processor and attaching the
processors pairwise by means of one-to-one communicators (i.e., OneToOne
in Listing 5.1). As for the type of the processors, all the internal stages

are mapped to filters, whereas the first and the last stage are mapped to a
source and a sink, respectively.

Figure 5.3 illustrates a four stages pipeline in which the business logic
for each stage is as follows:

1. Generate a random stream of numeric values, all within a given range;

2. Filter out the values above a given threshold;

3. Compute the square root;

4. Check the result.

Listing 5.5 shows the code for the RandomStreamGenerator class, the first
stage of the pipeline (RSG in Fig. 5.3). Since it is a source processor, the
svc function within the business logic class is invoked repeatedly by the
runtime, until it signals termination by returning an eos token. For each
activation, until the stream has been completely generated and emitted (i.e.,
unless condition at line 9 holds), a random integer value is generated and
packed into a private pointer (line 13); then the pointer is emitted via the
one-to-one communicator (line 13) and a go_on token is returned to indicate
the computation should proceed (line 14). Note that the private pointer is
moved upon passing it to the emit function.

Listing 5.6 shows the code for the Lowpass class, the second stage of
the pipeline (LP in Fig. 5.3). Since it is a filter processor, the svc function
within the business logic class is invoked by the runtime each time a private
pointer is delivered to the corresponding processor by the upstream com-
municator. The svc function takes as input the pointer to be processed and
converts the pointer from global to local form (line 5), to turn into a regular
shared-memory pointer; then, if the value carried by the pointer is below a
given threshold (line 6), the pointer is casted back to global form, by means
of the private_ptr constructor, and emitted via the second communicator
(line 7); finally, a go_on token is returned to indicate the computation should
proceed to process the next delivered pointer.

Note that, in class LowpassLogic, when the control reaches the end of a
svc instance, the private pointer in its local form (i.e., the local_in object)
is destructed by calling the std::unique_ptr destructor. At this point, the
destruction has no effect if the pointer has been previously casted to global
form (line 5), since the conversion also releases control over the controlled
slot, according to the move semantics we defined for private pointers. On
the other hand, if the destructor is called without the conversion having oc-
curred (i.e., the condition at line 6 did not hold), then the destructor causes

5.3. Net Patterns 83

LPRSG SQRT CHK1-1 1-1 1-1

FIGURE 5.3: GAM net representing a 4-stage pipeline.

the corresponding slot to be unmapped remotely (cf. Sect. 4.2.3) and the
corresponding memory (allocated from the local memory of the upstream
processor) to be freed.

Listing 5.7 shows the code for the SquareRoot class, the third stage of
the pipeline (SQRT in Fig. 5.3). This processor logic implements a straight-
forward functional computation, sometimes referred to as apply-to-all, in
which each value delivered to the processor is accessed (by first convert-
ing the incoming pointer to local form), then a function is computed on the
value, and finally the result is emitted downstream (after being converted
back to global form). Note that, since no releasing is performed on the in-
coming pointer after it has been converted to local form, the slots controlled
by each incoming pointer are un-mapped (thus causing the corresponding
allocated memory to be freed) remotely when the control reaches the end
of the svc function.

Finally, Listing 5.8 shows the code for the Checksum class, the fourth and
last stage of the pipeline (CHK in Fig. 5.3). The svc function within the busi-
ness logic for sink processors is invoked by the runtime according to the
same criterion as for filter processors, that is, each time a pointer is deliv-
ered to the processor. In this case, the svc accesses the value carried by the
incoming pointer and sums it up into a local accumulator, that the processor
logic stores as part of its local state (i.e., the sum member). This logic also
shows how the svc_end function can be exploited to perform some post-
processing, which in this case consists in computing the expected value for
the accumulator (by replicating locally the entire computation performed
by the pipeline) and comparing it to the final value of the sum member. Also
in this case, the slots controlled by each incoming pointer are un-mapped
at the end of the each svc instance.

In Sect. 7.1 we show how GAM pipelines allow to express a variety of
parallel applications.

5.3.2 Farm

Another common form of parallelism arises from executing multiple inde-
pendent tasks in parallel, for instance, filtering multiple items from a stream
in parallel, using functional replication. This form of parallelism is captured
by the farm skeleton, which consists of a master and a pool of workers—farm
is also known as master–workers. The master is responsible for distributing
the input tasks towards the worker pool, as well as for gathering the partial
results to produce the final result of the computation. A worker entity gets
an input task, processes the task, and sends the result back to the master.
Moreover, in order to introduce pipelining between the distribution activ-
ity and the gathering activity, the master is in turn split into two entities,
namely, the scheduler and the collector.

84 Chapter 5. Parallel Programming with GAM Nets

1 class RandomStreamGeneratorLogic {
2 private:
3 unsigned n = 0;
4 std::mt19937 rng; // Mersenne Twister pseudo-random generator
5 std::uniform_int_distribution<int> d {0, LIMIT};
6

7 public:
8 gff::token_t svc(gff::Emitter<OneToOne> &e) {
9 if (n == STREAMLEN) //check for termination

10 return gff::eos;
11

12 ++n;
13 e.emit(gam::make_private<int>(d(rng)));
14 return gff::go_on;
15 }
16

17 void svc_init() {}
18 void svc_end() {}
19 };
20

21 typedef gff::Source<gff::OneToOne,
22 gam::private_ptr<int>,
23 RandomStreamGeneratorLogic> RandomStreamGenerator;

LISTING 5.5: Random stream generator for the GAM
pipeline example.

1 class LowpassLogic {
2 public:
3 gff::token_t svc(gam::private_ptr<int> &in,
4 Emitter<OneToOne> &e) {
5 auto local_in = in.local();
6 if (*local_in < THRESHOLD)
7 e.emit(gam::private_ptr<int>(std::move(local_in)));
8 return gff::go_on;
9 }

10

11 void svc_init() {}
12 void svc_end() {}
13 };
14

15 typedef gff::Filter<gff::OneToOne, gff::OneToOne,
16 gam::private_ptr<int>, gam::private_ptr<int>,
17 LowpassLogic> Lowpass;

LISTING 5.6: Lowpass filter for the GAM pipeline example.

5.3. Net Patterns 85

1 class SquareRootLogic {
2 public:
3 gff::token_t svc(gam::private_ptr<int> &in,
4 Emitter<OneToOne> &e) {
5 float res = std::sqrt(*(in.local()));
6 e.emit(gam::make_private<float>(res));
7 return gff::go_on;
8 }
9

10 void svc_init() {}
11 void svc_end() {}
12 };
13

14 typedef gff::Filter<gff::OneToOne, gff::OneToOne,
15 gam::private_ptr<int>, gam::private_ptr<float>,
16 SquareRootLogic> SquareRoot;

LISTING 5.7: Square root calculator for the GAM pipeline
example.

1 class ChecksumLogic {
2 private:
3 float sum = 0;
4 std::mt19937 rng; //same random sequence as stream generator
5

6 public:
7 void svc(gam::private_ptr<float> &in) {
8 sum += *(in.local());
9 }

10

11 void svc_init() {}
12

13 void svc_end() {
14 float res = 0;
15 for (unsigned i = 0; i < STREAMLEN; ++i) {
16 int x = (int) (rng() % RNG_LIMIT);
17 if (x < THRESHOLD)
18 res += sqrt(x);
19 }
20 assert(res == sum);
21 }
22 };
23

24 typedef gff::Sink<gff::OneToOne,
25 gam::private_ptr<float>,
26 ChecksumLogic> Checksum;

LISTING 5.8: Result checker for the GAM pipeline example.

86 Chapter 5. Parallel Programming with GAM Nets

W

S CD G

W

. . .

FIGURE 5.4: A GAM net representing a farm.

Fig. 5.4 illustrates a GAM net implementing a farm. Each entity of the
farm skeleton is mapped to a GAM processor as follows (letters between
parentheses refer to identifiers in Fig 5.4):

• The farm scheduler is mapped to a source processor (S);

• Each farm worker is mapped to a filter processor (W);

• The farm collector is mapped to a sink processor (C).

The scheduler S is linked to each worker by an one-to-many communi-
cator (D), whereas each worker is linked to the collector C by a many-to-
one communicator (G). Since D is attached to a single input processor, the
pulling policy for D is the constant function that always returns S, as dis-
cussed in Sect. 5.1.1. Symmetrically, the pushing policy for G is the constant
function that always returns C.

As for pushing and pulling policies for, respectively, communicators D
and G, they depend on the specific type of farm being implemented, as we
discuss in Sect. 7.1.

5.3.3 Active Communicators

Let us consider the scenario in which a processor p is linked to a number of
downstream processors by an one-to-many communicator. Let us also as-
sume that the pushing dispatcher is of broadcast type (cf. Sect. 5.2.2), that is,
each incoming pointer is delivered to all the output processors. We remark
that the depicted scenario is not an unrealistic one. For instance, in the con-
text of data analytics, a common pattern consists in analyzing the same data
by means of different operators, which immediately leads to broadcasting
communication in case the operators are deployed on different nodes of a
distributed platform. As a concrete example, in the Apache Storm [109]
framework for tuple processing, broadcasting is the only available model
for data distribution.

Starting from this generic scenario, it can be observed that, by increasing
the number of output processors, p will consume more and more compu-
tational resources to distribute the data to all the processors. Therefore, we
propose active communicators as a general approach for alleviating the de-
picted phenomenon. As illustrated in Fig. 5.5, an active communicator is a
GAM (sub-)net that behaves as a regular (passive) communicator, in that it
routes pointers among the processors. Internally, an active communicator
consists of multiple processors, linked by intermediate communicators ac-
cording to some networking topology (e.g., tree), that actively collaborate
to deliver each pointer.

5.3. Net Patterns 87

Q

P C

Q

. . .

(A) A simple net with a broadcasting
communicator C.

C

P C

C

. . .

C

C

Q

Q

. . .

. . .

(B) The net in (A) after replacing C with
an active communicator, highlighted in

gray.

FIGURE 5.5: Replacement of a broadcasting communicator
with an active communicator shaped as a tree of depth 1.

We remark that, differently from the svc functions considered so far
(e.g., cf. Sect. 5.3.1), the svc functions for the processors within active com-
municators are likely to not access the data carried by the incoming point-
ers. Indeed, the simplest form of such functions amounts to a single call to
the emit function. Therefore, when based on dispatching policies that do
not access the data as well (as in the common case), active communicators
provide scalable, lightweight communication across processors in a GAM
net.

Summary

In this chapter, we introduced GAM nets, a dataflow-like parallel program-
ming model based on GAM. Moreover, we presented a template-based
C++ API and implementation of GAM nets, for programming GAM nets in
terms of parallel stateful processors exchanging smart GAM pointers. Fi-
nally, we showed how two well-known stream-parallel programming pat-
terns, namely farm and pipeline, can be implemented as GAM nets.

89

Chapter 6

Higher-Level Programming
Models on top of GAM

In this chapter, we discuss how GAM can be exploited to build RTSs for dif-
ferent high-level parallel programming models. Although this chapter does
not represent a fully developed contribution, it outlines possible exploita-
tions of the GAM model and implementation presented so far. Therefore,
this chapter should be regarded as a detailed proposal for future work.

In particular, we focus on implementing RTSs for data parallelism and
task parallelism. From an architectural perspective, this amounts to imple-
menting a RTS in terms of stream parallelism, that is the primary type of
parallelism provided by GAM. This approach is extensively used in the
implementation of parallel RTSs. For instance, several implementations
of the data-parallel OpenMP API (cf. Sect. 2.2.4) consist in a thread farm
(cf. Sect. 5.3.2). Similarly, FastFlow uses stream skeletons (i.e., farm and
pipeline) to implement data-parallel operators (cf. Sect. 2.4.2). As for the
realm of distributed systems, the Flink [79] framework for Big Data analyt-
ics relies on a streaming runtime for implementing batch processing.1

On the same line as the mentioned frameworks, we envision to rely on
passing pointers—rather than data—as the basic mechanism for limiting
performance overhead.

This chapter proceeds as follows. In Sect. 6.1, we propose accelerated
data structures for supporting data-parallel programming. In Sect. 6.2, we
discuss the GAM implementation of a framework for task-parallel pro-
gramming.

6.1 Accelerated Data Structures

We propose to target data parallelism in terms of accelerated data structures.
This approach, which stems from programming specialized hardware ac-
celerators such as GPUs, has been proven by Drocco et al. [74] to be effec-
tively applicable in the context of distributed-memory platforms.

We proceed by illustrating the mentioned approach for exploiting clus-
ters in a data-parallel manner (Sect. 6.1.1). Then we depict an API based
accelerated data structures and transformations (Sect. 6.1.2), together with
a GAM-based implementation (Sect. 6.1.3).

1Batch processing is a generic name to denote finite datasets processing, by means of a
combination of data-parallel operations.

90 Chapter 6. Higher-Level Programming Models on top of GAM

GAM Accelerator

. . .
GAM

Sequential Flow

offload

get result

FIGURE 6.1: Cluster-as-accelerator paradigm with GAM.

6.1.1 Cluster-as-Accelerator Paradigm

The advent of specialized hardware accelerators imposed to find suitable
programming models. A successful paradigm for programming accelera-
tors is based on the concept of offloading. According to this approach, the
user focuses on a sequential execution flow, defining only the sequence of op-
erations to be applied to data. Each operation is offloaded to the external
accelerator, where a specialized runtime takes care of executing the opera-
tion, possibly applying specific optimizations for the accelerator at hand.

From the programming model perspective, the depicted scenario leads
to programs consisting in regular sequential code, enriched with two addi-
tional syntactic mechanisms:

• Functions for offloading computations to the accelerator;

• Accelerator-side computations, expressed in some specific language.

Among the most successful examples of accelerator programming, we
consider the Nvidia CUDA framework. A CUDA program consists in plain
sequential C++ code, endowed with invocation of kernels (i.e., accelerator-
side computations). As for expressing kernels, CUDA provides a program-
ming model in which the user specifies the computation to be performed
by each thread, from within a multi-dimensional thread space. This model
allows to easily express data-parallel computations (by mapping threads to
atomic elements of a data structure) and is adopted by similar frameworks
targeting accelerators, such as OpenCL.

Inspired by these frameworks, on the same line as Drocco et al. [74],
we propose to target data-parallel programming by considering a whole
cluster as hardware accelerator, to which data-parallel computations are
offloaded from a sequential execution flow. We refer to this approach as the
cluster-as-accelerator paradigm.

In the setting of GAM nets, offloading a computation to a cluster accel-
erator means triggering the execution of a GAM net, as depicted in Fig. 6.1.

6.1. Accelerated Data Structures 91

6.1.2 C++ Library of Accelerated Containers

We propose to materialize the cluster-as-accelerator paradigm described in
the previous section, into a C++ library, resembling the C++ STL, composed
of containers and transformations. As for accelerator programming in the
context of GPUs, an API based on a similar philosophy of STL-like contain-
ers and transformations is provided by the Nvidia Thrust [112] library.

We refer to the proposed containers as accelerated containers. For in-
stance, the transform operation for the accelerated vector container resem-
bles the recently introduced transform operation for C++ iterators. This
operation is defined according to the following semantics, where a is the
input container and f is an element-wise function:

transform (f , [a1, . . . , an]) = [f (a1), . . . , f (an)]

The reduce operation—that resembles the recently introduced reduce op-
eration for C++ iterators—is defined according to the following semantics,
where a is the input container and ⊕ is a commutative and associative pair-
wise function:

reduce (⊕, [a1, . . . , an]) = a1 ⊕ . . .⊕ an

From the programming model perspective, only f or ⊕ need to be spec-
ified to define, respectively, a transform or a reduce accelerator-side oper-
ation. The parameter functions f or ⊕, that we refer to as transformation
kernels, are expressed in form of arbitrary C++ callable objects, provided
that they do not rely on any local state (e.g., non-capturing lambda)

Listing 6.1 shows a minimal application that squares all the elements in
an accelerated vector, where both accelerated containers and transforma-
tions are assumed to be enclosed in the gal namespace—which stands for
GAM-accelerated library. Note that the proposed API is more similar to
the Thrust API rather than the C++ STL, since the latter relies on contain-
ers (i.e., specific pointers) rather than whole collections. However, future
C++ versions will introduce the range abstraction (i.e., logical views over
sub-collections), thus introducing transformations with an API oriented to
(sub-)collections.

Finally, although we did not consider the API for feeding data into (resp.
extracting data from) an accelerated data collection from (resp. to) an ex-
ternal source (e.g., file), this can be easily imagined on the same line as the
input-output functions provided by most mentioned frameworks for dis-
tributed processing, such as Spark. For instance, a vector could be filled
by reading data from a file sitting in a distributed file system, accessible to
both the sequential flow and the accelerator sides.

6.1.3 Implementation

From the viewpoint of the underlying GAM nets, an accelerated container
consists in a set of smart global pointers, either public or private, possi-
bly distributed among processors in the net. For instance, we consider
as running example a simple run-time architecture, consisting in a master-
workers pattern (cf. Sect. 7.1.4), in which the master maintains an index to
associate a container to the pointers that compose it.

92 Chapter 6. Higher-Level Programming Models on top of GAM

1 int main() {
2

3 /* ... */
4

5 gal::vector<int> a, b;
6

7 /* add elements by calling push_back */
8

9 /* ... */
10

11 gal::transform(a, b,
12 [] (int x) { return x * x; }
13);
14

15 /* ... */
16 }

LISTING 6.1: Minimal application based on accelerated
structures.

Since we rely on offloading from a sequential flow, the operations over
accelerated containers are executed in a Bulk Synchronous Parallel (BSP)
fashion: during the execution of an operation (i.e., the parallel phase in
BSP), the involved pointers are spread among the processors, whereas at
the beginning and at the end of the execution they are centralized under
the master’s control.

We remark that relying on pointers (rather than data) as the atomic com-
ponents of accelerated containers leads to decoupling the logical ownership
(i.e., the capability) over a data location from its physical location in mem-
ory. Although a pointer is free to flow among processors, the pointed mem-
ory is not moved unless the pointer is referenced by means of the local

primitive (cf. Sect. 3.4.3). This aspect can be exploited, for instance, to de-
sign lightweight mechanisms for load balancing, in which only pointers are
distributed (or redistributed) among processors.

Moreover, locality-aware communicators can be exploited to optimize the
implementation according to the principle of near-data processing. At any
time during the execution of an operation, the actual location of the mem-
ory pointed by a GAM pointer can be retrieved from the GAM runtime,
which performs a local lookup to identify the author (cf. Sect. 3.4.2) for
the slot. Therefore, considering the master-workers setting, it is possible to
schedule each computation to a worker in such a way that memory trans-
fers are minimized, for instance, because the worker is the author for the
involved memory slot(s).

6.2 Task-based Parallel Programming

In this section we investigate different architectural layouts in the context of
implementing a task-based parallel execution stack. Specifically, we discuss
how GAM nets can be placed both above and below a task-parallel layer in
the stack.

We proceed by discussing how tasks can be used to model any form of
parallel processing (Sect. 6.2.1). Then we discuss different ways of imple-
menting a task-based RTS on top of GAM nets (Sect. 6.2.2).

6.2. Task-based Parallel Programming 93

Task-based RTS

Parallel Application
(e.g., data-parallelism)

(A) General architecture of a task-
based RTS.

Parallel Application

Task-based RTS

Process Networks

(B) Task-based RTS with PN-based
intermediation.

FIGURE 6.2: Tasks as universal parallel RTS.

6.2.1 Universal Model of Parallelism

Tasks are a pervasive concept in parallel computing. According to a com-
mon acceptation, tasks represent computations to be performed on some
input data to produce some output data. This generic definition allows to to
model any computation in terms of tasks, therefore, tasks can be regarded
as a universal computation model. In particular, any parallel computation
can be described in terms of the underlying parallel activity graph, that is, a
graph in which nodes represent concurrent activities (i.e., tasks) and arcs
represent dependencies between tasks. The parallelism arises implicitly
since independent tasks (i.e., not linked by any dependency arc) can be
performed in parallel.

Considering an hypothetical stack for executing parallel computations,
based on the above principle, tasks sit below any form of parallelism. To
complete the stack, a RTS must be provided, which actually executes par-
allel computations, represented in the form of tasks and their dependen-
cies. In the following, we refer as a task-based RTS the combination of a task
model and the associated RTS. Fig. 6.2 illustrates the task-based stack. In
particular, Fig. 6.2B shows how tasks can be exploited to support the ex-
ecution of Process Network (PN)-like parallel programs, including GAM
nets.

As we discussed in Sect. 2.2.4, a number of frameworks have been pro-
posed that couple a high-level programming model with task-based RTS.
All those frameworks share the architecture depicted in Fig. 6.2A, whereas
they vary in the parallel programming model they expose (i.e., the top level
in Fig. 6.2A).

6.2.2 Implementing a Task-based RTS

Although, as discussed in the previous section, it is possible to represent
any parallel computation in terms of task graphs, tasks cannot be placed
at the bottom layer of the parallel execution stack, at least when consider-
ing conventional computing platforms. To be performed, a parallel com-
putation eventually has to be matched with the existing parallel hardware,
which in general consists of a finite set of inter-connected resources (e.g.,
the nodes of a cluster). Therefore, the complete picture for a task-based
parallel execution stack, illustrated in Fig. 6.3, results from considering the

94 Chapter 6. Higher-Level Programming Models on top of GAM

Task-based RTS

Parallel Application
(e.g., data-parallelism)

Software
Network Layer

Hardware
Network Layer

FIGURE 6.3: Complete task-based parallel RTS.

partial stack in Fig. 6.2 and adding an intermediate layer between the task-
based RTS and the hardware layer, at the very bottom of the stack. Since the
additional layer must be characterized by an internal structure that resem-
bles the underlying hardware network (i.e., a finite set of inter-connected
software nodes), we refer to this layer as Software Network Layer (SNL).

In the following, we present some common organizations for SNL net-
works and we discuss how they can be implemented as GAM programs
(e.g., GAM nets).

Homogeneous SNL organization

The most straightforward network organization is the complete graph, in
which each SNL node can communicate with any other node via a direct
link. We refer to this organization, depicted in Fig. 6.4A, as all-to-all.

This simple organization is commonly exploited to design a homoge-
neous task-based RTS, in which all nodes are equivalent, in the sense that
they play the same role. According to homogeneity, a task can be scheduled
for execution on any node and the task graphs are cooperatively maintained
by the nodes to determine which task(s) can be executed. To this aim, some
distributed protocol is needed for coordinating the access to task graphs,
since they are regarded as distributed data structures.

Usually, scheduling is coupled with work stealing [81], a mechanism to
provide load balancing in case of dynamic workloads (i.e., fork/join execu-
tion model). In particular, two strategies for work stealing are commonly
adopted, namely child stealing and parent stealing (aka. continuation steal-
ing), depending on which branch of the fork is made available for stealing.

Moreover, the concept of affinity is exploited to ensure locality-aware
scheduling. For instance, if a new task t′ is scheduled by node n as side
effect during the execution of another task t,2 then t′ should preferably be
scheduled on n, at least in the case where t′ accesses the same data as t.

By following the same approach as we discussed for realizing an all-to-
all task-based SNL, a number of homogeneous organizations can be con-
sidered, in order to match the underlying hardware network. For instance,
a mesh organization is shown in Fig. 6.4B.

2This scenario is also referred to as dynamic task graph.

6.2. Task-based Parallel Programming 95

(A) An all-to-all SNL organization with six nodes.

(B) A mesh SNL organization with six nodes.

FIGURE 6.4: Homogeneous SNL organizations.

As a concrete example of the depicted concept, we consider the im-
plementation of StarPU [31], a task-based RTS supporting heterogeneous
platforms, on top of which a number of applications have been imple-
mented [34, 3]. To schedule tasks over a distributed platform, StarPU relies
on MPI communications primitives [30]. In this case, the whole program is
translated into an MPI program, which is conceptually analogous to a ho-
mogeneous SNL in which each node (i.e., a MPI rank) communicates with
(a subset of) all other nodes.

Similarly, any PGAS framework (cf. 2.2.3) providing some task-based
abstraction relies on the same mechanism. For instance, remote procedure
calls (i.e., async) in UPC++ [131] and HPX [90] are implemented by means
of an underlying communication subsystem (i.e., a SNL), namely GASnet
and parcel, respectively.

GAM Implementation Let us consider the problem of implementing a
homogeneous SNL in terms of GAM programs. First, we let tasks be repre-
sented by smart global pointers (cf. Ch. 4), as input and output data asso-
ciated to the task. Scheduling a task means passing all the capabilities as-
sociated with the task—thus including the capabilities over the input and
output data associated to the task—to the node on which the task is be-
ing scheduled. Note that, since each input value v is mapped to a GAM
slot, which is in turn mapped to either a public or a private pointer, v is
always accessed in either a read-only or a read-write manner, respectively.

96 Chapter 6. Higher-Level Programming Models on top of GAM

Therefore, the access model for each input value can be regarded as an in-
trinsic attribute of the memory location.3 Considering GAM nets, an exten-
sion is needed to the model discussed in Sect. 5.1.2, to support the scenario
with multiple communicators attached to the same processor. With such
an extension, each processor can be attached to a one-to-many communi-
cator, with a simple dispatching policy that allows to deliver each task to
the processor selected by the scheduling algorithm. Finally, the mentioned
distributed protocols (e.g., for managing the distributed task graph) can be
implemented by means of non-mappable GAM values, whereas affinity can
be realized by locality-aware communicators, as discussed in Sect. 6.1.3.

Non-Homogeneous SNL organizations

Another common organization for task-based RTS is the master-workers.
In contrast with homogeneous organizations, master-workers organization
stem from considering nodes that play different roles with respect to the
execution of task graphs.

In particular, the master holds exclusive knowledge and responsibility
over the task graph to be executed. Moreover, it is the master’s role to keep
track of each task’s state (e.g., not scheduled yet, running, completed, etc.),
to determine which task(s) can be executed, according to the dependen-
cies indicated by the graph. Conversely, workers execute tasks in a “blind”
manner, without any awareness of the global state of the computation. Each
worker simply receives one task from the master and, after having executed
that task, notifies the master of its completion.

Relying on a master-workers organization has the attractive property,
from the programmability perspective, of centralizing the scheduling logic
in a single code entity (i.e., the master), thus simplifying the implemen-
tation of custom scheduling policies, based on the specific application at
hand. For instance, widespread adoption of this organization can be ob-
served in the context of RTS for data analytics frameworks, as we show in
Sect. 7.1.4.

We regard master-workers organizations as a simple form of non-hom-
ogeneous organizations. Orthogonally to homogeneous organizations, in
which all functionalities are distributed among all the nodes, non-hom-
ogeneous organizations promote code compartmentalization, by localizing
some specific functionality (e.g., scheduling) at specific nodes (e.g., the mas-
ter).

GAM Implementation In terms of GAM nets, a master-workers organi-
zation is a farm pattern with an additional feedback channel through which
workers send notifications of task completions back to the master. We dis-
cuss this approach at the end of Sect. 7.1.4 in the context of RTS for data an-
alytics, where a task graph is generated from a DAG of operations over an
input data collection. We remark that active communicators (cf. Sect. 5.3.3)
can be exploited to alleviate the drawback on performance caused by cen-
tralization, drawback intrinsic to non-homogeneous organizations.

3This desirable property, commonly referred to as no-aliasing, is widely exploited by com-
pilers since it allows a number of optimizations. However, in that scenario, no assumptions
can be made a priori on the access model for a given memory location, hence no-aliasing
has to be explicitly guaranteed by the programmer.

6.2. Task-based Parallel Programming 97

Summary

In this chapter, we explored the exploitation of GAM programs—especially
GAM nets—in the context of implementing RTSs for higher-level parallel
programming models. Specifically, we discussed the implementation of
data parallelism, by means of the cluster-as-accelerator paradigm, and the
implementation of task parallelism, by exploring different organizations for
GAM programs at the basis of task-based RTSs.

99

Chapter 7

Experimental Evaluation

In this chapter, we show the effectiveness of the approach discussed in this
thesis, with respect to two fundamental dimensions: the expressiveness car-
ried by the proposed API, along with the associated parallel programming
models, and the performance sustained by the stacked implementation.

To the first aim (Sect. 7.1), we focus on porting existing shared-memory
applications to GAM nets. In particular, we highlight the effectiveness of
relying on pointers as a useful programming abstraction for reducing the
gap between the shared-memory and the distributed-memory program-
ming models.

To the second aim (Sect. 7.2), we evaluate the performance exhibited
by two stream processing applications, since they represent the most natural
target for GAM nets. Although we discussed how we expect smart GAM
pointers to impact scalability (Sects. 4.1.1 and 4.2.1 for public and private
pointers, respectively), we are not able to confirm experimentally the spec-
ulated behaviors. Therefore, we regard this task as the most urgent future
work.

7.1 Expressiveness

In this section, we demonstrate the expressiveness of GAM nets by showing
the implementation of some use cases, from the following application do-
mains: video processing (Sect. 7.1.1), financial data processing (Sect. 7.1.2),
systems biology simulation (Sect. 7.1.3), and data analytics (Sect. 7.1.4).

7.1.1 Two-Phase Video Restoration

In the field of signal processing, in particular image and video processing,
computations are commonly represented as a chain of successive operators
(or phases), that progressively transform input signals into filtered signals.

For instance, Aldinucci et al. [23] proposed a two-phase filter for remov-
ing “salt and pepper” noise, together with a shared-memory implementa-
tion exploiting both multi-core and GPU parallelism for restoring a single
image. The filter was extended by Aldinucci et al. [21] to target video sig-
nals (i.e., ordered streams of images), possibly exploiting different GPUs for
different frames.

In the same vein, we consider the platform generally known as cluster of
GPUs, composed of a network of identical hosts, each attached to a GPU.1

We can exploit the depicted platform, in terms of GAM nets, by means of

1For the sake of simplicity, we do not treat the case of multiple GPUs attached to a single
host, but such a generalization would be straightforward.

100 Chapter 7. Experimental Evaluation

GAM worker

I ORR RR

. . .

mutli-core/GPU

filterpre post

GAM worker

mutli-core/GPU

filterpre post

FIGURE 7.1: GAM net for video restoration on clusters of
GPUs.

an ordering farm, in which each frame of the input video is processed by one
of the GPU-accelerated hosts. The ordering semantics is embedded into
the farm communicators, by letting both the distributing and the gathering
communicators (respectively, D and G in Fig. 5.4) agree on the sequence ac-
cording to which workers are selected for, respectively, pushing and pulling
frames.

The depicted GAM net is illustrated in Fig. 7.1. A source processor is de-
puted to provide the input video by reading frames from a source, such as
a camera or a file. Each frame is assigned to a worker processor, according
to the round-robin distribution provided by the distributing communica-
tor. When a frame pointer is delivered to a worker, the pointer is accessed
and its content is pre-processed (the “pre” box) in order to make it com-
patible with the existing shared-memory filter (highlighted in blue). For
instance, if each frame is represented and exchanged at GAM level as a con-
tiguous memory chunk, it would be necessary to wrap each chunk into a
data structure of the type requested for interfacing with the shared-memory
filter. Dually, after being filtered, each frame is post-processed (the “post”
box), in order to extract a GAM-friendly representation, and sent down-
stream via a gathering communicator, that maintains the original order as
the input stream, as discussed above. Finally, a sink processor is deputed
to manage the output stream, for instance by storing it to a file.

7.1.2 High-Frequency Stock Option Pricing

The analysis of financial data by means of stream processing is a long stand-
ing approach. In particular, we consider the scenario in which the input
data enter the processing system at a high rate, which results in processing
high-frequency financial data. For example, this problem has been formu-
lated in terms of the farm pattern (cf. Sect. 5.3.2) by De Matteis et al. [66].
Similarly, Misale [105] implemented a filter for financial streams on top of
the PiCo framework (cf. 7.1.4), using mainly map and reduce operators.

Along the same line as the mentioned proposals, we implemented a n-
worker GAM farm that, given an input stream of stock options represented
as tuples that include the stock name, computes the price of each option by

7.1. Expressiveness 101

calculating the well-known Black–Scholes formula.2 We refer to this bench-
mark as Stock Option Pricing (SOP). We implemented the farm in such a
way that the options for a given stock (identified by the stock name) are
all processed by the same worker. Although not strictly required—unless
some ordering constraint is imposed—this partitioned processing allows to
generalize the workers from functions (thus stateless) to arbitrary, possibly
stateful operators. To this aim, we exploited the key-partitioning commu-
nicator (BKT in Fig. 7.4a) as scheduler-side communicator, by passing the
stock name upon calling the emit function (cf. Sect. 5.2.2) from the sched-
uler.

7.1.3 CWC Systems Biology Simulator

In recent years, a growing number of systems biology problems have been
tackled by means of simulation, that provides accurate results but at the
expense of considerable computational costs. Moreover, costs increase even
further when the complete simulation-analysis workflow is considered.

In this context, Aldinucci et al. [7] proposed a FastFlow implementation,
targeting multi-core platforms, of a simulation-analysis workflow for sys-
tems biology, based on the CWC formalism by Coppo et al. [58].

We propose an implementation of the simulation-analysis workflow in
terms of GAM net, as illustrated in Fig. 7.2. A source processor (S) gener-
ates and distributes n random seeds, where n is the number of simulation
instances to be performed. Each simulation worker executes a simulation
engine, that outputs a stream of simulation outcomes, sampled at a fixed
rate τ .

The aligner processor gathers the samples according to a FromAny gath-
erer (FA) and produces as output a stream of snapshots. The k-th snapshot,
with k > 0, that we denote as s(k), is the set of all the simulation outcomes
sampled at kτ . Therefore, it corresponds logically to the following tuple,
where si(k) is the k-th outcome of the i-th simulation instance (i.e., the out-
come sampled at time kτ):

s(k) = {s1(k), . . . , sn(k)}

The analysis of simulation samples is performed by statistical workers
in a sliding window manner. For each sampling time kτ , a number of statisti-
cal filters is computed over a time-neighborhood of s(k), that we denote as
σ(k), defined as follows, where w is the width3 of the window:

σ(k) =
[
s
(

k− w
2

)
, . . . , s(k), . . . , s

(
k +

w
2

)]
The sliding behavior arises since, given two consecutive sampling times
k1τ and k2τ , the two corresponding windows overlap by sharing all the
elements but the extreme ones:

|σ (k1) ∩ σ (k2)| = w− 1

2This benchmark is the GAM implementation of the blackscholes benchmark from the
PARSEC suite [35].

3The width of a window is an even number that represents the number of items that falls
in the window, in addition to the item at the center of the window, thus w = |σ(k)| − 1.

102 Chapter 7. Experimental Evaluation

Sim. Worker

S ORR RR

CWC

Simulation

Sampling

Sim. Worker

CWC

Simulation

Sampling

FA

Stat. Worker

CWC

Windowed

Analysis

Stat. Worker

CWC

Windowed

Analysis

Aligner

Trajectory

Alignment

WF

. . .

. . .
FIGURE 7.2: GAM net for the CWC simulation-analysis

workflow.

This form of windowed processing has been implemented in a farm-
based setting by De Matteis et al. [67]. In the proposed implementation, de-
noted as Window-Farming (WF), each worker maintains a windowed view
over the stream generated by the aligner, where windows across different
workers may overlap. Therefore, each snapshot s(k) is shared by a set of
workers, namely, those building at least a window that includes s(k).

The implementation of WF in terms of the farm pattern, from the per-
spective of effective memory management, has been studied by Torquati et
al. [126], where C++ shared pointers are exploited to couple the depicted
sharing mechanism with automatic memory management. In the same
vein, we implement WF in terms of a GAM farm pattern (the dotted gray
triangle in Fig. 7.2), relying on public pointers (cf. Sect. 4.1) to represent
snapshots, since they are shared by different workers. Moreover, we en-
code the WF distribution logic in the multicast communicator linking the
aligner to statistical workers (WF). On the same line as the implementation
proposed by Torquati et al. [126], each snapshot is delivered by WF to all
the statistical workers that build at least a window that includes s(k).

Finally, since WF realizes a round-robin distribution of windows among
statistical workers, the same mechanism discussed in Sect. 7.1.1, based on
gathering according to a round-robin communicator (RR), can be exploited
to preserve the order among samples.

We remark that the proposed approach can be generalized to target any
similar simulation-analysis workflow, since it treats all the CWC-specific
logic as black boxes (highlighted in blue in Fig. 7.2), for both the simulation
and the analysis components.

7.1.4 PiCo Data Analytics Framework

In the context of applications for data analytics, with particular focus on
the realm of so-called Big Data processing, a number of frameworks have
recently been proposed (e.g., Google MapReduce [68], Apache Spark [128,
129], Apache Storm [109], Apache Beam [4, 33]), in which processing is ex-
pressed in terms of APIs with different flavors.

Misale et al. [107] proposed a unifying model, based on the dataflow
model, according to which any application expressed in one of the men-
tioned frameworks can be formulated, at abstract level, in terms of a graph
of functional-style operators. On top of the unifying model, Misale [105]
proposed PiCo, a DSL, whose semantics has been formalized by Drocco et

7.1. Expressiveness 103

f gC
a b = f(a) c = g(b)

allocate b

free a

allocate c

free b

FIGURE 7.3: Decoupled allocation and freeing of PiCo
micro-batches.

al. [76], endowed with a C++ implementation. In the proposed implemen-
tation, shared-memory parallelism is exploited by mapping an application
to a composition of FastFlow farms and pipelines. In particular, the farm
pattern is exploited to express the parallelism both between operators (e.g.,
computing multiple statistic measures on the same data) and within an op-
erator (e.g., parallel implementation of the map function). Data collections to
be processed, either (bounded) data sets or (unbounded) streams, are split
into micro-batches, that are streamed to the application as indivisible items.

Replicating the depicted approach in terms of GAM nets is straightfor-
ward, since farms and pipelines can be expressed (cf. Sects. 5.3.2 and 5.3.1,
respectively). In particular, the automatic memory management provided
by smart global pointers (cf. 4.3) reduces the complexity arising from de-
coupling allocation and freeing of micro-batches, as depicted in Fig. 7.3. In
general, a micro-batch (e.g., b in the figure) is allocated by the first operator
that outputs it (f in the figure), whereas it gets freed by the downstream
operator that processes it (g in the figure) to produce another micro-batch.

Partitioning

A common scenario for data analytics applications consists in dealing with
data collections representing multiple sub-collections, in the form of parti-
tioned collections. For instance, considering tuple processing, such a par-
titioning is commonly defined by grouping tuples carrying the same value
at some field of the tuple, generally referred to as the key.

In the context of GAM nets for data analytics, a partitioning-aware op-
erator can be implemented as a farm, in which the distribution communi-
cator is based on the ByKeyTo dispatcher (cf. Tab. 5.1). In this way, all the
tuples belonging to the same partition are delivered to the same processor,
providing two desirable effects. First, the depicted schema simplifies sup-
porting a partitioned state (i.e., a load/store memory slot for each group),
since precluding tuples from the same group to be processed by different
processors guarantees that no concurrency occurs over the state between
different processors. Second, this schema preserves the order among items
of the same group, thus eliminating the need for enforcing it, for instance
by an ordering farm.

Shuffling

In addition to the discussed implementation, based on farms and pipelines,
Misale [105] proposed graph refactoring as a general technique for optimiz-
ing execution graphs, e.g., by removing points of centralization.

104 Chapter 7. Experimental Evaluation

map p. reduce

m

FA

m

. . .

r

S BKT

r

. . .

(A) Naive GAM net for map followed by partitioning-aware reduce.

m

FA

BKT

m

. . .

r

r
. . .

(B) The net from (A), in compact form.

FIGURE 7.4: Compacting a GAM net by introducing a shuf-
fling communicator.

For instance, the graph for a map operator followed by a partitioning-
aware reduce operator can be compacted, as shown in Fig. 7.4, in terms
of GAM nets. In the example, the sequence composed by the gathering
communicator FA (based on a FromAny pulling dispatcher), the scheduler
processor S, and the distributing communicator BKT (based on a ByKeyTo

pushing dispatcher) is collapsed into a single communicator (based on a
pulling FromAny and a pushing ByKeyTo dispatchers, respectively).

In the resulting data distribution schema, each data item coming from
one of the “left-hand side” processors is delivered to one of the “right-
hand side” processors, according to the partitioning logic. This schema,
commonly referred to as shuffling, is a common pattern in the context of
data analytics. For instance, a MapReduce application [68] consists of two
successive steps, referred to as Map and Reduce, respectively. However,
between these two steps, an additional Shuffle step is performed, where
worker nodes redistribute data produced by the Map step, based on the
output keys, such that all data with the same key are processed by the same
Reduce worker node.

Master-Workers

The design principle underlying PiCo implementation consists in mapping
the components of data analytics application to a low-level network, whose
nodes are mapped in turn to computational resources. An orthogonal ap-
proach, adopted by a number of existing frameworks, consists in represent-
ing a data analytics application as DAGs of operations and treat the DAG
as a task graph, which is a set of computations connected by data dependen-
cies. The task graph is then executed by a master-workers RTS, that is, a
low-level network that acts as an interpreter.

The master-workers approach for data analytics can be implemented in
terms of a GAM farm, as depicted in Fig. 7.5. With respect to the generic

7.2. Performance 105

M D

Analytics

DAG W

FA

W

. . .

FIGURE 7.5: GAM master-workers RTS for data analytics.

farm pattern discussed in Sect. 5.3.2, in a master-workers DAG interpreter,
the farm scheduler and collector (i.e., the master components) collapse into
the same processor, that we refer to as the master. The master processor (M)
holds the exclusive access and responsibility over the data analytics DAG to
be executed, whereas workers (W) execute tasks as instructed by the mas-
ter. The task scheduling policy, that should be designed according to the
underlying networking platform, is encoded in the dispatching communi-
cator (D), whereas task gathering is likely to be implemented as a simple
FromAny communicator (FA).

In Sect. 6.2, we provide some further details about how task-based RTSs
can be implemented in terms of GAM nets.

7.2 Performance

In this section, we provide a preliminary evaluation of the performance sus-
tained by our model and its C++ implementation. To this aim, we measured
the performance of two applications (the Two-Phase Video Restoration and
the High-Frequency Stock Option Pricing in Sect. 7.1), when executed on
three small clusters and we characterize them in in terms of relative speedup
as well as absolute speedup (with respect to baseline implementations).

This section proceeds as follows. In Sect. 7.2.1, we detail the experimen-
tal setting. In Sect. 7.2.2, we report the measured performances. Finally, in
Sect. 7.2.3, we discuss the observed results.

7.2.1 Setting

The following platforms have been used for our experimental evaluation:

• The Open Computing Cluster for Advanced data Manipulation su-
percomputer (OCCAM) [127, 6] was designed and is managed by the
University of Torino and the National Institute for Nuclear Physics.
For our experiments, we used 4 GPU nodes from OCCAM, equipped
with 2x sockets of 12-core Intel Xeon Processor E5-2680 v3 @2.1Ghz,
128GB (8x16GB) DDR4 RAM, and 2x Nvidia K40 on PCI-E Gen3 x16.

• The Research92 cluster (r92) was designed and is managed by the IBM
T.J. Watson Research Center (NY). For our experiments, we used 8
nodes from r92, equipped with 2x sockets of 10-core IBM POWER8
Processor @3.5Ghz, 256GB 8x Memory Riser (4x8GB) DIMMs, and 1x
Nvidia GP100 SXM2 on PCI-E Gen3 x16.

106 Chapter 7. Experimental Evaluation

• The Paradigm cluster at the Computer Science department of Torino.
It is composed of 4 low-cost low-energy nodes, equipped with an Intel
Atom Processor C-2750 @2.40 GHz and 16GB RAM.

All the considered platforms are small-scale representations of common
clusters from the HPC world. In particular, OCCAM and r92 represent the
architecture referred as “clusters of GPUs”, in which multiple nodes, each
attached to one or more GPU accelerators, are interconnected by means of
some networking hardware. The paradigm cluster represents a common
architecture among clusters for data processing, characterized by a large
number of commodity workstations.

To demonstrate the flexibility with respect to the networking hardware,
enabled by implementing the GAM stack on top of libfabric, we select a dif-
ferent network fabric among those available on each considered platforms.
Specifically, we selected InfiniBand (i.e., the verbs libfabric provider) on
OCCAM, Ethernet (i.e., the sockets libfabric provider) on r92, and A3Cube
RONNIEE (i.e., the experimental dpa libfabric provider, developed by In-
audi [86]) on Paradigm.

For all the measurements in the following, we report the median value
of 100 observations. For simplicity, we omit any additional statistical infor-
mation, since all the measurements exhibited negligible variance.

7.2.2 Results

Two-Phase Video Restoration

In Sect. 7.1.1, we discussed the implementation, in terms of GAM nets, of
the two-phase video restoration filter proposed by Aldinucci et al. [21]. In
particular, from the existing shared-memory implementation, supporting
both multi-core and GPU acceleration, we derived a GAM net implementa-
tion that can be deployed on a cluster of multi-core nodes, each attached to
a number of GPUs.

The proposed implementation, illustrated in Fig. 7.1 (p. 100), is based
on a GAM ordering farm, whose n worker processors embed the shared-
memory implementation, that in turn exploits m GPUs for each worker.
Each processor in the farm (i.e., a scheduler, n workers, and a collector)
is deployed on one of the cluster’s node, thus using n + 2 nodes. When
the number of processors exceeds the number of available nodes, multiple
processors gets mapped to the same node. In the following, we refer to n as
the parallelism degree.

We executed the filter over short video streams of 2048 frames at two
resolutions, namely VGA (i.e., 640×480) and 720p (i.e., 1280×720). For each
resolution, we considered two levels of noise corrupting the input stream,
namely low (30%) and high (70%), representing the relative amount of cor-
rupted pixels.

We consider the throughput, measured in filtered frames per second,
as the reference performance metric. Denoting by tn the throughput sup-
ported by the configuration with n workers, we define the relative speedup
as follows:

σ(n) =
tn

t1
(7.1)

7.2. Performance 107

Figs. 7.6 and 7.7 show the relative speedup exhibited by the GAM filter,
with respect to the number of worker processors, on the OCCAM and r92
clusters, respectively. In both cases, the filter has been configured to exploit
one GPU for each worker (i.e., m = 1).

To evaluate the true performance gain, thus taking into account the
overhead imposed by the GAM runtime, we also consider the (absolute)
speedup. Given a reference implementation, that we refer to as the baseline,
we define the absolute speedup over the baseline as follows, where tb is the
throughput supported by the baseline:

s(n) =
tn

tb
(7.2)

For the video restoration filter, we used the existing (parallel) shared-
memory application by Aldinucci et al. [21] as the baseline implementation,
written in FastFlow and also exploiting GPU acceleration. Figs. 7.8 and 7.9
show the absolute speedup exhibited by the GAM filter, with respect to the
number of worker processors, on the OCCAM and r92 cluster, respectively.
In both cases, the filter has been configured to exploit one GPU for each
worker (i.e., m = 1).

Finally, Fig. 7.10 shows the maximum throughput observed for the filter,
exploiting all the available parallelism, including multiple GPUs for each
worker (i.e., m = 2) on the OCCAM cluster.

High-Frequency Stock Option Pricing

We executed SOP over the native input dataset from PARSEC, to which we
added a random stock name to each option. As in the previous benchmark,
we consider the supported throughput, measured in processed tuples per
second, as the reference performance metric.

Figs. 7.11 and 7.12 show the relative speedup exhibited by SOP, with
respect to the number of worker processors, on the OCCAM and Paradigm
clusters, respectively.

To evaluate the performance in terms of absolute speedup (Eq. 7.2), we
consider as baseline a shared-memory FastFlow implementation that ex-
ploits pipelining to hide the latencies induces by reading and writing the
stock options stream. Figs. 7.13 and 7.14 show the speedup exhibited by
SOP, with respect to the number of worker processors, on the OCCAM and
Paradigm clusters, respectively.

7.2.3 Discussion

Two-Phase Video Restoration

The GAM filter exhibits almost linear relative speedup, for both VGA and
720p resolutions, on the OCCAM cluster (Fig. 7.6). Relative speedup is sub-
linear on the r92 cluster (Fig. 7.7), arguably due to the known limitations in
the Ethernet providers for libfabric. As for absolute speedup (Figs. 7.8 and
7.9), on both platforms it is almost identical to the relative speedup, thus
demonstrating that the overhead introduced by GAM nets for this bench-
mark is negligible.

108 Chapter 7. Experimental Evaluation

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(A) VGA resolution.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(B) 720p resolution.

FIGURE 7.6: Relative speedup of GAM video restoration
filter on four GPU nodes from the OCCAM cluster, with a

Nvidia K40 GPU per node.

7.2. Performance 109

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(A) VGA resolution.

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(B) 720p resolution.

FIGURE 7.7: Relative speedup of GAM video restoration fil-
ter on eight nodes from the r92 cluster, with a Nvidia GP100

GPU per node.

110 Chapter 7. Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(A) VGA resolution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(B) 720p resolution.

FIGURE 7.8: Absolute speedup of GAM video restoration
filter on four GPU nodes from the OCCAM cluster, with a

Nvidia K40 GPU per node.

7.2. Performance 111

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(A) VGA resolution.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Parallelism Degree

30% noisy
70% noisy

(B) 720p resolution.

FIGURE 7.9: Absolute speedup of GAM video restoration
filter on eight nodes from the r92 cluster, with a Nvidia

GP100 GPU per node.

112 Chapter 7. Experimental Evaluation

 0

 100

 200

 300

 400

 500

VGA 720p

T
h

ro
u

g
h

p
u

t
(f

p
s
)

Resolution

30% noisy
70% noisy

(A) Four GPU nodes from the OCCAM cluster, with 2x Nvidia K40 GPUs per node.

 0

 100

 200

 300

 400

 500

VGA 720p

T
h

ro
u

g
h

p
u

t
(f

p
s
)

Resolution

30% noisy
70% noisy

(B) Eight nodes from the r92 cluster, with a Nvidia GP100 GPU per node.

FIGURE 7.10: Maximum performance of GAM video
restoration filter, with the maximum number of nodes for
each cluster, and the maximum number of GPUs for each

node.

7.2. Performance 113

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Parallelism Degree

FIGURE 7.11: Relative speedup of SOP on four GPU nodes
from the OCCAM cluster.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

R
e

la
ti
v
e

 S
p

e
e

d
u

p

Parallelism Degree

FIGURE 7.12: Relative speedup of SOP on the four-node
Paradigm cluster.

114 Chapter 7. Experimental Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Parallelism Degree

FIGURE 7.13: Absolute speedup of SOP on four GPU nodes
from the OCCAM cluster.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Parallelism Degree

FIGURE 7.14: Absolute speedup of SOP on the four-node
Paradigm cluster.

7.2. Performance 115

FIGURE 7.15: Restoration filter quality: (first row, left to
right) baboon image affected by 50%, 70% and 90% of salt-
and-pepper noise; (second row) restoration results (from

Aldinucci et al. [21]).

Still for this benchmark, we also reported the absolute performance
(Fig. 7.10), since it is a crucial aspect when considering the real-time na-
ture of video processing. The implemented filter is based on adaptive noise
detection and edge-preserving restoration, known to yield high-quality re-
sults (cf. Fig. 7.15) but at the price of high computational costs. In this con-
text, the throughput sustained by our GAM implementation is nearly 100
fps (frames per second) in the worst case (i.e., 720p resolution with 70%
noisy rate), largely above the usual threshold for real-time processing (viz.,
25 fps).

Finally, we remark that the reported maximum throughput is identical
on both platforms, since the maximum available parallelism degree for the
restoration phase is n×m (i.e., the number of worker nodes times the num-
ber of GPUs per node), which is 8 in both cases.

High-Frequency Stock Option Pricing

Both relative and absolute speedup exhibits the same linear trend as we ob-
served for the previous benchmark, at least as long as the total amount of
available parallelism on the cluster nodes is able to sustain the parallelism
requested by the number of parallel executors (i.e., the number of farm pro-
cessors, referred as n). We observe this phenomenon on Paradigm, where
the speedup (Figs. 7.12 and 7.14) is linear up to n = 6, whereas it drops with
n = 8. Conversely, the speedup keeps growing linearly on OCCAM within
the considered range for n (Figs. 7.11 and 7.13), due to the greater amount
of available parallelism.

As for the absolute maximum throughput measured within the con-
sidered deployments, the GAM implementation of SOP is able to process
about 500000 and 100000 stock options per second, on the OCCAM and
Paradigm platform, respectively.

116 Chapter 7. Experimental Evaluation

Summary

In this chapter, we provided a preliminary evaluation of the proposed GAM
stack, from the performance viewpoint, by executing two non-toy bench-
marks over three different configurations of small clusters. We incidentally
showed how the proposed GAM stack supports both heterogeneous HPC
platforms (by running a benchmark on two cluster-of-GPUs configurations)
and various network fabrics (by selecting a different networking hardware
for each considered cluster).

117

Chapter 8

Conclusions

In this thesis, we proposed a constructive approach for providing support
for distributed platforms to mainstream C++ programming, with a focus
on large-scale HPC platforms. To this aim, we designed a stack (Fig. 1.1)
of three programming models, each coupled with a C++ API and its im-
plementation. To the best of our knowledge, each stack layer represents a
standalone research contribution, as we discuss in the following.

In the bottom layer (Ch. 3), we proposed GAM (Global Asynchronous
Memory), a parallel programming model combining features of both the
shared-memory and message-passing models, thus overcoming the traditional
dichotomy between these two paradigms. Instead of a full-fledged mem-
ory interface (i.e., load/store), we proposed a memory model with a stricter
semantics, in which each memory location is either public or private, and
so it can only be accessed in a single-assignment or an exclusive manner, re-
spectively. This eliminates read-write conflicts, allowing to achieve sequen-
tial consistency without any coherence support underneath, thus avoiding
the major limiting factor for scalability in formerly proposed DSM models.
Still along the line of supporting HPC platforms, we implemented GAM on
top of libfabric, a library for network programming focused on large-scale
systems, providing seamless deployment on a wide variety of modern net-
working standards (e.g., InfiniBand, Intel Omni-Path). In the context of par-
allel programming models, GAM is the first attempt at providing sequential
consistency for the distributed-memory system model, without relying on
any hardware or software coherence.

In the second layer (Ch. 4), we proposed smart GAM pointers as an exten-
sion of C++ smart pointers for referencing GAM memory locations. Smart
GAM pointers provide automatic management of dynamic GAM memory,
thus guaranteeing the absence of both memory leaks and dangling pointers,
at the level of the whole distributed system at hand. We matched the dis-
tinction between public and private GAM locations with that between C++
shared and unique pointers, resulting in public and private pointer APIs,
respectively. From a programming perspective, the mechanism of cast-
ing smart GAM pointers to plain C++ pointers (and vice versa) allows to
target distributed platforms by means of existing C++ code, with mini-
mal programming effort. Smart GAM pointers are the first attempt at ex-
panding automatic memory management to the whole address space in a
distributed-memory context.

In the third layer (Ch. 5), we proposed GAM nets, a parallel program-
ming model inspired by FastFlow [17]. Programming in GAM means de-
signing applications as streaming networks of processors, whose interactions
are based on exchanging pointers. As demonstrated by several works in the

118 Chapter 8. Conclusions

literature, this model allows to implement efficient RTSs for a wide variety
of higher-level programming models, from simple data-parallel constructs
(e.g., parallel for) to fully fledged DSLs for Big Data analytics. GAM nets
is the first API targeting stream-parallel programming over distributed-
memory platforms, oriented to support the seamless porting of shared-
memory code, through simple pointer casting.

Finally, we provided a preliminary evaluation of the proposed GAM
stack, in terms of both expressiveness (Sect. 7.1) and performance (Sect. 7.2).
According to the reported results, the proposed GAM API and the associ-
ated parallel programming model (i.e., GAM nets) enables the low-effort
porting of shared-memory code, from a broad range of application do-
mains; at the same time, the stacked implementation exhibits minimal per-
formance overhead and does not interfere with scalability for the consid-
ered benchmarks. Incidentally, we showed the flexibility obtained by im-
plementing our GAM stack on top of libfabric, by performing the experi-
ments on three different network fabrics, namely Ethernet, InfiniBand, and
A3Cube RONNIEE (cf. Fig. 2.4).

Future Work

As we discussed in Sect. 6.1, GAM nets could be exploited to realize a li-
brary of containers with data-parallel transformations, on the same line as
the Nvidia Thrust [112] library.

In the same context, on top of the proposed GAM stack, we envision a
deeper integration with modern C++ concepts for parallel programming,
for instance, by implementing GAM-based iterators, regarding GAM as an
execution policy for the ongoing effort about the so-called parallel STL.

As we discussed in Sect. 6.2, GAM could play a central role in the con-
text of developing the RTS for task-based frameworks, targeting distributed
platforms.

Moreover, we plan to export the GAM model to a broader class of par-
allel platforms, in addition to HPC clusters. In particular, the proposed
“consistency without coherence” approach could be applied for enabling
sequential consistency on those platforms that provide little or no hardware
coherence, and also for yielding better performance on cache-coherent sys-
tems, putting less stress on the coherence protocol.

Finally, at the very bottom of the proposed GAM stack, we plan to inves-
tigate the possibility of exploiting the RMA facilities provided nowadays
by a number of networking standards. For instance, the actual memory
to which GAM locations are mapped could be allocated, on each executor,
from memory exported regions, and made accessible to other executors by
means of RMA primitives. In this setting, a remote load would amount
to a simple call of a hardware primitive, rather than require a cooperative
operation, as in the current implementation (cf. Fig. 3.6).

119

Bibliography

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29(12):66–76, Dec. 1996.

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, MA, USA, 1986.

[3] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov. QR Factorization on a Multicore Node
Enhanced with Multiple GPU Accelerators. In 25th IEEE International
Parallel & Distributed Processing Symposium (IEEE IPDPS 2011), An-
chorage, Alaska, USA, May 2011.

[4] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernàndez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle. The dataflow model: A practical approach to balanc-
ing correctness, latency, and cost in massive-scale, unbounded, out-
of-order data processing. Proc. VLDB Endow., 8(12):1792–1803, Aug.
2015.

[5] M. Aldinucci. eskimo: experimenting with skeletons in the shared
address model. Parallel Processing Letters, 13(3):449–460, Sept. 2003.

[6] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S. Rabellino.
The Open Computing Cluster for Advanced data Manipulation (OC-
CAM). In The 22nd International Conference on Computing in High En-
ergy and Nuclear Physics (CHEP), San Francisco, USA, Oct. 2016.

[7] M. Aldinucci, C. Calcagno, M. Coppo, F. Damiani, M. Drocco, E. Sci-
acca, S. Spinella, M. Torquati, and A. Troina. On designing multicore-
aware simulators for systems biology endowed with on-line statistics.
BioMed Research International, 2014.

[8] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati.
Targeting distributed systems in FastFlow. In Euro-Par 2012 Work-
shops, Proc. of the CoreGrid Workshop on Grids, Clouds and P2P Comput-
ing, volume 7640 of LNCS, pages 47–56. Springer, 2013.

[9] M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, E. Sciacca,
S. Spinella, M. Torquati, and A. Troina. On parallelizing on-line
statistics for stochastic biological simulations. In Euro-Par 2011 Work-
shops, Proc. of the 2st Workshop on High Performance Bioinformatics and
Biomedicine (HiBB), volume 7156 of LNCS, pages 3–12, Bordeaux,
France, 2012. Springer.

[10] M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, M. Torquati, and
A. Troina. On designing multicore-aware simulators for biological

120 BIBLIOGRAPHY

systems. In Y. Cotronis, M. Danelutto, and G. A. Papadopoulos, edi-
tors, Proc. of Intl. Euromicro PDP 2011: Parallel Distributed and network-
based Processing, pages 318–325, Ayia Napa, Cyprus, Feb. 2011. IEEE.

[11] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoc-
colo. ASSIST as a research framework for high-performance grid pro-
gramming environments. In J. C. Cunha and O. F. Rana, editors, Grid
Computing: Software environments and Tools, chapter 10, pages 230–256.
Springer, Jan. 2006.

[12] M. Aldinucci and M. Danelutto. Skeleton based parallel program-
ming: functional and parallel semantic in a single shot. Computer
Languages, Systems and Structures, 33(3-4):179–192, Oct. 2007.

[13] M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, C. Misale,
G. Peretti Pezzi, and M. Torquati. A parallel pattern for iterative sten-
cil + reduce. Journal of Supercomputing, pages 1–16, 2016.

[14] M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, G. Peretti Pezzi,
and M. Torquati. The loop-of-stencil-reduce paradigm. In Proc. of
Intl. Workshop on Reengineering for Parallelism in Heterogeneous Parallel
Platforms (RePara), pages 172–177, Helsinki, Finland, Aug. 2015. IEEE.

[15] M. Aldinucci, M. Danelutto, G. Giaccherini, M. Torquati, and M. Van-
neschi. Towards a distributed scalable data service for the grid. In
G. R. Joubert, W. E. Nagel, F. J. Peters, O. Plata, P. Tirado, and E. Za-
pata, editors, Parallel Computing: Current & Future Issues of High-End
Computing (Proc. of PARCO 2005, Malaga, Spain), volume 33 of NIC,
pages 73–80, Germany, Dec. 2006. John von Neumann Institute for
Computing.

[16] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati. An efficient unbounded lock-free queue for multi-core
systems. In Proc. of 18th Intl. Euro-Par 2012 Parallel Processing, vol-
ume 7484 of LNCS, pages 662–673, Rhodes Island, Greece, Aug. 2012.
Springer.

[17] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Fast-
flow: high-level and efficient streaming on multi-core. In S. Pllana
and F. Xhafa, editors, Programming Multi-core and Many-core Comput-
ing Systems, Parallel and Distributed Computing, chapter 13. Wiley,
2017.

[18] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment
supporting structured parallel programming in Java. Future Genera-
tion Computer Systems, 19(5):611–626, July 2003.

[19] M. Aldinucci, M. Drocco, G. Peretti Pezzi, C. Misale, F. Tordini, and
M. Torquati. Exercising high-level parallel programming on streams:
a systems biology use case. In Proc. of the 2014 IEEE 34th Intl. Con-
ference on Distributed Computing Systems Workshops (ICDCS), Madrid,
Spain, 2014. IEEE.

[20] M. Aldinucci, M. Meneghin, and M. Torquati. Efficient Smith-
Waterman on multi-core with fastflow. In M. Danelutto, T. Gross, and

BIBLIOGRAPHY 121

J. Bourgeois, editors, Proc. of Intl. Euromicro PDP 2010: Parallel Dis-
tributed and network-based Processing, pages 195–199, Pisa, Italy, Feb.
2010. IEEE.

[21] M. Aldinucci, G. Peretti Pezzi, M. Drocco, C. Spampinato, and M. Tor-
quati. Parallel visual data restoration on multi-GPGPUs using stencil-
reduce pattern. International Journal of High Performance Computing
Applications, 29(4):461–472, 2015.

[22] M. Aldinucci, G. Peretti Pezzi, M. Drocco, F. Tordini, P. Kilpatrick, and
M. Torquati. Parallel video denoising on heterogeneous platforms. In
Proc. of Intl. Workshop on High-level Programming for Heterogeneous and
Hierarchical Parallel Systems (HLPGPU), 2014.

[23] M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati, and S. Palazzo.
A parallel edge preserving algorithm for salt and pepper image de-
noising. In K. Djemal, M. Deriche, W. Puech, and O. N. Ucan, editors,
Proc. of 2nd Intl. Conference on Image Processing Theory Tools and Appli-
cations (IPTA), pages 97–102, Istambul, Turkey, Oct. 2012. IEEE.

[24] M. Aldinucci, F. Tordini, M. Drocco, M. Torquati, and M. Coppo. Par-
allel stochastic simulators in system biology: the evolution of the
species. In Proc. of Intl. Euromicro PDP 2013: Parallel Distributed and
network-based Processing, Belfast, Nothern Ireland, U.K., Feb. 2013.
IEEE.

[25] M. Aldinucci and M. Torquati. FastFlow website, 2009. http://
mc-fastflow.sourceforge.net/.

[26] M. Aldinucci, M. Torquati, M. Drocco, G. Peretti Pezzi, and C. Spamp-
inato. Fastflow: Combining pattern-level abstraction and efficiency
in GPGPUs. In GPU Technology Conference (GTC 2014), San Jose, CA,
USA, Mar. 2014.

[27] M. Aldinucci, M. Torquati, M. Drocco, G. Peretti Pezzi, and C. Spamp-
inato. An overview of fastflow: Combining pattern-level abstraction
and efficiency in GPGPUs. In GPU Technology Conference (GTC 2014),
San Jose, CA, USA, Mar. 2014.

[28] M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, C. Misale,
C. Calcagno, and M. Coppo. Parallel stochastic systems biology in
the cloud. Briefings in Bioinformatics, 15(5):798–813, 2014.

[29] J. D. andy Martin Sandrieser andy Siegfried Benkner. Ocr-vx - an
alternative implementation of the open community runtime. In In-
ternational Workshop on Runtime Systems for Extreme Scale Program-
ming Models and Architectures, in conjunction with SC15. Austin, Texas,
November 2015, November 2015.

[30] C. Augonnet, O. Aumage, N. Furmento, S. Thibault, and R. Namyst.
StarPU-MPI: Task Programming over Clusters of Machines Enhanced
with Accelerators. Rapport de recherche RR-8538, INRIA, May 2014.

[31] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore

http://mc-fastflow.sourceforge.net/
http://mc-fastflow.sourceforge.net/

122 BIBLIOGRAPHY

Architectures. In Proceedings of the 15th International Euro-Par Confer-
ence, volume 5704 of Lecture Notes in Computer Science, pages 863–874,
Delft, The Netherlands, Aug. 2009. Springer.

[32] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
locality and independence with logical regions. In High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, pages 1–11, Nov 2012.

[33] Beam. Apache Beam website. https://beam.apache.org/.

[34] S. Benkner, E. Bajrovic, E. Marth, M. Sandrieser, R. Namyst, and
S. Thibault. High-Level Support for Pipeline Parallelism on Many-
Core Architectures. In Europar - International European Conference on
Parallel and Distributed Computing - 2012, Rhodes Island, Grèce, Aug.
2012.

[35] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[36] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe,
S. Schlag, M. Stumpp, T. Sturm, and P. Sanders. Thrill: High-
performance algorithmic distributed batch data processing with C++.
In 2016 IEEE International Conference on Big Data (Big Data), pages 172–
183, Dec 2016.

[37] H.-J. Boehm. Threads cannot be implemented as a library. SIGPLAN
Not., 40(6):261–268, June 2005.

[38] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’08, pages
68–78, New York, NY, USA, 2008. ACM.

[39] Boost. Boost Serialization documentation webpage. http://www.
boost.org/doc/libs/1_63_0/libs/serialization/doc/
serialization.html.

[40] Boost. Boost.MPI website, September 2017 (last accessed). http://
www.boost.org/doc/libs/1_65_0/doc/html/mpi.html.

[41] S. Brookes. Deconstructing CCS and CSP. MFPS16, April, 2000.

[42] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Ba-
dia, E. Ayguade, and J. Labarta. Productive cluster programming
with OmpSs. In Proceedings of the 17th International Conference on Paral-
lel Processing - Volume Part I, Euro-Par’11, pages 555–566, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[43] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[44] C. Calcagno, M. Coppo, F. Damiani, M. Drocco, E. Sciacca, S. Spinella,
and A. Troina. Modelling spatial interactions in the arbuscular myc-
orrhizal symbiosis using the calculus of wrapped compartments. In

https://beam.apache.org/
http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/serialization.html
http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/serialization.html
http://www.boost.org/doc/libs/1_63_0/libs/serialization/doc/serialization.html
http://www.boost.org/doc/libs/1_65_0/doc/html/mpi.html
http://www.boost.org/doc/libs/1_65_0/doc/html/mpi.html

BIBLIOGRAPHY 123

I. Petre and E. P. de Vink, editors, Proc. of Third International Workshop
on Computational Models for Cell Processes (CompMod), volume 67 of
EPTCS, pages 3–18, Aachen, Germany, Sept. 2011.

[45] D. Callahan, B. L. Chamberlain, and H. P. Zima. The cascade high
productivity language. In Ninth International Workshop on High-Level
Parallel Programming Models and Supportive Environments, 2004. Pro-
ceedings., pages 52–60, April 2004.

[46] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’05, pages 519–
538, New York, NY, USA, 2005. ACM.

[47] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch. Na-
tive Actors – A Scalable Software Platform for Distributed, Hetero-
geneous Environments. In Proc. of the 4rd ACM SIGPLAN Confer-
ence on Systems, Programming, and Applications (SPLASH ’13), Work-
shop AGERE!, pages 87–96, New York, NY, USA, Oct. 2013. ACM.

[48] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. Denovo: Rethinking
the memory hierarchy for disciplined parallelism. In Proceedings of the
2011 International Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, pages 155–166, Washington, DC, USA, 2011.
IEEE Computer Society.

[49] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Munster skeleton
library Muesli — a comprehensive overview. In ERCIS Working pa-
per, number 7. ERCIS – European Research Center for Information
Systems, 2009.

[50] C. Cole and M. Herlihy. Snapshots and software transactional mem-
ory. Sci. Comput. Program., 58(3):310–324, 2005.

[51] M. Cole. A skeletal approach to exploitation of parallelism. In Proc. of
CONPAR 88, British Computer Society Workshop Series, pages 667–
675. Cambridge University Press, 1989.

[52] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. MIT Press, 1991.

[53] M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto
for skeletal parallel programming. Parallel Computing, 30(3):389–406,
2004.

[54] M. Cole. Skeletal Parallelism home page, 2009. http://homepages.
inf.ed.ac.uk/mic/Skeletons/.

[55] M. Coppo, F. Damiani, M. Drocco, E. Grassi, M. Guether, and
A. Troina. Modelling ammonium transporters in arbuscular mycor-
rhiza symbiosis. Transactions on Computational Systems Biology (TCS),
6575(13):85–109, 2011.

http://homepages.inf.ed.ac.uk/mic/Skeletons/
http://homepages.inf.ed.ac.uk/mic/Skeletons/

124 BIBLIOGRAPHY

[56] M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca, S. Spinella,
and A. Troina. Hybrid calculus of wrapped compartments. In G. Cio-
banu and M. Koutny, editors, Proc. of 4th Workshop on Membrane Com-
puting and Biologically Inspired Process Calculi (MeCBIC), volume 40 of
EPTCS, pages 102–120, Jena, Germany, Aug. 2010.

[57] M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca, S. Spinella,
and A. Troina. Simulation techniques for the calculus of wrapped
compartments. Theoretical Computer Science, 431:75–95, 2012.

[58] M. Coppo, F. Damiani, M. Drocco, E. Grassi, and A. Troina. Stochastic
calculus of wrapped compartments. In A. D. Pierro and G. Norman,
editors, Proc. of the 8th Workshop on Quantitative Aspects of Program-
ming Languages (QAPL), volume 28 of EPTCS, pages 82–98, Paphos,
Cyprus, Mar. 2010.

[59] M. Danelutto, R. D. Meglio, S. Orlando, S. Pelagatti, and M. Van-
neschi. A methodology for the development and the support of mas-
sively parallel programs. Future Generation Compututer Systems, 8(1-
3):205–220, 1992.

[60] M. Danelutto and M. Stigliani. SKElib: parallel programming with
skeletons in C. In A. Bode, T. Ludwing, W. Karl, and R. Wismüller,
editors, Proc. of 6th Intl. Euro-Par 2000 Parallel Processing, volume 1900
of LNCS, pages 1175–1184, Munich, Germany, Aug. 2000. Springer.

[61] M. Danelutto and M. Torquati. Loop parallelism: a new skeleton per-
spective on data parallel patterns. In M. Aldinucci, D. D’Agostino,
and P. Kilpatrick, editors, Proc. of Intl. Euromicro PDP 2014: Parallel
Distributed and network-based Processing, Torino, Italy, 2014. IEEE.

[62] M. Danelutto and M. Torquati. Structured parallel programming with
“core” FastFlow. In V. Zsók, Z. Horváth, and L. Csató, editors, Central
European Functional Programming School, volume 8606 of LNCS, pages
29–75. Springer, 2015.

[63] F. Darema. The SPMD Model: Past, Present and Future, pages 1–1.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[64] J. Darlington, A. J. Field, P. Harrison, P. H. J. Kelly, D. W. N.
Sharp, R. L. While, and Q. Wu. Parallel programming using skele-
ton functions. In Proc. of Parallel Architectures and Langauges Europe
(PARLE’93), volume 694 of LNCS, pages 146–160, Munich, Germany,
June 1993. Springer.

[65] J. Darlington, Y.-k. Guo, H. W. To, and J. Yang. Parallel skeletons
for structured composition. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP
’95, pages 19–28, New York, NY, USA, 1995. ACM.

[66] T. De Matteis and G. Mencagli. Keep calm and react with foresight:
Strategies for low-latency and energy-efficient elastic data stream
processing. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’16, pages 13:1–
13:12, New York, NY, USA, 2016. ACM.

BIBLIOGRAPHY 125

[67] T. De Matteis and G. Mencagli. Parallel patterns for window-based
stateful operators on data streams: An algorithmic skeleton ap-
proach. International Journal of Parallel Programming, 45(2):382–401,
2017.

[68] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In Usenix OSDI ’04, pages 137–150, Dec. 2004.

[69] D. del Rio Astorga, M. F. Dolz, J. Fernández, and J. D. García. A
generic parallel pattern interface for stream and data processing. Con-
currency and Computation: Practice and Experience, May 2017.

[70] J. Dokulil and S. Benkner. Towards high-level parallel patterns in
OpenCL. In 2014 15th International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, pages 199–204, Dec
2014.

[71] J. Dokulil, M. Sandrieser, and S. Benkner. Implementing the open
community runtime for shared-memory and distributed-memory
systems. In 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pages 364–368, Feb
2016.

[72] M. F. Dolz, D. del Rio Astorga, J. Fernández, J. D. García, F. García-
Carballeira, M. Danelutto, and M. Torquati. Enabling semantics to
improve detection of data races and misuses of lock-free data struc-
tures. Concurrency and Computation: Practice and Experience, 29(15),
2017.

[73] M. Drocco, M. Aldinucci, and M. Torquati. A dynamic memory allo-
cator for heterogeneous platforms. In Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES)
– Poster Abstracts, Fiuggi, Italy, 2014. HiPEAC.

[74] M. Drocco, C. Misale, and M. Aldinucci. A cluster-as-accelerator ap-
proach for SPMD-free data parallelism. In Proc. of Intl. Euromicro PDP
2016: Parallel Distributed and network-based Processing, pages 350–353,
Crete, Greece, 2016. IEEE.

[75] M. Drocco, C. Misale, G. Peretti Pezzi, F. Tordini, and M. Aldinucci.
Memory-optimised parallel processing of Hi-C data. In Proc. of Intl.
Euromicro PDP 2015: Parallel Distributed and network-based Processing,
pages 1–8. IEEE, Mar. 2015.

[76] M. Drocco, C. Misale, G. Tremblay, and M. Aldinucci. A formal se-
mantics for data analytics pipelines. Technical report, Computer Sci-
ence Department, University of Torino, May 2017.

[77] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed
Shared-Memory Programming. Wiley-Interscience, 2003.

[78] J. Enmyren and C. W. Kessler. Skepu: A multi-backend skeleton pro-
gramming library for multi-GPU systems. In Proceedings of the Fourth
International Workshop on High-level Parallel Programming and Applica-
tions, HLPP ’10, pages 5–14, New York, NY, USA, 2010. ACM.

126 BIBLIOGRAPHY

[79] Flink. Apache Flink website. https://flink.apache.org/.

[80] M. J. Flynn. Very high-speed computing systems. Proceedings of the
IEEE, 54(12):1901–1909, 1966.

[81] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the cilk-5 multithreaded language. In Proceedings of the ACM SIG-
PLAN 1998 Conference on Programming Language Design and Implemen-
tation, PLDI ’98, pages 212–223, New York, NY, USA, 1998. ACM.

[82] I. Gartner. Gartner hype cycle. http://www.gartner.com/
technology/research/methodologies/hype-cycle.jsp.

[83] H. González-Vélez and M. Leyton. A survey of algorithmic skeleton
frameworks: High-level structured parallel programming enablers.
Software: Practice and Experience, 40(12):1135–1160, Nov. 2010.

[84] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach. Elsevier, fifth edition, 2011.

[85] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, Aug. 1978.

[86] P. Inaudi. Progettazione e sviluppo di un provider libfabric per la
rete ad alte prestazioni ronniee/a3cube. Master’s thesis, Computer
Science Department, University of Torino, 2015.

[87] Intel. Intel R© C++ Intrinsics Reference, 2010.

[88] Intel. Intel R© AVX-512 instructions, 2013. https://software.
intel.com/en-us/blogs/2013/avx-512-instructions.

[89] Intel Corp. Threading Building Blocks, 2011.

[90] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. HPX:
A task based programming model in a global address space. In Pro-
ceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models, PGAS ’14, pages 6:1–6:11, New York, NY,
USA, 2014. ACM.

[91] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993.

[92] K. Kennedy, C. Koelbel, and H. Zima. The rise and fall of high per-
formance fortran: An historical object lesson. In Proceedings of the
Third ACM SIGPLAN Conference on History of Programming Languages,
HOPL III, pages 7–1–7–22, New York, NY, USA, 2007. ACM.

[93] Khronos Compute Working Group. OpenCL, Nov. 2009. http://
www.khronos.org/opencl/.

[94] Khronos Group. SYCL website, September 2017 (last accessed).
https://www.khronos.org/sycl.

https://flink.apache.org/
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
https://www.khronos.org/sycl

BIBLIOGRAPHY 127

[95] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,
Sept. 1979.

[96] E. Lee and T. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773–801, May 1995.

[97] Libfabric. Libfabric OpenFabrics website. http://libfabric.
org/.

[98] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph process-
ing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[99] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In Pro-
ceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’05, pages 378–391, New York, NY,
USA, 2005. ACM.

[100] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A library of con-
structive skeletons for sequential style of parallel programming. In
Proc. of the 1st Inter. conference on Scalable information systems, InfoScale
’06, New York, NY, USA, 2006. ACM.

[101] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee,
J. Fryman, I. Ganev, R. Knauerhase, M. Lee, B. Meister, B. Nickerson,
N. Pepperling, B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo. The
open community runtime: A runtime system for extreme scale com-
puting. In 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7, Sept 2016.

[102] Memcached. Memcached website. https://memcached.org/.

[103] I. Merelli, F. Tordini, M. Drocco, M. Aldinucci, P. Liò, and L. Milanesi.
Integrating multi-omic features exploiting Chromosome Conforma-
tion Capture data. Frontiers in Genetics, 6(40), 2015.

[104] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[105] C. Misale. PiCo: A Domain-Specific Language for Data Analytics
Pipelines. PhD thesis, Computer Science Department, University of
Torino, May 2017.

[106] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A compari-
son of big data frameworks on a layered dataflow model. In Proc. of
HLPP2016: Intl. Workshop on High-Level Parallel Programming, pages
1–19, Muenster, Germany, July 2016. arXiv.org.

[107] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison
of big data frameworks on a layered dataflow model. Parallel Process-
ing Letters, 27(01):1740003, 2017.

http://libfabric.org/
http://libfabric.org/
https://memcached.org/

128 BIBLIOGRAPHY

[108] C. Misale, M. Drocco, G. Tremblay, and M. Aldinucci. Pico: a novel
approach to stream data analytics. In Euro-Par 2017 Workshops - Au-
tonomic Solutions for Parallel and Distributed Data Stream Processing
(Auto-Dasp), Santiago de Compostela, Spain, 2017. (Accepted).

[109] M. A. U. Nasir, G. D. F. Morales, D. García-Soriano, N. Kourtellis, and
M. Serafini. The power of both choices: Practical load balancing for
distributed stream processing engines. CoRR, abs/1504.00788, 2015.

[110] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà. Advances, applications and performance of the global arrays
shared memory programming toolkit. Int. J. High Perform. Comput.
Appl., 20(2):203–231, May 2006.

[111] NVIDIA Corp. CUDA website, June 2017 (last accessed). https:
//developer.nvidia.com/cuda-zone.

[112] NVIDIA Corp. Thrust website, June 2017 (last accessed). https://
developer.nvidia.com/thrust.

[113] S. Oaks and H. Wong. Java Threads. Nutshell handbooks. O’Reilly
Media, 2004.

[114] OpenFabrics Interfaces Working Group. Libfabric OpenFabrics
Programmer’s Manual, 2017. https://github.com/ofiwg/
ofi-guide/blob/master/OFIGuide.md.

[115] P. Pacheco. An Introduction to Parallel Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition, 2011.

[116] I. Park, M. J. Voss, S. W. Kim, and R. Eigenmann. Parallel program-
ming environment for OpenMP. Scientific Programming, 9:143–161,
2001.

[117] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 3rd edition, 2007.

[118] J. H. Rutgers. Programming models for many-core architectures: a
co-design approach. 2014.

[119] L. M. Sanchez, J. Fernandez, R. Sotomayor, S. Escolar, and J. D. Garcia.
A comparative study and evaluation of parallel programming mod-
els for shared-memory parallel architectures. New Generation Comput-
ing, 31(3):139–161, 8 2013.

[120] D. B. Skillicorn and D. Talia. Models and languages for parallel com-
putation. ACM Comput. Surv., 30(2):123–169, June 1998.

[121] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consis-
tency and Cache Coherence. Morgan & Claypool Publishers, 1st edition,
2011.

[122] M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for high-
level programming of multi-GPU systems. In Proceedings of the 12th
International Conference on Parallel Computing Technologies, pages 258–
272, St. Petersburg, Russia, Oct. 2013.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
https://github.com/ofiwg/ofi-guide/blob/master/OFIGuide.md
https://github.com/ofiwg/ofi-guide/blob/master/OFIGuide.md

BIBLIOGRAPHY 129

[123] F. Tordini, M. Drocco, I. Merelli, L. Milanesi, P. Liò, and M. Aldinucci.
NuChart-II: a graph-based approach for the analysis and interpreta-
tion of Hi-C data. In C. D. Serio, P. Liò, A. Nonis, and R. Tagliaferri,
editors, Computational Intelligence Methods for Bioinformatics and Bio-
statistics - 11th International Meeting, CIBB 2014, Cambridge, UK, June
26-28, 2014, Revised Selected Papers, volume 8623 of LNCS, pages 298–
311, Cambridge, UK, 2015. Springer.

[124] F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, and
M. Aldinucci. Parallel exploration of the nuclear chromosome confor-
mation with NuChart-II. In Proc. of Intl. Euromicro PDP 2015: Parallel
Distributed and network-based Processing. IEEE, Mar. 2015.

[125] F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, M. Tor-
quati, and M. Aldinucci. NuChart-II: the road to a fast and scalable
tool for Hi-C data analysis. International Journal of High Performance
Computing Applications (IJHPCA), pages 1–16, 2016.

[126] M. Torquati, G. Mencagli, M. Drocco, M. Aldinucci, T. De Matteis, and
M. Danelutto. On dynamic memory allocation in sliding-window
parallel patterns for streaming analytics. Journal of Supercomputing,
2017. To appear.

[127] UniTo-INFN. Occam Supercomputer website. http://c3s.
unito.it/index.php/super-computer.

[128] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Com-
puting. In Proc. of the 9th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’12, Berkeley, CA, USA, 2012. USENIX.

[129] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Dis-
cretized streams: Fault-tolerant streaming computation at scale. In
Proc. of the 24th ACM Symposium on Operating Systems Principles, SOSP,
pages 423–438, New York, NY, USA, 2013. ACM.

[130] ZeroMQ. website, 2012. http://www.zeromq.org/.

[131] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A
PGAS extension for C++. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 1105–1114, May 2014.

http://c3s.unito.it/index.php/super-computer
http://c3s.unito.it/index.php/super-computer
http://www.zeromq.org/

131

Glossary

API Application Programming Interface

BSP Bulk Synchronous Parallel

CCS Calculus of Communicating Systems

CSP Communicating Sequential Processes

DAG Direct Acyclic Graph

DRF Data Race Free

DSL Domain-Specific Language

DSM Distributed Shared Memory

DV Data-Value

FIFO First-In First-Out

FLOPS Floating Point Operations Per Second

FPGA Field Programmable Gate Array

GAM Global Asynchronous Memory

GAS Global Address Space

GOS Global Object Space

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HPC High Performance Computing

IaaS Infrastructure-as-a-Service

ISA Instruction Set Architecture

LTS Labeled Transition System

MIMD Multiple Instruction Multiple Data

MPMC Multiple Producer Multiple Consumer

MPSC Multiple Producer Single Consumer

MSI Modified Shared Invalid

NGS Next-generation Sequencing

NUMA Non-Uniform Memory Access

132 Glossary

PE Processing Element

PGAS Partitioned Global Address Space

PN Process Network

RMA Remote Memory Access

RTS Run-Time System

SC Sequential Consistency

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SMP Symmetric Multiprocessor

SNL Software Network Layer

SPMC Single Producer Multiple Consumer

SPMD Single Program Multiple Data

SPSC Single Producer Single Consumer

STL Standard Template Library

SWMR Single Writer Multiple Reader

TSO Total Store Order

UMA Uniform Memory Access

VPU Vector Processing Unit

	Introduction
	Results and Contributions
	Limitations
	List of Papers
	Publications by Topic
	Publications by Type

	Background
	Parallel Computing Platforms
	SIMD computers
	Shared-Memory Multiprocessors
	Many-Core Processors
	Distributed Systems, Clusters, and Clouds

	Parallel Programming Models
	Types of Parallelism
	Memory and Communication Model
	Low-Level Programming Models
	High-level Programming Models

	Parallel Memory Models
	Cache Coherence
	Memory Consistency

	Libraries Used by our Implementation
	C++ Smart Pointers
	FastFlow
	Libfabric

	Global Asynchronous Memory
	System Model
	Journey of a Global Memory Slot
	Comparison with Cache-Coherent Systems

	Operational Semantics
	Memory States
	Memory Transitions
	State Machine Representation

	Parallelism
	Intra-Executor Parallelism
	Inter-Executor Parallelism
	Parallel Memory Model

	C++ Implementation
	Programming Environment
	Runtime Architecture
	Primitives

	Smart GAM Pointers
	Public Pointers
	Distributed Reference Counting
	API

	Private Pointers
	Distributed Memory Releasing
	Two Flavors of Private Pointers
	API

	Smartness
	Memory Leaks
	Dangling Pointers

	Parallel Programming with GAM Nets
	GAM Nets
	Communicators
	Processors
	Execution Model

	C++ Implementation
	API
	Implementation

	Net Patterns
	Pipeline
	Farm
	Active Communicators

	Higher-Level Programming Models on top of GAM
	Accelerated Data Structures
	Cluster-as-Accelerator Paradigm
	C++ Library of Accelerated Containers
	Implementation

	Task-based Parallel Programming
	Universal Model of Parallelism
	Implementing a Task-based RTS

	Experimental Evaluation
	Expressiveness
	Two-Phase Video Restoration
	High-Frequency Stock Option Pricing
	CWC Systems Biology Simulator
	PiCo Data Analytics Framework

	Performance
	Setting
	Results
	Discussion

	Conclusions

