
Decomposing & Measuring Trust on the Software Supply Chain
Trust-Contract Table

Trust Relationship Attack (Effect) Associated Threats (Cause) Associated Trust
Contracts

Dependency users &
their dependency
developers

A developer
adopts a
dependency
that contains
malicious code

● A malicious package is
developed and advertised as a
legitimate package [3]
● A malicious name confusion
package is created
(Combosquatting, typosquatting,
brandjacking, Similarity Attack,
Altering Word Order, Manipulating
Word Separators, etc.) [3]
● Masking legitimate packages
(targeting package name or URL
resolution [3]
● Dangling references (using
resource identifiers of orphaned
projects (names or URLs)) [3]
● Dependency developers include
a malicious package in their
software [2]

The dependency user
(trustor) trusts the
dependency developers
(trustee) to…

…not intentionally include
malicious code

…be honest about their
intentions and the
functions of their package

A developer
adopts a
dependency
that contains
inadequate
security

● Dependency developers include
a malicious package in their
software [2]
● A developer’s dependency
becomes abandoned [1]
● A package is created with
exploitable vulnerabilities

…employ proper security
practices to prevent
vulnerabilities

…properly handle
vulnerabilities



…recognize malicious code
or packages and not
include them in their
software

…continue maintaining
their package

Maintainers & their
co-maintainers

A malicious
maintainer is
added to a
project

● Contribute as Maintainer
(obtaining contributor privileges
towards the actual codebase) [3, 1]
● Taking over Legit Accounts
(stealing account credentials) [3]
● Compromising the maintainer
system (exploiting vulnerabilities,
adding malicious components to
the maintainer systems) [3]
● Tamper the build job as a
maintainer (becoming a maintainer
and tampering with code) [3, 1]
●Malicious code is added during a
code refactor
● Running a malicious build job
(tampering with system resources)
[3]

Fellow maintainers (trustors)
trust this
new maintainer (trustee) to…

…not add malicious code

…not include any malicious
dependencies

…not steal vulnerable
information

An incompetent
maintainer is
added to a
project

● A project is improperly
documented
● Code tests are poorly written

…implement proper
security practices to
prevent vulnerabilities

…properly document their
work

Developers & their A developer ● Hypocrite Merge Request (an The current developer



contributors accepts a pull
request that
contains
malicious code

attacker, acting as a contributor,
turns code malicious) [3, 1]
● A false vulnerability disclosure is
reported

(trustor) trusts
the contributor (trustee) to…

…not include malicious
code in their pull request

…be honest about their
intentions

…not steal vulnerable
information

…use proper security
practices to prevent
vulnerabilities

Developers &
open-source ‘hubs’

A developer
adopts a
malicious
package from an
open-source
hub

● A malicious package is
developed and advertised as a
legitimate package [3]
● A malicious name confusion
package is created
(Combosquatting, typosquatting,
brandjacking, Similarity Attack,
Altering Word Order, Manipulating
Word Separators, etc.) [3]
● Masking legitimate packages
(targeting package name or URL
resolution [3]

The developers (trustors)
trust the
open-source hubs (trustee)
to…

…block or delete malicious
packages on the website

…patch all vulnerabilities
on the website

References
1) Wermke, Dominik, et al. "Committed to trust: A qualitative study on security & trust in open source software projects."

2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.



2) Kshetri, Nir, and Jeffrey Voas. "Supply chain trust." IT Professional 21.2 (2019): 6-10.
3) Ladisa, Piergiorgio, et al. "Sok: Taxonomy of attacks on open-source software supply chains." 2023 IEEE Symposium on

Security and Privacy (SP). IEEE, 2023.


