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Abstract—In this letter, we propose an optimal direct load control
of renewable powered small base stations (SBSs) in a two-tier mo-
bile network based on dynamic programming (DP). We represent
the DP optimization using Graph Theory and state the problem
as a Shortest Path search. We use the Label Correcting Method
to explore the graph and find the optimal ON/OFF policy for the
SBSs. Simulation results demonstrate that the proposed algorithm
is able to adapt to the varying conditions of the environment,
namely renewable energy arrivals and traffic demands. The key
benefit of our study is that it allows to elaborate on the behavior
and performance bounds of the system and gives a guidance for
approximated policy search methods.

Index Terms—Mobile Networks, Energy Sustainability, Optimal
Control, Graph Theory, Demand Response, Smart Grid, Dynamic
Programming.

I. INTRODUCTION

The fifth generation mobile network (5G) is expected to
support 1000 times more data volume per unit area, 100 more
user data rate, 1000 more connected devices, 1/10 lower energy
consumption, 1/5 lower end-to-end latency, 1/5 lower cost of
network management, 10 longer device battery life and 1/1000
lower service deployment times than 4G. A new architecture
and new network deployments are thus necessary to satisfy
such requirements. One of the most promising approaches is
to densify the radio access network by deploying smaller base
stations (SBSs), which may, in turn, enhance capacity and
coverage of the macro cells. This approach implies the use of a
high number of devices, which may drain a significant amount of
energy from the power grid. This is in contrast with the energy
consumption requirement of 5G networks. However, the reduced
consumptions of these devices encourage the use of renewable
energy sources (RES) as distributed power suppliers [1]. This
approach will allow to reduce (i) the energy drained from the
power grid, (ii) the carbon footprint and (iii) the cost due to the
energy bills [2].

The introduction of RES entails an intermittent and erratic
energy budget for the communication operations of the SBSs.
Therefore, Demand Response is needed to properly manage
energy inflow and spending, based on the traffic demand. In
particular, SBSs may install self-organizing agents, which enable
intelligent energy management policies, such as Direct Load
Control [3].

In our previous work [4], a two-tier architecture with hybrid
power suppliers is introduced: macro BSs reside in the first tier
to provide baseline coverage and capacity and are powered by
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the electrical grid, whereas SBSs operate in the second tier to
provide capacity enhancement and are supplied by solar panels
plus batteries. The data traffic offloaded by the SBSs has higher
spectral efficiency and allows a reduction of the energy drained
from the grid. In [4], we have also introduced a distributed Q-
learning algorithm to direct control the load of the renewable
powered SBSs. However, no proof of optimality is given in the
paper. A similar resource allocation problem has been solved
in [5] by using a two-stage dynamic programming algorithm.
Although the authors propose an optimal solution, the problem
is stated for a single-tier architecture.

This letter is filling the encountered gaps in the literature by
the following contributions: (i) We formulate the problem of
optimal direct load control of a two-tier mobile network based
on dynamic programming (DP). DP has the key property to
apply optimal control as a trade off between the present cost
and the future expected costs. This feature is fundamental in
our scenario to prevent SBSs blackout during periods with low
renewable energy arrivals and high traffic demands. (ii) We
provide a graphical representation of the problem and, we use
Graph Theory to model it and the Shortest Path methods to
find the optimal ON/OFF policy for the SBSs. (iii) We provide
numerical results and find the optimal policy considering two
different traffic profiles. Finally, we compare our solution with
a greedy approach.

II. PROBLEM FORMULATION

A. Network Model

We consider the radio access network as a set of clusters. Each
cluster is composed of one macro BS and C SBSs. The macro
BS is connected to the electrical grid and each SBS is powered
by a solar panel plus a battery. The SBSs have implemented
an intelligent energy management, which automatically decides
their operative state. Each SBSs can serve the users in its
coverage (also referred to as ON state) or be in an energy saving
mode, in which the users in its coverage have been handed
over the macro BS (also referred to as OFF state). We define
St = [S

(1)
t , S

(2)
t , ..., S

(C)
t ] as the vector representing the state of

the C SBSs at time t. Each element S(i)
t , with i = 1, ..., C, is

defined as follows:

S
(i)
t =

{
0, if i-th SBS is OFF
1, if i-th SBS is ON

(1)

The energy harvested by the SBSs at time t is indicated by the
vector Et = [E

(1)
t , E

(2)
t , ..., E

(C)
t ], while the amount of energy

stored in the SBSs batteries at time t is indicated by the vector
Bt = [B

(1)
t , B

(2)
t , ..., B

(C)
t ].



The BS energy consumption is approximated by the linear
function P = P0 + βρ, where P0 is the baseline power
consumption and ρ ∈ [0, 1] is the normalized traffic load.
Typical values are PMBS

0 = 750W, βMBS = 600 for macro
BS and PSBS

0 = 105.6W, βSBS = 39 for SBSs. This model
is supported by real measurements and closely matches the real
power profile of BSs [6].

The traffic load vector ρt = [ρ
(1)
t , ρ

(2)
t , ..., ρ

(C)
t ] indicates the

traffic level of the SBSs at time t. In particular, we consider a
LTE radio access network with a transmission bandwidth BW
divided into R resource blocks (RBs) of 1 msec each [7]. Each
SBS has a set Ui of associated users. If the SBS i is OFF at
time t, we assume ρ(i)t = 0, and that its users are managed by
the macro BS. However, the macro BS may have reached its
capacity limit at that time instant (i.e., cannot allocate any RB
to users) and may drop part of the handed over users. We define
this situation as system outage.

B. Optimization Problem

The system evolves in cycles, based on the variation of the
traffic demand and the energy arrivals in time. At each cycle t,
a controller decides the optimal configuration of the cluster in
terms of ON/OFF states of the SBSs.

We model the sequential decision making process as a DP
optimization problem, whose objective is to minimize the energy
consumed by the macro BS and the traffic drop rate of the
system. Considering the linear relation between the energy
consumption and the BS load, the objective is converted into the
minimization of the macro cell load over a given time horizon,
by offloading the traffic to the renewable powered SBSs. The
controller must also prevent damages of the storage devices and
SBS blackout by maintaining the battery levels above a given
threshold.

The optimization problem is formulated as follows:

min
{St}t=1,...,K

K∑
t=1

f(St, t)

B
(i)
t > Bth ∀i.

(2)

K is the time horizon or the number of times the control is
applied and f(St, t) is defined as follows:

f(St, t) =
1

2
[w1 · L(St, t) + w2 ·D(St, t)] (3)

where
• L(St, t), is the load of the macro BS given the SBSs states

and the time instant t. Its values are normalized.
• D(St, t) is the traffic drop rate of the system, given the

state of the SBSs and the time instant t. Its value ranges
from 0 (when all the traffic is served by the system) to 1
(when all the traffic is dropped by the system).

Finallly, the two weights must always sum to one, i.e., w1 +
w2 = 1.

At each decision instant t, the battery levels of the SBSs are
updated according to the following formula:

Bt+1 = min(Bt +Et − (P SBS
0 + βSBSρt, Bcap) (4)

0 1 2 ... K K + 1
t

Fig. 1. Graph showing the ON-OFF sequence possibilities in the case of a
cluster with two SBSs. Green nodes represents ON states, red nodes represents
OFF states. The two dashed nodes indicate the artificial nodes.

where Bcap is the maximum battery capacity. This basically
means that the amount of energy exceeding the battery capacity
cannot be stored and it is wasted.

C. Graphical Representation
We represent the DP optimization problem as a graph. A node

i at time t in the graph (N i
t ) represents a possible combination

of states of the SBSs in the cluster. Each combination returns a
different level of the batteries of the SBSs.

In Fig. 1 a cluster of 2 SBSs is represented. In the first time
step (t = 1) the SBSs can be in one of the four combinations
of ON (green) / OFF (red) states. At each cycle t, the energy
harvesting and traffic processes are evolving, based on Et and
ρt. Each node N i

t generates 4 child nodes N j
t+1, as possible

combinations at the cycle t+ 1. The battery levels of the child
nodes N j

t+1 are calculated based on (4) and each arc connecting
two nodes has a cost given by (3). The number of combinations
is then evolving in time till reaching its maximum at time instant
K. Two artificial nodes have been added at time step t = 0 and
t = K + 1, to have a single initial node and a single terminal
node. The cost associated to the arcs connecting the artificial
nodes are set to zero.

The cost associated to each arc, f(St, t), may be interpreted
as the length of the corresponding arc. In this case, the problem
of minimizing the total cost is equal to the problem of finding
the path with the minimum-length from the initial to the terminal
node.

III. SHORTEST PATH METHOD

The problem to find the shortest path between the initial and
the terminal node involves a very large number of nodes. How-
ever, most of these nodes are unlikely candidates for inclusion
in the shortest path. Therefore, considering that we deal with a
single initial and terminal node, and that each arc has a positive
cost, we use the Label Correcting Algorithm described in [8] to
achieve an efficient exploration method.

We define three variables: di, called label of i, as the length
of the shortest path to the node i, OPEN as the list of nodes to
be explored and UPPER as the last found minimum-length path.



The graph is explored in a depth-first fashion. The idea is to
progressively discover shorter paths from the initial node to the
internal nodes i till reaching the terminal node, and to maintain
the length of the shortest path found so far in the variable di.
Each time di is reduced following the discovery of a new shorter
path to i, the algorithm checks to see if the labels dj of the
children j of i can be corrected, i.e. they can be reduced by
setting them to di + aij , where aij is the arc(i, j).

The list OPEN contains only the nodes that are candidates for
further examination and possible inclusion in the shortest path.
More specifically, we exclude from the list all those nodes that
cannot satisfy the constraint on the battery and return a minimum
path longer than UPPER. This exploration policy avoids to
explore the whole graph (i.e., 2C(2C·K−1)

2C−1 +2 nodes) and requires
relatively little memory, as described in [8], especially in the case
of graphs with a tree-like structure, as in our case.

The algorithm steps are detailed in Algorithm 1.

Algorithm 1 Optimal policy algorithm
initialize OPEN with possible states at time t
while OPEN is not empty do

remove a node N i
t

compute battery value Bt+1,j , j = 1, .., 2C , for all possible
St+1 using formula (4)
for each node N j

t+1 child of N i
t do

aij = f(St+1,j , t+ 1)
if di + aij < min{dj ,UPPER} and Bt+1,j > Bth

then
dj ← di + aij
set N i

t parent of N j
t+1

if t 6= K then
place N j

t+1 in OPEN (if not already)
else
UPPER = di + aij

end if
end if

end for
end while

IV. SIMULATION RESULTS

A. Simulation scenario

We consider a square area with a side of 1 km. The macro
BS is located at the center of the area and SBSs are randomly
positioned. The coverage areas of the SBSs do not overlap.
Aggregated downlink traffic has been generated based on the
profiles defined in [9]. In particular, we have used Resident and
Transport profiles in our simulations. User traffic is based on
the classification proposed in [10]. Realistic energy harvesting
traces are obtained using the SolarStat tool [11], considering the
city of Los Angeles. All the simulations have been performed
considering a typical week of March and the cycles of the
algorithm are of 1 hour.

More simulation parameters may be found in the Table I.

B. Optimal Time Horizon

Here below we empirically analyze the optimal duration of the
time horizon K to achieve the minimum cost. This parameter

TABLE I
SIMULATION PARAMETERS

Parameter Value

BS Bandwidth 5 MHz
Channel model Okumura-Hata [12]

Macro BS TX power 43 dBm
SBS TX power 38 dBm
Solar modules Panasonic N235B

Solar cell efficiency 21%
Solar panel area 4.48m2

Battery capacity 2 kWh
Bth 0.2
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Fig. 2. Grid energy consumption (a) and number of algorithm iterations (b) of
the optimal policy when varying the time horizon.

may give an idea on the temporal correlation among the control
actions.

Fig. 2 represents the amount of energy drained from the grid
by the macro BS in one week for different dimensions of the
horizon K (Fig. 2a) and the algorithm complexity, in terms of
number of iterations, over the time horizon K (Fig. 2b) for a
single SBS within the coverage area of the macro BS.

The time horizon K = 21 represents a turning point for
both grid energy and algorithm complexity: the energy drained
from the grid approaches an asymptote and the number of
iterations explode to higher values quasi-exponentially. Simula-
tions performed in scenarios with multiple SBSs show the same
behavior in terms of energy drained, number of iterations and
K. Therefore, we state that a time horizon of about 21 hours
represents a good trade-off between network performance and
algorithm complexity.

C. Optimal Policies

In this subsection, we elaborate on the optimal ON/OFF
policies for the SBSs and, in particular, on their adaptation to
the variables of the environment, i.e. traffic demands and re-
newable energy arrivals. We also describe the intelligent battery
management of the proposed solution.

In Fig. 3, the temporal behavior of the ON/OFF policies of 5
SBSs is represented for Resident (Fig. 3a) and Transport (Fig.
3b) profile, respectively. In particular, the traffic offloaded by the
5 SBSs is shown in green and in yellow that served by the macro
BS. The dashed-red curves are the renewable energy arrivals.

As a general rule, valid for both traffic profiles under study, the
optimal policy attempts to offload traffic peak periods to SBSs
and switch SBSs off during deep night hours (2am - 6am and
1am - 5am for the Resident and Transport profile, respectively).
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(a) Resident traffic profile
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(b) Transport traffic profile

Fig. 3. Simulations on the Resident (a) and Transport (b) traffic profile for a week of March. The amount of traffic offloaded to the SBSs is indicated in green;
that of the macro BS in yellow. The dashed-red curve indicates the renewable energy arrivals. All the values are normalized.

In fact, during traffic peak periods the macro BS cannot serve
the whole demand and the system may be in outage. On the
other hand, when energy arrivals and traffic demands are low
(deep night) the macro BS can serve that little amount of traffic
without system outage and the SBSs can save the energy in their
batteries.

When the renewable energy arrival process is scarce, we
notice different behaviors based on the traffic profile. The first
day (P1 in Fig. 3) experiences the lowest energy arrivals of the
week. We can notice that in the Resident case, the offloaded
traffic in the morning (7am - 1pm) is not that much as in
the other days. This is due to the fact that SBSs need to be
OFF and store the necessary energy in the batteries to serve
the traffic in the evening peak period and avoid system outage.
On the other hand, in the case of Transport profile, traffic is
completely offloaded during the two peak periods and then SBSs
are gradually switching off starting from 9pm. This allows to
save energy and use it during the morning peak of the second
day. In the third and the fifth day (P2 and P3 in Fig. 3,
respectively), the renewable energy arrival is scarce, even though
not at its minimum. We notice that, in the case of Resident
traffic, some SBSs need to be turned off (one in the third day
and two in the fifth day, respectively) to save energy in the
afternoon and use it to avoid system outage during the evening
peak. In the case of Transport profile, the SBSs does not follow
the same behavior because of the lower total traffic demand.

Finally, we compare our optimal solution with a greedy
algorithm that switches off a SBS when the battery level is below
a threshold Bth and turn a SBS on when the battery is above
Bth. While our proposal is able to adapt to the varying traffic and
energy conditions without producing system outage, the greedy
approach is not able to serve the whole traffic demand at every
hour of the the day: from our simulations, it drops up to 67%
and 59% of the hourly traffic in case of Resident and Transport
profile, respectively.

V. CONCLUSIONS

In this letter, we have proposed an optimal direct load control
of renewable powered small base stations in a two-tier mobile
network based on dynamic programming (DP). In particular, we
have represented the DP optimization using Graph Theory and

state the problem as a Shortest Path search. Finally, we have
implemented the Label Correcting Method to explore the graph
and find the optimal ON/OFF policies for the SBSs. Numerical
results demonstrate that the proposed algorithm is able to find
the optimal policies for the SBSs for different traffic profiles
and renewable energy arrivals. The study presented here lays the
basis for understanding the system behavior and its performance
bounds. Finally, it also gives a guidance for online optimization
and approximated policy search methods.
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