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Abstract

Autonomic and cardiac dysfunction may occur after vascular brain injury without any evidence of primary
heart disease. During acute stroke, autonomic dysfunction, for example, elevated arterial blood pressure,
arrhythmia, and ischemic cardiac damage, has been reported, which may hinder the prognosis. Autonomic
dysfunction after a stroke may involve the cardiovascular, respiratory, sudomotor, and sexual systems, but
the exact mechanism is not fully understood. In this review paper, we will discuss the anatomy and physiol-
ogy of the autonomic nervous system and discuss the mechanism(s) suggested to cause autonomic dysfunc-
tion after stroke. We will further elaborate on the different cerebral regions involved in autonomic dysfunc-
tion complications of stroke. Autonomic nervous system modulation is emerging as a new therapeutic tar-
get for stroke management. Understanding the pathogenesis and molecular mechanism(s) of parasympa-
thetic and sympathetic dysfunction after stroke will facilitate the implementation of preventive and thera-
peutic strategies to antagonize the clinical manifestation of autonomic dysfunction and improve the out-

come of stroke.

Keywords

Autonomic dysfunction; heart rate variability; insula; stroke

Introduction

Cerebrovascular disorders are a major cause of morbid-
ity and death in the United States and Europe [1-10].
Sudden death following acute stroke has been reported,
but is beyond what is expected from a concomitant
coexisting coronary artery disease [11]. Several studies
have demonstrated that cardiac dysfunction may occur
after vascular brain injury without any evidence of pri-
mary heart disease [12—16]. Furthermore, during acute
stroke, autonomic dysfunction, for example, elevated
arterial blood pressure, arrhythmia, and ischemic cardiac
damage, has been reported, which may hinder the prog-
nosis [17-23]. Autonomic dysfunction after a stroke
involves the cardiovascular, respiratory, sudomotor, and
sexual systems. Although the exact mechanism is not
fully understood, several studies suggest an anatomical
asymmetry between the right and left cerebral hemi-
spheres in the modulation of autonomic nervous system
activity of the central nervous system (CNS). It is well
known that cerebrovascular diseases, particularly ische-
mic stroke, can alter the function of the autonomic sys-
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tem both acutely and chronically [24-26]. These auto-
nomic changes can be cardiac, respiratory, sudomotor, or
sexual in nature [27] and can be detected clinically and
electrophysiologically [14]. Some of these changes have
an impact on the morbidity and mortality in patients suf-
fering a stroke [3,26]. Multiple and different anatomical
regions of the brain have been suggested to be involved,
but the exact pathogenesis and mechanism(s) leading to
these changes is not fully understood [24,28]. In this
review paper, we will discuss the anatomy and physiol-
ogy of the autonomic nervous system and the mecha-
nism(s) suggested to cause autonomic dysfunction after
stroke. We will also review the spectrum of autonomic
dysfunction associated with stroke and the influence of
hemispheric damage location on the occurrence of auto-
nomic dysregulation.
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Central regulation of the autonomic
nervous system

Central nervous system control of the autonomic nerv-
ous system involves several interconnected structures
distributed throughout the neuraxis [29]. The central
autonomic network is organized into closely intercon-
nected spinal, bulbopontine, pontomesencephalic, and
forebrain levels. The spinal level mediates segmental
sympathetic or sacral parasympathetic reflexes. The bul-
bopontine level is involved in the reflex control of respi-
ration and circulation. The pontomesencephalic level
controls pain modulation and integration of behavioral
responses to stress. The forebrain level includes the
hypothalamus and the anterior limbic circuit, which
includes the insula. The forebrain is involved in goal-
related autonomic and endocrine responses for homeo-
stasis and adaptation [29].

The insular cortex integrates visceral, pain, and tempera-
ture sensation [29-31]. It is divided into an anterior and
a smaller posterior part. The posterior part of the insula
has a viscerotropic organization [32] and receives input
from the gustatory, visceral, muscle and skin receptors
via the thalamus and projects to the right anterior insula,
which integrates this input with emotional and cognitive
processing to convey the conscious experience of bodily
sensation [29,30]. The insula carries a visceromotor
function controlling sympathetic and parasympathetic
outputs via a relay in the lateral hypothalamus.

The anterior cingulate cortex has extensive connections
with the insula, prefrontal cortex, hypothalamus, amyg-
dala, and brain stem and controls sympathetic and para-
sympathetic function [29,33]. The hypothalamus is
involved in homeostasis and adaptation by integrating
autonomic and endocrine responses [29]. Several brain
stem areas are involved in autonomic nervous system
control, including the periaqueductal gray matter of the
midbrain, the parabrachial nucleus, and several parts of
the medulla [29]. The autonomic output of the CNS is
divided into sympathetic and parasympathetic. In addi-
tion to thermoregulation, the sympathetic output is cru-
cial for the maintenance of arterial pressure and regional
blood flow.

The sympathetic output originates from the pregan-
glionic neurons located in the thoracolumbar spinal cord
at the T1-L2 levels. These neurons are controlled by pre-
motor neurons in the brain stem and hypothalamus to
initiate appropriate responses to internal and external
stressors such as exercise and dehydration [29]. The ros-
tral ventrolateral medulla and lateral hypothalamic area,
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as well as other brain stem regions, host the main source
of premotor sympathetic innervation [29].

The parasympathetic system output is formed by the
vagal and sacral outputs and is responsible for mediating
reflexes activated in an organ-specific fashion. The
vagus nerve is the main parasympathetic innervation of
the thoracic and abdominopelvic viscera. Eighty percent
of vagal fibers are afferents with cell bodies originating
from the superior and inferior vagal ganglion [34]. The
efferent fibers of the vagus nerve, preganglionic viscero-
motor fibers, originate from the dorsal motor nucleus of
the vagus (DMV) and the nucleus ambiguous in the
medulla oblongata [34]. The nucleus of the tractus soli-
taries (NTS), the nucleus of the spinal tract of the trige-
minal nerve, medial reticular formation of the medulla,
area postrema, DMV, and the nucleus ambiguous host
vagus nerve afferent projections [34]. The vagal para-
sympathetic output to the heart originates primarily from
the ventrolateral portion of the nucleus ambiguous via
the cardiac ganglia [29]. Output of the nucleus ambigu-
ous is activated by the NTS during the baroreflex and
inhibited during inspiration. The nucleus ambiguous
output inhibits sinoatrial node automatism [29]. The
sacral parasympathetic output originates from neurons
located at the S2—-S4 segments of the sacral spinal cord
and plays a critical role in the control of micturition, def-
ecation, and sexual function [29,35].

The baroreflex and baroreceptors, located in the carotid
sinus, aortic arch, and right atrium, are involved in blood
pressure control and are activated by beat-to-beat fluctu-
ation of systemic blood pressure [36]. Receptors located
in the carotid sinus and aortic arch are sensitive to
reduction in pulse pressure, whereas receptors of the
right atrium are more sensitive to alteration in blood vol-
ume [37]. The NTS and the ventrolateral medulla
receive afferents from the baroceptors and send efferents
to the insula and other autonomic centers for further pro-
cessing. Brain stem and hemispheric cerebrovascular
damage may affect the baroreflex causing blood pres-
sure instability [36].

The spectrum of autonomic
dysfunction secondary to stroke

Autonomic dysfunction is a common complication of
cerebrovascular disorders but is not limited to cardiovas-
cular manifestations. Autonomic dysfunction secondary
to stroke extends to sudomotor, vasomotor, impotence,
and urinary dysfunction [26].
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Heart rate variability

Heart rate variability (HRV) has been used extensively
to assess autonomic dysfunction following ischemic
stroke [38—45]. HRV is defined by the variation in heart
beat intervals or correspondingly in the instantaneous
heart rate, which is due to an autonomic neural regula-
tion of the cardiocirculatory system [46]. It is a reflec-
tion of the amount of heart rate fluctuation around the
mean heart rate and reflects the balance between the
sympathetic and parasympathetic nervous systems. Sev-
eral methods used to analyze HRV are based on time
domain analysis, frequency domain analysis, and nonlin-
ear methods of analysis [46].

In time domain analysis, the following indices are used:
mean heart rate, standard deviation of normal-to-normal
interbeat intervals (SDNN), and root mean square of
square sum of adjacent normal-to-normal interval differ-
ence (rMSSD). SDNN reflects overall heart rate varia-
bility, whereas rMSSD correlates with vagal-mediated
control [38].

Frequency domain analysis is based on spectral analysis
of fluctuation of autonomic tone. Spectral analysis splits
a signal into its underlying frequencies. Parasympathetic
modulation of heart rate is more pronounced at a fre-
quency range of 0.15-0.5 Hz, the high-frequency range
(HF). At a frequency ranging from 0.04 to 0.15 Hz, the
so-called low-frequency range (LF), HRV is controlled
by a dual contribution of sympathetic and parasympa-
thetic nervous systems. The very low-frequency range
(VLF) corresponds to frequencies less than 0.04 Hz and
reflects the integrative effect of various controllers such
as vagal to humoral effects [38,47].

In a prospective study, Korpelainen et al analyzed the
HRYV of 31 consecutive patients with hemispheric brain
infarction in the middle cerebral artery territory, during
the acute phase and again at 1 and 6 months after the ini-
tial event [48]. All studied patients had no manifesta-
tions of primary cardiovascular disease and were not on
any medications that may interfere with autonomic func-
tion. In the acute phase after infarction, all the time
domain and frequency domain markers of HRV in stroke
patients were significantly lower than those of control
subjects. It was noted that the severity and size of the
infarct, but not the location, were associated with lower
HRV. This difference was maintained 1 and 6 months
after the onset of acute stroke. The side of cerebral
hemisphere involved did not alter HRV. The authors
concluded that hemispheric brain infarction seems to
cause a significant long-lasting dysfunction of the auto-
nomic cardioregulatory system. This dysfunction
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reflects both sympathetic and parasympathetic auto-
nomic failure and may be associated with damage to the
insular cortex and its neural connections involved in car-
diovascular regulation [48].

In another prospective study, 103 patients with a first
ischemic stroke were evaluated for HRV. The infarct
was on the right side in 49 patients (47.5%) and on the
left in 54 patients (52.5%). The insula was involved in
33 patients with right-sided stroke (67.3%) and in 36
patients with left-sided stroke (66.6%). Analysis of
patients with ischemic stroke revealed a significant
decrease of all HRV components and higher LF/HF ratio
values when compared with controls. Patients with
right-sided infarcts involving the insula showed signifi-
cantly lower SDNN and rMSSD RR interval values and
higher LF/HF ratio values than all other stroke patients.
The study also demonstrated that both ventricular and
supraventricular arrhythmias were found to be more fre-
quent and complex in all subgroups of stroke patients
than in controls. Patients with right-sided insular ische-
mia had a higher prevalence of arrhythmia than those
with left-sided hemispheric stroke [14].

HRYV was used by Chien-Fu Chen et al to study the rela-
tionship between stroke location and cardiac autonomic
dysfunction [49]. In this prospective study, 75 consecu-
tive stroke patients and 81 matched controls were evalu-
ated. The stroke group was divided into three subgroups:
28 had right-hemispheric infarctions (RH), 29 had left-
hemispheric infarctions (LH), and 18 had brainstem
infarctions. Frequency domains of LF, HF, and HF% in
stroke patients were significantly lower than those in
controls, while values of LF% and LF/HF were signifi-
cantly higher. Further analysis demonstrated significant
differences between patients with brain stem infarctions
and controls in LF, HF, HF%, and LF/HF, and between
patients with LH and controls in LF%, HF%, and
LF/HF. These findings pointed to an imbalance between
the sympathetic and parasympathetic activity during the
acute phase of ischemic stroke [49], supporting the pre-
vious findings of sympathetic hyperfunction unbalanced
by parasympathetic failure following a stroke [50].

Autonomic dysfunction has been associated with unfav-
orable cardiac complications during the acute phase of
stroke [51-54]. Based on the reduction of HRV during
ischemic stroke and its value as a prognostic factor dur-
ing myocardial infarction and heart failure, Mékikallio
et al evaluated the prognostic significance of HRV dur-
ing acute ischemic stroke [55]. A series of 84 patients
with an acute first-ever ischemic stroke were enrolled in
the study and were followed for 7 years. During the fol-
low-up period, 39% of the patients died. Among all the
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variables analyzed, abnormal long-term HRV measure
power-law slope B, an exponent that reflects an altered
distribution of spectral characteristics over ultra and
very low-frequency bands, was the best univariate pre-
dictor of death [55]. Power spectral analysis of HRV
was used to test whether patients with large atheroscler-
otic infarctions have different autonomic dysfunction
properties than patients with lacunar infarcts. The group
with large atherosclerotic infarction had lower HF
power, lower normalized HF, higher normalized LF
power, and higher ratio of LF to HF than both the lacu-
nar stroke and control groups. These findings demon-
strate that the large atherosclerotic stroke group had
lower parasympathetic activity and higher sympathetic
activity than the lacunar stroke group, and that depressed
parasympathetic activity was associated with an
increased risk of worse early outcome, as was confirmed
in a recent study [56].

HRV indices were used to evaluate the interaction
among the CNS, the regulation of the immune response,
and cardiac autonomic control after ischemic stroke.
Subacute infection could be predicted in patients without
clinical or paraclinical signs of infection in the acute
period using different HRV indices [38]. HRV suppres-
sion was used to document the imbalance between the
adrenergic and cholinergic systems with prevalent sym-
pathetic activity during the first 24 h of an acute stroke.
Increased incidence of arrhythmia and elevated blood
pressure paralleled HRV suppression during the same
time period [17].

During a period of 18 to 43 months after a lacunar
stroke, Dutsch et a/ used HRV indices to evaluate cardi-
ovascular autonomic function and demonstrated an
impairment of autonomic function with reduction of par-
asympathetic tone compared to controls [47]. Further-
more, the study reported that right-sided infarcts had a
tendency toward increased sympathetic cardiac modula-
tion. It was concluded that, irrespective of the side of the
cerebral infarct, postacute stroke patients showed a para-
sympathetic cardiac deficit. Additionally, sympathetic
modulation was increased in patients with right-sided
stroke. The unopposed sympathetic stimulation may
explain the increased risk of cardiac arrhythmia after a
lacunar stroke [47].

Abnormal heart rhythm and cardiac death

Hemispheric stroke has been associated with increased
risk of cardiac arrhythmia [39,41,48,57-58]. The repor-
ted incidence of arrhythmias following stroke is higher
in studies using 24-h Holter monitoring compared with
electrocardiogram (ECG) recordings. To study the
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occurrence of arrhythmia after stroke, Korpelainen et al/
enrolled 31 consecutive patients with hemispheric cere-
brovascular accidents in the acute phase and at 1 and 6
months after the event, along with 31 age- and sex-
matched healthy control subjects [48]. Each subject
underwent 24-h ECG recordings during the acute phase
and 1 and 6 months after the initial event. Despite a sig-
nificant long-lasting damage to the cardiovascular auto-
nomic regulatory system, none of the patients had seri-
ous arrhythmias during the ECG recording in the acute
phase, at 1 month, or 6 months after the onset of stroke.
All patients had a favorable cardiac outcome during the
6-month follow-up period. No arrhythmias, cardiac fail-
ure, or any other cardiac events were found [48].

In the Northern Manhattan Study, patients aged 40 years
or older with first-time ischemic stroke were prospec-
tively followed for the occurrence of sudden death and
arrhythmia. During a median follow-up period of 4
years, 44 patients (6.7%) had fatal cardiac events. Of
these, 81.8% experienced fatal myocardial infarction
and sudden death [59].

On the basis of ECG recordings, Lavy et al reported a
52% incidence of new-onset arrhythmias following
stroke in patients with no evidence of preexisting heart
disease. This study also revealed that new electrocardio-
graphical abnormalities in patients without evidence of
heart disease prior to the stroke were associated with
poorer prognosis [60]. Goldstein reviewed electrocardio-
graphic records of 150 patients with acute stroke along
with 150 age- and sex-matched controls and reported a
significant higher number of abnormal ECGs in stroke
patients compared with the controls (92% vs. 65%, p <
0.001). The study also reported a 25% incidence of car-
diac arrhythmias in acute stroke patients compared with
3% in the control group [61]. From Holter recording,
Oppenheimer reported a 12% overall incidence of ven-
tricular tachyarrhythmias after stroke compared with 3%
following a transient ischemic attack. Incidences of ven-
tricular ectopy following stroke versus transient ishemic
attack were 71% and 73%, respectively; respective inci-
dences of atrial fibrillation were 9% versus 3% [52].

Blood pressure variability

Damage to the autonomic nervous system may occur in
the acute phase of cerebrovascular diseases and affect
blood pressure control. In a prospective study, the blood
pressure of 44 first-ever stroke patients was recorded on
admission and on days 3 and 7 afterward. In parallel,
serum levels of dopamine, epinephrine, and nor-epi-
nephrine were measured [17]. In the group of patients
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with stroke and arrhythmia, systolic and diastolic blood
pressure values were higher in 61.3%, 22.6%, and
16.2% on admission, 3, and 7 days after stroke onset,
respectively. In the same group of patients, levels of epi-
nephrine, nor-epinephrine, and dopamine were higher
than normal on admission in 100%, 22.6%, and 71% of
patients, respectively. Three days after admission, these
percentages decreased to 32.3% (epinephrine) and
35.5% (dopamine), whereas there was a slight increase
in nor-epinephrine level to 29%. Seven days after stroke
onset, catecholamines levels returned to normal. The 24-
h urinary catecholamine levels followed a similar trend.
In the group of patients with stroke and no arrhythmia,
systolic and diastolic blood pressure values were higher
in 61.6%, 38.4%, and 23.2%, respectively on admission,
3, and 7 days after stroke onset. In the same group,
changes in catecholamine levels were not observed. The
study concluded that a transient alteration of the auto-
nomic nervous system occurs during the hyperacute
phase of stroke with prevalent sympathetic activity [17].

In another study, 24-h ambulatory blood pressure moni-
toring was performed on days 1 and 7 after hospital
admission in 72 patients with acute ischemic stroke. The
study demonstrated elevated blood pressure on day 1
after stroke that resolved spontaneously on day 7 [62].
Zis et al enrolled a consecutive series of 109 first-ever
stroke patients who underwent a 24-h ambulatory blood
pressure monitoring within 24 h after stroke onset [63].
The study demonstrated that the 24-h rate of systolic
blood pressure variation was higher in patients with
large artery atherosclerosis compared to those with lacu-
nar or cryptogenic strokes. Furthermore, the study dem-
onstrated that patients with a higher 24-h rate of systolic
blood pressure variation were more likely to have poor
outcomes at 1 year of follow-up. Moreover, each 0.1
mmHg/min increase in the 24-h rate of systolic blood
pressure variation was associated with a 1.96-fold
increase in the odds of a negative outcome [63]. Simi-
larly, 24-h blood pressure ambulatory monitoring of 104
patients with acute stroke demonstrated a positive corre-
lation between mean values of blood pressure and a poor
outcome 3 months after stroke onset [64].

Alteration of blood pressure control was sustained sev-
eral months after acute stroke. McLaren et a/ conducted
a cross-sectional, case—control study comparing auto-
nomic function in 76 nondemented stroke patients with
70 community-living controls aged 75 years or older.
Cases were assessed, on average, 9 months following
the onset of stroke. Blood pressure overshoot during val-
salva maneuver was significantly lower in stroke
patients (p < 0.027). Furthermore, blood pressure
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response to isometric exercise was significantly exag-
gerated in stroke patients (p < 0.007) [65].

Baroreflex sensitivity variability:

The baroreceptor reflex is the major neural mechanism
for blood pressure control. Beat-to-beat variation in sys-
temic blood pressure is the activator of baroreceptors
located in the carotid arteries, cardiac chambers, and the
aortic arch. Neural afferents from these baroreceptors
relay information to the nucleus tractus solitarius and the
ventrolateral medulla, which is further processed in the
insula, medial prefrontal cortex, cingulate cortex, amyg-
dala, hypothalamus, thalamus, and cerebellum [36]. Bar-
oreflex sensitivity is quantified in milliseconds of RR
interval duration to each mmHg of arterial blood pres-
sure, with a normal value of approximately 15 ms/
mmHg and a large interindividual difference [66]. There
is an increasing evidence suggesting that baroreflex sen-
sitivity is dysregulated during acute stroke [54,67-70].
Insular cortex damage seems to play a major role in bar-
oreflex sensitivity during acute stroke [36,69,71]. How-
ever, controversy persists on the proposed lateralization
of baroreflex control. One study demonstrated a reduc-
tion in parasympathetic and an increase in sympathetic
heart rate modulation associated with right-sided acute
stroke [36], whereas other studies showed that left insu-
lar lesions decrease baroreflex sensitivity significantly
more than right-sided ones [72—74]. Alteration of baror-
eflex sensitivity has also been associated with poor
stroke outcome and alteration of cerebral perfusion [36].

Thermoregulation disorders

Several studies reported sweating dysfunction after
acute hemispheric stroke [26,75-78]. In addition, several
of these studies have reported hyperhidrosis on the con-
tralateral side of stroke [76—78]. Up to 77% of patients
have an asymmetric sweating pattern during the acute
phase of stroke and the severity of sweating asymmetry
correlates with the severity of motor deficits [26,76].
Dysregulation of the vasomotor autonomic nervous sys-
tem, demonstrated by asymmetric skin temperature sen-
sation, has also been reported after stroke [79,80]. Con-
flicting results of reduced and increased skin sensation
in paretic limbs have been reported [81-83]. Subse-
quently, when more advanced technology was utilized,
paretic limbs were found to be colder than the nonpa-
retic limbs [80]. Decreased cortical and subcortical
inhibitory effect on vasomotor neurons has been
advanced to explain coldness of paretic limbs after
stroke. This inhibition increases the vasoconstriction
tone and reduces the cutaneous blood flow and skin tem-
perature on the side opposite to the infarction [26].
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Sympathetic skin response abnormalities

Sympathetic skin response (SSR), which represents a
potential generated in skin sweat glands, originates by
activation of the reflex arch with different types of stim-
uli [84]. Zimmermann et al studied SSR in normal and
hemiplegic limbs. Thirteen patients were enrolled and
evaluated between 1 and 72 months after stroke and
reported a 16% prolongation of the median SSR latency
in the left compared to right hemiplegic limbs [85]. In
another study, Korpelainen et al recorded SSR in bilat-
eral hands in 58 patients with brain infarction along with
36 healthy control subjects. A significant decrease in
latencies and amplitude of SSR in hemispheric infarc-
tion compared with the control subjects was observed
[86]. A similar finding of alteration of SSR response
was reported by Linden et al, who recorded abnormal
SSR in 82.8% of patients with a cerebrovascular event
[87]. The observed abnormalities of SSR after hemi-
spheric stroke may be related to damage in the ascend-
ing and descending corticoreticular pathways or the cer-
ebral cortex [26].

Urogenital and gastrointestinal dysfunction

Urinary dysfunction after hemispheric stroke has been
reported in several studies [88—90]. Urinary inconti-
nence was considered a predictor of death, severe disa-
bility, and hospitalization outcome in stroke patients
[90]. The prevalence of urinary symptoms 3 or 12
months following stroke was more than 80% in stroke
survivors previously enrolled in the North-East Mel-
bourne Stroke incidence study [91]. Urinary inconti-
nence of new onset after acute stroke with impaired
awareness of bladder needs was found to be a strong and
independent risk factor for poor outcome 3 months after
stroke. This may reflect more serious brain damage
affecting sustained attention and information processing
[92].

Han et al evaluated the urodynamic parameters in ische-
mic and hemorrhagic stroke patients. Ischemic stroke
was associated with more detrusor overactivity and less
detrusor underactivity [88]. In another study, Chou et a/
reported the urodynamic findings in 15 patients with
cerebellar stroke. Detrusor overactivity occurred in 75%
of patients with ischemic stroke and 28.6% of patients
with hemorrhagic stroke (p < 0.072). The study also
demonstrated that voiding dysfunction in patients with
cerebellar stroke is a dynamic process that changes with
time [89]. Internal capsule and cortical infarcts have
been more frequently associated with detrusor hyperre-
flexia [26].

The contribution of autonomic dysfunction has been
proposed to explain the mechanism of sexual dysfunc-
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tion after stroke. Decline in libido and coital frequency
in men and reduction in vaginal lubrication and orgas-
mic ability in women are the most frequent sexual dys-
function manifestations after stroke [26]. The relation-
ship between cerebral infarct location and subsequent
occurrence of sexual dysfunction has been studied by
Jung et al, who surveyed 109 stroke patients and 109
age-matched controls. The study reported a significant
decrease in erectile function in stroke patients compared
with the controls. Lesions in the right cerebellum were
significantly associated with ejaculation disorders
whereas left basal ganglia lesions were associated with
decreased sexual desire [93].

Acute stroke is frequently associated with gastrointesti-
nal dysfunction. Constipation was the dominant gastro-
intestinal symptom, reported in 25.9% of patients with
acute stroke, followed by masticatory difficulty,
observed in 20%. Other significant gastrointestinal man-
ifestations included incomplete bowel evacuation, fecal
incontinence, sialorrhea, and dysphagia [94]. Although
the majority of these manifestations are related to immo-
bilization and severity of stroke, impairment of auto-
nomic innervation of the gastrointestinal tract is a poten-
tial mechanism of gastrointestinal dysfunction associ-
ated with stroke, especially in diabetic patients [26].

The effects of cerebrovascular
accidents location on autonomic
dysfunction

For the past two decades, there has been an increased
interest in studying the association of autonomic func-
tion alteration with hemispheric stroke locations, includ-
ing the insular cortex and the frontal and parietal lobes
[24,28,59,81,95-97].

Insular cortex

Several studies showed that the insular cortex is
involved in cardiovascular and autonomic regulation
[24,98-100]. Oppenheimer et al conducted a series of
experiments in rats and were able to induce ECG
changes similar to those observed after stroke [101].
Subsequently, Ay et al conducted a prospective study to
identify regions of brain ischemia associated with myo-
cardial infarction in the absence of primary cardiac cau-
ses. The study enrolled 50 patients in whom serum car-
diac troponin elevation occurred in the absence of any
apparent cause within 3 days of symptoms onset. Fifty
randomly selected, age- and sex-matched patients with
stroke and normal serum cardiac troponin level served
as controls. Right-side insula and inferior parietal lobe
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strokes were shown to be associated with serum cardiac
troponin elevation. Among patients with right middle
cerebral artery infarction, the insula was involved in
88% of patients with and 33% of patients without serum
cardiac troponin elevation [102]. In another study,
Meyer et al prospectively studied the sympathetic func-
tion in 29 hemispheric stroke patients. Sympathetic
activity was significantly higher in insular than in nonin-
sular stroke (p < 0.05), with concomitantly elevated car-
diovascular parameters in patients with insular stroke
[24]. Yet another study explored Holter monitoring for
24 h in 103 consecutive patients with first-ever acute
stroke. When compared with all other stroke patients,
subjects with right-sided insular damage showed signifi-
cantly lower values of heart rate variability and more
complex arrhythmias than any other localization (p <
0.05) [14]. Insular infarction and nighttime blood pres-
sure increase were significant and independent predic-
tors of an unfavorable functional outcome [103]. Similar
findings were reported by Tokgézoglu et al, who dem-
onstrated that stroke involving the insular region, partic-
ularly right-sided, leads to decreased heart rate variabil-
ity and increased incidence of sudden death [104].

Other hemispheric locations

The effect of parietal stroke on autonomic function was
studied by Rincon et al, when epidemiological data of
the Northern Manhattan Stroke Study (NOMAS) was
analyzed [59]. The NOMAS is a population-based study
designed to determine stroke incidence, risk factors, and
prognosis in a multiethnic urban population. In multi-
variate models, clinical diagnosis of left parietal lobe
infarction was associated with cardiac death (adjusted
OR =4.45; 95% CI: 1.83-10.83). Furthermore, high risk
of death after right-sided parietal lobe stroke, when the
infarct size was taken into account, was observed. No
association between frontal, temporal, or insular stroke
and fatal cardiac events was seen, although the number
of purely insular strokes was small. The study concluded
that parietal lobe infarction is an independent predictor
of long-term cardiac death or myocardial infarction in
this population. Increased risk of cardiac events related
to parietal stroke was observed only after a long-term
follow-up [59]. The study further demonstrated that
stroke involving the frontal lobe was a predictor of car-
diac death. The ventromedial prefrontal cortex has sig-
nificant modulating effects on cardiovascular responses
to emotional stimuli (left prefrontal lesions result in
dampened heart rate or blood pressure adjustment to vis-
ual emotional stimuli), whereas right prefrontal lesions
mediate increase of heart rate and blood pressure
responses [28].
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Modulation of autonomic nervous
system: a new therapeutic target in
cerebrovascular accidents

Activation of the parasympathetic nervous system has
been successful in treatment of brain disorders such as
depression and epilepsy [105-107]. This effect is medi-
ated by antagonizing multiple pathological mechanisms
[34]. Optimization of parasympathetic nervous system
activation demonstrated neuroprotection in both preclin-
ical models of cerebral ischemia and in vitro neuronal
hypoxia [34]. In a rat model of transient focal cerebral
ischemia, Ay et al demonstrated that vagus nerve stimu-
lation (VNS) significantly decreased infarct size and
neurological deficits 24 h after onset of ischemia [108].
VNS was found to reduce extracellular glutamate levels
between 15 and 20 min after 5 min of experimental tran-
sient global ischemia [34,109]. Excitotoxicity occurring
during ischemic brain injury could be antagonized by
the reduction of glutamate levels. VNS may be neuro-
protective by its anti-inflammatory effect and the media-
tion of norepinephrine release. Furthermore, parasympa-
thetic activation was found to increase cerebral blood
flow and improve neurogenesis [34]. In summary, acti-
vation of the parasympathetic nervous system has neuro-
protective and anti-inflammatory effects on the CNS, as
well as a modulatory effect on the cerebrovascular tone.
These effects carry a promising therapeutic direction in
prevention and treatment of autonomic dysfunction rela-
ted to stroke.

Conclusion

Autonomic dysfunction is common after vascular brain
injury and may increase poststroke rate of morbidity and
mortality. Although there is strong evidence suggesting
the involvement of the insular cortex, particularly the
right side, in increasing sympathetic tone and modulat-
ing autonomic function, studies also report an increased
risk of cardiorespiratory dysfunction following frontal
and parietal hemispheric stroke. The implementation of
preventive and therapeutic strategies to antagonize the
clinical manifestation of autonomic dysfunction may
improve the outcome of stroke. This will rely on better
understanding of the pathogenesis and molecular mecha-
nism(s) of parasympathetic and sympathetic dysfunction
after stroke. With the promising preclinical studies sup-
porting the neuroprotective effect of VNS and its ability
to antagonize multiple stroke pathologic mechanisms,
autonomic nervous system modulation is emerging as a
new therapeutic target for management and prevention
of complications related to autonomic dysfunction rela-
ted to stroke.
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