
 1



Abstract—Real-time object detection is becoming necessary for

a wide number of applications related to computer vision and

image processing, security, bioinformatics, and several other

areas. Existing software implementations of object detection

algorithms are constrained in small-sized images and rely on

favorable conditions in the image frame to achieve real-time

detection frame rates. Efforts to design hardware architectures

have yielded encouraging results, yet are mostly directed towards

a single application, targeting specific operating environments.

Consequently, there is a need for hardware architectures capable

of detecting several objects in large image frames, and which can

be used under several object detection scenarios. In this work, we

present a generic, flexible parallel architecture, which is suitable

for all ranges of object detection applications and image sizes.

The architecture implements the AdaBoost-based detection

algorithm, which is considered one of the most efficient object

detection algorithms. Through both FPGA emulation and large-

scale implementation, and RTL synthesis and simulation, we

illustrate that the architecture can detect objects in large images

(up to 1024x768 pixels) with frame rates that can vary between

64-139 fps for various applications and input image frame sizes.

Index Terms—Object Detection, Systolic Arrays, Very Large

Scale Integration.

I. INTRODUCTION

BJECT detection in video and images is an important

operation in several embedded applications, such as

computer vision and image processing applications,

bioinformatics, security, and artificial intelligence. Object

detection involves the extraction of information from an image

(or a sequence of) frames, processing of the information, and

determining whether the information contains a particular

object and its exact location in the image. This process is

computationally intensive, and several attempts have been

made to design hardware-based object detection algorithms,

especially in the context of embedded and real time systems

[1]-[5], [8]-[12], [16], [18]-[24], and [28]-[29]. This is

particularly emphasized in safety-critical applications such as

search-and-rescue operations, biomedical applications (such as

laparoscopic surgeries), surveillance of critical infrastructure

and several other applications. The majority of the proposed

works target FPGA implementations; additionally, they are

either application-specific or operate on images of relatively

small sizes in order to achieve real-time response [8], [16]-

[17]. As such, a generic, real-time object detection hardware

architecture, independent of image sizes and types of objects,

can potentially benefit several applications, and most

importantly, provide the foundations for further post-detection

applications such as object recognition.

There are several algorithms used to perform detection,

each of which has its own advantages and disadvantages. This

paper presents a generic architecture based on the object

detection framework presented by Viola and Jones [6] where

they utilize the AdaBoost learning algorithm introduced by

Freund and Schapire [7], [13]. The proposed architecture

extends our preliminary work proposed initially in [8]. In this

work, we extend the implementation of the AdaBoost

detection framework by several algorithm-driven design

optimizations, focus on the general object detection problem,

and address the image size limitations. We also expand our

evaluation strategy to include both an FPGA implementation

for the purposes of validation of our architecture, as well as an

ASIC implementation, for which we evaluate based on three

different object detection case studies.

The architecture proposed in this work is based on a

massively parallel systolic computation of the classification

engine using a systolic array implementation which yields

extremely high detection frames per second (fps). The

architecture is designed in such a way as to boost parallel

computation of the classifiers used in the algorithm, and

parallelize integral image computation, reducing the frequency

of off-chip memory access. To make the architecture scalable

in terms of image sizes, we utilize an image pyramid

generation module in conjunction with the systolic array. As

the array elements are modular and simple, and

communication is regular and predetermined, the architecture

is highly scalable and can operate on high frequency. The

designer can select all the appropriate design parameters with

the targeted operating environment in mind, without affecting

the real-time constraints. The designer can also choose the

operating frequency (with power constraints in mind), the

array size (with area constraints in mind), and image size (with

targeted application specifications in mind). The architecture

is flexible as well in terms of input image size; the maximum

input image size depends on the silicon budget available,

however smaller images may easily be processed by the

system as the input image size can be loaded as a parameter.

Moreover, the architecture can support different training sets

and different training set formats.

The architecture is evaluated by verifying its operation on a

Xilinx Virtex II Pro FPGA, and by synthesizing and

A Flexible Parallel Hardware Architecture for

AdaBoost-based Real-Time Object Detection

Christos Kyrkou, Student Member, IEEE, and Theocharis Theocharides, Member, IEEE

O

 2

implementing the architecture using Synopsys Design

Compiler and a commercial CMOS 65nm cell library. The rest

of this paper is organized as follows. First, a detailed

description of the algorithm is given in section II, where the

hardware implementation requirements are outlined. Section II

also gives a review of related work. Section III presents the

proposed architecture, and section IV presents the systolic

computation overview, explaining dataflow and computational

semantics. Section V presents the evaluation framework along

with the results for both the FPGA implementation and the

ASIC synthesis. Section VI concludes this paper, giving future

directives.

II. BACKGROUND AND RELATED WORK

A. The AdaBoost Algorithm and Hardware Implementation

Requirements.

The method of utilizing AdaBoost as part of a learning

algorithm for robust real-time object detection was first

introduced by Viola and Jones [6], in order to select a number

of visual features for producing efficient and accurate

classifiers. AdaBoost utilizes a small number of weak-

classifiers, which are then used to construct cascades of strong

classifiers. The combination of the strong classifiers in a

cascade results in high accuracy rates and computational

efficiency.

The most popular weak classifiers used with AdaBoost are

the Haar-like features; fixed-size images which contain a

small number of black and white rectangles. These features act

as filters that can detect the presence or absence of certain

visual characteristics in an image. The computation of a Haar-

like feature involves calculating the sum of the pixel values in

the white rectangles of the feature minus the sum of pixel

values in the black rectangles, by convolution with the input

image. The original algorithm [6] used features starting at

24x24 pixels, however, the feature size can vary with the

application. The number of rectangles for each feature varies

also depending on the object of interest. Rectangles and

features, along with the feature operation are shown in Fig. 1.

The strong classifiers constructed by AdaBoost are setup in

a cascade and each strong classifier is a stage in the detection

process. Each stage consists of a group of Haar-like features

selected by AdaBoost during training. The outcome of each

Haar-like feature in a stage is computed and accumulated.

When all the features in a stage are computed, a stage

threshold value (to) is used to determine if the sample is a

successful candidate to move on to the next stage or not. This

technique accelerates the process of rejecting an image region

that does not contain objects of interest, so that computation

time will focus only on successful candidates.

When a cascade of stages of features is computed, the

outcome for the search window for which the cascade is

evaluated is known. However, objects in the image frame

which are larger than the search window and the feature, do

not get detected. This is usually solved by downscaling the

original image frame, subsequently reducing the object size,

and making it detectable. However, Viola and Jones suggest

enlarging the feature instead; this way, image data that could

potentially be lost by downscaling remains, and the features

that are simply black and white rectangles, scale linearly

without loss of data. Consequently, at the end of each cascade

computation, the process is repeated for a larger feature size,

until the size of the feature reaches the size of the largest

possible object (in terms of pixels) in the input image frame.

The amount of scaling also impacts the detection frame rate

significantly, which further stresses the need for rapid feature

computation.

To speed up the feature computation, Viola and Jones

propose an alternative input image representation, called the

integral image. The integral image is simply a transformation

of the original input image, to an image where each pixel

location holds the sum of all the pixels to the left and above of

that location [6]. The advantage of using the integral image is

the ability to compute the sum of a rectangle in a rapid

manner. As shown in Fig. 1 (rectangle computation), the

computation for rectangle D is simply two additions and two

subtractions of the four corner points of the rectangle when

using the integral image rather than the original image. Hence,

regardless of the feature or search window size, only four

values per rectangle are necessary to compute the value of

each feature. Additionally, the location of the rectangles

within each feature is predetermined from the training set,

hence to evaluate each rectangle we need the offset dx and dy

values from the starting coordinate of each feature (see Fig. 1,

center-bottom). The offset coordinates are part of the training

set, where each feature is associated with a list of the feature’s

rectangles and the four pairs of (dx,dy) offsets necessary. This

holds true during feature upscaling as well, as since the

rectangle coordinates are fixed, dx and dy are also scaled

linearly with the scale factor. For example, if a feature scales

from 24x24 to 30x30, (i.e. a scale factor of 1.25) a rectangle

that in the initial feature would be located at starting

coordinate (dx = 4, dy = 8) would be mapped to (dx = 5,

dy=10), with dx and dy multiplied by the scale factor (rounded

to the nearest integer).

One important disadvantage of the integral image

computation however lies in the implementation of the

addition and storage required for computing and storing the

integral image values. As the size of the input image grows,

the adder and storage grow proportionally as well. Recall that

an integral image pixel located at (x, y) holds the sums of all

pixels above y and to the left of x (Fig. 1). As the range of x

and y grows, the amount of pixels summed for computing the

value of integral image pixel (x, y) grows exponentially (x*y);

hence, the adder precision and memory requirements change

as well. This can be addressed by applying the algorithm over

smaller regions of the input image rather than the entire image.

All the above computations are essential for the

classification process required by the detection algorithm.

There are also some additional computations necessary to deal

with the varying characteristics in which the object of interest

may appear, due to the lighting and environmental variations.

The AdaBoost framework uses a lighting correction technique

to compensate for these variations. This technique requires the

computation of the squared integral image for each input

image (each image location holds the sum of the squared pixel

values). This is necessary to compute the variance (VAR) and

the standard deviation (σ) of the image, to compensate for the

 3

Fig. 1. Basic Concepts used in the AdaBoost object detection framework

Fig. 2. Outline of the AdaBoost-based classification procedure

Fig. 3. Stage Evaluation outline

lighting variations, as shown in (1). The standard deviation is

multiplied with the original feature threshold (t0) given in the

training set, to obtain the compensated threshold (t) which

dynamically takes care of any lighting variations encountered

during the detection stage, and improves the overall accuracy

of the algorithm. It is needed to be done only once for every

search window however; all subsequent features evaluated

over that search window can use the computed standard

deviation value as shown in (1).
Given that the search window size is known, we avoid the

costly division operation using the reciprocal of the area as a

constant, and multiply it. The sum of the pixels is then

squared, and subtracted from the computed value of the

squared integral image, to give us the variance. To compute

the standard deviation, we need the square root of the

variance. The square root however is a tedious operation when

it comes to hardware, so a better solution could be explored.

To compute the compensated threshold we need the product of

the original threshold and the standard deviation (σi), as shown

in the first line of (2). We therefore square both sides of the

equation, multiplying the variance with the squared value of

the original threshold (can be pre-computed during training

and stored in the training set), to yield the squared value of the

compensated threshold. Thus, the square root operation

becomes a multiplication instead.

𝑉𝐴𝑅 = ∑ [
∑ 𝑋𝑖

𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
𝑖=0

𝐴𝑅𝐸𝐴
]

2

𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
𝑖=0 𝑎𝑛𝑑 𝜎 = √𝑉𝐴𝑅 (1)

𝑡 = 𝑡𝜎 ∗ 𝜎𝑖 ⇒ 𝑡2 = (𝑡0)2 ∗ 𝑉𝐴𝑅 (2)

 The sum of all weighted feature rectangles is used to

determine the feature sum; if this sum exceeds the

compensated threshold then it is set to a predetermined value

obtained from the training set. Otherwise it is set to another

predetermined value, also obtained from the training set. All

feature sums are also accumulated to compute the stage sum.

At the end of each stage, the stage sum is compared to a

predetermined stage threshold. If it is larger, the search

window is a successful candidate region to contain the object

of interest; otherwise, it is discarded, and omitted from the rest

of the computation. When all search windows finish, features

are scaled by a predetermined factor, to detect objects larger

than the original feature size. The computation is repeated

again, using new training values set for the larger scale, until

all objects of all sizes are detected in the image frame. The

algorithm computation outline and the stage evaluation outline

are shown in Fig. 2 and Fig. 3 respectively.

To map this algorithm in hardware, we need to determine an

efficient access to the values of the integral image used to

compute the rectangle outcomes. Given that the bulk of the

computation focuses on computing each feature, and given

that the computation is identical, the challenge shifts to

finding an efficient way to access the values of the integral

image in parallel, and be able to employ the inherent

parallelism of computing these rectangles over the entire

image. Thus, storing the integral and integral squared images

into single memory blocks essentially limits the number of

rectangle coordinates accessed in parallel and creates

contention. Similarly, replicating the memory blocks to

increase parallelism results in high memory requirements, and

if the memory is off-chip, in an increased latency [15]. Thus,

we present an architecture that provides parallel access to the

integral image values, and provides parallel data movement to

result in rapid computation of rectangles across the entire

image frame. Next, we discuss related work and alternative

implementations.

B. Related Work

The majority of object detection hardware implementations

deal with specific applications, and are designed aiming

performance towards the specific host environment. Some

early work targets neural network implementations, such as

[14], [16], [17], and the AdaBoost algorithm has only recently

gained attention as a promising alternative. The AdaBoost-

based visual object detection framework is suitable for a wide

range of computer vision applications and has been used in

various tasks involving detection. The majority of these

implementations however, have been done using software;

 4

hardware implementations have been limited to the application

of face detection [3], [8-12], [28] and [29] and have mostly

targeted FPGAs. The majority of the proposed hardware

implementations follows some basic principles that were

originally introduced in our preliminary implementation in [8],

and suggests the computation of the integral image as well as

the access of its values to be implemented as a systolic array

rather than using a central (or even, distributed) memory.

Recent work by M. Hiromoto et al [9] proposed a hybrid

model consisting of parallel and sequential modules. The

parallel modules are assigned to the early stages of the

algorithm which are frequently used whereas the latter stages

are mapped onto sequential modules as they are rarely

executed. However, the separation of the parallel and

sequential stages needs to be reevaluated every time there is a

change in the training data. [10] uses a cell array architecture

for the main classification modules. The integral image is

generated for each sub-window, and is then used for

classification through a cell array. Additionally the input

image is scaled down instead of the Haar-like features scaling

up. A simpler version of the algorithm was implemented in

[11] where only 3 stages of classification are used, with an

input image size of a 120x120 image. The integral image is

computed for each sub window that is generated, rather than

the whole image. Furthermore, an image pyramid generation

unit is used to produce downscaled versions of the input

image. In the work presented by Y. Shi et al [12] some

optimization methods are suggested to speed up the detection

procedure when considering systolic AdaBoost

implementations. The proposed work introduces two pipelines

in the integral image array to increase the detection process; a

vertical pipeline that computes the integral image and a

horizontal pipeline that can compute a rectangle feature in one

cycle. The implementation in [28] employs very similar

architecture to the ones presented in [9] and [10] but with a

massively reduced number of training features and thus

manages to process more than 100 fps, illustrating that

training set optimizations are also a factor that can be

potentially explored. However, no information is given on the

method used to reduce the training set.

A specialized recognition processor was presented in [29]

that introduces three techniques related to the handling of

Haar-like features. A cache is used to hold recently referenced

training data; a feature coordinator decoder is used for faster

access, and a Haar-feature value extractor is used to improve

throughput. More recently, a SystemC implementation was

presented in [24], where initial simulations showed an

achieved frame rate of 42fps, under a modified architecture

and reduced training set. The contributions of the work in [24]

also detail opportunities for system-level optimization, using

modern design tools such as SystemC.

Table I presents a summary of existing implementations,

and gives a brief comparison in terms of the training sets used

(features and stages), image and search window size, scaling

techniques and the impact on the number of resulting search

windows. Table I also provides a brief comparison in terms of

the methodology employed in computing the integral image

and the rectangle sums.

To the best of our knowledge, this work is the first that

considers a full-custom generic AdaBoost hardware

implementation. We tackle all issues such as input image size,

object types and number of objects of interest present in the

input image, but most importantly, we allow the architecture

to remain generic to process different training sets and feature

sizes, making the architecture suitable for all types of

AdaBoost-based object detection.

III. PROPOSED ARCHITECTURE

There are five major issues in designing the proposed

architecture: image scaling, integral image computation,

feature computation, stage computation and identification of

regions that contain the objects of interest. Each part is

considered based on its contribution towards the performance

and accuracy, as well as computational resources required.

 The architecture consists of 2 major blocks; an image

TABLE I

RELATED WORK ALGORITHM AND METHOD COMPARISONS

 Hiromoto [9]a Cho [10] Wei [11] Shi [12] Lai [28]
Presented Work -

FPGA

Features 2,913 [18] 2,135 225 2,913 [18] 52 2,913 [18]

Stages 25 [18] 22 3 25 [18] 1 25 [18]

Image Size 640x480 320x240, 640x480 120x120 176x144 640x480 320x240

Feature Size 24x24 20x20 24x24 24x24 20x20 24x24

Scaling

Method
Image Downscaling Image Downscaling

Image

Downscaling
Not provided Image Downscaling

Image Downscaling/

Feature Upscaling

Downscale

Factor(s)
1.2 1.2 1.25 Not provided 1.25 1.25, 0.75, 0.5

of

Downscaled

Images

18
14 (320x240),

18 (640 x 480)
4 Not provided ~15

3 downscaled images, 5

upscaled features.

II

Computation

Per window, using line

buffers to calculate and

store the II values

Per window,

by an array of line

buffers and block RAMs

Sequential

computation per

window

Per Window, using a

24x24 Cell Array

Computed for every

window by a 21x21

Register Array

For the whole 80x60

window while values

are shifted in the array

Rectangle &

Feature

Computation

II values are loaded

from a register array,

processed in parallel

for the first 10 stages

and sequentially for

the rest.

Accumulates the II

values from the array

and evaluates the feature

Evaluated using

MAC units

The II values are loaded

from the array and used to

compute the rectangle and

feature sums

II values are loaded

from the array and are

weighted and summed

to evaluate a rectangle

CCUs and EUs

evaluate rectangles and

features during the

systolic flow of II

values in the array

aUses a sequential and parallel processing execution model. Split point for the two stages is at stage 10, II = Integral Image

 5

Fig. 4. System architecture block diagram.

Fig. 5. Image Pyramid Generation Unit Architecture

pyramid generation (IPG) unit [14]-[17] and a systolic array.

The IPG receives the input video frame and generates image

regions that the systolic array processes. The systolic array

evaluates the candidate regions that potentially contain objects

of interest. We use a hybrid scaling mechanism that utilizes

traditional input image downscaling, as well as the original

feature upscaling scheme that Viola and Jones proposed. . This

feature upscaling continues to iterate, in order to detect objects

in the search window larger than the feature size. Iterations

continue until the feature size equals the size of the smaller

dimension of the search window size (typical features are

square, whereas search window sizes can be rectangular). For

example, if we consider a starting feature size of 24x24, and a

search window size of 80x60, features will be scaled up until

the feature size will be 60x60. In this way, we reduce the

image size where features are being evaluated, reducing the

overall cost and amount of computation, and still allow the

system to process large input images.

The IPG unit processes the input image frame and generates

the search window. In the context of this work, the search

window is defined as the image region examined for the

targeted object(s) of interest. Each search window is then

processed in parallel, feature by feature and stage by stage

through the systolic array. The array is responsible for

computing the integral image, computing the rectangles for

each feature, and evaluating both the features and the stage

sumsIf an object of interest is detected within that search

window, the array outputs the coordinates of the region

containing the object, taking into consideration the scale of the

feature that the object was found at. When the array completes

the examination of a search window, a new search window is

fed into the array from the IPG unit, until the entire image is

searched. The original image is also downscaled through the

IPG unit, producing more search windows for each

downscaled version of the original image, until the

downscaled image equals the search window size. This creates

a hybrid architecture that evaluates features over a number of

image scales, and a number of feature sizes over a single

search window. A brief description of each of the units is

given next, while a block diagram of the system architecture is

shown in Fig. 4.

A. Image Pyramid Generation

 The IPG unit receives the input video frame and generates

the search windows to be processed by the systolic array. The

unit receives pixels row-wise, and generates mxn search

windows, which are then buffered and fed row-wise in parallel

in the systolic array. The size of the generated search windows

is determined by the size of the systolic array. The IPG and the

systolic array operate in a pipelined fashion, where the systolic

computation happens as soon as a single search window is

generated. However, the IPG continues to generate search

window pixel data while the systolic array is computing,

preparing the next search window(s) that will be used.

Typically (depending on the systolic array size and

subsequently search window size), the IPG can generate a

second search window before the first one is computed by the

array, therefore one search window buffer is sufficient.

The IPG unit also downscales the original image, ensuring

that objects bigger than the search window size are

downscaled, and eventually can fit into a search window as

well. In this way, the search window can be made as large as

the silicon budget allows the systolic array to be. Moreover,

data loss due to downscaling is limited, as the image will not

be scaled down after it reaches a certain size.

The IPG unit consists of three stages; the input stage, where

pixels are received from the frame memory, the partitioning

stage where incoming pixels are partitioned into the search

window buffer, and the scaling stage. The first stage is

customized to satisfy the input conditions (i.e. number of

pixels per cycle, etc.). The second stage is a finite state

machine that is responsible for generating the address of the

pixel values that are to be received in the next I/O operation

and directs incoming pixels in their corresponding search

window buffer location. Lastly, the scaling stage simply

computes the coordinates (and subsequently memory address)

of the downscaled image for each incoming pixel, generating

the address where each pixel is to be stored. It must be noted

that depending on the choice of the downscaling algorithm

used, some pixels will be mapped to the same location. In the

proposed IPG, the algorithm used is a simple multiplication,

and the pixel that was lastly computed to be stored in the

generated location, overwrote any previously written pixels.

Additionally, the downscaled image (depending on the

generated size and thus its memory requirements) can be

stored either on-chip or on external memory, and retrieved at a

later stage during the computation in similar fashion as the

original image is received. This procedure was chosen to

enable flexible scaling of downsized images, allowing the

designer to select the scale and the number of produced

downsized images. The IPG unit is shown in Fig. 5. The

output search windows are fed pixel by pixel, row-wise, in the

systolic array.

B. Systolic Array

The systolic array performs the bulk of the computation; it

computes the integral image, collects and computes the

rectangle points, computes and evaluates the feature and stage

sums, and determines whether a region passes a stage so that it

 6

can be considered for further search. The array also maintains

the location of detected objects. The array consists of two

types of processing elements (PEs); the collection and

computation units (CCUs), and the evaluation units (EUs).

The EUs are placed as the leftmost PEs in each row in the

array; the CCUs make up the rest of the array. Each EU

communicates via a direct link to its neighboring CCUs, and a

toroidal link to the far right CCUs, as shown in Fig. 6. The

array also contains distributed control units (CUs), small

FSMs that direct the overall operation by global control

signals. The distributed control units also maintain the

temporal consistency of the entire operation, acting as

coordinators throughout the entire computation. Given the

modular operation of the array, and the identical operation of

each of the CCUs and EUs respectively, the control units

maintain that communication is uniform across the array and

towards the necessary direction, and that all units are

synchronized, either doing data transfer, or computation.

Distributed multiple CUs can be used, in order to reduce the

size of the control region for each CU, since the control

signals delivered to the PEs are identical. The array units can

communicate with each of its neighbors via bidirectional data

links.

Fig. 6. Systolic Array System Architecture

The chosen array size depends largely on the application

requirements in terms of frame rate and budget, and the

training set and feature sizes used in the detection algorithm.

The minimum size has to match the original size of the

features, whereas the maximum size of the array can be

determined based on the silicon budget available. The

dimensions of the array can be made to match the proportions

of the input image frame. The implementation presented in

this paper uses an image ratio of 4:3, but the ratio can be

adjusted to match input frame format.

The systolic array operates by firstly computing the integral

image for the incoming frame. Next, it computes the

rectangles for each feature in parallel for the entire search

window. Stage evaluation is also done in parallel for all

locations in the search window, and after the outcome of each

stage is known, the array proceeds by evaluating the next stage

and its features in parallel over the entire search window. The

candidate regions that fail each stage are marked and do not

participate in the computation, in an attempt to eliminate

unnecessary power consumption. Every CCU can act as the

top-left-most corner for each feature, and is responsible for

collecting the integral image values belonging to the

rectangles for that particular feature. Each CCU holds the

integral and integral squared image values, partial sums from

rectangle and feature computations, and the variance for the

search window that they represent as the top-left-most corner.

Each CCU consists of minimal hardware to propagate data in

all directions in the array, and is able to perform additions and

subtractions, enabling the computation of the integral and

integral squared image in a systolic manner. The rectangle

sum can also be computed within the CCUs. The EUs are

equipped with multiplexing hardware and contain a multiplier

for stage evaluation purposes (to compute the weighted sum of

each rectangle in each feature and the feature sum). Fig. 6

shows a part of the systolic array with the three units

composing the array. A brief description of the hardware

architecture for each array unit is given next. The architecture

of each array unit is shown in Fig. 7.

Fig. 7.(a) Collection and Computation Unit Architecture. (b) Evaluation Unit

Architecture.

1) Collection and Computation Unit (CCU)

Each CCU represents the starting upper left corner of a

search window in the image, and holds the necessary data for

that window (such as image variance, whether or not the

window has so far passed the classification process, etc.). The

CCUs are responsible for data movement throughout the

system, collecting and accumulating integral image data for

rectangle computation. Each unit is composed of an

adder/subtractor, a local bus controller and a register file that

holds the data necessary for the computation. The register file

provides data storage for the integral image value, the squared

integral image value, the collected rectangle sums (supports up

to four rectangles per feature), the accumulated stage sum, the

standard deviation of the image for the search window

represented by that particular CCU, and temporary registers

used to store data during data movement. Furthermore, the

CCU holds a flag bit (FB) which is reset only when the search

window represented by the CCU does not contain the object of

interest. The bit is set at the beginning of every computation

and is reset by the EUs at the end of a stage computation if the

search window represented by that CCU does not pass a stage.

To maintain temporal consistency, the bit is moved with the

accumulated stage sum. A detailed block diagram of the CCU

is shown in Fig. 7(a). The CCU’s critical path lies in the

adder; depending on the required bit-width of the adder,

various optimizations can be made to improve the speed of the

CCUs.

Each CCU performs a set of predetermined actions. These

are shifts to all four directions, addition and accumulation of

incoming pixel values and squared pixel values, addition and

 7

accumulation of incoming rectangle points, and being idle.

Each action is determined by the CUs, which send a global op-

code of 4 bits to all CCUs, so that all CCUs can synchronize

on the appropriate action.

One particular design parameter that the algorithm dictates

lies on whether all CCUs should act as collection points for

each feature. If we evaluate each feature over every possible

location of the search window, then each CCU has to act as a

collection and computation point. This is not always necessary

however; it depends on the type and size of objects of interest.

For example, a large object does not need a pixel-by-pixel

exhaustive search; a search offset of five pixels will probably

be sufficient. This is of course something that requires

experimentation and an appropriate training set. Typical object

detection algorithms follow a small pixel offset [6], [17], [25],

and [26], shifting each search window in an image by a few

pixels (depending on the object size). Suggested values are

around five pixels or more [6], [8], and [14] for this offset.

The modularity of the systolic array allows the designer to

take advantage of this offset, by designing CCUs that are

capable of collecting and computing rectangle information,

and CCUs that do not. Additionally, CCUs located at the

bottom and left parts of the array are not required to act as

upper left collection points, since the feature computation will

have reached the end of the search window. Therefore, we can

design a set of CCUs without the adder/subtractor, and

without the control logic necessary to perform collection and

computation. These CCUs simply act as memory elements,

and can be placed in locations in the array where the CCUs are

not required to collect rectangle data.

An additional design optimization lies in the design of the

adder inside each CCU and the registers holding the integral

image and integral squared image values. As the location of

each pixel in the integral image, relative to the integral

image’s origin increases, the value of the integral image (and

the integral square image) increases in terms of required adder

precision and in terms of storage requirements. This is

illustrated in Fig. 8(a). For example, if we are dealing with a

320x240 grayscale image (8-bits per pixel, maximum intensity

of 255), the maximum value that needs to be stored at the

bottom-right corner (location 320,240) of the integral image,

is 320x240x255 (in the unlikely event that all pixels have

intensity value of 255). This requires 25 bits. Since we also

need the integral squared image, the bitwidth requirements

increase to 33 bits for the adder. However, at location (20, 40),

the maximum value that will be stored is 20x40x255, which

requires only 18 bits for the integral image, and 26 bits for the

adder, to compute the integral squared image. Fig. 8(b) shows

the bit-width requirements of the adder, in a sample 320x240

image, to indicate a relative hardware demands as the location

in the array changes.

Consequently, we can design parameterized CCUs, with

variable adder bit-widths and variable-sized registers, which

can be appropriately placed depending on the distance of each

CCU relative to the origin of the array. This can be done either

by one-by-one CCU case, or by designing different groups of

CCUs with different bitwidths that can cover regions in the

array, allowing some CCUs to have redundant bits. We

followed this approach, as it is less time consuming;

moreover, an extra bit or two in each CCU adder, does not add

much in the hardware overheads. Alternatively, this can be

done by limiting the search window size; this helps keeping

the overall number of pixels required for both integral and

integral square image summations small, resulting in relatively

small bit-widths.

Fig. 8. (a) As we move away from the origin coordinates of the integral
image, the demands of the required bit-width for the storage of the rectangle

sum increase. Position (X1, Y1) requires fewer bits than position (X2, Y2)

because position (X1, Y1) holds the sum of less integral image points. The

required bit width for coordinates (Xi, Yi) is log2((#𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 − 1) ×

𝑋𝑖 × 𝑌𝑖). (b) Illustration of how the requirements for the adder and register

bitwidth changes according to their location (row and column) in the array for

a 320x240 array. The label on the right denotes the bitwidth requirements per
array region.

2) Evaluation Unit (EU)

The EUs are located to the left of the array, at the beginning

of each row, and act as input terminals to the array. The EUs

are first used during the input of the search window into the

array to compute the integral squared image values, by

squaring each incoming pixel value to be used towards the

squared integral image computation. During the computation,

the EUs receive data from their neighboring CCUs (and

through systolic manner, eventually from all CCUs in the

corresponding row of each EU), starting from the rectangle

values, the variance of the image and lastly the accumulated

stage sum. The rectangle sums are multiplied with the

rectangle weights read from the training set stored in off-chip

memory. The variance is multiplied with the squared feature

threshold, to determine the compensated threshold, which in

turn is used to determine the feature sum to be added to the

accumulated stage sum. If the computed feature is the last

feature of a stage, the accumulated stage sum is compared to

the stage threshold and the flag bit is reset if the stage

computation discards the search window. Else, both the

accumulated stage sum and flag bit are shifted out using a

toroidal link into the far right CCU. The EU starts the

computation when signaled from the CUs; when the

computation ends, the EU signals to the CUs to proceed with

the next feature. The CU in the meantime stalls shifting in the

CCU values during an EU computation, waiting on the EU to

complete. When a stage is evaluated, the EU sends a signal to

the CUs, so that they can coordinate all CCUs in starting the

next stage of features.

 8

Fig. 9. Illustration of the Integral Image Computation and Data Movement

Each of the EUs interfaces to the external memory that

holds the training data necessary for the feature computation,

and reads the training data in a FIFO manner. Given that

features are evaluated one at a time, the latency to retrieve the

feature values does not affect the overall latency, as this can

happen while the CCUs evaluate the feature’s rectangles. This

also enables storing of the training data (offsets) for all feature

sizes, thus removing the need to scale the rectangle offsets (dx,

dy) dynamically when the computation shifts to larger feature

sizes. It must be noted however, that feature scaling can be

done on-chip as well, where each (dx, dy) offset can be scaled

according to the preset feature scale factor. Upon computation

of each feature, the next feature rectangle off-sets are read

from the training memory and propagated along with the

resulting feature sum, using the torroidal link, back to the

CCUs. Consequently, when a feature is evaluated with the

rightmost CCUs receiving the last outcome of each

computation, the entire array already holds the required off-

sets for all rectangles associated with the next feature.

The EU block diagram is shown in Fig. 7(b). The EU

multiplier has the longest critical path in the array, and various

optimizations can be done to improve the frequency of the

unit, such as using pipelined or wave pipelined multipliers.

IV. SYSTOLIC COMPUTATION OVERVIEW

The operation essentially is partitioned into the following

stages: configuration, computation of integral and integral

squared images, computation of image variance, computation

of rectangles per feature, feature computation, stage evaluation

and image evaluation. The computation is repeated for all

upscaled features over a single search window, and for all

search windows generated by the IPG. When the image has

been searched at all search window sizes, the system is ready

for the next image frame.

In each case, all units collaborate to perform the

computation. Incoming pixels, stream in the array in parallel

along all rows of the array, and are shifted in row-wise every

cycle. The integral image and integral squared image are

computed first. The computation consists of horizontal and

vertical shifts and additions. Incoming pixels are shifted inside

the array on each row. Depending on the current pixel column,

each of the computation units performs one of three

operations; it either adds the incoming pixel value into the

stored sum, or propagates the incoming value to the next-in-

row processing element while, either shifting and adding in

the vertical dimension (downwards) the accumulated sum or

simply doing nothing in the vertical dimension. The

computation is illustrated in Fig. 9. To compute the squared

integral image, the same procedure is followed. The incoming

pixel passes through the multiplier in the EU, which computes

the square of the pixel value, and then that value alternates

with the original pixel value as inputs to the array. As such,

the integral and squared integral image are computed in

alternate cycles with the entire computation taking 2 * [(m +

(m-1) + (n-1)] cycles, for an input image of n rows by m

columns.

The rectangle computation takes place next. For each

rectangle in a feature, each corner point is shifted towards the

CCU acting as collection point. The points move one at a time,

but in parallel for all rectangles in the array. At each collection

point, the point is either added or subtracted to the

accumulated rectangle sum, with the final rectangle value

computed when all points of each rectangle arrive at the

collection point. As such, each point requires dx+dy cycles to

reach the collection point, where dx and dy are the offset

coordinates of the point with respect to the upper left corner of

the search window. When all rectangle sums for a single

feature have been collected in the CCU that represents the

starting corner for each feature, they are then shifted leftwards,

towards the EUs, one sum at a time per EU. From left to right,

eventually all sums arrive in each EU, where the rectangle

weights are multiplied with the incoming sums, in order to

evaluate the feature. It must be noted that each CCU contains

the rectangle sums, the accumulated feature sum from the

previous feature computation and the variance. Hence each

CCU takes n+2 cycles to shift the data to its neighboring

CCU, where n equals the number of rectangle sums per

feature. When each rectangle sum enters the EU, it is

multiplied with the respective rectangle weight given by the

training set, and accumulated together to compute the feature

sum. The compensated threshold is then computed using the

original threshold and the variance as described earlier. The

feature sum is then squared using the multiplier, and compared

to the compensated threshold to set the feature result. The

partial stage sum is accumulated with the feature result and

shifted with the flag bit in a toroidal fashion to the CCU on the

far right of the grid, to continue the computation. Eventually,

when all feature results are computed, they are stored back

into the CCUs in the grid and the computation resumes with

the next feature. The computation is illustrated in Fig. 10.

At the end of a stage, the computed stage sum is compared

against the stage threshold obtained from the training set.

Depending on the outcome of the comparison, the location of

the CCU is flagged as an object of interest candidate and

continues further evaluation, or is discarded by resetting the

flag bit that is shifted with the stage sum. When a location

which does not contain an object of interest arrives for

computation at the EUs, the EU does not compute the feature

sum, rather remains idle, and simply propagates the data to the

 9

Fig. 10. Systolic Array Computation Flow

far right CCU to resume computation. The CCUs that do not

act as collection/computation points, (only hold integral image

info as mentioned earlier) simply propagate their values in

order to maintain temporal consistency.

When all stages complete for a certain feature scale inside

the search window, the flagged locations correspond to the

ones that contain the object of interest. If the feature computed

is the last one, the computation ends. Each location that

contains an object of interest is shifted to the right and outside

of the array, for the host application to proceed.

This parallel approach yields several advantages. First, it

does not require the training set data to be stored on-chip, as it

only computes one feature at a time. Instead, it operates on the

image data in parallel. Second, the systolic implementation

returns predictable and fast operation, in the context of high

frequency. Third, computations that are expensive in terms of

delay and hardware overhead such as multiplication are

isolated and computed together in parallel during each

evaluation step, thus amortizing their delay towards the whole

operation. Fourth, in contrast to the software implementation

of the AdaBoost algorithm, the detection rate remains constant

regardless of the number of objects of interest that exist in a

single frame, whether they are detected positively or

negatively (i.e. false positives). The software implementation

suffers when the amount of object increases, as the algorithm

will have to follow the entire classifier cascade multiple times.

In contrast, the proposed architecture searches and performs

the cascade only once for the entire image, rather than for each

object, as done in software. Lastly, when used in conjunction

with an IPG process, it can be scaled to the application’s

requirements and available budget, as the array size can vary

from being equal to the size of the training feature to as much

as the budget and performance requirements allow and

demand.

V. EVALUATION AND RESULTS

To evaluate the proposed architecture, we followed two

major steps. First, we designed and verified the architecture

using FPGA emulation. Second, we performed a full

functional simulation using an ASIC implementation over a

commercial CMOS library, with three different object

detection applications used as benchmarks. Both systems were

designed with emphasis on the corresponding hardware

constraints, and evaluation was performed taking into

consideration several design constraints and limitations. Prior

to detailing the simulation details, we first discuss the concept

of performance under an object detection system, and list the

factors, which explicitly impact the performance of the

system.

A. Performance metrics, limitations and constraints

There are two important performance metrics in object

detection, the detection frame rate which defines the ability of

the system to process a number of input image frames per

second (fps), and the detection accuracy, which defines the

effectiveness of the system in detecting the object(s) of

interest. For real-time video processing, the system needs to

detect at least 30fps (NTSC). However, if other image

processing and recognition algorithms have to co-exist with

detection, the system needs to be much faster, which is

typically the case. Moreover, the system’s accuracy largely

depends on the training, and partially on the way that the

training set is represented when implemented in hardware. In

designing our architecture, we took into consideration several

performance metrics, limitations and constraints, which are

outlined in this section.

Firstly, the training set size, particularly the number of

features and stages in the training set, largely impacts the

performance. As each feature is processed in parallel, the

algorithm depends on the total number of features and stages

to return a positive result. Training set optimization can

 10

improve the performance by maintaining a high accuracy in

the detection while reducing the number of features. This was

done in [28]; however, no detailed discussions were given

related to the accuracy of the detector, especially the false

positives. In our implementation the architecture is developed

independent of the training set size, taking advantage of

potential emerging research that reduces training set data.

The second factor impacting the performance, which in our

case affects the performance heavily, is the size of the search

window and the size of the array. As features are enlarged and

computation is repeated to detect bigger objects, the number

of enlargements necessary is defined by the search window

size (i.e. until the size of the enlarged feature meets the search

window size). Consequently, a large search window size will

result in computation over several feature sizes. This increases

the amount of computations and limits the performance. A

small search window on the other hand limits the amount of

feature enlargements and results in a larger number of search

windows generated for each input image frame. However, the

number of generated search windows increases exponentially

as the input image frame size increases, and potentially results

in loss of data due to several downscaling iterations. We

consider this scenario in our approach, thus we combine the

IPG and the systolic array to provide flexibility in selecting an

appropriate search window size as the application demands,

depending on the performance and cost requirements. The

nature of the application, such as the amount of training data

required, the feature size, the size of the object(s) of interest,

input image size and number of objects concurrently

appearing on the input image are all factors that play a role in

determining a good ratio of the IPG to the search window size

(and subsequently the systolic array size). A system-level

optimization framework can potentially be used to determine

these sizes for various applications, and is left as future work.

The third factor that impacts the performance is the input

image frame size. Obviously a large frame results in more data

to be explored and a larger number of search windows, but it

also impacts the size of objects relative to the input image

frame. Large-sized objects typically result in wasted

computations when using small-sized features, whereas small

objects result in wasted computations when using large-sized

features. This is even worst when two or more objects of

interest appear in different sizes; the largest the variance in the

sizes of the objects, the larger the number of feature and stage

computations overall. The proposed architecture is ideal for

large image sizes, as the high degree of parallelism can

process large images in parallel, resulting in satisfactory frame

rates. We used three image sizes in our simulations, and

noticed a relatively small decline in the frame rate when going

from a small to a much larger image frame size.

The fourth factor relates to the object of interest itself, and

the targeted video application. In particular, the amount and

size of objects of interest contained in a single frame plays a

dominant role in the overall performance, especially in

sequential software implementations. The big advantage of the

AdaBoost algorithm, which results in large detection frame

rates, lies in the ability of the algorithm to reject several search

windows which do not pass certain thresholds during an early

stage in the computation. However, if the amount of objects of

interest in an image frame is relatively large, the algorithm

slows down significantly, as it will have to go through the full

computation several times. Our architecture however, is

independent of the number of objects; as the entire search

window is explored in parallel, the time required to search for

a single object, is the same time as the time required to search

for all objects in the search window. Furthermore, when two

or more objects of interest of different sizes are present in the

source image, detection will occur at different feature scales.

A worst case scenario would be at for least one object of

interest inside the search window, in every scale where a

feature is evaluated. In reality however, this is a highly

improbable scenario; a large object will usually cover smaller

objects in an image. Furthermore, there are cases where

objects of interest are not present in an image frame; the

search windows will likely fail somewhere through the first

few stages for all search windows at all feature sizes, thus

enabling a new image frame to be processed. In such cases,

the frame rate obviously increases. Additionally, changes

within a video signal (i.e. new objects of interest entering the

image frame or other objects leaving) typically happen within

a few frames apart. Hence, consecutive frames are usually

similar to each other. This of course implies that a lower frame

rate than the video frame rate could be sufficient; however, in

the likely scenario that object detection is part of a chain of

operations that have to meet real time video processing, the

detector still has to operate as fast as possible. Consequently,

to conclusively evaluate any architecture, one has to choose a

sequence of test frames containing a number of objects, of

different sizes, taking these observations into consideration.

The last factor obviously lies on the hardware itself, most

notably the operating frequency. In designing our architecture,

we took aim in using a regular, modular approach, with small

critical paths. The CCU contains minimal hardware, with a

fast carry-look-ahead adder. The EUs, which take more cycles,

TABLE II

RELATED WORK IMPLEMENTATION ON FPGAS RESULTS COMPARISON

 Hiromoto [9] Cho [10]a Wei [11] Shi [12] b Lai [28] c Presented Work

FPGA XC5VLX330-2 XC5VLX110 XC2V2000 Not Applicable XC2VP30 XC2VP30

Frames per Second 30 26 (320 x 240)a 15 102 143(126 Hz) c 64

Area

(Used/Total)

Slice LUTs 63,443/207,360 66,851/69,120 13,853/21,504 Not Applicable 20,901/27,392 25,818/27,392

Slice Registers 55,515/207,360 21,902/69120 4,573/21,504 Not Applicable 7,782/27,392 23,744/27,392

Multipliers Not Provided Not Provided 28/56 Not Applicable Not Provided 68/136

Memory (Block RAMs) Not Provided 41/128 56/56 Not Applicable 44/136 24/136

Clock Frequency (MHz) 160.9 Not Provided 91 200 126 100

Face Detection Accuracy Not Provided Not Provided 85% non-faces, 50% faces Not Provided 86% on faces 93% (overall)
aUsing three classification modules, bImplementation of a cycle accurate simulator, cUsing only 52 features and 1 stage

 11

TABLE III

SYNTHESIS RESULTS FOR THE VIRTEX II PRO FPGA IMPLEMENTATION
FPGA

Resources

Slices

(13696)

Flip Flops

(27392)

LUTs

(27392)

BlockRAM

(312.5kB)

Multipliers

(136)

IPG
2,248

(16%)

2,101

(8%)

2,445

(9%)

52.8kB

(17%)

8

(5%)

Array

(80x60)

10918

(80%)

20185

(74%)

22706

(83%)

0

(0%)

60

(44%)

System
13455

(98%)

23744

(87%)

25118

(92%)

52.8kB

(17%)

68

(50%)

TABLE IV

DETECTION APPLICATIONS TRAINING DATA

Detection

Application

Object

Per

Frame

Feature

Size

(pixels)

of

Rectangles

per feature

of

Stages

Total #

of

Features

Detection

Accuracy

Face 1-7 24x24 2 to 4 25 2913 93%

Road Sign 1-2 12x12 2 to 3 12 414 83%

Vehicle 2-10 24x36 2 to 4 20 1715 78%

and burden potential delays in memory accesses and

multiplications, only operate during certain time intervals (i.e.

during each feature and stage evaluation and I/O operation),

allowing the bulk of the computation (i.e. rectangle collection

and summation) to the much faster CCUs.

B. FPGA Implementation and Emulation

As proof of concept, we designed an experimental version

of the proposed architecture targeting the Xilinx XUP Virtex

II Pro platform [27]. The FPGA evaluation targets a face

detection application, using the training set and parameters

given with the Open Computer Vision (CV) library [18]. The

CV library provides a state-of-the-art software implementation

of the AdaBoost detector, utilizing a very accurate pool of

features. The training set uses a starting feature size of 24x24

pixels, and scales each feature by a factor of 1.25 (taking the

ceiling of the result), resulting in 5 scaled feature sizes (24x24,

30x30, 38x38, 48x48 and 60x60). Each feature has between 2

to 4 rectangles. The training set consists of 2,913 features in

25 stages. The number of features per stage range from 9 to

211, and the total number of rectangles is 6,383.

The training set is organized on a feature by feature basis.

Each feature data includes the feature sequence number; the

number of rectangles in the feature; the dx and dy offset values

for each rectangle in the feature; the weight associated with

each rectangle; and the squared threshold value for each

feature. Additionally the stage data includes a certain

threshold per stage. To represent the training set, we use 8 bits

per rectangle weight, for each threshold value and for each

predetermined feature sum, using signed fixed point numbers

of 2 integer bits and 5 decimal bits. The dynamic range

supported is +/- 3.96875, close to the required accuracy for

the OpenCV training set. The external memory that holds the

training set, holds also the upscaled feature data, that is

rectangle offsets and weights. We use 6 bits to store each

rectangle offset, as the largest feature size we utilize is 60x60

(to fit the 80x60 array). Each rectangle needs to store up to 4

dx and dy values. The training set was stored in the off-chip

(on-board) memory, as features and stage data are used only

once every array collection and computation. As already

mentioned, we store the upscaled feature data in off-chip

memory as well, as when features are enlarged, new rectangle

offsets are used. This however is of minor importance, as the

offsets can simply be scaled on-chip, dynamically, since the

feature training set is loaded feature by feature. For simplicity

purposes, we stored the rectangle offsets for all feature sizes in

off-chip memory, as part of the training set.

In designing the CCUs, we need to provide storage for the

case where all pixels will have an intensity value of 255, an

unlikely scenario, but necessary for correct operation. Thus,

the maximum integer value that can be stored in an integral

image is 255x80x60 and the maximum integer value that can

be stored in an integral squared image is (255)2x80x60. This

requires 21 bits and 29 bits respectively. Knowing these

requirements, we designed the architecture using 80x60

CCTUs, 60 MEUs and 4 CUs. Each CCU connects to its

neighbors through an 8 bit bus, which however can increase to

a larger size if necessary for bandwidth purposes. The

platform contains external memory (DRAM), which was used

to store input image frames and the training set. We used

landscape grayscale images of size 320x240 pixels, and an

array size of 80x60 cells (60 rows by 80 columns), the largest

size that could fit on the targeted FPGA, maintaining the 4:3

ratio of the initial image frame). The IPG receives 8 pixels per

clock cycle (the DRAM I/O bandwidth), and generates 80x60

sized search windows, at a pixel offset of five pixels (i.e.

every search window starts five pixels after the previous). The

IPG also downscales the image by scale factors of 0.75 and

0.5, creating three downscaled images of sizes 240x180,

160x120 and 80x60. The generated downscaled images are

stored on the FPGA Block RAM. The number of downscaled

images is parametrizable; the scale factor is simply stored in a

register, and scaling is done by matrix multiplication. The IPG

uses two 80x60 frame buffers, generating search windows in

lockstep fashion (i.e. it generates the first, and then proceeds

to generate the second while the systolic array processes the

first one, with both the IPG and the array alternating between

each buffer). FPGA synthesis and utilization results are shown

in Table III. The system, which system operates at 100MHz,

was verified and evaluated using the application of face

detection, through a sample of 300 test images which

contained several faces of different sizes, obtained through the

World Wide Web, and sized and formatted to the design

requirements. The test images were stored in a Compact Flash

card during the system initialization stage, and then loaded on

the DRAM prior to running the detection framework. The

frames were input to the detector, which processed them. A

custom VGA controller was then designed and used in order

to output the result of the detector to a VGA monitor, for

visual verification, along with markings on where the

candidate faces were detected. A diagram of the FPGA

prototype and a photo of the experimental system are shown in

Fig. 11. The system was designed to operate in two modes,

verification where image frames were displayed one at a time

(for verification and debugging), and runtime, processing all

input images continuously, for measuring the detection frame

rate, using a stop-watch timer. As said earlier, the frame rate

depends on several factors, some of which are independent of

the architecture. The system processed all 300 test images in

 12

4.68 seconds, an estimated rate of 64 frames per second,

which for the type and frequency of the FPGA is relatively

high, especially when compared to existing implementations

(almost twice as fast). Additionally, the FPGA

implementation achieved 96% accuracy detecting the faces on

the images when compared to the corresponding Open CV

software implementation, running on the same test images.

This discrepancy can be justified to the fact that the Open CV

implementation only scales the features up (no image

downscaling) which does not result in data loss. Additionally,

some training data was not able to be represented within the

dynamic range employed by the hardware design. Table II

presents a comparison table between existing FPGA

implementations along with their characteristics, and the

proposed architecture implemented on FPGA, for the

application of face detection. As seen in the table, the

proposed architecture is significantly faster and more accurate

than most implementations. The implementation in [12] was

based on pure cycle-accurate simulation rather than

implementation, and the clock frequency is twice as the one

used in our implementation (which was limited by the

capabilities of our FPGA board).The work in [28] yields a

reported 143 fps, but uses a much smaller training set (two

orders of magnitude smaller than the one in OpenCV) in order

to achieve such a high frame rate. Furthermore, the reported

accuracy focuses on a very specific data set, and no detailed

discussion is provided on the rate of false positives. We did

not optimize the training set, as it extends beyond the scope of

this work.

C. ASIC Implementation and Evaluation

In addition to the FPGA emulation, we also designed a

larger system (that could not fit on large existing FPGAs),

targeting an ASIC implementation. The objective of the ASIC

implementation was to obtain experimental insights on the

scalability and feasibility of the proposed architecture, towards

large scale integration. We evaluated the ASIC

implementation using three object detection applications; face

detection, road sign detection [5], and vehicle detection [1],

[2]. We focus only on the rear of the vehicle as the point of

detection. The training set used in the face detection

application was the same one used in our FPGA prototype. For

the other two applications, we used Open CV and Matlab to

construct a training set for each case, using sample images

obtained from the World Wide Web. Our objective was not to

construct an accurate training set per se, rather than a realistic

one to be used as an experimental set. The training sets were

constructed using road sign and vehicle images, and training

set details for each application (including the face detection)

are given in Table IV. We targeted input images of four sizes

(1024x768, 800x600, 640x480 and 320x240), again obtained

through the World Wide Web, containing several faces, road

signs and vehicles, depending on the targeted application. We

then proceeded to design and implement an architecture which

could receive as input at least a 1024x768 grayscale image,

and process it as fast as possible, using the training sets

mentioned. It must be noted that each application differs from

each other in the context of their training sets (and feature

sizes); the underlying hardware architecture is the same for all

the targeted applications, as well as input image sizes and

formats.

The experimental platform was designed using search

windows of size 320x240 pixels. Consequently, the size of the

array was set to be the same, consisting of 320x240 CCUs and

240 EUs. The IPG was designed with two search window

buffers, producing search windows in similar fashion to the

FPGA implementation. The original input image size was

scaled down using a scale factor of 0.75, and the features were

scaled up using a scale factor of 1.33. The training set,

downscaled images from the IPG and input image frames were

modeled as external memory; everything else was considered

on-chip. Additionally, all parameters outlined in the FPGA

implementation were modified to reflect the new search

window size (such as storage considerations for the integral

and integral squared images, data bus between CCUs and EUs,

etc.).

The system was synthesized with using Synopsys Design

Compiler targeting a commercial TSMC 65nm CMOS library,

in order to obtain relevant metrics such as area, operating

frequency and power consumption. We used the default

library values, and Synopsys’ synthesis primitives (focused on

area optimization over performance), as well as components

from Synopsys Designware IP library. Pre-layout results

indicated that the critical path in the system was identified in

the EU multiplier (a 64-bit multiplier). We used an 8-stage

multiplier from Designware IP library in our design to target

high frequency. It must be noted that the synthesized design

does not consider the IPG memory modules; we used the

CACTI toolset [30] to obtain the potential operating frequency

for the two IPG memory modules, estimated at 800 MHz. As

such, we set the targeted frequency of the entire system to

800MHz. The post-synthesis, pre-layout results also indicate

an area estimation of roughly 88 million transistors.

Preliminary results also were collected for some indicative

power consumption merits using 1V power supply voltage and

50% probability of switching activity on all lines. Prior to

reporting the obtained power consumption results however,

we must state that the overall power consumption depends on

several factors not related only to the architecture. The power

consumption depends on the input image size and

subsequently the number of downscaled images produced, the

number of search windows, the number of features in the

training set and the number of necessary computations. The

latter is determined by the number of objects of interest found

in the input frame. Obviously the chosen operating frequency

and power supply of the system are important as well.

Consequently, power comparison with architectures found in

literature is not suitable without the use of the same input data

sets and input image sizes. Hence, instead of reporting only

the total power consumption for one frame, we also analyze

how this power is consumed throughout the computation.

 13

Fig. 11. Experimental Platform – Block Diagram (left) and photo of the

experimental platform, using the Virtex II Pro FPGA (right).

Fig. 12. Output image frames with the detection frames placed on the

detected objects of interest.

TABLE V

ASIC IMPLEMENTATION – SIMULATION RESULTS
Application

/Accuracy
Input Image Size

Time to process 10 frames

(seconds)

Projected

Frame Rate

Face

Detection

95- 96 %

1024x768 0.109 ~91

800x600 0.098 ~102

640x480 0.084 ~118

320x240 0.075 ~133

Road Sign

Detection

92- 97 %

1024x768 0.099 ~101

800x600 0.093 ~107

640x480 0.083 ~120

320x240 0.072 ~139

Vehicle

Detection

91- 96 %

1024x768 0.128 ~78

800x600 0.116 ~86

640x480 0.108 ~93

320x240 0.098 ~102

TABLE VI

RELATED WORK IMPLEMENTATION ON ASICS RESULTS COMPARISON

 Presented Work Hanai [29]

Technology TSMC 65nm CMOS 90 nm CMOS

FPS (320x240) ~133 8

Area (# of transistors) 88 million 2.1 million

Power (mW) 2.45 per 320x240 frame 0.47/fps – 3.72 total

Clock Frequency 800 MHz 54 Mhz

Accuracy 95% 81%

To compute and evaluate a 24x24 feature (rectangle

collection and computation, propagation to the EUs,

computation and evaluation in the EUs, and propagation of the

feature sum back to the array), the system consumes 0.06mW.

The IPG unit also consumes ~0.014mW to downscale a

320x240 image to a 240x180 image and 0.0023 mW to

produce one 80x60 search window. Overall, to compute a

single 320x240 frame with one object of interest (human

face), the unit consumes ~2.45mW of power. We did not

consider any power optimization mechanisms other than not

computing features when a region was marked as a non-

candidate, and overall, our focus was not on optimizing the

architecture for power savings. Power optimizations are left as

future work.

Using text files that contained the input image files and

training set data, we next proceeded to run functional RTL

simulation of the system using Modelsim. We run a set of 10

test images per image size per application (i.e. 40 test images

per each application), and obtained the total number of cycles

required to process each test case. The resulting frames were

stored as text files, and reconstructed to images using Matlab,

so that we could visually verify the results. Using the obtained

clock frequency from the synthesis results, we then estimated

the detection frame rate (as well as the detection accuracy

when compared to the corresponding software

implementation). Table V summarizes the results for each

application, under the four input image frame sizes, and Fig.

12 shows some resulting frames from the simulation.

Table VI presents a summary of the synthesis results, and a

brief comparison with the special-purpose vision processor

presented in [29]. When comparing equal sized input images,

the frame rate achieved by the proposed architecture is

significantly larger. The associated power consumption and

hardware overhead costs cannot be compared, however, the

overall simulation results indicate that the proposed

architecture can be scaled to significant sizes, and potentially

be used in high-performance applications with large input

image sizes, or can be designed to consume minimal energy

and hardware overheads for small-scale embedded systems.

D. Discussion

Both the FPGA prototype as well as the large scale ASIC

implementation have shown great potential for applications

with real-time performance requirements, such as real time

object detection in vehicular embedded and applications

involving multiple camera streams. The system is particularly

useful in monitoring populated areas such as airports and

transportation terminals, where it can process frames from

alternate video streams, regardless of the amount and size of

objects found in the input image frames. The scalability of the

system and its independence from the training set also provide

flexibility to the designer, allowing the designer to determine

the most efficient size of the system directly from the

application requirements. By merging the IPG with the feature

upscaling originally used, the system achieves a fully

parametrizable performance-to-cost ratio; if the silicon budget

allows it, an increase in the array size will boost the

performance (by increasing the degree of parallelism). On the

other hand, a smaller array, while slower, costs less and can

still satisfy certain performance requirements.

There are some useful conclusions extracted from our

simulations with respect to the algorithm. The FPGA

implementation shows that the architecture can scale well in

smaller, less demanding environments, while maintaining

reasonable frame rates. The ASIC implementation on the other

hard illustrates the full-throttle operation of the detector, and

its suitability for multiple video streams and detection of

objects that could appear in different numbers and sizes within

an input image frame. Obviously, depending on the budget

 14

and application constraints, the designer can select the type of

implementation that satisfies the operating conditions and

application specifications.

VI. CONCLUSION

Object detection is an important step in multiple

applications related to computer vision and image processing,

and real-time detection is critical in several domains. In this

paper, we presented a flexible, parallel architecture for

implementation of the AdaBoost object detection algorithm.

The architecture combines an image pyramid generation

process, along with highly parallel systolic computation, to

offer a flexible design that is suitable for several types of

applications and budgets. The paper presented two

experimental platforms of the architecture, a low-end FPGA

implementation and a high-end ASIC implementation, both of

which achieved significantly high detection frame rates and

accuracy, comparable to their budget, illustrating the

flexibility and potential of the architecture.

We anticipate that further optimizations in terms of power

consumption will significantly improve the architecture,

leaving this as immediate future work. We also plan on

exploring system-level optimization algorithms, of

determining a systolic array size that best satisfies the

performance/cost requirements. Additionally, we plan to

include an embedded processor so that the architecture can

potentially support on-line training, making it capable for

dynamic, autonomous environments and situations.

Furthermore, we hope that this architecture will lead to

improvements in existing training sets, taking into

consideration hardware constraints when training a detector.

We also hope that this architecture will be combined with

other on-chip implementations of related applications to form

a complete high-performance embedded computer vision and

image processing hardware platform.

REFERENCES

[1] L. Dlagnekov and S.Belongie, "Recognizing Cars," UCSD CSE Tech

Report, no. CS2005-083, 2005.

[2] F. Moutarde, B. Stanciulescu, and A. Breheret, "Real-time visual
detection of vehicles and pedestrians with new efficient adaBoost

features," in the Proc of Workshop on Planning, Perception and

Navigation for Intelligent Vehicles (PPNIV) of 2008 International
Conference on Intelligent Robots and Systems (IROS'2008), Nice,

France, 26 Sept. 2008.

[3] Xusheng Tang, Zongying Ou, Tieming Su, Pengfei Zhao, "Cascade

AdaBoost Classifiers with Stage Features Optimization for Cellular

Phone Embedded Face Detection System," ICNC, pp. 688-697, 2005.

[4] Y. Abramson and B. Steux, "Hardware-friendly detection of pedestrians
from an on-board camera," in Proceedings of the IEEE Intelligent

Vehicle Symposium (IV’04), Parma, Italy, June 2004.

[5] Changyong Yoon, Minkyu Cheon, Euntai Kim, Mignon Park, Heejin
Lee, "Real-time road sign detection using Adaboost and

Multicandidate," Proceedings Of The 8th Symposium On Advanced
Intelligent Systems ISIS 2007, 2007, pp 953-956.

[6] P.Viola and M.Jones,“Real-time object detection,” Int. J. Comput. Vis.,

vol. 57, no 2, pp 137-154, May 2004.
[7] Y. Freund and R. E. Schapire, "A Short Introduction to Boosting,"

Journal of Japanese Society for Artificial Intelligence, vol. 14, no. 5, pp.

771-780, 1999.

[8] T. Theocharides, N. Vijaykrishnan, M. J. Irwin. “A Parallel Architecture

for Hardware Face Detection,” Proc. Of the IEEE Computer Society
Annual Symposium on VLSI Design, ISVLSI’06, Karlsruhe, Germany,

pp. 452-453.

[9] M. Hiromoto, H. Sugano, and R. Miyamoto, "Partially Parallel
Architecture for Adaboost-Based Detection with Haar-Like Features,"

IEEE Trans. on Circuits and Systems for Video Technology, Vol.19,

No.1, Jan. 2009, pp.41-52.
[10] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, "Fpga-based face detection

system using haar classifiers," Proceeding of the ACM/SIGDA

international symposium on Field programmable gate arrays, New
York, NY, USA: ACM, 2009, pp. 103-112.

[11] Y. Wei, X. Bing, and C. Chareonsak, "Fpga implementation of adaboost

algorithm for detection of face biometrics," in Biomedical Circuits and
Systems, 2004 IEEE International Workshop on, 2004, pp. S1/6-17-20.

[12] Y. Shi, F. Zhao, and Z. Zhang, "Hardware implementation of adaboost

algorithm and verification," 22nd International Conference on Advanced
Information Networking and Applications - Workshops, AINAW 2008,

2008, pp. 343-346.

[13] Schapire, R. E., “The boosting approach to machine learning: An
overview,” In MSRI Workshop on Nonlinear Estimation and

Classification, 2002, pp. 1134-227.

[14] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin, W. Wolf,
“Embedded Hardware Face Detection,” In the proceedings of the 17th

International Conference on VLSI Design, Mumbai, India, January

2004.
[15] N.Ranganathan, “VLSI Algorithms and Architectures,” IEEE Computer

Society Press, Los Alamitos, California, USA, 1993.
[16] R. McCready, “Real-Time Face Detection on a Configurable Hardware

System,” International Symposium on Field Programmable Gate

Arrays, 2000, Monterey, California, United States.
[17] Erik Hjelmås, Boon Kee Low, “Face Detection: A Survey,” Computer

Vision and Image Understanding, Vol. 83, No. 3, September 2001,

pp.236-274.
[18] Open Source Computer Vision Library,

http://www.intel.com/technology/computing/opencv/index.htm and

http://sourceforge.net/projects/opencvlibrary/files/, June 2009.
[19] A. Price, J. Pyke, D. Ashiri and T. Cornall, “Real time object detection

for an unmanned aerial vehicle using an FPGA based vision system,” in

the Proc. of the 2006 IEEE International Conference on Robotics and
Automation, May 2006, pp. 2854-2859.

[20] P. Wieslaw, “Vehicle Detection Algorithm for FPGA Based

Implementation,” in Advances in Soft Computing, Computer Recognition
System 3, Vol. 57/2009, 2009, Springer Berlin, pp. 585-592.

[21] M. Kolsch and M. Turk, “Robust hand detection,” in the Proc. of the

International Conference on Automatic Face and Gesture Recognition,
Seoul, Korea, 2004, pp. 614-619.

[22] S. Mahlknecht, R. Oberhammer and G. Novak,“ A real-time image

recognition system for tiny autonomous mobile robots,“ in the Proc. of
the 10th IEEE Symposium of Real-Time and Embedded Technology and

Applications, May 2004, pp. 324-330.

[23] V. Lohweg, C. Diederichs and D. Muller, “Algorithms for Hardware-
Based Pattern Recognition,“ EURASIP Journal on Applied Signal

Processing, Vol.12, 2003, pp. 1912-1920.

[24] K. Khattab, J. Dubois and J. Miteran, “Cascade Boosting Based Object
Detection from High Level Description to Hardware Implementation,”

EURASIP Journal on Embedded Systems, vol. 2009, 2009, pp. 1687-

3955.
[25] Y. Ming-Hsuan, D.J. Kriegman, N. Ahuja, “Detecting Faces in Images:

A Survey,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 24, No1., January 2002, pp. 34-58.
[26] C. P. Papageorgiou, M. Oren, T. Poggio, "A General Framework for

Object Detection,” in the Proc. of the Sixth International Conference on

Computer Vision (ICCV'98), 1998, pp. 555-562.
[27] Xilinx University Program, http://www.xilinx.com/univ/, Jan. 2009.

[28] H.-C. Lai, M. Savvides, and T. Chen, "Proposed FPGA hardware

architecture for high frame rate (>100 fps) face detection using feature
cascade classifiers," First IEEE International Conference on

Biometrics: Theory, Applications, and Systems, Sept. 2007, pp. 1-6.

[29] Y. Hanai, Y. Hori, J. Nishimura and T. Kuroda, "A Versatile
Recognition Processor Employing Haar-Like Feature and Cascaded

Classifier," ISSCC'09, Dig. Tech. Papers, pp.148-149, Feb. 2009.

[30] The CACTI Toolset
http://research.compaq.com/wrl/people/jouppi/CACTI.html

http://sourceforge.net/projects/opencvlibrary/files/
http://www.xilinx.com/univ/
http://research.compaq.com/wrl/people/jouppi/CACTI.html

