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Wavelet analysis and compression tools are reviewed and different applications for the
study of MHD and plasma turbulence are presented. We introduce the continuous and
the orthogonal wavelet transform and detail several statistical diagnostics based on
the wavelet coefficients. We then show how to extract coherent structures out of fully
developed turbulent flows using wavelet-based denoising. Finally some multiscale
numerical simulation schemes using wavelets are described. Several examples for
analysing, compressing and computing one-, two- and three-dimensional turbulent
MHD or plasma flows are presented.

1. Introduction
Turbulence is ubiquitous and plays a critical role for the plasma stability and

confinement properties of fusion devices, e.g. in the tokamak edge region. Turbulence
is a regime of fluid, gas and plasma flows characterized by highly nonlinear
dynamics (Biskamp 1997). It exhibits a chaotic, i.e. unpredictible behaviour and
rotational motion over a wide range of dynamically active scales. In contrast to
classical dynamical systems, which are low dimensional and conservative, a turbulent
flow is a dissipative dynamical system, whose behaviour is governed by a very
large, possibly infinite, number of degrees of freedom. Each field, e.g. velocity,
vorticity, magnetic field and current density, strongly fluctuates around a mean
value and one observes that these fluctuations tend to self-organize into so-called
coherent structures, i.e. vortex tubes in hydrodynamics and vorticity sheets and
current sheets in magnetohydrodynamics (MHD). The presence of coherent structures
results in strong spatial and temporal flow intermittency, which is a key feature
of turbulence. Intermittency is understood here such that the fluctuations become
stronger for decreasing scale and are hence more localized. The appropriate tool to
study intermittency is the wavelet representation due to its intrinsic multiscale nature.
Indeed, it yields a sparse multiscale representation of intermittent fields since wavelets
are well localized functions in both physical and Fourier space.

The classical theory of homogeneous turbulence (Batchelor 1982) assumes that
turbulent flows are statistically stationary and homogeneous. This allows the use
of a Fourier space representation to analyse them (e.g. the energy spectrum is the

† Email address for correspondence: kschneid@cmi.univ-mrs.fr

mailto:kschneid@cmi.univ-mrs.fr


2 M. Farge and K. Schneider

modulus of the Fourier transform of the velocity auto-correlation), to model them
(e.g. using large eddy simulation) and to compute them (e.g. using spectral methods).
Hence, since the Fourier representation spreads information among the phases of all
Fourier coefficients, the structural information (i.e. locality in time and in space) is
lost when one considers only the modulus of the Fourier coefficients, as is usually
done. This is a major drawback of the classical theory of turbulence and the reason
why we proposed in Farge & Rabreau (1988) to replace the Fourier representation
by the wavelet representation, to define new analyses and computational tools able to
preserve information locally in time and space. If the Fourier representation is well
suited to study linear dynamical systems (whose behaviour either persists at the initial
scale or spreads over larger ones), this is not the case for nonlinear dynamical systems
for which the superposition principle no more holds (i.e. they cannot be decomposed
into a sum of independent subsystems to be separately studied). Moreover, the
evolution of nonlinear dynamical systems develop over a wide range of scales, since
energy is spread from the initially excited scale towards smaller and smaller scales
(the so-called energy cascade) until finite-time singularities develop (e.g. shocks),
unless some dissipative mechanisms damp energy and thus avoid its ultra-violet
divergence. The art of predicting the evolution of nonlinear dynamical systems
consists of disentangling their active components from their passive components, the
former being deterministically computed while the latter are discarded or statistically
modelled. One thus performs a distillation process to only retain the components
essential to predict the nonlinear behaviour. The wavelet representation is particularly
appropriate for this since it allows one to track the evolution in both space and scale
and to only retain the degrees of freedom which determine the nonlinear dynamics.
Turbulent flows are archetypes of nonlinear dynamical systems and therefore good
candidates to be analysed, modelled and computed using the wavelet representation.

If we now focus on plasma turbulence, we are uneasy about the fact that we have
two different descriptions, depending on which side of the Fourier transform we look
from.

(i) We have a theory (Batchelor 1982) that assumes a nonlinear cascade in Fourier
space for a range of scales, the so-called ‘inertial range’, where the flow kinetic
energy is statistically (i.e. for ensemble of time or space averages) transferred
towards smaller scales until reaching Kolmogorov’s scale, where molecular
dissipation transforms kinetic energy into heat. Under these hypotheses, the
theory predicts a power-law behaviour for the modulus of the energy spectrum
in the inertial range.

(ii) If we study the flow in physical space however, we do not have yet a
predictive theory but only empirical observations (from laboratory and numerical
experiments) showing the emergence and persistence of coherent structures, e.g.
blobs and current sheets that concentrate most of the kinetic and magnetic energy,
even for very high Reynolds number flows.

The classical methods for modelling turbulent flows, e.g. large eddy simulation
(LES), suppose a scale separation (i.e. a spectral gap) and neglect the small-scale
motions, although their effect on the large-scale motions is statistically modelled
(supposing their dynamics to be linear or slaved to them). Unfortunately, for those
methods we have strong evidence, from both laboratory and numerical experiments,
that there is no spectral gap since all scales of the inertial range are coupled
and interact nonlinearly. Moreover, one observes that coherent structures play a
major dynamical role and are responsible for the transport and mixing properties
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of turbulent flows. As a consequence, one might ask the following questions: are
coherent structures the dynamical building blocks of turbulent flows and can we
extract them? If we succeed to do so, would it be possible to represent them with a
reduced number of degrees of freedom and would those be sufficient to compute the
flow nonlinear dynamics?

The aim of this review is to offer a primer on wavelets for both continuous
and orthogonal transforms. We then detail different diagnostics based on wavelet
coefficients to analyse and to compress turbulent flows by extracting coherent
structures. Examples for experimental data come from the tokamak Tore Supra
(Cadarache, France) and numerical simulation data of resistive drift-wave and MHD
turbulence illustrate the wavelet tools. Wavelet-based density estimation (WBDE)
techniques to improve particle-in-cell (PIC) numerical schemes are presented,
together with a particle-in-wavelet (PIW) scheme that we developed for solving the
Vlasov–Poisson equations directly in wavelet space. Coherent vorticity and current
sheet simulation (CVCS), that applies wavelet filtering to the resistive non-ideal
MHD equations, is proposed as a new model for turbulent MHD flows. It allows
one to reduce the number of degrees of freedom necessary to compute them, while
capturing the nonlinear dynamics of the flow. This review is based on the work and
publications we have performed within the last 15 years, in collaboration with the
CEA-Cadarache and other teams in France, Japan and the United States. Almost
all material presented here has already been published in our papers (cited in the
references), and parts have been adapted for this review. Let us only mention a
few references of wavelet techniques that have been used to analyse and quantify
plasma turbulence: e.g. transients (Dose, Venus & Zohm 1997), bicoherence (Dudok
De Wit & KrasnoselSkikh 1995; Van Milligen et al. 1995a; Van Milligen, Hidalgo
& Sanchez 1995b; Dudok De Wit et al. 2014), intermittency (Carbone et al. 2000)
and anisotropy (Alexandrova, Lacombe & Mangeney 2008). An exhaustive review is
beyond the scope of our paper and we focus here exclusively on our contributions.

The outline of this review is the following: first, in § 2 we present wavelet analysis
tools, including a short primer on continuous and orthogonal wavelets. Statistical
tools in wavelet coefficient space are also introduced. Section 3 focuses on coherent
structure extraction using wavelet-based denoising. Wavelet-based simulation schemes
are reviewed in §§ 4 and 5 draws our conclusions.

2. Wavelet analysis
2.1. Wavelets: a short primer

2.1.1. Continuous wavelet transform
The wavelet transform (Grossmann & Morlet 1984) unfolds any signal (e.g. in time)

or any field (e.g. in three-dimensional space) into both space (or time) and scale (or
time scale), and possibly directions (for dimensions higher than one). The building
block of the wavelet transform is the ‘mother wavelet’, ψ(x) ∈ L2(R) with x ∈ R,
that is a well-localized function with fast decay at infinity and at least one vanishing
moment (i.e. zero mean). It is also smooth enough in order that its Fourier transform,
ψ̂(k), exhibits fast decay for |k| tending to infinity. From the mother wavelet one
then generates a family of wavelets, translated by b ∈ R, the position parameter,
dilated (or contracted) by a∈R+, the scale parameter, and normalized in L2-norm (i.e.
‖ψa,b‖2 = 1) to obtain the set

ψa,b(x)= 1√
a
ψ

(
x− b

a

)
. (2.1)
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The wavelet transform of f ∈ L2(R) is the inner product of f with the analysing
wavelets ψa,b, and the wavelet coefficients that measure the fluctuations of f at scale
a and position b given by

f̃ (a, b)= 〈 f , ψa,b〉 =
∫
R

f (x)ψ?
a,b(x) dx, (2.2)

with ? denoting the complex conjugate. The function f is reconstructed from its
wavelet coefficients, as the inner product of f̃ with the set of analysing wavelets ψa,b

f (x)= 1
Cψ

∫
R+

∫
R

f̃ (a, b)ψa,b(x)
da db

a2
, (2.3)

where Cψ =
∫
R+ |ψ̂(k)|2k−1 dk is a constant that depends on the wavelet ψ . Similarly

to the Fourier transform, the wavelet transform corresponds to a change of basis
(from physical space to wavelet space) and, since it is an isometry, it preserves the
inner product (〈 f , g〉= 〈̃f , g̃〉) (Plancherel’s theorem) and conserves energy (Parseval’s
identity), therefore ∫

R
| f (x)|2 dx= 1

Cψ

∫
R+

∫
R
|̃f (a, b)|2 da db

a2
. (2.4)

Note that the wavelet coefficients of the continuous wavelet transform are redundant
and therefore correlated. This could be illustrated by the patterns one observes
within the continuous wavelet coefficients of white noise, which correspond to the
correlation between the dilated and translated wavelets (white noise being decorrelated
by construction), which visualise the ‘reproducing kernel’ of the continuous wavelet
transform. Due to the fact that wavelets are well localized in physical space, the
behaviour of the signal at infinity does not play any role. Therefore both wavelet
analysis and wavelet synthesis can be performed locally, in contrast to the Fourier
transform which is intrinsically non-local (Fourier modes are spread all over space).
One can also construct peculiar wavelets on a dyadic grid λ = (j, i) (i.e. scale is
sampled by octaves j and space by positions 2−ji) that are orthogonal to each other
and are used to construct wavelet orthonormal bases. In contrast to the continuous
wavelet coefficients equation (2.2) that are redundant and correlated, the orthogonal
wavelet coefficients are decorrelated and non-redundant (i.e. a signal sampled on N
points is perfectly represented by N orthogonal wavelet coefficients only). As for the
Fourier transform, there exists a fast wavelet transform (FWT) that is even faster than
the fast Fourier transform (FFT) whose operation count for a one-dimensional signal
sampled at N points is proportional to N, instead of N log2 N for the FFT.

2.1.2. Orthogonal wavelet transform
A discrete wavelet representation is obtained by sampling dyadically the scale a and

the position b introducing aj = 2−j and bji = iaj with i, j ∈ Z. The resulting discrete
wavelets

ψji(x)= a−1/2
j ψ

(
x− bji

aj

)
= 2j/2ψ(2jx− i), (2.5)

generate orthogonal bases for peculiar wavelets. Figure 1 shows five discrete wavelets
ψji for j= 3, . . . ,7 and their corresponding Fourier transforms, the modulus |ψ̂ji|. Note
that the scale 2−j is related to the wavenumber kj as

kj = kψ2j, (2.6)
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(a) (b)

FIGURE 1. Wavelet representation. Physical space (a) and spectral space (b). Note that
1x1k>C is due to the Fourier uncertainty principle.

where kψ =
∫∞

0 k|ψ̂(k)| dk/
∫∞

0 |ψ̂(k)| dk is the centroid wavenumber of the chosen
wavelet. In figure 1 we observe the duality between physical and spectral space,
namely small-scale wavelets are well localized in physical space and badly localized
in spectral space, and vice versa. Denoting the support of a wavelet in physical space
by 1x and the one in spectral space by 1k the Fourier uncertainty principle requires
that the product 1x1k is bounded from below. In this case, the orthogonal wavelet
coefficients of a function f ∈ L2(R) are given by

f̃ji = 〈 f , ψji〉, (2.7)

and the corresponding orthogonal wavelet series reads

f (x)=
∑
j,i∈Z

f̃jiψji(x). (2.8)

The integral in the continuous reconstruction forumla, (2.3), can thus be replaced by a
discrete sum. In practical applications, the infinite sums of the wavelet series have to
be truncated in both scale and position. Limiting the analysis to the largest accessible
scale of the domain, 20 = L, the scaling function associated to the wavelet has to be
introduced and the wavelet series becomes

f (x)=
∑
i∈Z

fφ0i(x)+
∑

j>0,i∈Z
f̃jiψji(x), (2.9)

where φ is the scaling function and f = 〈 f , φ0i〉 the corresponding scaling coefficients.
The smallest scale 2−J is given by the sampling rate of the function f , which
determines the number of grid points N = 2J . The finite domain size implies that the
number of positions also becomes finite and, choosing L = 1, we obtain the range
i = 0, . . . , 2j − 1 for j = 0, . . . , J − 1. Figure 2 illustrates for an orthogonal spline
wavelet the discrete scale-space representation for three different scales (j = 6, 7, 8)
and positions. There exists a fast wavelet transform algorithm which computes the
orthogonal wavelet coefficients in O(N) operations, therefore it is even faster than
the fast Fourier transform whose operation count is O(N log2 N) (Mallat 1998).
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FIGURE 2. Space-scale representation of an orthogonal spline wavelet at three different
scales and positions, i.e. ψ6,6, ψ7,32, ψ8,108. The modulus of the Fourier transform of three
corresponding wavelets is shown in the inset (top, left).

(a)

(b)

FIGURE 3. Academic example: function with two discontinuities and one in its derivative
(a), corresponding modulus of orthogonal wavelet coefficients (b) in logarithmic scale
using periodic spline wavelets of degree five.

As an example we show in figure 3 the orthogonal wavelet coefficients of an
academic function presenting discontinuities. We observe that wavelet coefficients at
small scales only have significant values in the vicinity of the discontinuities. Hence
only a few coefficients are needed to represent the function after discarding the small
wavelet coefficients.
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(a) (b)

(c) (d )

FIGURE 4. Two-dimensional orthogonal wavelets. Scaling function (a) and the three
associated directional wavelets in the horizontal (b), vertical (c) and diagonal (d) direction.

Extension to higher dimensions. The orthogonal wavelet representation can be
extended to represent functions in higher space dimensions using tensor product
constructions, see e.g. Daubechies (1992), Mallat (1998), Schneider & Farge (2006).
Figure 4 shows two-dimensional orthogonal wavelets constructed by tensor products.

The wavelet transform can also be generalized to treat vector-valued functions
(e.g. velocity or magnetic fields) in d space dimensions by decomposing each vector
component into an orthogonal wavelet series. In the following we consider a vector
field v = (v(1), v(2), v(3)) for d = 3 sampled at resolution N = 23J with periodic
boundary conditions. Its orthogonal wavelet series reads

v(x)=
J−1∑
j=0

7∑
µ=1

2j−1∑
i1,i2,i3=0

ṽj,µ,iψj,µ,i(x), (2.10)

using three-dimensional orthogonal wavelets ψj,µ,i(x). The basis functions are
constructed by tensor products of a set of one-dimensional wavelets and scaling
functions (Daubechies 1992; Mallat 1998) which have been periodized since the
boundary conditions considered here are periodic. The scale index j varies from 0 to
J− 1, the spatial index i= (i1, i2, i3) has 23j values for each scale 2−j and each angle
indexed by µ= 1, . . . , 7. The three Cartesian directions x= x(1), x(2), x(3) correspond
to µ = 1, 2, 3, while µ = 4, 5, 6, 7 denote the remaining diagonal directions. The
wavelet coefficients measure the fluctuations of v at scale 2−j and around position
2−ji for each of the seven possible directions µ. The contribution of the vector field
v at scale 2−j and direction µ can be reconstructed by summation of ṽj,µ,iψj,µ,i(x)
over all positions i:

vj,µ(x)=
2j−1∑

i1,i2,i3=0

ṽj,µ,iψj,µ,i(x). (2.11)
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The contribution of v at scale 2−j is obtained by

vj(x)=
7∑

µ=1

vj,µ(x). (2.12)

For more details on wavelets, we refer the reader to several review articles, e.g. Farge
(1992), Farge & Schneider (2006), Schneider & Farge (2006), Schneider & Vasilyev
(2010) and textbooks, e.g. Daubechies (1992), Mallat (1998).

2.2. Wavelet-based statistical diagnostics
The physical representation gives access to both position and direction, the latter
when the space dimension is larger than one. The spectral representation gives access
to both wavenumber and direction, when the space dimension is larger than one, but
the information on position is spread among the phases of all Fourier coefficients. The
wavelet representation combines the advantages of both representations, while also
giving access to scale. For instance, if we consider a three-dimensional vector-valued
field, its orthogonal wavelet coefficients for each of its three components are
indexed by three positions, seven directions and one scale. Thus using the wavelet
representation, new statistical diagnostics can be designed by computing moments
of coefficients using summation, either over position, direction or scale, or any
combination of these. Second-order moments correspond to energy distributions (e.g.
the energy spectrum), while higher-order moments allow for the computation of
skewness and flatness. In the following, we will present scale-dependent moments,
scale-dependent directional statistics and scale-dependent topological statistics. By
topological statistics we mean the statistics of bilinear quantities, such as the scalar
product of a vector field and its curl, e.g. helicity.

In the following, we give a summary of statistical diagnostics based on orthogonal
wavelet analysis, here applied to a generic vector field following the lines of Okamoto
et al. (2014). Decomposing a vector field into orthogonal wavelets, scale-dependent
distributions of turbulent flows can be measured, including different directions and
also different flow components. For example, the energy and its spatial fluctuations
can be quantified at different length scales and in different directions and hence
longitudinal or transverse contributions can be determined. In the case of an imposed
magnetic field, the contributions in the directions perpendicular or parallel to it can be
distinguished. To this end, statistical quantities based on the wavelet representation can
be introduced, and the scale-dependent anisotropy and the corresponding intermittency
of MHD turbulence can be examined. Here we define intermittency as a departure
from Gaussianity, which is reflected by increasing flatness when scale decreases.
Sandborn (1959) introduced this definition in the context of boundary layer flows and
for a historical overview on intermittency we refer to Schneider, Farge & Kevlahan
(2004). Alternative definitions of intermittency can be found, e.g. in Frisch (1995),
for example a steepening of the energy spectrum proposed by Kolmogorov (1962). In
Kurien & Sreenivasan (2000, 2001) and Sorriso-Valvo et al. (2006) related techniques
to quantify the anisotropy of the flow and its intermittency have been proposed.
They used structure functions of either tensorial components or applied the SO3
decomposition, which is based on spherical harmonics. Structure functions which
correspond to moments of increments can be directly linked to wavelet decompositions
(see, e.g. Schneider et al. 2004). The increments are wavelet coefficients using the
poor man’s wavelet, i.e. the difference of two delta distributions, which has only one
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vanishing moment, its mean value. This implies that the exponent of the detectable
scaling laws is limited by the order of the structure function, and the scale selectivity
is reduced as the frequency localization of the poor man’s wavelet is rather bad.
These drawbacks can be overcome using higher-order wavelets.

2.2.1. Scale-dependent moments
To study the scale-dependent directional statistics we consider the component v`

with ` = 1, 2, 3 of a generic vector field v. First we define the qth-order moment
of the scale-dependent vector vj(x)= (v(1)j , v

(2)
j , v

(3)
j ), which is here either the vector

field at scale 2−j and direction µ, v(`)j,µ, or the vector field at scale 2−j, v(`)j ,

Mq[v(`)j ] = 〈(v(`)j )
q〉. (2.13)

By construction the mean value satisfies 〈v(`)j 〉 = 0 and hence the moments are
automatically centred. These scale-dependent moments are related to the qth-order
structure functions, as shown, e.g. in Schneider et al. (2004). In the following, we
consider the second-order moment M2[v(`)j ], which is a scale-dependent quadratic
mean intensity of v(`)j , and the fourth-order moment M4[v(`)j ], which contains the
scale-dependent spatial fluctuations. Both moments are related via the flatness factor.

In anisotropic turbulence, typically a preferred direction can be defined, e.g. for
low magnetic Reynolds number turbulence, or rotating turbulence. These flows have
statistical symmetries, given here with respect to the x3-axis. For the remaining
perpendicular components, `= 1, 2, the average of these two components is taken as,
Mq[v⊥j ] = {Mq[v(1)j ] +Mq[v(2)j ]}/2, and the superscript ⊥ represents the perpendicular
contribution. The parallel contribution v(3)j is denoted by v‖j .

The wavelet energy spectrum for v(`)j is obtained using M2[v(`)j ] and (2.6),

E[v(`)j ] =
1

21kj
M2[v(`)j ], (2.14)

where 1kj= (kj+1− kj) ln 2 (Meneveau 1991; Addison 2002). It is thus directly related
to the Fourier energy spectrum and yields a smoothed version (Meneveau 1991; Farge
1992). The orthogonality of the wavelets with respect to scale and direction guarantees
that the total energy is obtained by direct summation, E=∑`,j E[v(`)j ] =

∑
`,j,µ E[v(`)j,µ].

The standard deviation of the energy spectrum at a given wavenumber kj quantifies
the spatial variability

σ [v(`)j ] =
1

21kj

√
M4[v(`)j ] − (M2[v(`)j ])2. (2.15)

The ratio of the fourth- and second-order moments defines the scale-dependent
flatness factor,

F[v(`)j ] =
M4[v(`)j ]
(M2[v(`)j ])2

, (2.16)

which quantifies the flow intermittency at scale 2−j.
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The scale-dependent flatness is related to the energy spectrum (2.14) and the
standard deviation (2.15),

F[v(`)j ] =
(
σ [v(`)j ]
E[v(`)j ]

)2

+ 1, (2.17)

as shown in Bos, Liechtenstein & Schneider (2007). This relation illustrates that the
spatial variability of the energy spectrum is directly reflected by the scale-dependent
flatness.

2.2.2. Scale-dependent directional statistics
To quantify scale-dependent spatial flow anisotropy and anisotropic flow intermitt-

ency we introduce wavelet-based measures. Both component-wise anisotropy
and directional anisotropy of the flow are considered in the following. For the
scale-dependent mean energy, E[v(`)j ], the anisotropy measure can be defined similarly
to the classical Fourier representation. Analogously, this can be extended for its
spatial fluctuations, σ [v(`)j ]. Using the relation between the scale-dependent flatness
with the energy spectrum and its spatial fluctuations, (2.17), various measures of
anisotropic flow intermittency can be defined.

Component-wise anisotropy. The scale-dependent component-wise anisotropy is
defined by the ratio of perpendicular to parallel energy, and its fluctuation, at a
given scale 2−j, respectively,

cE(kj)=
E[v⊥j ]
E[v‖j ]

, cσ (kj)=
σ [v⊥j ]
σ [v‖j ]

. (2.18a,b)

The scale-dependent mean energy, cE(kj) is a smoothed version of the Fourier
counterpart c(k). The component-wise anisotropy of the spatial fluctuations is
quantified by cσ (kj). These measures are directly related to the component-wise
flatness factors of v(`)j , i.e. F[v⊥j ] and F[v‖j ], as shown in Okamoto et al. (2014).
Combining (2.17) and (2.18) results in

ΛC
j ≡

{
cσ (kj)

cE(kj)

}2

= F[v⊥j ] − 1

F[v‖j ] − 1
, (2.19)

which yields a scale-dependent measure of component-wise anisotropic intermittency.

Directional anisotropy. Scale-dependent measures for directional anisotropy can be
defined using ratios of perpendicular to parallel energy and fluctuations in longitudinal
or transverse directions,

dL
E(kj)=

E[v⊥j,L]
E[v‖j,L]

, dL
σ (kj)=

σ [v⊥j,L]
σ [v‖j,L]

, (2.20a,b)

dT
E(kj)=

E[v⊥j,3]
E[v⊥j,T]

, dT
σ (kj)=

σ [v⊥j,3]
σ [v⊥j,T]

. (2.21a,b)

The longitudinal direction is denoted by the index L, i.e. L = µ = `. The subscript
µ = 3 corresponds to a transverse direction of the perpendicular components, while
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T represents the other transverse direction of the perpendicular components, i.e. T =
µ= 1 for v(2)j,µ or T =µ= 2 for v(1)j,µ.

Three principal directions, i.e. µ= 1, 2 and 3, out of the seven possible directions
have been selected for the directional statistics.

The measures dL
E(kj) and dT

E(kj) are smoothed versions of the Fourier representation
2e(3)(k3)/{e(1)(k1) + e(2)(k2)} and {e(1)(k3) + e(2)(k3)}/{e(1)(k2) + e(2)(k1)}, respectively,
following the interpretation of the directional statistics proposed in Bos et al. (2007).
Furthermore, these quantities can be related to second-order structure functions defined
in physical space, and we have:

2D(3)(rl̂3)

{D(1)(rl̂1)+D(2)(rl̂2)}
and

{D(1)(rl̂3)+D(2)(rl̂3)}
{D(1)(rl̂2)+D(2)(rl̂1)}

. (2.22a,b)

Structure functions are defined as the spatial average of velocity increments, D(`)(r)=
〈{v(`)(x + r) − v(`)(x)}2〉. Here v(`) consists of contributions of v(`) to scales larger
than 2−j. which are obtained by low pass filtering using the three-dimensional scaling
function at scale 2−j. The unit vector of the Cartesian direction x` is denoted by l̂`.

Combining (2.17) and (2.20)–(2.21), yields directional anisotropy measures
(Okamoto et al. 2014):

ΛL
j ≡
{

dL
σ (kj)

dL
E(kj)

}2

= F[v⊥j,L] − 1

F[v‖j,L] − 1
, (2.23)

ΛT
j ≡

{
dT
σ (kj)

dT
E(kj)

}2

= F[v⊥j,3] − 1
F[v⊥j,T] − 1

, (2.24)

which quantify the scale-dependent anisotropic intermittency in the transverse
and longitudinal directions. They measure intermittency, not only in the plane
perpendicular or in the direction parallel to for example a magnetic field B0, but
also in the longitudinal or transverse directions. These measures are equal to one for
isotropic fields, and their departure from the value one indicates the degree of flow
anisotropy.

2.2.3. Scale-dependent topological statistics
Considering the velocity field u and the corresponding vorticity ω = ∇ × u, the

kinetic helicity, H(x) = u · ω, can be defined. The helicity yields a measure of the
geometrical statistics of turbulence. Integrating the helicity over space one obtains
the mean helicity H = 〈u · ω〉. The scale-dependent helicity Hj was introduced in
Yoshimatsu et al. (2009a) and is defined by

Hj(x)= uj ·ωj. (2.25)

It preserves Galilean invariance, though the kinetic helicity itself does not. The
corresponding mean helicity is obtained by summing Hj over scale, H =∑j〈Hj〉 due
to the orthogonality of the wavelet decomposition.

The relative helicity

h(x)= H
|u| |ω| (2.26)
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defines the cosine of the angle between the velocity and the vorticity at each spatial
position. The range of h lies between −1 and +1. The scale-dependent relative helicity
can be defined correspondingly

hj(x)= Hj

|uj| |ωj| . (2.27)

The Euler equations of hydrodynamics conserve the mean kinetic helicity, while
in ideal MHD turbulence, the mean cross-helicity HC = 〈u · b〉 and the mean
magnetic helicity HM = 〈a · b〉 are conserved quantities. Here a is the vector potential
of the magnetic field b. The scale-dependent versions of the relative cross and
magnetic helicities have been introduced in Yoshimatsu et al. (2011) and are defined
respectively by

hC
j (x)=

HC
j

|uj||bj| , (2.28)

with HC(x)= u · b and

hM
j (x)=

HM
j

|aj||bj| , (2.29)

with HM(x)= a · b. These quantities define the cosine of the angle between the two
vector fields.

2.3. Application to three-dimensional MHD turbulence
In the following, we show applications of the above scale-dependent wavelet-based
measures to three-dimensional incompressible MHD turbulence. To study the
anisotropy we analyse flows with a uniformly imposed magnetic field and consider
the quasi-static (QS) approximation at moderate Reynolds numbers for different
interaction parameters (Okamoto et al. 2011, 2014). For the geometrical statistics,
full MHD turbulence without an imposed mean field is analysed (Yoshimatsu et al.
2011). The flows are computed by direct numerical simulation (DNS) with a Fourier
pseudo-spectral method at resolution 5123 and for further details we refer the reader
to the two respective publications given above. The flow structure of the quasi-static
MHD turbulence is illustrated in figure 5. Shown are isosurfaces of the modulus
of vorticity for two different interaction parameters N. The interaction parameter
characterizes the intensity of the imposed magnetic field B0 (here chosen in the z
direction) relative to the flow nonlinearity. It is defined by N = σB2

0L/ρu′, where σ is
the electrical conductivity, L the integral length scale, ρ the density and u′ the r.m.s.
velocity. In the case without imposed magnetic field, i.e. N= 0, the flow is equivalent
to isotropic hydrodynamic turbulence and entangled vortex turbes can be observed in
figure 5(a). For N = 2, the structures are aligned parallel to the z direction, i.e. the
direction of the imposed magnetic field, and the flow is thus strongly anisotropic.

The wavelet energy spectra (figure 6a) yield information on the kinetic energy at
scale 2−j and the spatial fluctuations are quantified by the standard deviation spectra
(figure 6b). All spectra have been multiplied by k5/3 to enhance their differences
at small scale. We observe that the spectra decay with increasing normalized
wavenumber kjη where η is the Kolmogorov length scale. Furthermore, the wavelet
spectra (dotted lines) agree well with the corresponding Fourier spectra (solid lines).
For larger values of N, the spectra E[u⊥j ] decay faster for increasing kjη. The standard
deviation spectra of u⊥j also decay more rapidly when N becomes larger.
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(a) (b)

FIGURE 5. Quasi-static-three-dimensional-MHD: modulus of vorticity for quasi-static
three-dimensional MHD at Rλ = 235, with N = 0, (a) and N = 2 (b) computed by DNS
(from Okamoto et al. 2014).

(a) (b)

FIGURE 6. Quasi-static-three-dimensional-MHD: wavelet mean energy spectra (a)
k5/3

j E⊥(kj) together with the Fourier energy spectra (solid lines). Wavelet standard
deviation spectra (b) k5/3

j σ⊥(kj). All quantities are shown for the perpendicular velocity
components. The inset (left) shows the corresponding forcing Fourier spectra k5/3Ef (k)
(from Okamoto et al. 2014).

The scale-dependent anisotropy measures allow us to analyse the anisotropy at
different scales. The scale-dependent component-wise anisotropy cE(kj) shown in
figure 7(a), quantifies the anisotropy of the wavelet mean energy spectrum. As
expected, we find for N = 0 that cE(kj) ≈ 1 as the flow is isotropic. The departure
from the value one corresponds to flow anisotropy, i.e. for values smaller than one
the energy of the parallel component is predominant over that of the perpendicular
component, an observation which holds for both cases, N= 1 and N= 2. Furthermore,
the anisotropy is persistent at the smaller scales and yields smaller values for N = 2.
Now we examine the anisotropy in different directions. Figure 7(b), shows dL

E, the
flow anisotropy of the mean wavelet spectrum in the longitudinal direction. We find
that this measure yields values larger than one for N = 1 and 2, and values close
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(a) (b)

FIGURE 7. Quasi-static-three-dimensional-MHD: component-wise anisotropy measure
cE(kj) (a) and directional anisotropy measure in the longitudinal direction dL

E(kj) (from
Okamoto et al. 2014).

(a) (b)

FIGURE 8. Quasi-static-three-dimensional-MHD: scale-dependent flatness of the
perpendicular velocity F⊥j with in the inset the corresponding flatness for the parallel
velocity (a). Anisotropic measure of intermittency Λ(kj) (b) (from Okamoto et al. 2014).

to one for N = 0. For N 6= 0, the correlation of the velocity component parallel to
the imposed magnetic field in its longitudinal direction is supposed to be stronger
than the correlation of the perpendicular components. We also see that the scale
dependence becomes weak for kjη > 0.1.

The scale-dependent flatness of the perpendicular velocity F[u⊥j ] and of the parallel
velocity F[u‖j ], shown in figure 8(a), quantify the intermittency of the different flow
components. In all cases we find that the flatness does indeed increase for decreasing
scale. At small scales, kjη > 1, we also see that the flatness is larger for larger values
of N. The inset shows that F[u‖j ] behaves similarly.

The component-wise anisotropy of the intermittency at each scale can be quantified
with ΛC(kj), see figure 8(b). Again we find that for N = 0 values close to one
are found, as expected due to the isotropy of the flow. For N = 1 and 2 the
component-wise anisotropic intermittency ΛC(kj) has values larger than one for
kjη> 0.1, which means that the perpendicular velocity becomes more intermittent than
the parallel velocity at small scales. For N = 2 this becomes even more pronounced.
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(a) (b)

FIGURE 9. Three-dimensional-MHD: scale-dependent PDFs of the relative helicities.
Cross-helicity hC

j (a) and magnetic helicity hM
j (b). The insets show the PDFs of the

corresponding total relative helicities (from Yoshimatsu et al. 2011).

To illustrate the scale-dependent geometric statistics we consider homogeneous
MHD turbulence at unit Prandtl number without mean magnetic field. The flow
has been computed by direct numerical simulation at resolution 5123 with random
forcing and for further details we refer to Yoshimatsu et al. (2011). Figure 9 shows
the probability distribution functions (PDFs) of the relative scale-dependent cross
and magnetic helicity, hC

j and hM
j . Figure 9(a) exhibits two peaks at hC

j = ±1
which corresponds to a pronounced scale-dependent dynamic alignment. The peaks
even become larger for smaller scales and thus the probability of alignment (or
anti-alignment) of the velocity and the magnetic field increases. Figure 9(b) illustrates
that the distribution of the scale-dependent magnetic helicity becomes more symmetric
at small scales. The inset shows that the total relative magnetic helicity is strongly
skewed with a peak at +1, which is due to the presence of substantial mean magnetic
helicity.

3. Extraction of coherent structures using wavelets
In this section we illustrate the extraction of coherent structures using an algorithm

which is based on wavelet denoising (Farge, Schneider & Kevlahan 1999; Farge,
Pellegrino & Schneider 2001; Farge et al. 2003; Azzalini, Farge & Schneider
2005). We first describe it for one-dimensional scalar-valued signals and illustrate its
performance on an academic test signal. We then generalize the algorithm to higher
dimensions and to vector-valued fields. Finally, different applications to experimental
and numerical data are shown:

(i) a scalar-valued signal varying in time measured by a Langmuir probe in the
scrape-off layer of the tokamak Tore Supra (Cadarache, France);

(ii) a two-dimensional academic example of the synthetic emissivity of a radiating
toric shell with additive noise;

(iii) experimental movies obtained by a fast camera implemented in Tore Supra;
(iv) two-dimensional vorticity fields computed for resistive drift-wave turbulence

(Hasegawa–Wakatani model) using a pseudo-spectral method;
(v) three-dimensional vorticity and current density fields computed for resistive MHD

turbulence (incompressible MHD equations) using a pseudo-spectral method.
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3.1. Extraction algorithm
3.1.1. Principle

We propose a wavelet-based method to extract coherent structures that emerge out
of turbulent flows, both in fluids (e.g. vortices, shock waves in compressible fluids, . . .)
and in plasmas (e.g. bursts, blobs, . . .). The goal is to study their role regarding the
transport and mixing properties of flows in the turbulent regime.

For this, we use the wavelet representation that keeps track of both time and scale,
instead of the Fourier representation that keeps track of frequency only. Since there
is not yet an universal definition of the coherent structures encountered in turbulent
flows, we use an apophatic method (introduced in Hinduist theology several thousands
years ago) where one does not try to define what an entity (e.g. a phenomenon, a
noumenon, . . .) is but rather what it is not. We thus agree on the minimal and
hopefully consensual statement: ‘coherent structures are not noise’, and propose to
define them as: ‘coherent structures are what remains after denoising’.

The mathematical definition of noise states that a signal is noise if it cannot be
compressed in any functional basis. As a result, the shortest description of a noise
is itself. Note that in most of the cases, the experimental noise generated by a
measurement device does not fit the definition of mathematical noise since it can be
compressed in at least one functional basis (e.g. parasite frequencies can be removed
in the Fourier basis).

This new way of defining coherent structures allows us to process signals and
fields and also their cuts or projections (e.g. a probe located at one point provides a
one-dimensional cut of a four-dimensional space-time field). Indeed, the algorithms
commonly used to extract coherent structures cannot work for cuts or projections
because they require a template of the structures to extract (one would need to
take into account of how the probe sees all possible translations and distortions of
the coherent structures). The strength of our algorithm is that it treats fields and
projections in the same way.

Since we assume that coherent structures are what remains after denoising, we need
a model, not for the structures themselves, but for the noise. Applying ‘Ockham’s
Razor principle’ (or the ‘law of parsimony’), we choose as a first guess the simplest
possible model: we suppose the noise to be additive, Gaussian and white (i.e.
uncorrelated). We then project the turbulent signal (in one-dimension), or turbulent
field (in higher dimensions), into wavelet space and retain only the coefficients having
a modulus larger than a given threshold. As a threshold value we follow Donoho
and Johnstone’s proposition of a threshold value that depends on the variance of
the Gaussian noise we want to remove and on the chosen sampling rate (Donoho
& Johnstone 1994). Since the noise variance is not known a priori for turbulent
signals (the noise being produced by their intrinsic nonlinear dynamics), we designed
a recursive method Azzalini et al. (2005) to estimate it from the variance of the
weakest wavelet coefficients, i.e. those whose modulus is below the threshold value.
After applying our algorithm, we obtain two orthogonal fields: the coherent field
retaining all coherent structures and the incoherent field corresponding to the noise.
We then check a posteriori that the latter is indeed noise-like (i.e. spread all over
physical space), Gaussian and uncorrelated (i.e. also spread all over Fourier space),
and thus confirm the hypotheses we have a priori chosen for the noise.

3.1.2. Wavelet denoising
We consider a signal s(t) sampled on N = 2J points that we want to denoise,

assuming the noise to be additive, Gaussian and white. We first project s(t) onto an
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orthogonal wavelet basis and then filter out some of the wavelet coefficients thus
obtained, s̃ij. We retain only the wavelet coefficients whose modulus is larger than a
threshold value. The main difficulty is to estimate it a priori and we encounter two
possible cases:

(i) If we a priori know the noise’s variance σ 2, the optimal threshold value is given
by Donoho and Johnstone’s formula (Donoho & Johnstone 1994)

ε = (2σ 2 ln N)1/2. (3.1)

In 1994 they proved (Donoho & Johnstone 1994) that such a wavelet thresholding
method is optimal to denoise signals in the presence of additive Gaussian white
noise because it minimizes the maximal L2-error (between the denoised signal
and the noise-free signal) for functions whose regularity is inhomogeneous, such
as bursty or intermittent turbulent signals.

(ii) If we do not a priori know the variance of the noise, which is the most usual
case, one should use the wavelet-based recursive algorithm we proposed in Farge
et al. (1999), Azzalini et al. (2005). This algorithm first estimates the variance
of the noise by considering the variance of the noisy signal σ 2

0 and computes the
corresponding threshold

ε0 = (2σ 2
0 ln N)1/2. (3.2)

The algorithm splits the wavelet coefficients into two classes: the weak
coefficients whose moduli are smaller than the threshold, and the remaining
strong coefficients. It then computes the variance of the weak coefficients σn

to obtain a better estimation of the variance of the noise (estimated from the
wavelet coefficients using Parseval’s theorem)

σ 2
n =

1
N

∑
(j,i)∈IJ ,|̃sji|<εn

|̃sji|2, (3.3)

where IJ = {0 6 j < J, i = 0, . . . , 2j − 1} is the index set of the wavelet
coefficients. The algorithm then replaces ε0 by εn = (2σ 2

n ln N)1/2, which yields
a better estimate of the threshold. This procedure is iterated until it reaches the
optimal threshold value, when εn+1 ≈ εn.

In Azzalini et al. (2005) we proved that this algorithm converges for signals
having a sufficiently sparse representation in wavelet space, such as the
intermittent signals encountered in turbulence. We also showed that the larger the
signal to noise ratio (SNR) is, the faster the convergence. Hence, if the signal
s(t) is only noise, it converges in one iteration and retains ε0 as the optimal
threshold.

Using the optimal threshold, we then separate the wavelet coefficients s̃ij into
two contributions: the coherent coefficients s̃C

ij whose moduli are larger than ε

and the remaining incoherent coefficients s̃I
ij. Finally, the coherent component sC(t)

is reconstructed in physical space using the inverse wavelet transform, while the
incoherent component is obtained as sI(t)= s(t)− sC(t).
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3.1.3. Extraction algorithm for one-dimensional signals
We detail the iterative extraction algorithm for the one-dimensional case and quote

it from Azzalini et al. (2005):

Initialization

(i) given the signal s(t) of duration T , sampled on an equidistant grid ti= iT/N for
i= 0,N − 1, with N = 2J;

(ii) set n= 0 and perform a wavelet decomposition, i.e. apply the FWT (Mallat 1998)
to s to obtain the wavelet coefficients s̃ji for (j, i) ∈ IJ;

(iii) compute the variance σ 2
0 of s as a rough estimate of the variance of the

incoherent signal sI and compute the corresponding threshold ε0 = (2 ln Nσ 2
0 )

1/2,
where σ 2

0 = (1/N)
∑

(j,i)∈IJ |̃sji|2;
(iv) set the number of coefficients considered as noise to NI = N, i.e. to the total

number of wavelet coefficients.

Main loop
Repeat

(i) set Nold
I =NI and count the number of wavelet coefficients smaller than εn, which

yields a new value for NI;
(ii) compute the new variance σ 2

n+1 from the wavelet coefficiens smaller than εn, i.e.
σ 2

n+1 = (1/N)
∑

(j,i)∈IJ |̃sI
ji|2, where

s̃I
ji =
{

s̃ji for |̃sji|6 εn

0 else
(3.4)

and the new threshold εn+1 = (2 ln Nσ 2
n+1)

1/2;
(iii) set n= n+ 1

until (NI =Nold
I ).

Final step

(i) reconstruct the coherent signal sC from the coefficients s̃C
ji using the inverse FWT,

where

s̃C
ji =

{
s̃ji for |̃sji|> εn

0 else
(3.5)

(ii) finally, compute pointwise the incoherent signal sI(ti) = s(ti) − sC(ti) for
i= 0, . . . ,N − 1.

End

Note that the signal is split into s(t)= sC(t)+ sI(t) and its energy into σ 2= σ 2
C+ σ 2

I ,
since the coherent and incoherent components are orthogonal, i.e. 〈sC, sI〉 = 0.

We use the FWT (Mallat 1998) that is computed with (2MN) multiplications, M
being the length of the discrete filter defining the orthogonal wavelet used. Remark:
for all applications presented in this paper, we use Coiflet 12 wavelets (Daubechies
1992), unless otherwise stated. As long as the filter length M < (log2 N)/2, the FWT
is faster than the FFT computed with N log2 N operations. Consequently, the extraction
algorithm requires (2nMN) operations, n being the number of iterations, which is
small, typically less than log2 N.
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This algorithm defines a sequence of estimated thresholds (εn)n∈N and the
corresponding sequence of estimated variances (σ 2

n )n∈N. In Azzalini et al. (2005)
we proved that this sequence converges after a finite number of iterations by applying
a fixed point type argument to the iteration function

Fs,N(εn+1)=
2 ln N

N

∑
(j,i)∈IJ

|̃sI
ji(εn)|2

1/2

. (3.6)

The algorithm stops after n iterations, when Fs,N(εn) = εn+1, since the number of
samples N is finite. In Azzalini et al. (2005) we also proved that the convergence rate
depends on the SNR (SNR = 10 log10(σ

2/σ 2
I )), since the smaller the SNR, i.e. the

stronger the noise, the faster the convergence, moreover, if the algorithm is applied
to a Gaussian white noise, it converges in one iteration only. If it is applied to a
signal without noise, the signal is fully preserved. In Azzalini et al. (2005) we have
also proven the algorithm’s idempotence, i.e. if it is applied several times the noise is
eliminated the first time and the coherent signal will remain the same if the algorithm
is reapplied several times. This would be the case for a Gaussian filter which, in
contrast, is not idempotent.

3.1.4. Application to an academic test signal
To illustrate the performance of the iterative algorithm we consider a one-

dimensional noisy test signal s(t) sampled on N = 213 = 8192 points (figure 10b). It
is made by adding a Gaussian white noise w(t), of mean zero and variance σ 2

w = 25,
to a piecewise regular academic signal a(t) presenting several discontinuities, in the
function or in its derivatives (figure 10a). The SNR is SNR= 10 log10(σ

2
a /σ

2
w)= 11 dB.

After applying the extraction algorithm we estimate the noise variance to be 25.6
and we obtain a coherent signal sC(t) very close to the original academic signal a(t)
(figure 10c). The incoherent part sI(t) is homogeneous and noise-like with flatness
3.03, which corresponds to quasi-Gaussianity. In figure 10(c) we observe that the
coherent signal retains all discontinuities and peaks present in the academic signal
a(t), which is an advantage with respect to standard denoising techniques, e.g. low
pass Fourier filtering, which smooth them. In the vicinity of the discontinuities we
observe slight overshoots, which are more local than the classical Gibbs phenomena
and could for example be removed using the translation invariant wavelet transform
(Mallat 1998).

3.1.5. Extension of the algorithm to higher dimensional scalar- and vector-valued
fields

The extraction algorithm was described in § 3.1.3 for one-dimensional scalar-valued
signals s(t) varying in time. First, it can be extended to higher dimensional scalar
fields s(x) varying in space x ∈ Rd where d is the space dimension. To this end the
extraction algorithm only requires that the one-dimensional wavelets are replaced by
their equivalent d-dimensional wavelets using tensor product constructions, see, e.g.
(Daubechies 1992; Mallat 1998; Schneider & Farge 2006).

Second, the extraction algorithm can also be extended to vector-valued fields
v = (v(1), . . . , v(d)) where each component v`, ` = 1, . . . , d is a scalar valued field.
The extraction algorithm is then applied to each component of the vector field. For
thresholding the wavelet coefficients we consider the vector ṽj,µ,i in (2.10). Assuming
statistical isotropy of the noise, the modulus of the wavelet coefficient vector is
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(a)

(b)

(c)

FIGURE 10. Denoising of a piecewise regular signal using iterative wavelet thresholding.
(a) Original academic signal a(t). (b) Noisy signal s(t) with a SNR= 11 dB. (c) Denoised
signal sC(t) with a SNR= 28 dB.

computed. The coherent contribution is then reconstructed from those coefficients
whose modulus is larger than the threshold defined as ε = (2/d σ 2 ln N)1/2 where d
is the dimensionality of the vector field, σ the variance of the noise and N the total
number of grid points. The iterative algorithm in § 3.1.3 can then be applied in a
straightforward way.

To extract coherent structures out of turbulent flows we consider the vorticity field,
which is decomposed in wavelet space. Applying the extraction algorithm then yields
two orthogonal components, the coherent and incoherent vorticity fields. Subsequently
the corresponding induced velocity fields can be reconstructed by applying the Biot–
Savart kernel, which is the inverse curl operator. For MHD turbulence, we consider in
addition the current density and we likewise split it into two components, the coherent
and incoherent current density fields. Using Biot–Savart’s kernel we reconstruct the
coherent and incoherent magnetic fields.

Note that the employed wavelet bases do not a priori constitute divergence-free
bases. Thus the resulting coherent and incoherent vector fields are not necessarily
divergence free. However, we checked that the departure from incompressibility only
occurs in the dissipative range and remains negligible (Yoshimatsu et al. 2009b).
Another solution would be to use directly div-free wavelets, however these are much
more cumbersome to implement (Deriaz, Farge & Schneider 2010).
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(a)

(b)

FIGURE 11. (a) Position of the reciprocating Langmuir probe in the scrape-off layer of
the tokamak Tore Supra in Cadarache. (b) Schematic top view of the probe.

3.2. Application to one-dimensional experimental signals from tokamaks
In Farge, Schneider & Devynck (2006) we presented a new method to extract
coherent bursts from turbulent signals. Ion density plasma fluctuations were measured
by a fast reciprocating Langmuir probe in the scrape-off layer of the tokamak Tore
Supra (Cadarache, France). For a schematic view we refer to figure 11. The resulting
turbulent signal is shown in figure 12(a). To extract the coherent burst, the wavelet
representation is used which keeps track of both time and scale and thus preserves
the temporal structure of the analysed signal, in contrast to the Fourier representation
which scrambles it among the phases of all Fourier coefficients. Applying the
extraction algorithm described in § 3.1.3, the turbulent signal in figure 12(a) is
decomposed into coherent and incoherent components (figure 12b,c). Both signals are
orthogonal to each other and their properties can thus be studied independently. This
procedure disentangles the coherent bursts, which contain most of the density variance,
are intermittent and correlated with non-Gaussian statistics, from the incoherent
background fluctuations, which are much weaker, non-intermittent, noise-like and
almost decorrelated with quasi-Gaussian statistics.

The corresponding PDFs are shown in figure 13 which confirm that the incoherent
part is indeed Gaussian like, while the total and coherent signal have similar skewed
PDFs with algebraic heavy tails for positive signal values. Diagnostics based on the
wavelet representation were also introduced in Farge et al. (2006) which allow us
to compare the statistical properties of the original signals with their coherent and
incoherent components. The wavelet spectra, in comparison with classical Fourier
spectra (obtained via modified periodograms) in figure 14(a), confirm that the total
and coherent signals have almost the same scale energy distribution with a power
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(a)

(b) (c)

FIGURE 12. Signal s(t) of duration 8.192 ms, corresponding to the saturation current
fluctuations measured at 1 MHz in the scrape-off layer of the tokamak Tore Supra
(Cadarache, France). (a) Total signal s, (b) coherent part sC, and (c) incoherent part sI
(from Farge et al. 2006).

law behaviour close to −5/3. Furthermore, the wavelet spectra agree well with the
Fourier spectra. The incoherent signal yields an energy equipartition for more than
two magnitudes, which corresponds to decorelation in physical space. To quantify
the intermittency we plot in figure 14(b) the scale-dependent flatness of the different
signals, which shows that the coherent contribution extracted from the total signal has
the largest values at small scale (i.e. high frequency) and is thus the most intermittent.
In Farge et al. (2006) we conjectured that the coherent bursts are responsible for
turbulent transport, whereas the remaining incoherent fluctuations only contribute
to turbulent diffusion. This is confirmed by the resulting energy flux of the total,
coherent and incoherent parts given in figure 15. Note that cross-correlation between
coherent and incoherent contributions of the electric potential and the saturation
current are not shown.

3.3. Application to two-dimensional experimental movies from tokamaks
3.3.1. Tomographic reconstruction using wavelet-vaguelette decomposition

Cameras installed in tokamaks acquire images which are difficult to interpret, since
the three-dimensional structure of the plasma is mapped onto two spatial dimensions
and thus flattened in a non-trivial way. This implies that the received flux cannot be
directly related to the volumic emissivity of the plasma, which is a major limitation of
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FIGURE 13. Probability density function p(s) estimated using histograms with 50 bins.
PDF of the total signal s (green dashed line), of the coherent component sC (red solid
line) and of the incoherent component sI (blue dotted line), together with a Gaussian fit
with variance σ 2

I (black dotted line) (from Farge et al. 2006).

(a) (b)

FIGURE 14. (a) Wavelet spectra Ẽ(ωj) (lines with symbols) and modified periodograms
E(ω) (lines) of the total signal s (green and +), coherent signal sC (red and ♦) and
incoherent signal sI (blue and E). (b) Corresponding scale-dependent flatness F̃ versus
frequency ωj. The horizontal dotted line F̃(ωj) = 3 corresponds to the flatness of a
Gaussian process (from Farge et al. 2006).

such optical diagnostics. The reason is that the photons collected by each pixel on the
camera sensor have been emitted along a corresponding ray, rather than out of a single
point in space. Nevertheless the three-dimensional radiation can be related to the two-
dimensional image using tomographic reconstruction, because the dominant structures
in tokamak edge turbulence happen to be field-aligned filaments, commonly known as
blobs. They have a higher density than their surroundings, and their structure varies
more slowly along magnetic field lines than in their orthogonal directions.

Mathematically, the tomographic reconstruction corresponds to an inverse problem
which has a formal solution under the assumed symmetry, but is ill-posed in the
presence of noise. Taking advantage of the slow variation of the fluctuations along
magnetic field lines in tokamaks, this inverse problem can be modelled by a helical
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FIGURE 15. Energy flux: total (green), coherent (red) and incoherent (blue). The split is
made using complex valued wavelets.

Abel transform, which is a Volterra integral operator of the first kind. In Nguyen
van yen et al. (2012) we proposed a tomographic inversion technique, based on
a wavelet-vaguelette decomposition coupled with wavelet denoising, to extract
coherent structures which allows us to detect individual blobs on the projected
movie and to analyse their behaviour. The wavelet-vaguelette decomposition (WVD)
was introduced by Tchamitchian (1987) and used by Donoho (1995) to solve inverse
problems in the presence of localized structures. Tomographic inversion using the
wavelet-vaguelette decomposition is as an alternative to singular value decomposition
(SVD). Both decompositions regularize the problem by damping the modes of the
inverse transform to prevent amplification of the noise, i.e. modes below a given
threshold are eliminated. For WVD, the nonlinear iterative thresholding procedure
(see § 3.1.3) is applied to the vaguelette coefficients. Here Coiflets with two vanishing
moments are used (Daubechies 1992). However, in contrast to SVD, WVD takes in
addition advantage of the spatial localization of coherent structures present in the
plasma.

The technicalities of WVD are described in detail in Nguyen van yen et al. (2012),
in the following we explain only the principle. The helical Abel transform related
the plasma light emissivity S (a scalar-valued field) to the integral of the volume
emissivity received by the camera I =KS, where K is a compact continuous operator.
The reconstruction of the plasma light emissivity S from I is an inverse problem
which becomes very difficult when S is corrupted by noise, since computing K−1 is
an ill-posed problem which amplifies the noise. The vaguelettes are operator adapted
wavelets and a biorthogonal set of basis functions is obtained from the wavelet bases
ψλ by computing Kψλ and K?−1ψλ, where K?−1 denotes the adjoint inverse operator
(Tchamitchian 1987). Note that vaguelettes inherit the localization features of wavelets
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(a) (b) (c)

FIGURE 16. Denoising WVD academic test case with a uniform radiating shell.
(a) Source emission intensity S in the poloidal plane. (b) Corresponding noiseless image
I=KS in the image plane. (c) Noisy image obtained by adding Gaussian white noise with
variance 0.5 (from Nguyen van yen et al. 2012).

(a) (b)

FIGURE 17. Denoising WVD academic test case. WVD inversion results.
(a) Reconstructed poloidal emissivity map Sd. (b) Denoised image Id = KSd (from
Nguyen van yen et al. 2012).

but may lose the translation and scale invariance, and thus the FWT cannot be applied
anymore.

3.3.2. Application to an academic example
To illustrate the method, we first consider an academic test case with an given

emissivity map S, having a uniform radiating shell at constant value one and zero
elsewhere. A two-dimensional cut in the poloidal plane is shown in figure 16(a).
Applying the helical Abel transform we generate the corresponding synthetic image
I=KS (figure 16b). Then we add a Gaussian white noise with standard deviation 0.5,
which yields the synthetic noisy image (figure 16c).

Applying the WVD reconstruction to the synthetic noisy image (figure 16c) gives
a denoised emissivity map, a poloidal cut is shown in figure 17(a). We observe that
the main features are preserved, i.e. the constant emissivity shell is well recovered,
besides some spurious oscillations close to discontinuities. The corresponding denoised
image Id = KSd (figure 17b) illustrates that the noise has been successfully removed.
A comparison with the standard SVD technique in Nguyen van yen et al. (2012) (not
shown here) illustrates the superiority of the wavelet-vaguelette technique.
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(a) (b) (c)

FIGURE 18. WVD-inversion of a snapshot from a movie obtained from Tore
Supra, discharge TS42967. (a) Noisy frame used as input for the WVD algorithm.
(b) Reconstructed emissivity map obtained as a result of WVD. (c) Denoised frame
obtained by applying the operator K to the reconstructed emissivity map (from Nguyen
van yen et al. 2012).

3.3.3. Application to fast camera data from tokamaks
Now we present an application to an experimental movie acquired during the Tore

Supra discharge TS42967, where the plasma was fully detached and stabilized over
several seconds using a feedback control. The movie has been obtained using a fast
camera recording at 40 kHz. Moreover, the time average of the whole movie was
subtracted from each frame, which helps us to decrease the effect of reflection on
the chamber wall. The algorithm is then applied directly to the fluctuations in the
signal instead of the full signal. The experimental conditions can be found in Nguyen
van yen et al. (2012). One frame of the movie is shown in figure 18(a) and used
as input for the WVD reconstruction algorithm. The resulting emissivity map in the
poloidal plane, in figure 18(b), shows the presence of localized blobs, which propagate
counter-clockwise, as observed in the movies, not shown here. Thus their propagation
velocity can be determined. The corresponding denoised movie frame Id (figure 18c)
is obtained by applying the operator K to the inverted emissivity map Sd. We observe
that the noise has been removed and the local features such as blobs and fronts have
been extracted.

3.4. Application to two-dimensional simulations of resistive drift-wave turbulence
At the edge of the plasma in tokamaks drift-waves play an important role in dynamics
and transport. In Bos et al. (2008) we considered a two-dimensional slab geometry
and performed DNS using a two-field model, the Hasegawa–Wakatani system, which
describes the main features of resistive drift-waves. The evolution equations for the
plasma density fluctuations and the electrostatic potential fluctuations are coupled via
the adiabaticity parameter which models the intensity of the parallel electron resistivity.
A Poisson equation relates the vorticity with the electrostatic potential. The wavelet-
based coherent vortex extraction method (see § 3.1.3) is then applied in Bos et al.
(2008) to assess the role of coherent vorticity for radial transport and to identify only
the active degrees of freedom which are responsible for the transport.
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(a) (b)

FIGURE 19. Snapshots of the vorticity field for the quasi-hydrodynamic case (a) and for
the quasi-adiabatic case (b). Abscissa and ordinate correspond to the radial and poloidal
position, respectively. The white rectangles indicate the selected dipoles (from Bos et al.
2008).

Visualizations of the vorticity field for two regimes, the quasi-hydrodynamic case
and the quasi-adiabatic case, corresponding, respectively, to low and high collisionality
of the plasma, are given in figure 19. In both cases, coherent vortices can be observed
and a dipolar structure is framed by the white rectangles. Applying the coherent
vorticity extraction (CVE) algorithm, we split the vorticity fields into coherent and
incoherent contributions. In the quasi-hydrodynamics case we find that 1.3 % of
the wavelet coefficients are sufficient to retain 99.9 % of the energy, while in the
quasi-adiabatic case 1.8 % of the modes retain 99 % of the energy. The statistical
properties of the total, coherent and incoherent vorticity fields are assessed in figure 20
by plotting the vorticity PDFs and the Fourier enstrophy spectra for the two cases.
For the quasi-hydrodynamic vorticity the PDFs of the total and the coherent field are
slightly skewed and exhibit a non-Gaussian distribution, while for the quasi-adiabatic
case, a symmetric almost Gaussian like distribution can be observed. The variances
of the incoherent parts are strongly reduced in both cases with respect to the total
fields and the PDFs have a Gaussian-like shape. The enstrophy spectra illustrate that
coherent and incoherent contributions exhibit a multiscale behaviour. The spectra of
total and coherent vorticity agree well all over the inertial range. The spectra of the
incoherent contributions have a powerlaw behaviour close to k3 which corresponds
to an equipartition of kinetic energy. In Bos et al. (2008) it is furthermore shown
that the radial density flux, i.e. more than 98 %, is indeed carried by these coherent
modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the
polarization-drift nonlinearity as shown in the scatter plot of vorticity against the
electrostatic potential in figure 21. Moreover, vorticity strongly dominates over strain,
in contrast to the quasi-adiabatic regime. Details can be found in Bos et al. (2008).

3.5. Application to three-dimensional simulations of resistive MHD turbulence
In Yoshimatsu et al. (2009b) we proposed a method for extracting coherent vorticity
sheets and current sheets out of three-dimensional homogeneous MHD turbulence.
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(a) (b)

(c) (d )

FIGURE 20. (a,b) PDFs of the vorticity. (c,d) Fourier spectrum of the enstrophy versus
wavenumber. (a,c) Quasi-hydrodynamic case. (b,d) Quasi-adiabatic case. Dashed line:
total field, solid line: coherent part, dotted line: incoherent part. Note that the coherent
contribution (solid) superposes the total field (dashed), which is thus hidden under the
solid line in all four figures. The straight lines indicating power laws are plotted for
reference (from Bos et al. 2008).

To this end the wavelet-based coherent vortex extraction method (see § 3.1.3) has
been applied to vorticity and current density fields computed by direct numerical
simulation (DNS) of forced incompressible MHD turbulence without mean magnetic
field at resolution of 5123. Coherent vorticity sheets and current sheets are extracted
from the DNS data at a given time instant. A visualization of isosurfaces of vorticity
and current density of the total, coherent and incoherent fields is shown in figure 22.
The coherent vorticity and current density are found to preserve both the vorticity
sheets and the current sheets present in the total fields while retaining only a few
percent of the degrees of freedom. The incoherent vorticity and current density are
shown to be structureless and of mainly dissipative nature. The spectral distributions
in figure 23 of kinetic and magnetic energies of the coherent fields only differ in the
dissipative range, while the corresponding incoherent fields exhibit quasi-equipartition
of energy, corresponding to a k2 slope. The PDFs of total and coherent fields, for
both vorticity and current density in figure 24 coincide almost perfectly, while the
incoherent vorticity and current density fields have strongly reduced variances. The
energy flux shown in figure 25 confirms that the nonlinear dynamics is indeed fully
captured by the coherent fields only. The scale-dependent flatness of the velocity and
the magnetic field in figure 26 illustrate that the total and coherent fields have similar
scale-dependent high-order moments and reflect strong intermittency characterized
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(a) (b)

(c) (d)

FIGURE 21. Scatter plot of vorticity against electrostatic potential for the coherent part
(a,b) and incoherent part (c,d). (a,c) Quasi-hydrodynamic case; (b,d) quasi-adiabatic case.
The red dots correspond to the total field, the blue dots correspond to a selected vortex
dipole in figure 19 (from Bos et al. 2008).

by the strong increase of the flatness for decreasing scale. The flatness values of
the incoherent contributions, of both the velocity and the magnetic field are are
much smaller and do not increase significantly for decreasing scale, i.e. they are not
intermittent.

4. Wavelet-based simulation schemes
In the following, two wavelet-based methods for solving kinetic plasma equations

are presented: an application of nonlinear wavelet denoising to improve the
convergence of particle-in-cell (PIC) schemes, and a particle-in-wavelet (PIW) scheme
for solving the Vlasov–Poisson equation directly in wavelet space. We also present
the coherent vorticity and current sheet simulation (CVCS) method, which extends the
coherent vorticity simulation (CVS) method (Farge et al. 1999; Farge & Schneider
2001) developed for the Navier–Stokes equations to the resistive non-ideal MHD
equations. Numerical examples illustrate the properties and the efficiency of the
different methods.

4.1. Improving particle-in-cell schemes by wavelet denoising
Plasma simulations using particles are characterized by the presence of noise, a typical
feature of Monte-Carlo type simulations. The number of particles, which is restricted
by computational resources, limits the statistical sampling and thus the accuracy of
the reconstructed particle distribution function.

The discretization error, generically known as particle noise, due to the random-like
character of the method quantifies the difference between the distribution function
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(a)

(c)

(e)

(b)

(d )

( f )

FIGURE 22. Isosurfaces of vorticity (a,c,e) and current density (b,d,f ) of the total (a,b),
coherent (c,d) and incoherent contributions (e,f ) (from Yoshimatsu et al. 2009b).

reconstructed from a simulation using Np particles, and the exact distribution function.
The weak scaling of the error with the number of particles, ∝1/

√
Np, however, limits

the reduction of particle noise by increasing the number of computational particles in
practical applications. This has motivated the development of various noise reduction
techniques, see, e.g. Nguyen van yen et al. (2010), which is of importance in the
validation and verification of particle codes.

In Nguyen van yen et al. (2010) we proposed a wavelet-based method for
noise reduction in the reconstruction of particle distribution functions from particle
simulation data, called WBDE. The method was originally introduced in Donoho
et al. (1996) in the context of statistics to estimate probability densities given a
finite number of independent measurements. WBDE, as used in Nguyen van yen
et al. (2010), is based on a truncation of the wavelet representation of the Dirac
delta function associated with each particle. The method yields almost optimal results
for functions with unknown local smoothness without compromising computational
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(a) (b)

FIGURE 23. Kinetic (a) and magnetic (b) energy spectra of the total, coherent and
incoherent fields. The wavenumber is normalized with the Iroshnikov–Kraichnan scale
(from Yoshimatsu et al. 2009b).

(a) (b)

(c) (d)

FIGURE 24. PDFs of the `th component of the velocity (a), vorticity (b), magnetic field
(c) and current density (d) for the total, coherent and incoherent contributions (from
Yoshimatsu et al. 2009b).

efficiency, assuming that the particles coordinates are statistically independent. It can
be viewed as a natural extension of the finite size particles (FSP) approach, with
the advantage of estimating more accurately distribution functions that have localized
sharp features. The proposed method preserves the moments of the particle distribution
function to a good level of accuracy, has no constraints on the dimensionality of the
system, does not require an a priori selection of a global smoothing scale, and is able
to adapt locally to the smoothness of the density based on the given discrete particle
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FIGURE 25. Contributions to the energy flux normalized by the energy dissipation rate
versus the wavenumber, which is normalized with the Iroshnikov–Kraichnan scale (from
Yoshimatsu et al. 2009b).

(a) (b)

FIGURE 26. Scale-dependent flatness of velocity (a) and magnetic field (b) versus the
wavenumber, which is normalized with the Iroshnikov–Kraichnan scale (from Yoshimatsu
et al. 2009b).

data. Indeed, the projection space is determined from the data itself, which allows
for a refined representation around sharp features, and could make the method more
precise than PIC for a given computational cost. Moreover, the computational cost of
the denoising stage is of the same order as one time step of a FSP simulation.

The underlying idea of WBDE is to expand the sampled particle distribution
function, represented by a histogram, into an orthogonal wavelet basis using the
FWT. We define the empirical density associated to the particles positions xn for
n= 1, . . . ,Np where Np is the number of particles,

ρδ(x)= 1
Np

Np∑
n=1

δ(x− xn) (4.1)
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(a) (b) (c)

(d) (e) ( f )

FIGURE 27. Contour plots of estimates of δf for the collisional guiding centre transport
particle data: histogram method (a–c) and WBDE method (d–f ). The (a–f ) correspond to
Np = 32 × 103 (a,d), Np = 128 × 103 (b,e) and Np = 1024 × 103 (c,f ), respectively. The
plots show 17 isolines equally spaced within the interval [0.5, 0.5] (from Nguyen van yen
et al. 2010).

and where δ is the Dirac measure. We then project ρδ(x) onto an orthogonal wavelet
basis retaining only scales j such that L 6 j 6 J where the scales L and J denote the
largest and smallest retained scales, respectively (Donoho et al. 1996). The remaining
wavelet coefficients are then thresholded retaining only those whose modulus is larger
than the scale-dependent threshold K

√
j/Np, where K is a constant which depends

on the regularity of the solution (Donoho et al. 1996). Finally the denoised particle
density is obtained by applying an inverse FWT. In Nguyen van yen et al. (2010)
Daubechies wavelets with six vanishing moments were used.

In Nguyen van yen et al. (2010) we treated three cases in order to test how
the efficiency of the denoising algorithm depends on the level of collisionality
of the plasma. Strongly collisional, weakly collisional and collisionless regimes
were considered. For the strongly collisional regime, we computed particle data of
force-free collisional relaxation involving energy and pinch-angle scattering. The
collisionless regime was studied using PIC-data corresponding to bump-on-tail
and two-stream instabilities in the Vlasov–Poisson system. The third case of a
weakly collisional regime was illustrated here using guiding-centre particle data of
a magnetically confined plasma in toroidal geometry. The data was generated with
the code DELTA5D. Figure 27 shows contour plots of the histogram (a–c) and the
reconstructed densities using WBDE for increasing number of particles. It can be seen
that the WBDE results in efficiently denoised densities and that the error has been
reduced by a factor two with respect to the raw histograms as shown in figure 28.

4.2. The particle-in-wavelet scheme
In Nguyen van yen et al. (2011) we proposed a new numerical scheme, called particle-
in-wavelet (PIW), for the Vlasov–Poisson equations describing the evolution of the
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FIGURE 28. R.m.s. error estimate for collisional guiding-centre transport particle data
according to the histogram, the proper orthogonal decomposition (POD), and the wavelet
methods. The reference density is computed with Np= 1024× 103 (from Nguyen van yen
et al. 2010).

particle distribution function f in collisionless plasma, and assessed its efficiency in
the simplest case of one spatial dimension. In non-dimensional form, the equations
read

∂tf + v∂xf + ∂xφ∂vf = 0 (4.2)

∂xxφ + 1− 2π

∫
R

f (x, v, t) dv = 0, (4.3)

where φ is electric potential. The particle distribution function f is discretized using
tracer particles, and the charge distribution is reconstructed using WBDE, discussed
in the previous section. The latter consists in projecting the Delta distributions
corresponding to the particles onto a finite dimensional linear space spanned by a
family of wavelets, which are chosen adaptively. A wavelet-Galerkin Poisson solver
is used to compute the electric potential once the wavelet coefficients of the electron
density ρ(x, t) = ∫R f (x, v, t) dv have been obtained by WBDE. The properties of
wavelets are exploited for diagonal preconditioning of the linear system in wavelet
space, which is solved by an iterative method, here conjugated gradients. Similar
to classical PIC codes, the interpolation method is compatible with the charge
assignment scheme. Once the electric field E(x, t)=−∂xφ(x, t) has been interpolated
at the particle positions, the characteristic trajectories, defined by x′(t) = v(t) and
v′(t)=−E(x(t), v(t), t) can be advanced in time using the Verlet integrator.

To demonstrate the validity of the PIW scheme, numerical computations of Landau
damping and of the two-stream instability have been performed in Nguyen van yen
et al. (2011). The stability and accuracy have been assessed with respect to reference
computations obtained with a precise semi-Lagrangian scheme (Sonnendrücker et al.
1999). We showed that the precision is improved roughly by a factor three compared
to a classical PIC scheme, for a given number of particles (Nguyen van yen et al.
2011), as illustrated in figure 29 for the two-stream instability. We observe that PIW
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(a) (b)

FIGURE 29. Comparisons between PIW and PIC for the two stream instability test case.
Relative L2 error of the electric field at t= 30, as a function of the number of particles
(a) and the corresponding computing time (b). Note that L-PIW (linear PIW) is a variant
of PIW where only linear filtering has been applied (from Nguyen van yen et al. 2011).

FIGURE 30. Illustration of the safety zone in wavelet coefficient space used in CVS. The
degrees of freedom retained by CVE are drawn in red, the adjacent coefficients of the
safety zone are drawn in green, while the coefficients in blue correspond to the inactive
degrees of freedom which are not computed. The interface η, defined in space and scale,
separates the region dominated by nonlinear interaction (red) from the region dominated
by linear dissipation (blue). The horizontal green line corresponds to the Kolmogorov
dissipation scale 〈η〉 is defined by the statistical mean (either ensemble or space average).

remains consistently more precise for any number of particles thanks to its adaptive
properties (figure 29a). The total CPU time measured in seconds scaled for the PIW
code inversely proportional to the number of particles, while for PIC and L-PIW the
scaling changes when the number of particles is too low for a given spatial resolution.
However, note that the actual CPU time may depend on the implementation, since the
PIC code is written in Fortran while the PIW code is written in C++, although the
same computer was used for both codes.
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FIGURE 31. Flowchart describing the principle of CVCS. The superscripts n and n + 1
denote time steps. FWT and FWT−1 denote the fast wavelet transform and its inverse.
Operators performed in wavelet coefficient space are framed by the dashed rectangle (from
Yoshimatsu et al. 2013).

4.3. Coherent vorticity and current sheet simulation
DNS of turbulent flow has a large computational cost due to the huge number of
degrees of freedom to be taken into account. The required spatial resolution thus
becomes prohibitive, e.g. scaling as Re9/4 for hydrodynamics using Kolmogorov like
arguments (Pope 2000). The coherent vorticity simulation (CVS) method, introduced
in Farge et al. (1999) and Farge & Schneider (2001), proposes to reduce the
computational cost by taking only into account the degrees of freedom that are
nonlinearly active. To this end, the coherent structure extraction method (presented in
§ 3) is combined with a deterministic integration of the Navier–Stokes equations. At
each time step the CVE is applied to retain only the coherent degrees of freedom,
typically a few percent of the coefficients. Then, a set of neighbour coefficients in
space and scale, called ‘safety zone’, is added to account for the advection of coherent
vortices and the generation of small scales due to their interaction. Afterwards, the
Navier–Stokes equations are advanced in time using this reduced set of a degrees
of freedom. Subsequently, the CVE is applied to reduce the number of degrees of
freedom and the procedure is repeated for the next time step. A graphical illustration,
in wavelet coefficient space of the degrees of freedom retained at a given time step is
given in figure 30. This procedure allows us to track the flow evolution in space and
scale selecting a reduced number of degrees of freedom in a dynamically adaptive
way. With respect to simulations on a regular grid, much less grid points are used in
CVS.

In Yoshimatsu et al. (2013) we extended CVS to compute three-dimensional
incompressible MHD turbulent flow and developed a simulation method called
coherent vorticity and current sheet simulation (CVCS). The idea is to track the
time evolution of both coherent vorticity and coherent current density, i.e. current
sheets. Both the vorticity and current density fields are, respectively, decomposed
at each time step into two orthogonal components, corresponding to the coherent
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(a)

(b)

(c)

FIGURE 32. Adaption strategy in wavelet coefficient space used in CVCS: (a) retained
wavelet coefficients (blue), (b) added wavelet coefficients to ensure a graded tree (red) and
(c) added wavelet coefficients corresponding to the safety zone (green).

and incoherent contribution, using an orthogonal wavelet representation. Each of
the coherent fields is reconstructed from the wavelet coefficients whose modulus is
larger than a threshold, while their incoherent counterparts are obtained from the
remaining coefficients. The two threshold values depend on the instantaneous kinetic
and magnetic enstrophies. The induced coherent velocity and magnetic fields are
computed from the coherent vorticity and current density, respectively, using the
Biot–Savart kernel. In order to compute the flow evolution, one should retain not
only the coherent wavelet coefficients but also their neighbours in wavelet space, the
safety zone. A flowchart summarizing the principle of CVCS is shown in figure 31
and the adaption strategy in orthogonal wavelet coefficient space in figure 32.

In Yoshimatsu et al. (2013) CVCS was performed for three-dimensional forced
incompressible homogeneous MHD turbulence without a mean magnetic field, for
a magnetic Prandtl number equal to unity. The Navier–Stokes equations coupled
with the induction equation were solved with a pseudospectral method using 2563

grid points and integrated in time with a Runge–Kutta scheme. Different adaption
strategies to select the optimal saftey zone for CVCS have been studied. We tested the
influence of the safety zone and of the threshold, as defined in § 3.1.3, by considering
three cases:

(i) CVCS0 with safety zone but without iterating the threshold ε0;
(ii) CVCS1 with safety zone but with iterating the threshold once ε1;

(iii) CVCS2 without safety zone but without iterating the threshold ε0;

details can be found in Yoshimatsu et al. (2013). The quality of CVCS was then
assessed by comparing the results with a DNS. It is found that CVCS with the safety
zone well preserves the statistical predictability of the turbulent flow with a reduced
number of degrees of freedom. CVCS was also compared with a Fourier truncated
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FIGURE 33. Evolution of the percentage C of retained wavelet coefficients for CVCS with
three different adaption strategies in comparison with Fourier filtering (FT0) with a fixed
cutoff wavenumber (from Yoshimatsu et al. 2013).

simulation using a spectral cutoff filter, where the number of retained Fourier modes is
similar to the number of the wavelet coefficients retained by CVCS0. Figure 33 shows
the percentage of retained wavelet coefficients for CVCS (with three different adaption
strategies) in comparison to Fourier filtering (FT0) with a fixed cutoff wavenumber.
The percentage of retained kinetic energy, magnetic energy, kinetic enstrophy and
magnetic enstrophy for the three different CVCS strategies in comparison with Fourier
filtering (FT0) is plotted in figure 34.

Probability density functions of vorticity and current density, normalized by the
corresponding standard deviation, in figure 35 show that CVCS0 and CVCS1 capture
well the high-order statistics of the flow, while in FT0 and in CVCS2 the tails of the
PDFs are reduced with respect to the DNS results. The energy spectra of kinetic and
magnetic energy in figure 36 confirm that CVCS0 and CVCS1 reproduce perfectly the
DNS results in the inertial range, where all nonlinear acticity takes place, and only
differs in the dissipative range.

The results thus show that the wavelet representation is more suitable than the
Fourier representation, especially concerning the probability density functions of
vorticity and current density and that only about 13 % of the degrees of freedom
(CVCS0) compared to DNS are sufficient to represent the nonlinear dynamics of the
flow. A visualization comparing both the vorticity and current density field for DNS
and CVCS0 is presented in figure 37.

5. Conclusion
This paper reviewed different wavelet techniques and showed several of their

applications to MHD and plasma turbulence. Continuous and orthogonal wavelet
transforms were presented and some wavelet-based statistical tools described, after
selecting those most appropriate to study turbulence, such as scale-dependent second-
and higher-order moments, intermittency measure, together with scale-dependent
directional statistical measures. Examples of applications to three-dimensional
incompressible MHD turbulence, computed by DNS, illustrated how the flow
intermittency can be quantified and how its anisotropy and helicity might vary
with scale. The wavelet-based coherent structure extraction algorithm was detailed
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(a) (b)

(c) (d)

FIGURE 34. Percentage of retained kinetic energy (a), magnetic energy (b), kinetic
enstrophy (c) and magnetic enstrophy (d) for the three different CVCS strategies in
comparison with Fourier filtering (FT0) (from Yoshimatsu et al. 2013).

(a) (b)

FIGURE 35. PDFs of the `th component of vorticity (a) and current density (b)
normalized by the corresponding standard deviation (from Yoshimatsu et al. 2013).

and validated for a test signal. Different applications to experimental and numerical
turbulent plasma data, in one, two and three dimensions, were shown. The underlying
methodology of a wavelet-based tomographic reconstruction algorithm for denoising
images and movies obtained with fast cameras in tokamaks were explained and
results were presented. Applications to an academic example and to fast camera data
from Tore Supra proved the efficiency of the algorithm to extract blobs and fronts
while denoising the data. Wavelet-based simulation schemes developed in the context
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(a) (b)

FIGURE 36. Kinetic (a) and magnetic energy spectra (b). The wavenumber is normalized
with the Iroshnikov–Kraichnan scale (from Yoshimatsu et al. 2013).

(a) (b)

(c) (d)

FIGURE 37. Visualization of isosurfaces of modulus of vorticity (a,b) and modulus of
current density (c,d) for DNS (a,c) and CVCS0 (b,d) (from Yoshimatsu et al. 2013).

of kinetic plasma equations were also described. Results computed with them showed
how wavelet denoising accelerates the convergence of classical PIC schemes and how
a PIW scheme solves the Vlasov–Poisson equation directly and efficiently in wavelet
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space. Concerning the fluid equations, in particular the resistive non-ideal MHD
equations, the CVS and CVCS methods were explained and examples illustrated the
properties and insights the wavelet-based approach offers in the context of MHD and
plasma turbulence.
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