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The connection between science and policy 

is especially important in the field of health 

and for responsible applications of Big 

Data and AI. In this frame, the multiregional, 

international science network, RLS-Sciences, 

includes a dedicated group of researchers 

who work on digital health. RLS-Sciences is 

“bringing the benefits of diverse cultural and 

scientific perspectives through its multilateral 

collaboration among scientists, policy makers, 

and science managers”1. RLS-Sciences operates 

under the umbrella of a political forum, the 

Regional Leaders Summit (RLS). RLS convenes 

biennially to exchange amongst seven regional 

governments: Bavaria (Germany), Georgia (USA), 

Québec (Canada), São Paulo (Brazil), Shandong 

(China), Upper Austria (Austria), and Western 

Cape (South Africa) on the theme “Policy for 

Generations”2.

The RLS partner regions first agreed to support 

scientific cooperation between their regional 

research institutions in 2012, and chose the 

field of renewable energy3. They invited regional 

research actors to establish the RLS-Energy 

Network, where researchers exchange best 

practices, data, and privileged research results 

in a trusted scientific network. In 2016 at the 

8th RLS in Munich, based on an analysis of the 

scientific strengths in the regions, the Bavarian 

RLS members encouraged the establishment 

of three further groups: RLS-Small Satellites, 

RLS-Global Aerospace Campus, and the RLS-

Expert Dialogue on Digitalization. To support the 

RLS-Sciences network as a whole, as well as the 

four groups, regional research administrators 

created governance and research support 

infrastructures, including the appointment 

of dedicated regional coordinators from 

the governmental, scientific, and science 

management sectors, as well as lead scientists 

from each thematic group for each region. 

Introduction 
In the last decade, Big Data and Artificial 

Intelligence (AI) have generated a wave of 

transformations that we still have difficulty 

to comprehensively assess and envision. In 

healthcare, as in several other domains, the 

exponential increase of data and information, 

coupled with an enhanced capacity to process 

and store them, have radically changed the  

way we conduct research, development, and 

decision making (Mehta et al., 2019). This rapid 

overhaul, however, has been raising questions  

and concerns among researchers, policy makers, 

and civil society, as shown by present debate  

on AI regulation to maximize benefits and  

mitigate risk in the public interest. 

Healthcare is often presented as both  

a promising field for Big Data applications 

and a domain that is lagging behind in AI 

implementation (Shaw et al., 2019). Hence, 

AI algorithms applied to diagnostics and to 

treatment prediction and precision, especially 

in fields such as radiology and cardiology, have 

undergone considerable developments in the 

last years (Fornell, 2023). Yet, experts have 

emphasized the presence of a gap between 

AI development in medicine and concrete 

applications at the bedside (McCradden  

et al., 2019). 

The AI chasm may have lessened due 
to the advancement generated during 
the COVID-19 pandemic. Nonetheless, 
there are still many challenges today to 
the collection, use, and sharing of quality 
health data to develop useful predictive 
applications for patients, professionals, 
and decision makers.

1. https://oecd-opsi.org/innovations/rls-sciences/
2. https://www.mdpi.com/2071-1050/13/1/76
3. https://www.rls-sciences.org/about.html

https://oecd-opsi.org/innovations/rls-sciences/
https://www.mdpi.com/2071-1050/13/1/76
https://www.rls-sciences.org/about.html
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Together, these representatives actively work  

to create the conditions for effective 

international collaboration at the regional level in 

science. RLS-Sciences members participated at 

the biennial political summits in 2016, 2018, and 

2021, strengthening the science-policy nexus. 

In 2020, at the invitation of the Government of 

Upper Austria, representatives of the partner 

regions and their heads of government, along 

with the RLS-Sciences network, met for a 

“Virtual Roundtable on COVID-19”. At the 

roundtable the partner regions exchanged on 

experiences, best practices, challenges, and 

exit strategies for combating the COVID-19 

pandemic. Ahead of the round table, Bavaria 

proposed the creation of a fifth group focusing 

on the field of digital health: RLS-Digital Health. 

The group undertook a preparatory phase 

beginning in 2020 and launched as the fifth 

RLS-Sciences group in 2022.

As the newest RLS-Sciences group, RLS-Digital 

Health works according to a roadmap which was 

co-created to a matrix of methods and medical 

use cases most relevant for the partner regions. 

The group is committed to advancing 
knowledge and promoting translational 
research in a wide spectrum of topics 
in the digital health field by bridging the 
gap between research and application. 
The group has identified Federated 
Learning and Federated Analysis as 
particularly relevant for their future 
collaborative work, particularly as 
enabling mechanisms for taking best 
advantage of the diversity of data 
within their regions.

At the time of the conception and writing of this 

White Paper, the following researchers were 

designated as Lead Scientists in RLS-Digital 

Health: 

>	 PD Dr. Sebastian Bickelhaupt, 

Universitätsklinikum Erlangen, Bavaria

>	 Prof. Dr. Jessica Kissinger, University of 

Georgia, Georgia 

>	 Prof. Dr. Yves Joanette, Université de Montréal, 

Québec

>	 Prof. Dr. Agma Traina, Universidade de São 

Paulo, São Paulo  

>	 Prof. Dr. Yu Changbin, Shandong First Medical 

University, Shandong

>	 Dr. Michael Giretzlehner, RISC Software GmbH, 

Upper Austria

 

The present White Paper chooses to 

approach the advancement of Big Data and 

AI in healthcare by focusing on a major trend 

in digital health: Federated Learning (FL) and 

Federated Analysis (FA). This approach proposes 

to harness the full potential of health data by 

enabling the secure exploitation of multiple 

data sources without having to pool data in a 

single site (AbdulRhaman, 2020). FL/FA can 

be presented as a response to present legal, 

ethical, and technical challenges that limit data 

sharing across institutions and jurisdictions 

and thereby reduce the capacity to conduct 

collaborative data-driven research at a national 

and international scale (Kairouz et al., 2021). 

While FL/FA presents genuine opportunities for 

the enhancement of Big Data and AI for research 

and innovation, this approach also raises several 

questions regarding privacy protection, data 

reliability, and resource utilization, among others. 

These are the specific issues investigated in this 

document.



6

While exploring the potential and 
challenges of FL/FA for collaborative 
research in digital health, this white 
paper also describes robust platforms 
and technologies showing how FL/
FA can be made possible in today’s 
healthcare systems. 

The collaboration between the RLS-Digital 

Health members has shed light on projects that 

stand out as powerful examples of the promises 

of FL/FA for data-driven research and innovation 

in healthcare. Based on these inspiring 

initiatives, this white paper presents key 

conditions that could drive the establishment  

of successful infrastructures able to connect 

and analyze high quality and real-time data 

sources, while ensuring that the best standards 

for data protection and normalization are in 

place. These conditions could help us define 

and build a model for data-driven collaborative 

research at the national and international scales 

that could benefit researchers, innovators, 

decision-makers, and patients. 

Data-driven research 
in healthcare: 
potentials and 
challenges

Advances in  
data-driven research 
across institutions  
and jurisdictions
Despite the crises and tragedies that it 

produced, the COVID-19 pandemic opened 

pathways to genuine progress in data-driven 

collaborative research and innovation across  

the globe (Bragazzi et al., 2020). When SARS-

CoV-2 was first identified in China in January 

2020, researchers knew very little about this 

new coronavirus or how to respond to this 

threat. However, after only a few days, the virus’ 

entire genome sequence was identified and 

shared with the entire research community4.   

By comparison, during the SARS outbreak in 

2003, this same effort took almost three months, 

and before that, the disease was originally 

thought to be caused by chlamydia.

The COVID-19 pandemic led to several 
initiatives aimed to accelerate national 
and international data sharing for 
research, treatment development, 
and policy evaluation. Shared information 

included: molecular data (from sequences to 

drug targets), epidemiological data, intervention 

data, as well as and public policies and 

strategies that were key to facilitate international 

collaboration and evidence-based decision-

making to combat the virus (Dagliatti, 2021). 

New data commons and repositories were 

put in place to accelerate the pooling and use 

of COVID-19 data for research, such as the 

European Data Portal and Coronanet. Above all, 

current infrastructures for data storage, access, 

and processing were used at full potential to 

enable research collaboration at national and 

international scales. This is illustrated by the 

COVID-19 initiatives launched by recognized 

data infrastructures such as the UK Biobank  

and International Severe Acute Respiratory  

and emerging Infection Consortium (ISARIC). 

Such developments emphasized 
the importance of data governance 
alignment between research teams 

4. https://ec.europa.eu/research-and-innovation/en/horizon-magazine/covid-19-how-unprecedented-data-sharing-
has-led-faster-ever-outbreak-research 

https://ec.europa.eu/research-and-innovation/en/horizon-magazine/covid-19-how-unprecedented-data-sharing-has-led-faster-ever-outbreak-research
https://ec.europa.eu/research-and-innovation/en/horizon-magazine/covid-19-how-unprecedented-data-sharing-has-led-faster-ever-outbreak-research
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and institutions, as well as the 
significance of common standards and 
terminologies for data harmonization 
(Ros et al., 2021). 

Regarding data formats in particular, common 

data models such as OMOP and communication 

standards such as FHIR played a key role in the 

sharing and use of COVID-19 data for research 

and innovation.

In the end, these collaborative efforts led to  

a rapid increase in knowledge production and 

dissemination, as shown by the thousands of 

publications produced during the pandemic. 

Vaccines were developed in record time and 

new treatments were offered to patients within 

a year. However, this rapid leapfrog in data-

driven research and collaboration also revealed 

important limitations in the ability to use and 

share health data to improve population health 

and address the challenges of healthcare 

systems. 

Challenges in  
data-driven research 
at a national and 
international scale
The COVID-19 pandemic showed how in a short 

period of time and a moment of emergency an 

international community of various actors can 

agree on common standards and terminologies 

to name a disease, variants, genes, tests, etc. 

This was an international effort that brought 

tremendous benefits to research and to the 

development of effective solutions to contain 

and combat the pandemic.

However, there are still many challenges to 

data-driven research within and across borders 

which limit the capacity to conduct collaborative 

projects based on large diverse high-quality 

health data (Abdulrahman et al. 2021; Nguyen  

et al. 2022; Ros et al., 2021):  

>	 Privacy issues: health data are sensitive 

personal information which require an additional 

level of protection and attention to ensure 

privacy and confidentiality;

>	 Restrictive regulations: As health data is 

considered sensitive personal information, 

existing regulations (i.e. GDPR, HIPPA, etc.) tend 

to restrict the transfer of data from one country 

to another, and most often from one institution 

to another. 

>	 Ethical concerns: Citizens in most countries 

share similar concerns about the use of their 

health data and require guarantees for reuse: 

individual informed consent, information about 

data use, ability to withdraw consent, etc.

>	 Lack of data standardization and 

interoperability: Health data are collected 

and stored in diverse formats that do not 

always follow international standards and 

terminologies, which make data linkage  

and reuse more difficult.

>	 Poor data quality and availability: Health 

data is known to be of highly varying 

quality and difficult to exploit due to 

missing standardization, especially across 

healthcare systems. Some data can be 

found in a structured format (imaging data, 

sociodemographic data, tabular lab findings), 

yet much data is unstructured (free-text notes, 

scanned information, etc.)

>	 Lack of practice alignment in research 

evaluation: On top of all challenges, Institutional 

Review Boards within and across countries 

adopt different evaluation standards and 

practices to assess research projects, 

which can create barriers to international 

collaboration.
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These challenges are not new and have posed 

serious obstacles to health data reuse for 

research and innovation for decades (Price et 

al., 2019). Yet, with the progress of data analytics 

and the rapid increase in data generation through 

information systems, sensors, and applications, 

these challenges are now seen as hazards 

that could  put an halt to AI development and 

implementation in healthcare (Morley et al., 2020). 

Hence, AI algorithms, especially 
machine learning and deep learning 
applications, require a large amount of 
structured and curated data for training 
and validation. High quality, diverse, and 
representative data are responsible 
for the precision, robustness, and 
transferability of AI algorithms across 
healthcare environments (Peifer et al., 
2020). 

Without good data, algorithms may bring very 

poor results in practice; this is precisely what 

the common concept “garbage in, garbage out” 

implies. 

As pointed out before, the availability and 

accessibility of health data sets is greatly 

restricted at present, and current efforts to 

pool massive data sets for AI research and 

innovation may face additional limitations. First, 

although the number of data repositories has 

increased in the last years, these mainly contain 

research data that are not representative of 

patient populations and genuine care pathways 

(ie. clinical studies data, non-observational 

data, etc.). In other words, data from research 

repositories are valuable but contain biases, 

which can limit the real-life performance  

of algorithms that are trained and calibrated 

using this information. 

Second, efforts to structure real-life data (i.e. 

EHR, IoTs, etc.) for secondary use have been 

remarkable in the last years, notably through 

the development of data lakes and warehouses 

for research and analytics at an organizational 

or national scale (Rieke et al., 2020). Still, 

these infrastructures are mostly based on a 

centralized model where real-life data is stored, 

curated, and exploited in a unique site. 

Sharing real-life data beyond the site 
where they are collected and generated 
remains a major challenge in several 
jurisdictions. It poses not only legal and 
ethical challenges, related to privacy 
and data protection, but also technical 
ones. 

Anonymizing data, managing safe and efficient 

access, and transferring data is a non-trivial 

activity that requires important resources and 

multi-disciplinary expertise, especially in a 

context where data protection regulation moves 

fast (Daglieti, 2021).    

Therefore, as an alternative to data centralization 

and releasing, alternative models have been 

envisioned and experimented. Federated 

Learning and Analysis may be an efficient 

way to bypass current hurdles related to data 

sharing and accelerate data-driven research 

and innovation across sites and frontiers. In the 

following, this paper will explore the benefits 

of this new paradigm for data exploitation and 

present some of the new challenges that it 

raises for data-driven research in healthcare.
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Federated Learning 
and Analysis in health 
care: potential and 
challenges

What is Federated 
Learning and Federated 
Analysis?
Guided by privacy concerns and legal restrictions 

to data sharing, a paradigm has recently emerged 

in data analytics and machine learning (ML) 

which has been called Federated Learning (FL). 

According to AdbulRahman and colleagues 

(2021), FL “is a privacy-preserving decentralized 

approach, which keeps raw data on devices and 

involves local ML training while eliminating data 

communication overhead”. FL thus presents an 

alternative to centralized systems for processing 

data and training AI algorithms. In FL, data is 

kept on the original sites where it is collected 

or generated (these sites are sometimes called 

the “nodes”). Sites agree to collaborate on jointly 

processing data or training a model, under the 

coordination of a central server. The server 

receives analysis information from the sites 

(statistics, parameters, gradients, weights, etc.), 

but never the raw data itself. The information is 

then aggregated on the central server for  

an enhanced and more performant algorithm 

trained on a much larger data base. The model  

or statistics can then be shared with the different 

sites in order to contribute to collaborative 

knowledge. At no point in time do sites have 

access to raw data from collaborators, only  

to analytics results. 

Through this decentralized privacy-
preserving process, FL offers the 
potential to bypass legal, ethical, and 
technical issues related to the pooling 
and sharing of sensitive and potentially 
identifiable information in healthcare 
(Rieke et al., 2020). 

Research has shown that ML models trained 

through FL can attain levels of performance that 

are comparable to those trained on centrally 

hosted data sets and are superior to models that 

are trained on isolated single-site data (Li et al., 

2019; Roy et al., 2019). 

Figure 1: Example federated learning (FL) workflows and comparison to learning on a Centralised Data 
Lake (extracted from Rieke et al., 2020)
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FL, however, is only one approach to Federated 

Analysis (FA), which covers a greater scope of 

methodologies and processes for decentralized 

data analysis. 

Hence, FA involves applying basic data 
science methods (statistics, linear 
regression, etc.) for data analysis, 
while FL focuses on training machine-
learning models remotely and obtaining 
aggregated prediction results. 

In this sense, FL can be considered as a subset 

of FA, as it involves a specific type of machine 

learning-based analysis within the broader 

context of decentralized data analysis.

In this larger context, one disadvantage of FL 

is the dependence on a central server, which 

requires all participating sites to agree on one 

trusted central body, whose failure or inefficiency 

could jeopardize the training and analysis 

process. One alternative to FL is a decentralized 

approach that does not require a central 

coordinator. This has already been envisioned 

and put in place through an infrastructure such 

as the Decentralized Zero-Trust IoT Data Fabric, 

developed at the University of Georgia (USA)5. 

This research endeavor aims to establish 
a decentralized data architecture 
founded on the principles of web 3.0 
and blockchain. The proposed system 
would enable each data owner to 
exercise complete authority over their 
data and allow them to grant or revoke 
access and use to any user without the 
involvement of an intermediary. 

Additionally, all alterations made to the data 

and records of access would be traceable and 

subject to audit, thus ensuring transparency and 

accountability. This model is called “zero-trust” 

because it does not require data owners or 

fiduciaries to have trust in a central coordinator 

so as to decide on which data access and usage 

are acceptable and should be authorized.

Types of Federated Learning Frameworks

There are several types of Federated Learning frameworks that can be implemented in 

healthcare to facilitate decentralized data analysis and AI model training (Joshi et al., 2022; 

Mammen, 2021):

Vertical Federated Learning - can be used 

for instance when different organizations 

have data about the same group of patients 

but with different features. FL allows for the 

building of an AI model based on a more 

complete dataset.

Horizontal Federated Learning - can be 

used when different organizations have 

data with the same features but about 

different groups of patients. FL can be 

applied to train a model on a larger dataset 

containing a higher number of patients and 

more variability.

Federated Transfer Learning - involves 

adding a new feature to a pre-trained 

model, similar to traditional machine 

learning. An example of this is extending 

vertical FL to include additional sample 

instances that may not be present in all 

collaborating organizations.

5. To see more:  https://sensorweb.engr.uga.edu/index.php/wns/

https://sensorweb.engr.uga.edu/index.php/wns/
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Figure 2: Federated Learning across devices and across organizations (extracted from Mammen., 2021)

Overview of Federated Learning across organizations

Overview of Federated Learning across devices

Cross-Silo Federated Learning - is used 

when the participating nodes/centers are 

fewer in number and available for all rounds 

of model training. This framework is normally 

applied to organizations which have a large 

amount of data but cannot share them. It can 

rely on vertical or horizontal FL.

Cross-device Federated Learning - this 

framework is appropriate in the case when 

the number of participating nodes is high 

and when each node has small amounts 

of data. As a result, the cross-device 

framework develops models for large-scale 

dispersed data within the same application. 

This can be the case when training a model 

on devices such as mobile and IoTs.

Potential benefits of 
Federated Learning and 
Analysis for healthcare 
research
In comparison with centralized data analytics 

frameworks, FL/FA may offer several benefits 

for data-driven research and collaboration in 

healthcare. Below are those most reported 

by the experts consulted and the literature 

(Mammen, 2022; Rieke et al., 2020; Sheller et al., 

2020; Xu et al., 2020):

>	 Data Privacy: FL/FA could enhance the 

confidentiality of local data by training 

machine learning models on devices and 

nodes without sharing raw data (only 

aggregated information or weights and 

gradients) with a central server. This 

safeguards sensitive patient data and ensures 

compliance with privacy regulations such as 

HIPAA, PIPEDA and GDPR, reducing the risk of 

data breaches.

>	 Local data control: FL/FA could empower 

healthcare institutions to maintain control 

over their local data while still generating 

insights and performing statistical analysis 

in a collaborative manner. This provides 

autonomy and control over data, which may 

be necessary for regulatory or institutional 

requirements.
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>	 Data diversity and scalability: FL/FA allows 

for the aggregation of diverse data from 

multiple healthcare institutions, enabling the 

development of robust and generalizable AI 

models. This can enhance model performance 

and provide better insights, leveraging the 

potential of more complete and diversified 

datasets while eliminating the need for data 

transfer or centralization.

>	 Real-time updates: FL/FA allows for 

continuous model updates as local models 

on edge servers and/or devices are 

refined, enabling real-time adaptation and 

improvement of the global model. This is 

particularly valuable in dynamic healthcare 

settings where data distribution and 

characteristics may change over time.

>	 Cost-effectiveness: FL/FA bears potential 

to be cost-effective as it can eliminate the 

need for data transfer or central data storage, 

reducing communication overhead and 

associated costs. It also allows healthcare 

institutions to leverage their existing 

infrastructure and resources for local analysis.

>	 Collaboration and knowledge sharing: FL/FA 

can promote collaboration among healthcare 

institutions by allowing them to work together 

in developing a global model or project, while 

preserving local data security and control. 

This may foster knowledge sharing, expertise 

exchange, and joint research efforts, which 

could lead to advancements in healthcare 

practices and patient outcomes.

Challenges raised by 
Federated Learning and 
Analysis and associated 
requirements
Despite the potential benefits of FL/FA for 

healthcare research and innovation highlighted, 

there are still several concerns and challenges 

raised by experts and the literature that limit its 

implementation within and across institutions 

(Kairouz et al., 2021; Liu et al., 2022). This is why it 

is necessary to implement specific techniques 

and processes to address these challenges and 

facilitate the deployment of FL/FA in healthcare 

settings. Some of these challenges and 

associated requirements are as follows : 

Data heterogeneity: Health data is known 

to exhibit variability in aspects such as data 

formats, data quality, data distribution, and  

data representation. Therefore, datasets across 

nodes and institutions can present different 

characteristics that can limit the ability to 

analyze them in a decentralized manner (Kairouz 

et al., 2021; Liu et al., 2022)

Requirements: Data standardization and 

interoperability are key to ensure the success 

of a FL/FA infrastructure. Harmonization across 

nodes and sites can be facilitated through 

the application of formats such as the Fast 

Healthcare Interoperability Resources (FHIR) 

format for EHR data and the Digital Imaging and 

Communications in Medicine (DICOM) format 

for imaging data. Moreover, corrections need 

to be applied to ensure that non-identically 

distributed datasets can be used together to 

train a model.
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Data bias: This issue refers to the presence 

of systematic errors or prejudices in the data 

stored in nodes participating in the FL/FA 

process. This can occur for instance due to the 

choices made by each participating institution 

during data collection and processing (Kairouz 

et al., 2021). Different devices can be used to 

collect, analyze, and store data, and data can 

be collected from different populations across 

sites, which can lead to biased results in the 

aggregated model. 

Requirements: Within and across sites, bias 

checks and corrections need to be constant 

during the FL/FA process. Moreover, some 

techniques can be used to control for this risk 

and ensure more fairness in the process; this is 

the case in agnostic federated learning (Mohri 

et al., 2019). In this scenario, the central server 

can apply weighting or fairness mechanisms 

when aggregating the contributions from 

different nodes. This allows for equal 

representation and consideration of nodes with 

varying data characteristics. 

Data security and confidentiality: Recent 

studies have shown that FL/FA fails to provide 

sufficient privacy guarantees, as sensitive 

information could be revealed during the 

analysis and training process (Mothukuri et al., 

2021 ; Yin et al., 2021). Hence, during the process, 

nodes send information to a central server, 

which renders the infrastructure vulnerable 

to several types of attacks such as property 

inference attacks, reconstruction attacks, and 

membership inference attacks (Hu et al., 2021). 

These attacks aim to identify whether or not an 

individual was present in the training datasets, 

and this presents privacy risks for individuals. 

Requirements: Several privacy-preserving 

techniques must be implemented in order to 

limit the risk of data reidentification during the 

training process (see box below). Still, risk can 

never be reduced to zero, as there is a balance 

to find between the accuracy of information 

sent to the central server and the level of 

privacy that participants wish to maintain within 

the FA/FL infrastructure. 

Data poisoning: This is a case where one 

malicious institution aims to poison the global 

model by sending model updates derived from 

mislabeled data. Such data poisoning attacks 

can cause substantial drops in information 

accuracy and model precision, even with a small 

percentage of malicious participants (Tolpegin 

et al. 2020). 

Requirements: The risk of data poisoning can 

be reduced then there are controls on which 

institution can contribute to the FA/FL process. 

Within an academic network, for instance, risk 

of malicious attacks on models coming from 

participating institutions is greatly reduced as 

requirements to participate can be very strict 

and follow stringent laws and ethical guidelines 

(see part 3 for instances). 

Communication and computational challenges: 

FL/FA entails information analysis and 

exchanges between local models or servers, 

which can result in increased communication 

and computational overhead. This can pose 

challenges in terms of bandwidth, latency, and 

computational resources, particularly in large-

scale healthcare settings with distributed data 

sources.

Requirements: FL/FA require significant 

resources, including computational power, 

storage, and expertise, at local sites. Ensuring 

that all participants have the necessary 

resources to actively participate in the  analysis 

and training process can be challenging, 
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especially for smaller healthcare institutions 

or resource-constrained settings.This can be 

difficult as human expertise in data engineering 

and data science tend to be scarce in publicly-

funded healthcare institutions. 

Governance and legal/ethical considerations: 

FL/FA relies heavily on trust, collaboration, and 

alignment between multiple stakeholders, 

including healthcare institutions, data owners, 

ethics review boards, and other parties involved. 

Developing effective governance models 

and addressing legal and ethical concerns, 

such as patient consent, intellectual property, 

and liability, can be intricate and demanding 

and necessitates careful consideration and 

implementation of appropriate measures.

Requirements: Robust governance 

mechanisms and legal frameworks to ensure 

proper coordination, data sharing agreements, 

and compliance with regulations and ethical 

guidelines need to be implemented and 

accepted by all participants in the federated 

infrastructure. These mechanisms and 

frameworks can take the form of a shared 

documentation based on a unified consent 

form, data sharing agreement, and data access 

pathway; for instance, all of those developed 

in partnership and implemented through the 

establishment of a committee representing all 

parties involved in the FL/FA infrastructure. 

Privacy-preserving techniques in Federated Learning - 
simple definitions

Differential Privacy: A technique used 

to protect the privacy of individuals by 

adding noise or randomness to data in a 

way that preserves statistical accuracy 

while preventing re-identification of 

individuals. It provides a mathematical 

framework for quantifying and controlling 

the privacy risks associated with sharing or 

analyzing sensitive data, such as personal 

or confidential information, while enabling 

data analysis. 

Homomorphic Encryption: Homomorphic 

encryption is a cryptographic technique 

that allows data to be encrypted in a way 

that can be processed by users without 

decrypting it. In other words, it allows 

computations to be performed directly 

on encrypted data, without the need to 

decrypt it first. This provides a high level 

of data privacy and security, as the original 

data remains encrypted throughout the 

computation process, including when it is 

stored and transmitted. 

Secure multi-party computation (SMPC): 

Also known as secure computation 

or secure function evaluation, this 

cryptographic technique enables multiple 

parties to jointly compute a function on 

their data, without revealing them to each 

other. It allows parties to collaborate on 

computations while keeping their individual 

data confidential. SMPC ensures that the 

inputs and outputs of the computation 

remain private and secure, even when the 

computation is performed on untrusted or 

potentially malicious systems or networks.
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Focus on national 
and international 
FL/FA platforms 
across RLS-
Sciences’ regions
The GA4GH Beacon 
Project

Summary 

One of the main challenges facing human 

genomics research is data scarcity. To overcome 

this obstacle, the Global Alliance for Genomics 

and Health (GA4H) launched the Beacon Project 

in 2014. This initiative aims to facilitate the 

sharing of genomic and clinical data among 

federated networks (Fiume et al., 2019). As 

genomics data are particularly sensitive, the 

project aims to provide regulatory, ethical, 

and security guidelines to ensure appropriate 

measures are in place for data analysis and 

sharing, following the GA4GH’s “Framework for 

Responsible Sharing of Genomic and Health-

Related Data” (Knoppers, 2014). The Beacon 

Project enables the integration of genomics 

data from various sources worldwide through  

a shared query protocol. 

By “beaconizing” their omics dataset, 
hospitals or research institutions  
can contribute to joint scientific  
efforts for accelerating genomics 
research and precision medicine, 
without compromising data privacy  
or ownership. 

Hence, the Beacon API was designed for 

researchers and specialists to allow the query 

of genomic variants and associated information. 

Thanks to a robust data infrastructure and 

responsible health practices, genomics data 

sharing through the Beacon Project enables to 

derive valuable insights into disease, prognosis, 

and lifestyle-related genomic variations.

Figure 3: Illustration of the Beacon’s infrastructure and functioning (extracted from: https://beacon-project.io/)

https://beacon-project.io/
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Further details 

The original versions of the Beacon Project 

(versions 0 and 1) were limited to indicating 

the presence or absence of a specific 

genomic mutation in a dataset from patients 

with a particular disease or from the general 

population. The API could enable researchers 

to query information about a specific allele. For 

example, a query may involve asking whether 

a nucleotide, such as C, has been observed at 

a specific genomic location, such as position 

32,936,732 on chromosome 13. The Beacon’s 

response is either “yes” or “no”. Therefore, the 

Beacon API enables remote searches for allelic 

information of interest without requiring the 

identification of a particular patient or sample, 

thereby reducing privacy risks. 

The latest version of the Beacon Project 
(version 2) offers researchers greater 
flexibility in searching for genomic 
variants and allows for the inclusion of 
additional questions about the dataset 
and participant attributes. 

In secure settings, authorized users can link 

Beacon results to privacy-protected data, 

such as a patient’s electronic health record, 

and connect it to expert variant annotation. 

Alternatively, researchers may request access 

to a dataset returned in their query results, 

and Beacon Version 2 can provide contact 

information and data use restrictions to 

help with the process. This aims to enable 

researchers to investigate and share genomic 

variant data alongside critical metadata 

such as clinical and phenotypic information. 

This functionality could allow researchers to 

investigate more questions related to rare and 

complex diseases6.

The CODA platform

Summary  

The COVID-19 pandemic brought to light the 

limitations of pooling data at a single place for 

analysis and research. This was particularly evident 

in the challenge of providing timely insights into a 

rapidly emerging public health crisis. To respond 

to this, the University of Montreal Hospital in 

Quebec, Canada developed the Collaborative 

Data Analysis (CODA) platform. From January 

2020 onwards, it was designed with input from 

stakeholders from various fields, including 

research, clinical, administrative, governmental, 

ethical, and legal. The key requirements included 

the ability to perform federated analytics and 

machine learning, provide support for common 

medical standards and terminologies, implement 

measures to minimize disclosure of individual 

patient data, and ensure deployment using 

noncommercial software libraries. 

The feasibility of the CODA platform 
was tested at eight hospitals in Canada 
by enrolling patients with suspected or 
confirmed COVID-19 over three years. 
The FL capabilities were tested on 
reference clinical and imaging data sets 
from critically ill patients. 

The CODA platform was successfully deployed 

and results from the deployment feasibility study 

will be published soon in the Lancet Journal. The 

software code, documentation, and technical 

documents of the CODA platform were released 

under an open-source license. From now on, the 

platform will be used to develop and prospectively 

validate models for risk assessment, proactive 

monitoring, and resource usage forecasting 

among hospitalized and outpatients, as part of 

ongoing validation efforts.
6. https://www.ga4gh.org/news/new-release-of-
ga4gh-beacon-expands-genomic-and-clinical-data-
access/

https://www.ga4gh.org/news/new-release-of-ga4gh-beacon-expands-genomic-and-clinical-data-access/
https://www.ga4gh.org/news/new-release-of-ga4gh-beacon-expands-genomic-and-clinical-data-access/
https://www.ga4gh.org/news/new-release-of-ga4gh-beacon-expands-genomic-and-clinical-data-access/
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Further details 

The CODA platform consists of a 
collection of microservices that work in 
conjunction to enable the decentralized 
computation of healthcare data (as 

depicted in Figure 4). 

The system includes various services that carry 

out data ingestion and computation at individual 

hospital sites (site nodes), a coordinating 

mechanism for local computations to execute 

distributed tasks (orchestration hub), and 

frontend components (dashboard and notebook 

applications) that facilitate customized analytical 

queries, data visualizations, and machine 

learning model training. Prior to data ingestion 

into the CODA platform, data is de-identified. 

All communication channels between platform 

components are secured using Secure Sockets 

Layer/Transport Layers Security (SSL/TLS).

Figure 4: A high-level overview of the CODA network infrastructure (source : CITADEL)

https://citadel-chum.com/
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The site nodes, located within institutional 

firewalls at participating healthcare institutions, 

include components for storing and retrieving 

de-identified electronic health record (EHR) 

data, imaging, and waveform data. The EHR data 

is stored in the Fast Healthcare Interoperability 

Resources (FHIR) format, while imaging and 

waveform data are stored in the Digital Imaging 

and Communications in Medicine (DICOM) 

format. 

The CODA feasibility study aimed to deploy the 

platform across nine public hospitals in Québec, 

Canada, as illustrated in Figure 5. 

A Governance Framework was 
established to formalize the legal and 
ethical terms of collaboration between 
participating institutions7. 

Eight out of the nine enrolled sites successfully 

deployed the platform locally and are connected 

to the CODA network, while one site dropped 

out due to IT resource limitations, and two 

sites have not yet provided patient data. As of 

publication, the CODA feasibility study cohort 

comprises 1,091,540 patients, with a total of 

46,181,904 FHIR objects and 3,777,716 imaging 

studies.

Software code, documentation, and technical 

documents regarding the CODA platform were 

released under the GPL v3 license (www.coda-

platform.com). A set of standard FHIR templates 

were developed to assist users in migrating 

from legacy storage formats. An API Reference 

Specification was developed to guide the 

implementation of the various platform 

components. A Deployment Guide was created 

to facilitate the creation of sandbox/testing 

environments. A Data Security Framework was 

created to govern implementation practices 

relating to the authentication and authorisation 

of users, as well as data protection.

GAIA-X in Europe with  
a focus on Germany

Summary  

Gaia-X is a European initiative launched 

in 2019 by the former German Minister of 

Economic Affairs, Peter Altmaier, and his 

French counterpart, Bruno Le Maire. Alongside 

the efforts to create a European Health Data 

Space, the Franco-German collaboration 

aimed to further cooperation in the field of 

data sharing and AI development through an 

open-source and secure data infrastructure 

that could safeguard and enhance Europe’s 

digital sovereignty. In early 2022, the initial 

implementation of Gaia-X began with the 

development of data spaces and associated 

services, such as the Mobility Data Space. 

The German Federal Ministry for Economic 

Affairs and Climate Action facilitated this 

progress through its funding competition titled 

“Innovative and Practical Applications and 

Data Spaces in the Gaia-X Digital Ecosystem.” 

7. https://github.com/coda-platform/guides-and-policies/tree/main/policies/governance

Figure 5: Flowchart of Site And Patient Enrolment In 
Feasibility Study (source : CITADEL)

www.coda-platform.com
www.coda-platform.com
https://github.com/coda-platform/fhir-types
https://github.com/coda-platform/api-specification
https://github.com/coda-platform/api-specification
https://github.com/coda-platform/guides-and-policies/blob/main/guides/deployment
https://github.com/coda-platform/guides-and-policies/tree/main/policies/data-security
https://github.com/coda-platform/guides-and-policies/tree/main/policies/governance
https://citadel-chum.com/
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Eleven projects were selected with the aim to 

implement Gaia-X and develop innovative digital 

solutions with significant market potential. 

Gaia-X establishes the groundwork 
for an autonomous, united, and 
transparent data infrastructure that 
adheres to European principles. It 
represents a strategic approach that 
fosters collaboration among diverse 
stakeholders in constructing a data 
environment that complies with 
European regulations and promotes 
trust (Federal Ministry for Economic 
Affairs and Climate Action, 2021; Otto 
and Burnmann, 2021). 

Specifically, the health data space encompasses 

shared capabilities and federated health 

data spaces, where data can be accessed 

in a granular and selective manner. In the 

future, these federated data spaces will be 

implemented at regional, national, and European 

levels. The aim is to ensure that the data space 

contributes to patient care processes while 

enabling the secondary utilization of data at a 

cohort or population scale. This will establish 

a data value chain connecting data holders 

and users within the extensive and intricate 

European health ecosystem.

According to Core Gaia-X infrastructural 

components include: 

>	 Identity & Trust: federated identity 

management for individuals and organizations 

>	 Federated Catalogue: to publish the 

registration, consent, and query services 

>	 Sovereign Data Exchange: to manage 

registration, consent, cloud/edge services, 

and data query and access services

>	 Compliance: rights management, onboarding, 

and certification

The organizational structure of Gaia-X rests 

upon three fundamental pillars: 1) Gaia-X 

Association for Cloud and Infrastructure 

(AISBL), 2) National Gaia-X Hub, and 3)  Gaia-X 

Community. The German Gaia-X Hub serves 

as the primary contact point for companies, 

organizations, and individuals in Germany 

seeking to acquire more information about 

the project or engage with the open-source 

community.

To see more: 

https://www.data-infrastructure.eu/GAIAX/

Navigation/EN/Home/home.html 

https://gaia-x.eu/wp-content/uploads/2022/05/

Gaia-X-Event-Report_Health-Data-Space-

Event-4_4_2022.pdf 

https://healthmanagement.org/uploads/article_

attachment/gaia-x-federated-data-infrastructure-

the-future-of-data-management.pdf 

Use Case in Germany: Health-X dataLOFT

Health-X, supported by the German Federal 

Ministry of Economy and Climate Protection, 

aims to establish a validated, transparent, 

and interconnected platform for health data 

called dataLOFT. Gathering several public 

and private actors in the field of health data 

in Germany, Health-X dataLOFT intends 
to ensure compliance with Gaia-X 
standards while enhancing health 
data accessibility. The primary focus of the 

project is utilizing data from two key healthcare 

sectors: primary care institutions like hospitals 

and doctors’ offices, as well as personal health 

data from the secondary health market, which 

includes data from apps and sensors.The 

project also aims to place citizens at the core, 

emphasizing their authority in determining the 

collection, usage, and control of their own health 

https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://gaia-x.eu/wp-content/uploads/2022/05/Gaia-X-Event-Report_Health-Data-Space-Event-4_4_2022.pdf
https://gaia-x.eu/wp-content/uploads/2022/05/Gaia-X-Event-Report_Health-Data-Space-Event-4_4_2022.pdf
https://gaia-x.eu/wp-content/uploads/2022/05/Gaia-X-Event-Report_Health-Data-Space-Event-4_4_2022.pdf
https://healthmanagement.org/uploads/article_attachment/gaia-x-federated-data-infrastructure-the-future-of-data-management.pdf
https://healthmanagement.org/uploads/article_attachment/gaia-x-federated-data-infrastructure-the-future-of-data-management.pdf
https://healthmanagement.org/uploads/article_attachment/gaia-x-federated-data-infrastructure-the-future-of-data-management.pdf
https://www.isst.fraunhofer.de/en/business-units/healthcare/projects/HEALTH-X-dataLOFT.html
https://www.isst.fraunhofer.de/en/business-units/healthcare/projects/HEALTH-X-dataLOFT.html
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data. They possess the autonomy to decide 

which data is made available for personal health 

concerns, medical care, and research, based on 

their own values and preferences. 

Through four use cases, the HEALTH-X 

dataLOFT project is constructing a data space 

specific to the health domain. The data space 

aims to serve as the foundation for these use 

cases, addressing important issues related 

to empowering citizens, promoting health 

prevention, facilitating healthy aging, and 

enhancing clinical care.

Figure 6: Use Cases for which the dataLOFT platform will be tested (source: Health-X 2023)

To see more: 

https://www.computer.org/csdl/magazine/mu/2022/01/09770011/1D830WmTsDS 

https://www.isst.fraunhofer.de/en/business-units/healthcare/projects/HEALTH-X-dataLOFT.html

The BORN Project  
in Bavaria, Germany
Launched in 2022, the BORN Project is a 

collaboration between the Bavarian Center for 

Cancer Research (BZKF) and the radiological 

institutes of all six university hospitals in Bavaria. 

It was launched with the participation of Markus 

Blume, the Bavarian State Minister for Science 

and the Arts, and Klaus Holetschek, the Bavarian 

State Minister for Health and Care. Mint Medical 

and Brainlab will closely collaborate with the 

university hospitals and the BZKF to establish  

a consistent and structured reporting system  

for oncological imaging. They will also develop  

a secure IT infrastructure to facilitate the 

capture and exchange of data. 

Initially, standardized reading templates will be 

developed for six different entities, ensuring 

uniform reporting of cancer cases across all 

Bavarian university hospitals. Following clinical 

evaluation at these hospitals, the standardized 

https://www.health-x.org/en/platform
https://www.computer.org/csdl/magazine/mu/2022/01/09770011/1D830WmTsDS
https://www.isst.fraunhofer.de/en/business-units/healthcare/projects/HEALTH-X-dataLOFT.html
https://bzkf.de/born/
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collection and assessment of imaging data 

can be expanded to other healthcare facilities 

and practices, benefiting patients throughout 

Bavaria. This will also create an unprecedented 

data repository, covering a population of 

13 million residents, that can be utilized for 

prospective and retrospective studies. 

The ambition is to create a unique 
dataset for the development of image-
based biomarkers and machine learning 
techniques. This will help collect and 
reuse structured and comprehensive 
health data while safeguarding  
data privacy, as well as enhance the 
usability of healthcare data for patient 
treatment, research, development,  
and policymaking. 

In the BORN Project, data collection is 

decentralized to individual clinics, ensuring the 

confidentiality, protection, and management 

of the data. The respective centers retain 

ownership of the data they contribute, allowing 

for differential release ranging from general use 

in medical research to specific collaborative 

projects.

Conditions for 
success of FL/FA 
for data-driven 
international 
research
In light of the projects presented in the previous 

section and the analysis of the potentials and 

challenges of FL/FA in health care, several 

conditions can be drawn to ensure that FL/FA 

comes to consolidate and facilitate data-driven 

international research:

>	 Foundational principles and values: These 

must be shared by all participants of a FL/FA 

platform in order to ensure that governance 

and technical frameworks and processes 

will reflect the main objectives and interests 

of the participants, be they institutions or 

individuals. Examples of these principles and 

values can be: Open Science, FAIR principles, 

and prioritizing public-interest research. 

>	 Regulatory compliance and alignment:  

FL/FA platforms need to adhere to relevant 

legal requirements, such as data protection 

laws (e.g., GDPR, PIPEDA, HIPAA) and 

AI regulations (e.g. EU AI Act, Bill C-27 

in Canada), as well as broader ethical 

guidelines for research involving human 

subjects. Nonetheless, these regulations and 

guidelines can vary from one jurisdiction to 

another; this is why a minimum level of legal 

and ethical alignment across countries and 

regions is necessary to ensure that FL/FA 

platforms can reach an international scale. 
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>	 Interoperability and standardization 

prioritization: Data quality, accessibility 

and usability across an FL/FA platform is 

highly dependent on the existence of data 

formats, standards, terminologies, and 

protocols shared by all participants. Systems 

interoperability and data standardization are 

key to ensure compatibility and harmonization 

across the data sources. Moreover, ethics 

documentation needs to be standardized 

through shared consent ontologies 

describing informed consent, opt-in and 

opt-out procedures, terms-of-use, specific 

research usage, and more.

>	 Robust security frameworks and processes: 

A FL/FA platform should integrate robust 

privacy-preserving mechanisms to protect 

patient confidentiality, comply with data 

protection regulations, and prevent 

unauthorized access or data breaches. These 

mechanisms need to be adequate with 

privacy policies and based on top industry 

standards to verify data users’ identities and 

roles, and monitor data usages. 

>	 Standardized application programming 

interfaces (APIs): APIs can streamline 

access to data stored in different systems 

participating in a FL/FA platform. These APIs 

empower researchers and other users to 

query and analyze distributed datasets, and 

enable data holders to effectively manage the 

data entrusted to them.

>	 Enhanced patient accessibility and control: 

Trust in FL/FA platform largely relies on the 

confidence patients will have in its security 

and benefits for care enhancement and 

research advances. Along with professionals 

and researchers, patients need to be given 

the opportunity to access data and results 

from analysis and research, and be able to 

preserve control over data usages. This can 

be accomplished through digital consent 

processes, support for multiple languages 

and cultures, and dynamic consent practices 

that allow patients to have control over how 

their data is utilized, and to discover which 

benefits are produced out of them.
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