
1



Abstract—Cascade Support Vector Machines (SVMs) are

optimized to efficiently handle problems where the majority of

data belongs to one of the two classes, such as image object

classification, and hence can provide speedups over monolithic

(single) SVM classifiers. However, SVM classification is a

computationally demanding task and existing hardware

architectures for SVMs consider only monolithic classifiers. This

paper proposes the acceleration of cascade SVMs through a

hybrid processing hardware architecture optimized for the

cascade SVM classification flow, accompanied by a method to

reduce the required hardware resources for its implementation,

and a method to improve the classification speed by utilizing

cascade information to further discard data samples. The

proposed SVM cascade architecture is implemented on a Spartan

6 FPGA platform and evaluated for object detection on 800×600

(SVGA) resolution images. The proposed architecture, boosted

by a neural network that processes cascade information, achieves

a real-time processing rate of 40 frames-per-second for the

benchmark face detection application. Furthermore, the

hardware reduction method results in the utilization of 25% less

FPGA custom-logic resources and 20% peak power reduction

compared to a baseline implementation.

Index Terms—Cascade classifier, field programmable gate

array (FPGA), local binary pattern (LBP), neural networks,

parallel architectures, real-time and embedded systems, support

vector machines (SVMs)

I. INTRODUCTION

UPPORT VECTOR MACHINES (SVMs) [1] constitute a

powerful set of machine learning algorithms, which have

been utilized in a wide range of classification applications,

demonstrating high classification accuracies [2], [3]. The

classification complexity of SVMs is proportional to the

number of training samples needed to specify the separating

hyperplane between classes, referred to as support vectors

(SVs). Hence, for large scale problems, the high

classification accuracy rates demonstrated by SVMs come at

the cost of increased computational complexity. As such,

when considering embedded applications (e.g. embedded

vision, automotive, and security) with real-time online

classification requirements and power consumption constraints

and limited resources and area, the design of SVM-based

classification systems with hundreds of support vectors and a

large number of instances that need to be classified becomes

difficult. Previous works [4], [5], [6] proposed a cascaded

classification scheme in order to speed-up the SVM

classification process for a class of the aforementioned

applications such as embedded object detection, where the

majority of data that need to be classified belong to one of the

two classes. Under this scheme multiple SVMs are arranged in

stages of increasing computational complexity as well as

accuracy. The early stages, which are computationally less

demanding, are tasked with the removal of a large amount of

negative class data, so that the latter stages, which have higher

accuracy and thus higher computational complexity, only

classify the samples that successfully pass the previous stages.

Hence, using the cascade approach results in significant

speedups over monolithic (single) SVM classification [4], [6].

However, on-line real-time classification on resource-

constraint embedded systems which need low-power operation

is still challenging to achieve especially for large-scale

streaming data problems such as video object detection [4].

This has motivated a lot of research towards accelerating

SVMs using parallel computing platforms such as Graphics

Processing Units (GPUs) [7], and Field Programmable Gate

Arrays (FPGAs) [8], [9], [10]. Implementations of SVMs on

GPU platforms have been proposed recently, however, GPUs

face challenges with regards to power consumption [11] and

thus it is difficult to deploy them in embedded environments.

Hence, at present, FPGAs and customized hardware

accelerators that consume less power and can be built into

small systems, offer an attractive platform for embedded

applications. Existing SVM hardware architectures consider

monolithic SVM classifiers, which are not optimized to handle

problems where the majority of data belong to one of the two

classes. As such, designing hardware architectures for

multistage cascade SVMs based on existing approaches is a

challenging task due to the increase in the number of

classifiers, and their different computational complexities.

In this paper we propose a specialized hardware architecture

and design approaches for embedded on-line cascade SVM

classification applications, such as real-time video object

detection where classification needs to be performed in real-

time, with low power, and often with limited available

resources. The presented design methodologies extend and

improve our preliminary research in [12] which showed the

advantages of a cascade hardware SVM over a monolithic

hardware SVM. In this work we provide further details on the

optimized cascade hardware architecture which can facilitate

Christos Kyrkou, Member, IEEE, Christos-Savvas Bouganis, Member, IEEE, Theocharis

Theocharides, Senior Member, IEEE, Marios Polycarpou, Fellow, IEEE

Embedded Hardware-Efficient Real-Time Classification

with Cascade Support Vector Machines

S

2

high frame-rates. We also show how to reduce hardware

complexity of cascade SVMs which is based on rounding off

the SVM training data to the nearest power of two values, in

order to improve both area and power while maintaining the

accuracy by replacing multiplication with shift operations.

Moreover a novel approach is introduced that improves the

frame-rate by reducing the number of samples that reach the

more computationally demanding stages through a neural

network that evaluates preceding cascade stage responses.

The proposed architecture and methods are implemented as

part of a complete on-line video classification system on a

Spartan-6 FPGA platform. The system was evaluated on a

larger test set and higher resolution images (800×600) than our

prior work using face detection as the embedded benchmark

application. The system achieves 40 frames-per-second (fps),

which is capable for real-time processing, while processing

more windows than other works, and an 80% detection

accuracy, which is on par with cascade SVM software

implementations for the targeted application. Furthermore, the

hardware reduction method resulted in the utilization of 25%

less FPGA logic resources and reduction of peak power by

20%, with only a 1% reduction in classification accuracy.

The paper is organized as follows. Section II provides the

background on SVMs, cascade classifiers, and related work.

Section III details the hardware architecture for cascade SVM

processing, the hardware reduction method, as well as the

cascade response evaluation process. Section IV presents

FPGA-based experimental results as well as comparison with

related works. Finally, Section V concludes the paper.

II. BACKGROUND

A. Support Vector Machines (SVMs)

A Support Vector Machine (SVM) is a supervised binary

classification algorithm which maps data into a high-

dimensional space where an optimal separating hyperplane is

constructed [1]. SVMs are presented with a training set

consisting of pairs of data samples 𝑥𝑖, and class labels 𝑦𝑖 (−1

for negative and 1 for positive samples), and try to find a

mapping function 𝑓, such that 𝑓(𝑥𝑖) = 𝑦𝑖 for sample 𝑖 in the

training set. This function captures the relationship between

the data samples and their respective class labels. An SVM

separates the data samples of two different classes, by finding

the hyperplane with the maximum margin from the data

samples that lie at the boundary of each class (Fig. 1-a). The

class samples that are on the boundary are called support

vectors (SVs) and influence the formation of the hyperplane

[1], [2]. The support vectors are obtained during the SVM

training phase, and correspond to non-zero alpha coefficients

derived from the training optimization problem [2], and

constitute the SVM classification model with which to classify

new input data. In many real-world applications the data

samples may not be linearly separable. SVMs utilize a

technique called the kernel trick [2], to project the data into

higher dimensional space where linear separation is possible

and then proceed to find the decision surface. This formulation

allows projecting data into a higher dimensional space, where

linear separation is possible (Fig. 1-b), though a kernel

function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝜑(𝑥𝑗), without the need to

explicitly use a mapping function 𝜑. Overall, the classification

decision function (CDF) for SVMs is given in (1), where 𝑁𝑠𝑣

is the number of support vectors obtained from training, 𝛼𝑖 are

the alpha coefficients, yi are the class labels of each sample, 𝑠𝑖

are the support vectors, 𝑧 is the input vector, 𝑘(𝑧, 𝑠𝑖) is the

chosen kernel function, and 𝑏 is the bias.

𝐶𝐷𝐹(𝑧): 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑧, 𝑠𝑖)
𝑁𝑆𝑉

𝑖=1
+ 𝑏) (1)

The computational demands of SVM classifiers depend on

the choice of kernel function the most common of which are

illustrated below:

𝐿𝑖𝑛𝑒𝑎𝑟 (𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡): 𝐾(𝑧, 𝑠) = (𝑧 • 𝑠) (2)

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝐾(𝑧, 𝑠) = ((𝑧 • 𝑠) + 𝑐𝑜𝑛𝑠𝑡)𝑑 , 𝑑 > 0 (3)

𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐾(𝑧, 𝑠) = 𝑒𝑥𝑝 (−‖𝑧 − 𝑠‖2/2𝜎2) (4)

The linear kernel (2) for SVMs corresponds to a dot-product

operation between the input data and a feature vector 𝑤, which

is the decision hyperplane normal vector (Fig. 1-a), and is

computed directly from the support vectors using 𝑤 =

 ∑ 𝑦𝑖𝛼𝑖𝑠𝑖
𝑁𝑠𝑣
𝑖=1 . However, in the case of non-linear SVMs (3)-(4),

the kernel is a more complex function and the feature vector

cannot be directly obtained from the support vectors. Hence,

the input vector needs to be processed with all support vectors,

and the kernel-specific operations need to be performed,

before a classification outcome can be obtained. To reduce the

computational demands of non-linear kernels a number of

techniques have been proposed. One such method is the

reduced-set-method [13], which tries to find a smaller set of

vectors, called reduced-set-vectors (RSVs), in order to

approximate the decision function of the full SVM retaining

most of the classification capabilities [6], which yields a

reduced-set-vector-machine (RSVM).

Fig. 1. (a) SVM concepts: separating hyperplane, support vectors,
normal vector w, bias, and margin (b) The kernel Trick visualization
(c) Cascade classification scheme overview

3

B. Cascade Support Vector Machines

In many real-world problems non-linear kernels are

necessary in order to obtain accurate classification results on

complex datasets. However, classification rates can be slow

with such kernels as they produce many SVs that need to be

processed per input sample. In this work we focus on the

acceleration of SVM-based classification for a certain class of

applications, such as image object classification, that exhibit

the following characteristics: (a) the majority of the samples

presented to the classifier belong to the negative class and (b)

the majority of negative samples do not exhibit similar

features to positive samples. Software implementations in the

literature [14], [15] have tried to take advantage of these two

observations by utilizing stages of SVMs of increasing

complexity, which are sequentially applied to the input data

(Fig. 1-c). Such structures mostly follow a cascade approach

[4], [5], [6] where SVMs of increasing complexity are

arranged in a hierarchy of stages. The SVM stages at the

beginning of the hierarchy have lower computational

complexity (i.e. need to process only a small number of SVs)

and lower discrimination capabilities, and are tasked with

removing the majority of samples from the negative class. The

latter stages are then able to perform more accurate

classification on the remaining samples. However, this incurs

a higher computational cost as they need to process more SVs.

Overall, an input sample needs to pass all stages to be

classified as positive (Fig. 1-c). Under this scheme a large

amount of input samples are discarded early in the

classification process by the stages at the beginning of the

cascade, resulting in significant speedups. In addition, it is

possible to use the reduced-set-method [13], to reduce the

number of support vectors required by the non-linear kernel

stages in order to further improve classification times.

Furthermore, since the latter stages need to better discriminate

between positive and negative samples, feature extraction

algorithms may be used to improve accuracy, which however,

further increases computational demands.

C. Related Work

The speedups achieved by software implementations of

cascade SVM classification schemes over monolithic,

although significant, do not offer adequate performance for

real-time resource-constrained applications [4,5,6,15,16]. This

is because the latter stages become the bottleneck since they

require processing an increased number of SVs and the

requirement for parallel processing arises. Hence, hardware

acceleration [17], [18] of SVM classification has been

explored in order to take advantage of the inherit parallelism

of the SVM computation flow in an attempt to provide real-

time and low-cost/low-power solutions.

The majority of proposed hardware architectures attempt to

improve performance by employing parallel processing

modules which process the elements of the input vector in

parallel on FPGA platforms. However, for such architectures

the parallelism depends on the vector dimensionality for a

given problem in terms of computational resources. When the

vector dimensionality is high and the hardware resources for

fully parallel processing are not available, the architecture can

be folded to process the elements in groups. However, this

increases the cycles needed to process a single vector. Hence,

works that utilize such architectures have optimized it

specifically for the vector dimensionality of the given problem

and have been restricted to small scale data, with only a few

hundred vectors and low dimensionality [9], [19], [20], and

small-scale multiclass implementations [21] in order to be able

to meet real-time constraints. In addition, these architectures

cannot trade-off processing more SVs rather than vector

elements, and hence, cannot efficiently deal with the different

computational demands of the cascade SVM stages.

Alternative approaches include FPGA coprocessors for

parallel vector processing in order to speedup SVM

computations [8], [22]. However, these architectures do not

consider the kernel implementation and the FPGA is only used

for the dot-product operations of the SVM classification flow.

Furthermore, the parallel processing capabilities depend on

parallel input through the PCI express and external DRAM

which have high power consumption and are thus unsuitable

for embedded applications. Another approach [23] is to

dedicate a multiply-accumulate unit per SV to process them in

parallel with a single input vector. However, such

architectures are limited by the number of SVs and also cannot

be used to parallelize the processing of a linear SVM.

Research has also been conducted on potential

simplifications to make the SVM classification more suitable

for hardware implementation on devices with limited

computational resources. These approaches include using

CORDIC algorithms to compute the kernel functions [10],

[19], [24], [25]. However, low resource consuming

implementations of CORDIC algorithms have increased

latency [10]. Other works [26], [27] propose that computations

are done in the logarithmic number system, where

multiplications are replaced with additions, in order to reduce

the required processing resources. However, they only

consider a single processing module, hence, when adopting a

more parallel architecture, to facilitate real-time operation, the

additional cost from converting between the decimal number

system to the logarithmic one and back again for all inputs

increases. The works in [25], [28], [29] [30], have looked at

how the bitwidth precision impacts the classification error, in

an effort to find the best trade-off between hardware

resources, performance and classification rate. Although the

kernel operations still need to be implemented with multipliers

leading to high resource demands for parallel

implementations. A hardware friendly kernel was proposed in

[31], which operates in conjunction with a CORDIC algorithm

and addresses the resource requirements for SVM

implementation. However, this kernel does not address the

memory requirements of SVs. In contrast our approach also

reduces the memory demands for the storage of SVs and alpha

coefficients. Furthermore, as previously mentioned CORDIC-

like algorithms can have a negative impact for parallel

implementations targeting high performance.

NVidia's Compute Unified Device Architecture (CUDA)

has been used in [7], [32], [33] in order to speedup SVM

4

classification using the parallel computing resources of a

GPU, showing improved results compared to CPU

implementations. However, GPUs are power hungry devices

compared to FPGAs [22], [34], (FPGAs consume

approximately an order of magnitude less power as shown in

[11]) and as such they are not suitable for power-constrained

embedded applications such as image object classification. In

addition, existing GPU implementations do not translate well

to the more energy-efficient embedded GPUs due to less

available resources (less memory, registers, cache, cores) [35].

The above related works consider only monolithic SVM

classifiers. Only recently there has been some work in the

hardware implementation of cascade SVM classifiers. In [34]

the authors implement an architecture of cascade classifiers

with low and high precision bitwidth and exploit the dynamic

ranges of heterogeneous dataset problems to achieve an

efficient resource utilization. In contrast, in this work we

exploit the characteristic of a specific class of problems where

samples of one class appear more frequently than the other to

design an optimized hardware architecture.

Summarizing, in their majority, most of the previously

presented works are application specific, and efficient ways to

utilize the different computational demands of cascade SVMs

stages have not been sufficiently examined. Moving towards

large scale embedded applications and problems where

thousands of samples need to be classified in real-time, the

majority of which belong to one of the two classes, cascade

SVMs will need to be utilized to provide speedups. As such,

single SVM architectures, which do not exploit the properties

of the cascade classification scheme, are not suited for this

purpose. Hence, this paper is one of the first to explore the

potential of a flexible and parallel hardware architecture and

design methods that can be used to improve different aspects

of SVM hardware architectures.

III. PROPOSED HARDWARE ARCHITECTURE AND METHODS

Cascade SVMs have demonstrated improvements over

conventional SVM models (i.e. monolithic) in terms of

classification speed [4]. However, it is still challenging to

achieve real-time performance, especially as the amount of

input samples that need to be classified increases. Hence, we

propose a parallel hardware architecture to provide higher

classification throughput and a hardware reduction method

leading to a more compact hardware implementation suitable

for embedded system applications. In addition, this work also

develops a novel method to improve classification speed by

taking advantage of cascade classification information to

reduce the amount of input samples that reach the more

computationally-intensive latter cascade stages. Finally, in

many classification problems some form of feature

extraction/preprocessing method needs to take place in order

to deal with different variations and improve detection

accuracy. Hence, the architecture also incorporates a feature

extraction algorithm based on local binary pattern (LBP)

descriptors, targeting object detection applications.

A. Cascade SVM Hardware Reduction Method

The proposed hardware reduction method exploits the fact

that early stages in an SVM cascade are non-optimal

classifiers in order to reduce the resources needed for their

hardware implementation, by adapting their parameters (SVs

and alpha coefficients), while maintaining their ability to

discard a large amount of negative samples. The proposed

hardware reduction method is to modify the SVs and alpha

values of the low complexity SVMs by rounding them to the

nearest power of two values instead of using the conventional

fixed-point representation approach. Consequently, all

multiplication operations in the SVM classification phase (the

kernel dot-product calculations and computations related to

the alpha coefficients) will become shift operations which

require less resources to be implemented in hardware.

Additionally, since the support vectors and alpha coefficients

are now power of two values there is no need to store the

binary representations of decimal numbers but only shift data

(shift amount, shift direction, and number sign). This will

result in an adapted cascade SVM with reduced storage and

computational demands. However, the expense from

approximating the support vectors and alpha coefficients with

powers of two comes with the modified resulting classification

accuracy will be different from that of the initial SVM

cascade. The receiver-operating-characteristic (ROC) curve of

each cascade stage whose parameters have been rounded off to

the nearest power of two is used to adjust its accuracy to

similar rates of that of the initial cascade stages. The ROC

curve shows the performance of a binary classifier by

illustrating the corresponding true positive and false positive

rates, given a test set. As such, by setting the appropriate

threshold the performance of the adapted stages in the SVM

cascade can be adjusted to match the true positive rate of the

initial SVM cascade stages. This is necessary since we are

interested in maintaining the true positive rate. There are

trade-offs which stem from changing the original classification

model. Specifically, the reduced computational and storage

requirements come at a cost of an increase in the false positive

Fig. 2. (a) Hardware Reduction Method (b) Response Evaluation
Method

5

rate of the adapted classifiers as shown in Fig. 10 in Section

IV. However, the overall accuracy tends to meet the accuracy

of the final classification stage and hence the increase is not

significant (only a 1% drop as shown in Section IV). Adapted

stages, which do not yield the targeted accuracy, are reverted

back to the initial model. The process is shown in Fig. 2-a.

The hardware reduction process takes place after the

cascade structure is decided, meaning that the kernel function,

and number of support vectors or reduced-set-vectors for each

SVM cascade stage are determined. As such, the proposed

method can easily be used with different SVM training

frameworks. Furthermore, the method does not depend on the

specific hardware architecture used for the implementation of

the cascade and as such can be optimized to different

architecture requirements.

B. Cascade Response Evaluation Method

Exploiting cascade information is a common technique used

to speed up the training phase of cascade classifiers by

eliminating samples from the training set. However, so far

only a few works have attempted to do something similar in

the classification phase. These methods [36] perform a joint

logical operation (AND-OR) on the outcome of the cascade

stages in order to correct/reevaluate the detection result. Such

methods are usually used to improve detection and require that

all the stages process the input data in order to reach a

decision. However, this means that the overall detection speed

is reduced. In order to improve performance there is a need for

a mechanism that can indicate whether an input sample needs

to move on to the more computationally demanding stages. In

this work we propose to do this by examining the responses of

early cascade stages in order to rapidly eliminate data samples

prior to reaching the latter stages. It is based on the

observation that when looked at collectively, the responses of

the individual cascade stages can exhibit patterns which can

help in discriminating between samples belonging to different

classes. This adds an additional dimension to the cascade

classification phase that amongst others can be used to

speedup the overall process.

Such a response processing mechanism can be constructed

by following the process shown in Fig. 2-b. An integral part of

this process is the construction of the training and test sets.

Examples of positive and negative samples not used in the

training phase of the SVM cascade are collected. Then these

are fed to the selected cascade stages in order to collect the

response of each stage and construct a corresponding response

feature vector. Next, we select the response vectors of the

samples which are predicted to belong to the positive class

(i.e. have pass ed all stages) to form the set of response vectors

which will be used to construct the response classifier. We

then separate this set into the training and test sets both of

which must contain responses obtained from true negative and

positive samples. Using this new training set a machine

learning algorithm, which will act as a response evaluator, can

be trained to discriminate between different responses. Of

course, the positive and negative samples can often have

similar cascade responses. Hence, the training goal for the

machine learning algorithm is to make sure that the positive

responses will be correctly classified so that the true positive

accuracy of the whole cascade is not affected. With regards to

responses corresponding to negative classes, any correct

classification is beneficial since those samples will not need to

be classified by the final stage. The desired true positive rate

can be adjusted experimentally by setting an appropriate

threshold value. This is a general approach of handling the

cascade responses and thus can be used similarly to benefit

both software and hardware implementations. With regards to

software implementations the additional computations

necessary for the latter cascade stages are eliminated, while

for hardware implementations, the reduced workload can

result in more compact architecture implementations for the

latter stages. In this work we focus on the hardware aspects of

this approach and the benefits of using this mechanism are

outlined by the results in Section IV.

C. Hardware Architecture

The proposed architecture (Fig. 3) consists of cascade

processing components as well as additional components

which relate to the targeted benchmark application of object

detection, an embedded application where samples of one

class (non-object class) appear more frequently than the other

(object class) [4]. The presented architecture is comprised of

flexible and generic components and the parameters of each

one can be adjusted to meet given requirements such as

Fig. 3. SVM cascade system architecture comprised of the sequential processing module (SPM), the parallel processing module (PPM), the
register array, frame buffer memory, the LBP processor and the response processing unit (RPU).

6

different data sizes and image dimensions. Thus facilitating

the design of an optimized hardware accelerator that is

tailored-made for a specific application. Furthermore, the

modular design means that the architecture can support

different processing modules which allows it to implement the

operations required by each SVM in the cascade.

1) Cascade SVM Hardware Architecture

The proposed hardware architecture takes into consideration

the throughput and processing needs of each stage in the

cascade. Accordingly, the proposed hardware architecture for

the cascaded SVM classifier consists of two main processing

modules, which provide different parallelism with respect to

the input data and SVs in order to meet the different demands

of the cascade SVM models, and also the amount of input data

that each will need to process. The first is a parallel processing

module (PPM) which performs the processing necessary for

all the adapted SVM stages (Fig. 4). The second is a sequential

processing module (SPM), shown in Fig. 5, optimized for the

high complexity SVM stages The cascade response processing

is implemented with a low-resource consuming neural

network architecture to minimize hardware overheads while

boosting performance.

a) Parallel Processing Module (PPM)

The parallel processing module (PPM) handles the

processing of the low complexity SVM stages which have

been adapted using the proposed hardware reduction method.

Specifically, the proposed architecture can process linear and

2nd degree polynomial kernels, but the plug-and-play approach

of the architecture means that other kernel modules

implementing different kernel functions can be used instead

[37]. The characteristic of the early cascade stages is that they

require processing only a few SVs per input vector, while

having to process the majority of input vectors. As such,

parallelism focuses on processing vector elements in parallel

to reduce the processing time per vector.

The architecture of the PPM (Fig. 4) is comprised of three

main regions: SVM shift operations, adder tree pipeline and

kernel computation. The first region is comprised of parallel

SV data memories, arithmetic shifters, and parallel sign

conversion units. The second region is comprised of a tree of

adders that sum the results of the previous stage in order to

calculate the dot-product scalar value. The final region is

dedicated to kernel processing and is also mostly implemented

using arithmetic shift units. The operation of the parallel

processing module begins with the processing of the input

vector elements by the sign conversion units which are used to

preserve the sign of the initial multiplication operation. The

signed numbers are then processed by arithmetic shift units

which perform the shift according to the data that they receive

from the memories. The shift data are fetched in parallel from

small memory units, and include the sign of the support

vector, the shift amount, and the direction of the shift

operation. The partial results are added together using a

pipelined tree of adders so that the dot-product outcome can

be obtained. The depth of the adder tree impacts the latency of

the PPM and depends on the number of operands of individual

adders used and the vector dimensionality, as well as the

targeted frequency and amount of parallelism. The latency of

the adder tree is given by (5):

𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 = ⎾
𝑙𝑜𝑔(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

𝑙𝑜𝑔(𝑎𝑑𝑑𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒)
⏋ (5)

Once the dot-product scalar value becomes available the

kernel computation follows. In the case of linear kernels (Eq.

2), adding a bias value to the dot-product outcome will suffice

in order to obtain the classification result. However, for 2nd

degree polynomial kernels, as well as other kernels, the kernel

computation module handles the latter steps of the

classification phase. Only one multiplier is used in the parallel

processing module and is used to perform the square

operation. The processing of the alpha coefficients is done

with a sign conversion unit and an arithmetic shift unit

similarly to the processing of the SVs. An accumulator is used

to accumulate the result of each SV processing, and once all

SVs are processed, an adder is used to process the bias with

the accumulated result. The PPM stages are pipelined, so one

SV enters the pipeline every cycle. Hence, the total number of

cycles needed to process the input vector at stage 𝑛 is given by

equation (6), where 𝑁𝑆𝑉(𝑖) is the number of support vectors

that need to be processed by stage 𝑖.

(∑ 𝑁𝑆𝑉(𝑖) + 𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 + 1

𝑛

𝑖=1

)
(6)

Fig. 4. Parallel Processing Module (PPM) Architecture

Fig. 5. Sequential Processing Module (SPM) Architecture

7

The PPM architecture describes a fully unrolled

implementation and allows for all vector elements to be

processed in parallel, thus providing higher detection speeds.

In cases where the resources are not available or the vector

elements cannot be accessed in parallel due to limited I/O or

memory access, the PPM architecture can be implemented

using fewer resources by reducing the unrolling factor. Of

course this will have a negative impact on performance which

becomes more apparent as the number of SVs increases, as the

time needed to process a single vector also increases.

b) Sequential Processing Module (SPM)

The sequential processing module (SPM) is responsible for

performing the computations necessary for the final SVM

stage which requires processing of hundreds of high-

dimensional SVs. Hence, as the dimensionality of the vector

increases it becomes prohibitive in terms of resources and

power to have multiple units in parallel for processing of a

single vector, as the wiring and memory management

complexities also increase. In addition, processing less vector

elements while having to also process hundreds of SVs leads

to decreased performance. Hence, it is more efficient to use an

alternative architecture, to that of the PPM, that will offer

parallel processing tailored to the requirements of the more

demanding SVMs [37]. Also, since this module will be used

less frequently a flexible yet compact architecture is required.

This is achieved with the architecture shown in Fig. 5,

which is comprised of a series of pipelined processing and

memory elements [37]. The majority of the units in the

module are vector processing units (VUs) and each unit

handles the dot-product for one support vector with the input

vector. They are comprised of a multiply-accumulate unit, and

also a Block RAM which acts as ROM and contains the data

for one or more support vectors, along with register and

multiplexer logic for data transfer between vector units. The

final unit in the pipeline is the kernel processing unit which is

equipped with multipliers and accumulators to carry out the

scalar operations of the SVM processing flow. Multiple PPMs

can be arranged in an array as in [37] to increase parallelism.

The input vector is processed with a group of support

vectors at a time, and each vector processing unit handles the

processing of one support vector. Once a group of support

vectors is processed the next group follows. In total depending

on the number of groups a total of 𝑁𝑆𝑉/
𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋processing repetitions are necessary. Hence,

the size of the pipeline can be adjusted to fit the available

resources and processing requirements by adjusting the

number of support vector groups. Each vector processing unit

in the pipeline processes one support vector with the input

vector at a time. The data in the SPM flows in different

directions through dedicated transfer mechanisms. The input

vector values and VU results are propagated from the first unit

to the next through a register pipeline, while the SV data are

fed to the VUs through parallel memories. When the

processing of the input vector with the group of SVs is done,

after 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 cycles, the multiplexers and registers in

each vector unit are used to switch from propagating input

vector values to scalar results. The scalar values are

transferred sequentially through the pipeline and it takes

𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 cycles for them to be processed by the kernel

processing unit (with a 2 cycle initial delay due to the pipeline

stages). In this way the kernel processing unit is shared

between the units, reducing hardware requirements and also

making it easy for the designer to substitute it with the desired

kernel without having to change much of the system

functionality. Each scalar value that enters the kernel unit is

processed by the kernel operation and the alpha coefficient. In

the case of the kernel described by (3), the operation involves

a multiplier to find the square of the value and multiply-

accumulate units to process the alpha coefficients. Once all

scalar values are processed, the final classification result is

obtained by adding the bias to the accumulated result. Overall,

the number of cycles needed to process an input vector is

given by equation (7).

⎾𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋×(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 + 𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 + 2) (7)

c) Response Processing Unit (RPU)

As previously described, the objective of the cascade

response evaluation process is to remove samples prior to the

final SVM classification in order to improve processing speed.

As such, it acts as a complementary stage to the overall

cascade structure and can be used with any number of cascade

stages. However, this needs to be done in a hardware efficient

manner in order to maintain performance and keep low

resource utilization. Hence, computationally and memory

intensive algorithms are not the desired choice. For this reason

a computationally efficient feed-forward neural network (NN)

model is selected to perform the response evaluation process,

which as shown in Section IV, leads to a low-resource

consuming architecture that can sufficiently differentiate

between responses.

The neural network model, shown in Fig. 6-a, has a two

layer structure with one neuron in each layer in order to keep

the resource requirements low. The first neuron receives the

responses from the cascade stages, multiplies them with their

respective weights, and accumulates the products. Then it adds

the bias value and sends it through a hyperbolic tangent

activation function to the output neuron, which performs the

same process and generates the classification outcome.

Fig. 6. Response Processing Unit (RPU): (a) Neural Network model
(b) NN-based RPU Hardware Architecture

8

The neural network hardware architecture (Fig. 6-b)

processes different number of inputs depending on the number

of cascade responses produced by the desired stages. Since

each response is generated at different time intervals, it can be

processed sequentially once it becomes available by the PPM.

Multiplexers are utilized to select the output of the desired

classifier and its corresponding weight value, which is

represented in a fixed point format. The two values are

multiplied and accumulated. Once all the cascade responses

are accumulated the bias is processed. A Look-Up Table

(LUT) memory is used to implement the hyperbolic tangent

function. We exploit the facts that this function is symmetric

with respect to negative and positive inputs, and that its results

range from [−1. .1]. Consequently, only the results for

positive numbers are stored with the input being processed to

obtain its absolute value. This leads to a more compact and

efficient implementation. The sign of weighted accumulated

sum is used to adjust the result of the hyperbolic function

memory after the appropriate value is loaded since it is the

same for negative and positive values. Then it is processed

with the output layer weight which is implemented using an

arithmetic shift unit. Finally, the bias is added and the final

outcome is computed. It is not necessary to use a hyperbolic

function for the output layer neuron since it does not change

the sign of the result which determines the class. The RPU

takes (𝑁𝑁_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 + 2) cycles to process the

response vector that is generated from the PPM.

d) Cascade Processing Flow

The architecture processes a single input vector at a time

starting from the early stages implemented using the PPM.

The RPU follows next to classify the responses of preceding

stages if the input vector has been classified as positive. If the

response evaluation predicts a positive sample, the RPU

informs the SPM which in turn proceeds to classify that

sample to obtain the final classification result. The different

throughput requirements of the cascade SVM processing

modules require an I/O mechanism that can adjust for parallel

as well as sequential data transfer depending on the needs of

each module. It should also take advantage of the application-

specific characteristics to facilitate data reuse and reduce

memory accesses. Furthermore, the cascade I/O structure

should be able to handle classifier demands for different data

points and data access patterns. Such architecture can be

designed using a register array (Fig. 3) where data can be

loaded to the array and outputted in parallel for the PPM and

sequentially for the SPM.

2) I/O and Preprocessing for Object Detection

Additional components are incorporated into the

architecture in order to handle the data flow and preprocessing

for object detection, which requires processing data from the

input image in a sliding window fashion to classify them as

object or not. As such, the register array structure (Fig. 3) is

also optimized for the object detection data flow so that it does

not only provide sequential and parallel data access to the two

processing modules but also to take advantage of potential

data overlap and reduce memory I/O. A frame buffer is

employed to hold part of the image for fast local access.

Finally, the architecture incorporates a specialized processor

that performs local binary pattern (LBP) histogram extraction

which is used as features for object detection classification.

a) Object Detection Processing Flow and I/O

An optimized I/O mechanism for object detection can be

developed based on register array structure (Fig. 3) that

provides different access patterns and window data selection

for the image segment that is currently being processed. The

register array has a size of size 𝐻𝑚𝑎𝑥 × 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒, where 𝐻𝑚𝑎𝑥

is the height of the window, and 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒 corresponds to the

width of the array (i.e. how may additional image columns are

stored). The input image pixels enter the register array and are

propagated row-wise into the structure. The image region that

resides at the right-most part of the register array corresponds

to a single 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥 window which is the active window

that feeds the processing units with data. In this data flow the

image region is processed in a window-by-window fashion.

Once a window has been processed a part of it is shifted out of

the array, while new pixels are shifted in. Thus a new window

is formed at the rightmost region of the scanline buffer and is

ready to be processed next. The data flow of the right-most

registers changes depending on whether the data are used for

parallel or sequential processing. In the case of the parallel

processing module, window data are outputted and processed

in parallel. In the case of sequential processing, which happens

when the LBP features are generated, the registers form a

chain so that data are outputted sequentially.

b) Local Binary Pattern (LBP) Processing Unit

Local Binary Patterns (LBPs) describe the relationship

between a pixel and its neighborhood, and have been used in a

wide range of computer vision applications [38]. Their major

advantage is their low computational complexity [39] which

makes them suitable for embedded applications. Generating

the LBP descriptor [38] consists of the following steps (Fig. 7-

a): 1) Compare the values in a 3×3 neighborhood against a

threshold (the center pixel or the window mean value) placing

1 where the value is greater or equal, and 0 otherwise. 2)

Multiply the resulting binary map with a powers of two mask.

3) Sum the values to obtain the LBP Code. 4) Divide the LBP-

based image into 𝑘 blocks of 𝑖 × 𝑗 pixels (e.g. 4×4, 8×8) and

construct a local histogram of 𝑙 bins for each block. 5)
Concatenate the local histograms to form a single global

histogram descriptor. The LBP descriptors can be used as

features by the latter SVM stages which require better

discrimination capabilities. Since only a fraction of input data

will be processed using LBP, it is more efficient to explore a

low area overhead architecture.

 Accordingly, the developed LBP processor architecture,

shown in Fig. 7-b, processes a single 3×3 image neighborhood

from the input image at a time, to reduce processing

requirements. It receives the values of that window in parallel

every cycle from the register array structure. Each window

9

Fig. 8. Block diagram of the FPGA system

Fig. 9. Cascade SVM Structure.

value is compared against the center window value in parallel

through dedicated comparators and the results are

concatenated to generate the LBP code. The number of

transitions in the LBP code is found next in order to identify it

as uniform (which has 2 or less transitions e.g. 11110000) or

non-uniform (which have more than 2 transitions e.g.

10100101) [38]. The local histogram computation, which

counts the uniform LBP codes against the non-uniform,

follows next for each block in the LBP image. Since the bin of

each LBP code is predetermined [38], a LUT is used to map

the code to one of 59 possible histogram bins. Multiple local

histograms are stored in the same central memory (of size 𝑘 ×
𝑙), hence, the hardware architecture needs to know the position

of each LBP code in the image in order to determine the local

histogram it belongs to. This is achieved by counting the row

and column of each LBP code and monitoring the most

significant bits (MSBs) of the row and column coordinates to

indicate its corresponding block. Then by setting the

appropriate address offset the corresponding local histogram

region is selected and updated. To facilitate fast histogram

update and reset a dual ported memory is utilized. The updated

histogram bin is read from one port and written to the other

the following cycle so no delays are observed. Second, this

allows for an immediate reset to be performed right after the

value is read from the SVM classification module to prepare

the memory for the next histogram.

IV. EXPERIMENTAL PLATFORM AND RESULTS

The proposed hardware architecture and methods were

evaluated using the popular embedded application of face

detection, which has also been used by software

implementations of cascade SVMs. The cascade structure was

trained using MATLAB and was used for evaluation of the

architecture and proposed methods, on 800×600 (SVGA)

resolution images, in terms of frame-rate, detection accuracy,

power consumption, as well as requirements in terms of

computing resources. Additionally, the proposed hardware

architecture, which will be referred to as the adapted cascade,

is compared against a baseline system which implements the

same cascade SVM structure including the RPU (Stage 4), but

without applying the hardware reduction method, and thus the

parallel processing module is implemented using multipliers.

Both implementations were evaluated and compared using a

Xilinx Spartan-6 Industrial Video Processing board equipped

with a Spartan-6 XC6SLX150T FPGA (Fig. 8). A Microblaze-

based system was used for I/O and verification purposes,

while for both systems an on-chip buffer is used to store the

input image and a register array for data loading and

processing which was experimentally found to provide an

adequate balancing between I/O delays and hardware

resources. The following sections detail the evaluation process

and the results.

A. SVM Cascade Training and Accuracy

The training of the SVMs and neural network was

conducted off-line using MATLAB with kernels and parameters

similar to what has been used in the literature [4], [5], [6]. The

resulting classification models were used to evaluate the

proposed hardware architecture and approaches for on-line

classification on an FPGA. We performed experiments with

all possible LBP histogram parameters and selected those

which provided the best accuracy results. The used parameter

values are shown in Table I.

Positive and negative samples from [40] were used to setup

an initial training set which was later enhanced with additional

samples. The first three cascade stages were trained in

incremental fashion [4], [6], [15]. The final SVM stage was

excluded from the process and was trained using the complete

training set which was first processed using the LBP feature

extraction. The first polynomial SVM (Stage 3, Fig. 9) was

reduced to 20 RSVs which was the smaller number of reduced

vectors needed to maintain the original accuracy. In contrast,

100 RSVs where needed to maintain the accuracy [6], [15], for

the final stage (Stage 5, Fig. 9). The first three stages retained

similar accuracy level after being rounded-off to the nearest

Fig. 7. (a) LBP descriptor (b) LBP Processing Unit Architecture

10

power of two as shown in Fig. 10, and hence were

implemented on the PPM. However, for the final stage there

was a significant discrepancy between the classification

accuracies of the adapted and original models. Hence it was

not approximated and the original model was used.

After the SVM cascade, the training of the NN-based RPU

followed using the process described in Fig. 2. The feed-

forward NN consisted of 1 neuron for each of the 2 layers and

was trained using the gradient descent with momentum and

learning rate backpropagation algorithm in MATLAB. For this

purpose 30515 positive and 329383 negative window

samples, not used in the SVM training phase, where extracted

from various images and were passed through the first three

adapted SVM cascade stages to collect their responses. This

resulted in a three dimensional response vector per sample.

The response vectors of the samples classified as positive by

the cascade (which also include truly negative samples) were

selected to form a new set (29117 response vectors for

positive samples and 8803 response vectors for negative

samples). This new pool of response vectors was then

partitioned in a training and test set, both containing responses

from negative and positive samples, in order to train and

evaluate the NN-based PRU. A subset of cascade responses

for the training set are shown in Fig. 11, where it is evident

that the responses of the early stages exhibit different patterns

for positive and negative class samples. The NN-based RPU

training resulted in a correct classification rate of 99% for

positive and 60% for negative cascade responses using the

constructed responses test set.

B. FPGA Implementation & Logic Resource Utilization

The two cascade implementations (baseline and adapted)

have the same basic architecture (Fig. 3) and data flow. The

PPM architecture was based on a fully unrolled

implementation, while the SPM was implemented with 50

DSP units (𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 = 50) meaning that the input data to

the SPM is processed two times with different SV groups. The

NN-based RPU was mapped on the FPGA LUTs with a Block

RAM used for the hyperbolic tangent implementation. The

only difference between the two implementations is that in the

adapted cascade case the PPM was optimized using the

hardware reduction method from Section III.A. Consequently,

the multiplication units were replaced with shift units and the

SV data stored in the training data ROMs corresponded to

shift values instead of real number values. Each ROM holds

the support vector data for the first three cascade SVM stages

for the specific vector elements. Finally, a single BRAM was

used to implement the hyperbolic tangent function of the NN-

based RPU. Both implementations on the Xilinx Spartan-6

XC6SLX150T FPGA have the same critical path, the SPM

kernel unit mapped on the DSPs, and as such have the same

operating frequency of 70 MHz. The implementation of the

adapted PPM requires 40% fewer FPGA logic resources

compared to the baseline PPM. This is reflected with a 25%

reduction in the utilized resources when considering full

system implementations, as shown in Table II. Overall, the

proposed approaches can be used to meet different constraints

in the design space for different FPGAs from low-end to high-

end. For low-end devices the immediate impact is a method to

better fit the design to limited resources, while for high-end

with enough resources, power consumption can be reduced by

changing the multiplication units to shift units. Furthermore,

for both cases the architecture components can be optimized to

meet the available FPGAs resources.

C. Classification System Accuracy and Frame Rate

TABLE I
CASCADE DETECTION SYSTEM PARAMETERS

Search

Window Size

20×20

(𝐻𝑚𝑎𝑥 × 𝑊max)
LBP Block Size

𝑖 = 3,
𝑗 = 6

Downsampling
Rate

1.2
(18 scales)

Number of LBP
Blocks

𝑘 = 18

Window

Step
5 pixels

LBP

Histogram Bins
𝑙 = 59

Image
Resolution

800×600

(SVGA)

Number of
Windows

56984

TABLE II
FPGA RESOURCE REQUIREMENTS PER UNIT AND SYSTEM

FPGA

Resources

Registers

(184304)

LUTs

(92152)

BRAMs

(268)

DSPs

(180)

SPM 1736 (1%) 2241 (2%) 51(19%) 50 (27%)

Adapted PPM 2679 (1%)
19006

(20%)
1 (<1%) ---

Baseline PPM 3724 (2%)
30791

(33%)

NN-based RPU 82 (<1%) 379 (<1%) 2 (<1%) 6 (3%)

LBP Processor 32 (<1%) 94 (<1%) 2 (<1%) ---

Memory & I/O

Units

1831

(1%)

1200

(1%)

180

(67%)

Microblaze

Video Pipeline

10780

(5%)

9891

(10%)

20

(7%)

3

(2%)

Baseline Cascade

System

21214

(11%)

47396

(51%) 256

(96%)

59

(32%) Adapted

Cascade System

20153

(11%)

35532

(38%)

TABLE III
STATISTICS FOR EACH CASCADE STAGE

Cascade

Stages

Stage 1

(PPM)

Stage 2

(PPM)

Stage 3

(PPM)

Stage 4

(RPU)

Stage 5

(LBP &

SPM)

Windows

Processed

56984

(100%)

3025

(5%)

2334

(4%)

713

(1,2%)

228

(0,4%)

Rejection

Rate
94,6% 22,8% 69,4% 76,4% ---

Cumulative

Cycles
9 10 30 35 2697

Vectors per

stage 𝑵𝑺𝑽(𝒊)
1 1 20 --- 100

11

This section outlines results related to accuracy and frame-

rate, two important metrics in object detection, and also

highlights the overall impact of the LBP processor and RPU.

The accuracy of the adapted cascade SVM was evaluated on

the widely used CMU-MIT database of faces [41]. In addition

images from the dataset were cropped and resized to 800×600

(SVGA) resolution and used to evaluate the frame-rate of the

cascade SVM implementation. Some full frame detection

results are shown in Fig. 12. Each 800×600 image generates a

total of 56984 20×20 search windows for 18 scales and a

window step of 5 pixels. Each frame requires a different time

to be processed, by the cascade implementations, depending

on how many windows reach each stage, and by how many

cycles it takes a stage to process an input. All windows are

processed by the first SVM stage, however, only ~1% of them

reach the final SVM stage, as shown in Table III. In addition

to the actual processing time, the I/O delays per frame also

negatively impact classification speed. In order to achieve

higher detection rates, I/O and memory operations overlap

with processing.

As shown in Fig. 10, the adapted cascade SVM stages have

similar accuracy to that of the initial SVMs in terms of true

positive detection accuracy. However, the false positive rate

has increased between 4%-15%. This is to be expected since

the approximations introduced a discrepancy between the

initial and adapted SVM models. However, the final detection

accuracy (see Fig. 13) of the adapted cascade is determined by

the latter stages, and so any discrepancies are effectively

masked. Hence, both implementations are expected to have a

similar overall accuracy (~80%). For more details on the

effects of the approximations on the accuracy we refer the

readers to [12].

Results for different system configurations of the adapted

SVM cascade, with and without the LBP and RPU, are shown

in Fig. 13. The cascade SVM boosted by the NN-based RPU

was able to achieve an accuracy of 80% which was only 1%

less than the same system without the RPU, which suggests

that with additional training and enhancement of the data sets

it would be possible to achieve the same accuracy.

Nevertheless, the minimal drop in accuracy, when using the

RPU, is offset by a 2× increase in performance. It allows the

cascade system to operate at ~40 fps instead of ~20 fps,

making the system capable of real-time operation. This

happens because even though most windows are discarded by

the first two cascade stages, the NN-based RPU manages to

reduce the number of windows (~230 instead of ~715, Table

III) that reach the slower SPM. Furthermore, the introduction

of the LBP feature extraction process helped improve both the

true positive (TP) rate as well as the false positive (FP) rate,

the latter by an order of magnitude. In addition since the LBP

features are only extracted during the final stage the improved

accuracy has only a small impact on the frame-rate (40 instead

of 45 fps). The results also indicate that in cases where the

frame-rate is of much higher importance than accuracy (e.g.

when processing videos from a static environment) the

optimized SVM cascade without the LBP and RPU can also

be used to offer higher performance. Overall, through the use

of LBP features to improve accuracy, and the RPU to boost

the frame-rate, we achieve an adequate trade-off between

frame-rate and detection accuracy to meet application

requirements.

D. Power Consumption

Power analysis tools from Xilinx were used to measure

power consumption demands of the adapted and baseline

cascade SVM FPGA implementations. The characteristic of

the cascade architectures is that the PPM and SPM are not

used at the same time since they implement different cascade

stages. Hence, the dynamic power consumption ranges

depending on which module is active. The total power budget,

including the Microblaze I/O system, for the adapted cascade

SVM system ranges from 4,1 W to 8 W while for the baseline

cascade system it ranges from 4,1 to 9,9 W. These figures

correspond to a worst case scenario where all signals change

every cycle. However, it is anticipated that on average the

power consumption will be lower. The peak power

consumption happens when the PPM module is used. The

lowest consumption happens when the NN-based RPU is used

when the SPM and LBP cores are used power consumption

reaches 4,9W. Overall, the utilization of less LUT resources

by the adapted PPM results in reducing the peak power needed

Fig. 10. Restore accuracy using the ROC curves: (top) Part of ROC
curves (bottom) Accuracies and error after adaptation

Fig. 11. Response vectors produced by the first three SVM cascade
stages for negative (square) and positive (filled circle) samples.

Fig. 12. Detection results on CMU-MIT images

Fig. 13. Comparative results for different configurations

12

for the adapted cascade system by ~20%.

E. Related Work Comparison

Related works for object detection applications are shown

in Table IV along with information regarding parameters and

performance. These works use different algorithms, training

and test sets, and benchmark applications and so it is difficult

to make a direct comparison between implementations.

However, since the SVM classification flow treats all data as

vectors the number of samples and SVs processed, along with

vector dimensionality can provide an indication to the

processing performance for each work.

A head-shoulder detection system is presented in [39]. It

utilizes a linear SVM and LBP descriptors to classify 19200

windows from 640×480 images from an already known

environment. It sacrifices accuracy for performance by using a

single linear SVM (with a clock frequency of 120 MHz) and

processes only a few elements of the SV feature vector in

parallel to keep the resource utilization low. In addition

foreground detection is used to compensate for the linear

SVM. The implementation in [23] scans a 512×512 image in

non-overlapping blocks to perform bar-code detection. It

performs the dot-product operations in 352 cycles for one

window. However, the scalar operations are not included. It

processes around 1024 16×16 window samples, corresponding

to 256-dimensional vectors, per image, without downscaling

the input image which simplifies the I/O and memory

accesses. The hybrid FPGA-GPU pedestrian detection system

[33] for 800×600 images is able to classify around 1000

windows. The lower throughput can be attributed to the larger

feature size. However, the number of processed windows is an

order of magnitude less than our work. In addition, the use of

GPU may prohibit such implementations to be used in

embedded applications due to power consumption constraints.

Overall, in order to achieve real-time performance existing

works rely on processing a few window samples, smaller

image resolutions, or process a few SVs. Through the

proposed architecture and methods it is possible to process

higher resolution images which generate more windows, with

a higher number of SVs in real-time (~56000 per frame for

~40 fps) while also reducing the implementation requirements.

The SVM hardware implementations target different

applications and thus accuracy is difficult to compare directly.

On the other hand, software based implementations [4], [5],

[6] have utilized cascade SVMs for face detection with

accuracies that range between 78-80% with similar training set

sizes and cascade structure to our work. The proposed

optimized SVM cascade system achieves a detection rate of

80% which is on par with these works while processing higher

resolution images in real-time.

V. CONCLUDING REMARKS

The work presented in this paper considers the efficient

hardware implementation of cascade SVMs which can be used

to design intelligent embedded systems for on-line real-time

classification applications. The hybrid processing architecture

takes advantage of the nature of the cascade classification

structure and in conjunction with the hardware reduction

method and the novel response evaluation method, it manages

to achieve adequate trade-off between accuracy, performance,

power, and resource utilization. The proposed architecture and

methods can be used to design low-cost parallel SVM

coprocessors to accelerate more demanding monolithic SVM

classifiers, or optimize cascade SVM classifiers for embedded

classification applications. Thus allowing SVM architectures

to tackle larger scale problems (e.g. classification on higher

resolution images) to what has been addressed in the literature.

REFERENCES

[1] Corinna Cortes and Vladimir Vapnik, "Support-Vector Networks," Journal of

Machine Learning, vol. 20, no. 3, pp. 273-297, September 1995.

[2] Christopher J. C. Burges, "A tutorial on support vector machines for pattern

recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 121-167,

1998.

[3] E. Osuna, R. Freund, and F. Firosi, "Training support vector machines: an

application to face detection," in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1997, pp. 130-136.

[4] Bernd Heisele, Thomas Serre, Sam Prentice, and Tomaso Poggio,

"Hierarchical classification and feature reduction for fast face detection with

TABLE IV
COMPARISON OF RELATED WORKS FOR SVM FPGA-BASED HARDWARE IMPLEMENTATIONS OF OBJECT DETECTION SYSTEMS

Related Works Rojas [23] a Kryjak [39] Bauer [33] b Presented Work

Application Barcode Detection Head-Shoulder Detection Pedestrian Detection Face Detection

Method Polynomial SVM, 88 SVs Linear SVM & LBP SVM (GPU) & HOG (FPGA) Cascade SVM & LBP

Platform Xilinx Virtex II Pro XCV3000 Xilinx Virtex 6 XC6VLX240T Xilinx Spartan 3/NVIDIA GPU Xilinx Spartan 6 XC6SLX150T

F
P

G
A

R
es

o
u
rc

e LUT 22938/28672 12068/150720 28616/62208 c 35532/92152

REG N/P 15893/301440 N/P c 20153/184304

BRAM 160KB 124/416 100 c 256/268

DSP N/P 66/768 18/96 c 59/180

Image Size 512×512 640×480 800×600 800×600

Search Window Size 16×16 32×24 48×96 20×20

Feature Vector Size 256 1440 1980 400 & 1062

Number of SVs 88 1 N/P 122

Frequency 166 MHz 120 MHz 63 MHz c 70 MHz

Detection Accuracy TP: 91.8% | FP: 4.2% TP: 83% TP: 95.4% | FP: 0.1% TP ~80% | FP: ~0.001%

Detection Speed N/P a 60 FPS 10 FPS 40 FPS

a Performance is 352 cycles per sample just for the vector operations. No I/O delays are included.
b A hybrid system where the GPU implements the SVM and the feature extraction based on HOG is implemented on the FPGA.
c These correspond only to the HOG implementation on the FPGA.

N/P – Not Provided | TP - True Positive | FP - False Positive

13

support vector machines," Pattern Recognition, pp. 2007-2017, 2003.

[5] I. Kukenys and B. McCane, "Classifier cascades for support vector machines,"

in International Conference on Image and Vision Computing, 2008, pp. 1-6.

[6] Yong Ma and Xiaoqing Ding, "Face Detection Based on Cost-Sensitive

Support Vector Machines," in First International Workshop on Pattern

Recognition with Support Vector Machines, 2002, pp. 260-267.

[7] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer, "Fast support

vector machine training and classification on graphics processors," in

International conference on Machine learning, 2009, pp. 104-111.

[8] S. Cadambi et al., "A Massively Parallel FPGA-Based Coprocessor for

Support Vector Machines," in IEEE International Symposium on Field

Programmable Custom Computing Machines (FCCM), 2009, pp. 115-122.

[9] O. Pina-Ramirez, R. Valdes-Cristerna, and O. Yanez-Suarez, "An FPGA

implementation of linear kernel support vector machines," in IEEE Int. Conf.

on Reconfigurable Computing and FPGA's, 2006, pp. 1-6.

[10] M. Ruiz-Llata, G. Guarnizo, and M. Yébenes-Calvino, "FPGA

implementation of a support vector machine for classification and regression,"

in International Conference on Neural Networks, 2010, pp. 1-5.

[11] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt, "A performance

and energy comparison of FPGAs, GPUs, and multicores for sliding-window

applications," in ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays

(FPGA '12), 2012, pp. 47-56.

[12] Christos Kyrkou, Christos Savvas Bouganis, and Theocharis Theocharides,

"An Embedded Hardware-Efficient Architecture for Real-Time Cascade

Support Vector Machine Classification," in International Conference on

Embedded Computer Systems (SAMOS), Samos, 15-18 July 2013, pp. 129-

136.

[13] Christopher J.C. Burges, "Simplified support vector decision rules," in Int.

Conf. on Machine Learning, 1996, pp. 71-77.

[14] Hichem Sahbi, Donald Geman, and Nozha Boujemaa, "Face detection using

coarse-to-fine support vector classifiers," in International Conference on

Image Processing, 2001, pp. 925-928.

[15] Sami Romdhani, Philip Torr, Bernhard Schölkopf, and Andrew Blake,

"Efficient face detection by a cascaded support-vector machine expansion,"

Royal Society of London Proceedings Series A, vol. 460, no. 2051, pp. 3283-

3297, November 2004.

[16] Hai-Xiang Zhao and Frederic Magoules, "Parallel Support Vector Machines

on Multi-core and Multiprocessor Systems," in International Conference on

Artificial Intelligence and Applications, 2010.

[17] D. Anguita, A. Boni, and S. Ridella, "A Digital Architecture for Support

Vector Machines: Theory, Algorithm, and FPGA Implementation," IEEE

Transactions on Neural Networks, vol. 14, no. 5, pp. 993-1009, September

2003.

[18] R. Genov and G. Gauwengerghs, "Kerneltron: Support VectorMachine'in

Silicon," IEEE Transactions on Neural Networks, vol. 14, pp. 1426-1434,

2003.

[19] Davood Mahmoodi, Ali Soleimani, Hossein Khosravi, and Mehdi Taghizadeh,

"FPGA Simulation of Linear and Nolinear Support Vector Machine," Joutnal

of Software Engineering and Applications, pp. 320-328, 2011.

[20] I. Biasi, A. Boni, and A. Zorat, "A reconfigurable parallel architecture for

SVM classification," in IEEE International Joint Conference on Neural

Networks, 2005, pp. 2867-2872.

[21] T. Groleat, M. Arzel, and S. Vaton, "Harware Acceleration of SVM-based

traffic classification on FPGA," in International Conference on Wireless

Communications and Mobile Computing, 2012, pp. 443-449.

[22] H. P. Graf et al., "A Massively Parallel Digital Learning Processor," in Annual

Conference on Neural Information Processing Systems (NIPS), 2008, pp. 529-

536.

[23] Roberto Reyna-Rojas, Dominique Houzet, Daniela Dragomirescu, Florent

Carlier, and Salim Ouadjaout, "Object Recognition System-on-Chip Using the

Support Vector Machines," EURASIP Journal on Advances in Signal

Processing, pp. 993-1004, 2005.

[24] Marta Ruiz-Llata and Mar Yebenes-Calvino, "FPGA Implementation of

Support Vector Machines for 3D Object Identification," in International

Conference on Artificial Neural Networks, 2009, pp. 467-474.

[25] A. Boni, F. Pianegiani, and D. Petri, "Low-Power and Low-Cost

Implementation of SVMs for Smart Sensors," IEEE Transactions on

Instrumentation and Measurement, vol. 56, no. 1, pp. 39-44, February 2007.

[26] F.M. Khan, M.G. Arnold, and W.M. Pottenger, "Hardware-based support

vector machine classification in logarithmic number systems," in IEEE

International Symposium on circuirs and systems, 2005, p. 5154.

[27] A. Boni and A. Zorat, "FPGA Implementation of Support Vector Machines

with Pseudo-Logarithmic Number Representation," in International Joint

Conference on Neural Networks, 2006, pp. 618-624.

[28] D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella, "A Hardware-friendly

Support Vector Machine for Embedded Automotive Applications," in

International Joint Conference on Neural Networks, 2007, pp. 1360-1364.

[29] D. Anguita, A. Ghio, and S. Pischiutta, "A learning machine for resource-

limited adaptive hardware," in Second NASA/ESA Conference on Adaptive

Hardware and Systems, 2007, pp. 571-576.

[30] Alessandro Ghio and Stefano Pischiutta, "A Support Vector Machine based

pedestrian recognition system on resource-limited hardware architectures," in

Research in Microelectronics and Electronics Conference, 2007, pp. 161-163.

[31] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, "Feed-forward support

vector machine without multipliers," IEEE Transactions on Neural Networks,

vol. 17, p. 1328, 2006.

[32] Austin Carpenter. (2009) CUSVM: A CUDA Implementation of Support

Vector Machines. Report. [Online]. http://patternsonascreen.net/cuSVM.html

[33] Sebastian Bauer, Sebastian Kohler, Konrad Doll, and Ulrich Brunsmann,

"FPGA-GPU Architecture for Kernel SVM Pedestrian Detection," in

Computer Vision and Pattern Recognition Workshops, 2010, pp. 61-68.

[34] Markos Papadonikolakis and Christos Savvas Bouganis, "Novel Cascade

FPGA Accelerator for Support Vector Machines Classification," Transactions

on Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1040-1052,

2012.

[35] Arian Maghazeh, Unmesh Bordoloi, Petru Eles, and Zebo Peng, "General

Purpose Computing on Low-Power Embedded GPUs : Has It Come of Age?,"

in Int. Conf. on Embedded Computer Systems (SAMOS XIII), Samos, 15-18

July 2013, pp. 1-10.

[36] M. Murat Dundar and Jumbo Bi, "Joint optimization of cascaded classifiers

for computer aided detection," in Conf. on Computer Vision and Pattern

Recognition, 2007, pp. 1-8.

[37] Christos Kyrkou and Theocharis Theocharides, "A Parallel Hardware

Architecture for Real-Time Object Detection with Support Vector Machines,"

IEEE Transactions on Computers, vol. 61, no. 6, pp. 831-842, June 2012.

[38] Matti Pietikainen, Hadid Abdenour, Guoying Zhao, and Timo Ahonen,

Computer Vision Using Local Binary Patterns.: Springer, 2011.

[39] T. Kryjak, M. Komorkiewicz, and M. Gorgon, "FPGA implementation of real-

time head-shoulder detection using local binary patterns, SVM and foreground

object detection," in Conf. on Design and Architectures for Signal and Image

Processing, 2012, pp. 1-8.

[40] CBCL Face Database #1, MIT Center for Biological and Computation

Learning. [Online]. http://cbcl.mit.edu/software-datasets/FaceData2.html

[41] CMU and MIT Face Database. [Online].

http://vasc.ri.cmu.edu/idb/html/face/frontal_images/

http://patternsonascreen.net/cuSVM.html
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/

