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 

Abstract—Cascade Support Vector Machines (SVMs) are 

optimized to efficiently handle problems where the majority of 

data belongs to one of the two classes, such as image object 

classification, and hence can provide speedups over monolithic 

(single) SVM classifiers. However, SVM classification is a 

computationally demanding task and existing hardware 

architectures for SVMs consider only monolithic classifiers. This 

paper proposes the acceleration of cascade SVMs through a 

hybrid processing hardware architecture optimized for the 

cascade SVM classification flow, accompanied by a method to 

reduce the required hardware resources for its implementation, 

and a method to improve the classification speed by utilizing 

cascade information to further discard data samples. The 

proposed SVM cascade architecture is implemented on a Spartan 

6 FPGA platform and evaluated for object detection on 800×600 

(SVGA) resolution images. The proposed architecture, boosted 

by a neural network that processes cascade information, achieves 

a real-time processing rate of 40 frames-per-second for the 

benchmark face detection application. Furthermore, the 

hardware reduction method results in the utilization of 25% less 

FPGA custom-logic resources and 20% peak power reduction 

compared to a baseline implementation.  

 

Index Terms—Cascade classifier, field programmable gate 

array (FPGA), local binary pattern (LBP), neural networks, 

parallel architectures, real-time and embedded systems, support 

vector machines (SVMs) 

 

I. INTRODUCTION 

UPPORT VECTOR MACHINES (SVMs) [1] constitute a 

powerful set of machine learning algorithms, which have 

been utilized in a wide range of classification applications, 

demonstrating high classification accuracies [2], [3]. The 

classification complexity of SVMs is proportional to the 

number of training samples needed to specify the separating 

hyperplane between classes, referred to as support vectors 

(SVs). Hence, for large scale problems, the high  

classification accuracy rates demonstrated by SVMs come at 

the cost of increased computational complexity. As such, 

when considering embedded applications (e.g. embedded 

vision, automotive, and security) with real-time online 

classification requirements and power consumption constraints 

and limited resources and area, the design of SVM-based 

classification systems with hundreds of support vectors and a 

 
 

large number of instances that need to be classified becomes 

difficult. Previous works [4], [5], [6] proposed a cascaded 

classification scheme in order to speed-up the SVM 

classification process for a class of the aforementioned 

applications such as embedded object detection, where the 

majority of data that need to be classified belong to one of the 

two classes. Under this scheme multiple SVMs are arranged in 

stages of increasing computational complexity as well as 

accuracy. The early stages, which are computationally less 

demanding, are tasked with the removal of a large amount of 

negative class data, so that the latter stages, which have higher 

accuracy and thus higher computational complexity, only 

classify the samples that successfully pass the previous stages. 

Hence, using the cascade approach results in significant 

speedups over monolithic (single) SVM classification [4], [6]. 

However, on-line real-time classification on resource-

constraint embedded systems which need low-power operation 

is still challenging to achieve especially for large-scale 

streaming data problems such as video object detection [4]. 

This has motivated a lot of research towards accelerating 

SVMs using parallel computing platforms such as Graphics 

Processing Units (GPUs) [7], and Field Programmable Gate 

Arrays (FPGAs) [8], [9], [10]. Implementations of SVMs on 

GPU platforms have been proposed recently, however, GPUs 

face challenges with regards to power consumption [11] and 

thus it is difficult to deploy them in embedded environments. 

Hence, at present, FPGAs and customized hardware 

accelerators that consume less power and can be built into 

small systems, offer an attractive platform for embedded 

applications. Existing SVM hardware architectures consider 

monolithic SVM classifiers, which are not optimized to handle 

problems where the majority of data belong to one of the two 

classes. As such, designing hardware architectures for 

multistage cascade SVMs based on existing approaches is a 

challenging task due to the increase in the number of 

classifiers, and their different computational complexities. 

In this paper we propose a specialized hardware architecture 

and design approaches for embedded on-line cascade SVM 

classification applications, such as real-time video object 

detection where classification needs to be performed in real-

time, with low power, and often with limited available 

resources. The presented design methodologies extend and 

improve our preliminary research in [12] which showed the 

advantages of a cascade hardware SVM over a monolithic 

hardware SVM. In this work we provide further details on the 

optimized cascade hardware architecture which can facilitate 
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high frame-rates. We also show how to reduce hardware 

complexity of cascade SVMs which is based on rounding off 

the SVM training data to the nearest power of two values, in 

order to improve both area and power while maintaining the 

accuracy by replacing multiplication with shift operations. 

Moreover a novel approach is introduced that improves the 

frame-rate by reducing the number of samples that reach the 

more computationally demanding stages through a neural 

network that evaluates preceding cascade stage responses. 

The proposed architecture and methods are implemented as 

part of a complete on-line video classification system on a 

Spartan-6 FPGA platform. The system was evaluated on a 

larger test set and higher resolution images (800×600) than our 

prior work using face detection as the embedded benchmark 

application. The system achieves 40 frames-per-second (fps), 

which is capable for real-time processing, while processing 

more windows than other works, and an 80% detection 

accuracy, which is on par with cascade SVM software 

implementations for the targeted application. Furthermore, the 

hardware reduction method resulted in the utilization of 25% 

less FPGA logic resources and reduction of peak power by 

20%, with only a 1% reduction in classification accuracy. 

The paper is organized as follows. Section II provides the 

background on SVMs, cascade classifiers, and related work. 

Section III details the hardware architecture for cascade SVM 

processing, the hardware reduction method, as well as the 

cascade response evaluation process. Section IV presents 

FPGA-based experimental results as well as comparison with 

related works. Finally, Section V concludes the paper. 

II. BACKGROUND 

A. Support Vector Machines (SVMs) 

A Support Vector Machine (SVM) is a supervised binary 

classification algorithm which maps data into a high-

dimensional space where an optimal separating hyperplane is 

constructed [1]. SVMs are presented with a training set 

consisting of pairs of data samples 𝑥𝑖, and class labels 𝑦𝑖  (−1 

for negative and 1 for positive samples), and try to find a 

mapping function 𝑓, such that 𝑓(𝑥𝑖) = 𝑦𝑖 for sample 𝑖 in the 

training set. This function captures the relationship between 

the data samples and their respective class labels. An SVM 

separates the data samples of two different classes, by finding 

the hyperplane with the maximum margin from the data 

samples that lie at the boundary of each class (Fig. 1-a). The 

class samples that are on the boundary are called support 

vectors (SVs) and influence the formation of the hyperplane 

[1], [2]. The support vectors are obtained during the SVM 

training phase, and correspond to non-zero alpha coefficients 

derived from the training optimization problem [2], and 

constitute the SVM classification model with which to classify 

new input data. In many real-world applications the data 

samples may not be linearly separable. SVMs utilize a 

technique called the kernel trick [2], to project the data into 

higher dimensional space where linear separation is possible 

and then proceed to find the decision surface. This formulation 

allows projecting data into a higher dimensional space, where 

linear separation is possible (Fig. 1-b), though a kernel 

function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝜑(𝑥𝑗), without the need to 

explicitly use a mapping function 𝜑. Overall, the classification 

decision function (CDF) for SVMs is given in (1), where 𝑁𝑠𝑣 

is the number of support vectors obtained from training, 𝛼𝑖 are 

the alpha coefficients, yi are the class labels of each sample, 𝑠𝑖 

are the support vectors, 𝑧 is the input vector, 𝑘(𝑧, 𝑠𝑖) is the 

chosen kernel function, and 𝑏 is the bias.  

𝐶𝐷𝐹(𝑧): 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑧, 𝑠𝑖)
𝑁𝑆𝑉

𝑖=1
+ 𝑏) (1) 

The computational demands of SVM classifiers depend on 

the choice of kernel function the most common of which are 

illustrated below:  

𝐿𝑖𝑛𝑒𝑎𝑟 (𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡): 𝐾(𝑧, 𝑠) = (𝑧 • 𝑠) (2) 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝐾(𝑧, 𝑠) = ((𝑧 • 𝑠) + 𝑐𝑜𝑛𝑠𝑡)𝑑 , 𝑑 > 0 (3) 

𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐾(𝑧, 𝑠) = 𝑒𝑥𝑝 (−‖𝑧 − 𝑠‖2/2𝜎2) (4) 

The linear kernel (2) for SVMs corresponds to a dot-product 

operation between the input data and a feature vector 𝑤, which 

is the decision hyperplane normal vector (Fig. 1-a), and is 

computed directly from the support vectors using 𝑤 =

 ∑ 𝑦𝑖𝛼𝑖𝑠𝑖
𝑁𝑠𝑣
𝑖=1 . However, in the case of non-linear SVMs (3)-(4), 

the kernel is a more complex function and the feature vector 

cannot be directly obtained from the support vectors. Hence, 

the input vector needs to be processed with all support vectors, 

and the kernel-specific operations need to be performed, 

before a classification outcome can be obtained. To reduce the 

computational demands of non-linear kernels a number of 

techniques have been proposed. One such method is the 

reduced-set-method [13], which tries to find a smaller set of 

vectors, called reduced-set-vectors (RSVs), in order to 

approximate the decision function of the full SVM retaining 

most of the classification capabilities [6], which yields a 

reduced-set-vector-machine (RSVM).  

 
Fig. 1. (a) SVM concepts: separating hyperplane, support vectors, 
normal vector w, bias, and margin (b) The kernel Trick visualization 
(c) Cascade classification scheme overview 
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B. Cascade Support Vector Machines 

In many real-world problems non-linear kernels are 

necessary in order to obtain accurate classification results on 

complex datasets. However, classification rates can be slow 

with such kernels as they produce many SVs that need to be 

processed per input sample. In this work we focus on the 

acceleration of SVM-based classification for a certain class of 

applications, such as image object classification, that exhibit 

the following characteristics: (a) the majority of the samples 

presented to the classifier belong to the negative class and (b) 

the majority of negative samples do not exhibit similar 

features to positive samples. Software implementations in the 

literature [14], [15] have tried to take advantage of these two 

observations by utilizing stages of SVMs of increasing 

complexity, which are sequentially applied to the input data 

(Fig. 1-c). Such structures mostly follow a cascade approach 

[4], [5], [6] where SVMs of increasing complexity are 

arranged in a hierarchy of stages. The SVM stages at the 

beginning of the hierarchy have lower computational 

complexity (i.e. need to process only a small number of SVs) 

and lower discrimination capabilities, and are tasked with 

removing the majority of samples from the negative class. The 

latter stages are then able to perform more accurate 

classification on the remaining samples. However, this incurs 

a higher computational cost as they need to process more SVs. 

Overall, an input sample needs to pass all stages to be 

classified as positive (Fig. 1-c). Under this scheme a large 

amount of input samples are discarded early in the 

classification process by the stages at the beginning of the 

cascade, resulting in significant speedups. In addition, it is 

possible to use the reduced-set-method [13], to reduce the 

number of support vectors required by the non-linear kernel 

stages in order to further improve classification times. 

Furthermore, since the latter stages need to better discriminate 

between positive and negative samples, feature extraction 

algorithms may be used to improve accuracy, which however, 

further increases computational demands. 

C. Related Work 

The speedups achieved by software implementations of 

cascade SVM classification schemes over monolithic, 

although significant, do not offer adequate performance for 

real-time resource-constrained applications [4,5,6,15,16]. This 

is because the latter stages become the bottleneck since they 

require processing an increased number of SVs and the 

requirement for parallel processing arises. Hence, hardware 

acceleration [17], [18] of SVM classification has been 

explored in order to take advantage of the inherit parallelism 

of the SVM computation flow in an attempt to provide real-

time and low-cost/low-power solutions.  

The majority of proposed hardware architectures attempt to 

improve performance by employing parallel processing 

modules which process the elements of the input vector in 

parallel on FPGA platforms. However, for such architectures 

the parallelism depends on the vector dimensionality for a 

given problem in terms of computational resources. When the 

vector dimensionality is high and the hardware resources for 

fully parallel processing are not available, the architecture can 

be folded to process the elements in groups. However, this 

increases the cycles needed to process a single vector. Hence, 

works that utilize such architectures have optimized it 

specifically for the vector dimensionality of the given problem 

and have been restricted to small scale data, with only a few 

hundred vectors and low dimensionality [9], [19], [20], and 

small-scale multiclass implementations [21] in order to be able 

to meet real-time constraints. In addition, these architectures 

cannot trade-off processing more SVs rather than vector 

elements, and hence, cannot efficiently deal with the different 

computational demands of the cascade SVM stages. 

Alternative approaches include FPGA coprocessors for 

parallel vector processing in order to speedup SVM 

computations [8], [22]. However, these architectures do not 

consider the kernel implementation and the FPGA is only used 

for the dot-product operations of the SVM classification flow. 

Furthermore, the parallel processing capabilities depend on 

parallel input through the PCI express and external DRAM 

which have high power consumption and are thus unsuitable 

for embedded applications. Another approach [23] is to 

dedicate a multiply-accumulate unit per SV to process them in 

parallel with a single input vector. However, such 

architectures are limited by the number of SVs and also cannot 

be used to parallelize the processing of a linear SVM.  

Research has also been conducted on potential 

simplifications to make the SVM classification more suitable 

for hardware implementation on devices with limited 

computational resources. These approaches include using 

CORDIC algorithms to compute the kernel functions [10], 

[19], [24], [25]. However, low resource consuming 

implementations of CORDIC algorithms have increased 

latency [10]. Other works [26], [27] propose that computations 

are done in the logarithmic number system, where 

multiplications are replaced with additions, in order to reduce 

the required processing resources. However, they only 

consider a single processing module, hence, when adopting a 

more parallel architecture, to facilitate real-time operation, the 

additional cost from converting between the decimal number 

system to the logarithmic one and back again for all inputs 

increases. The works in [25], [28], [29] [30], have looked at 

how the bitwidth precision impacts the classification error, in 

an effort to find the best trade-off between hardware 

resources, performance and classification rate. Although the 

kernel operations still need to be implemented with multipliers 

leading to high resource demands for parallel 

implementations. A hardware friendly kernel was proposed in 

[31], which operates in conjunction with a CORDIC algorithm 

and addresses the resource requirements for SVM 

implementation. However, this kernel does not address the 

memory requirements of SVs. In contrast our approach also 

reduces the memory demands for the storage of SVs and alpha 

coefficients. Furthermore, as previously mentioned CORDIC-

like algorithms can have a negative impact for parallel 

implementations targeting high performance. 

NVidia's Compute Unified Device Architecture (CUDA) 

has been used in [7], [32], [33] in order to speedup SVM 
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classification using the parallel computing resources of a 

GPU, showing improved results compared to CPU 

implementations. However, GPUs are power hungry devices 

compared to FPGAs [22], [34], (FPGAs consume 

approximately an order of magnitude less power as shown in 

[11]) and as such they are not suitable for power-constrained 

embedded applications such as image object classification. In 

addition, existing GPU implementations do not translate well 

to the more energy-efficient embedded GPUs due to less 

available resources (less memory, registers, cache, cores) [35]. 

The above related works consider only monolithic SVM 

classifiers. Only recently there has been some work in the 

hardware implementation of cascade SVM classifiers. In [34] 

the authors implement an architecture of cascade classifiers 

with low and high precision bitwidth and exploit the dynamic 

ranges of heterogeneous dataset problems to achieve an 

efficient resource utilization. In contrast, in this work we 

exploit the characteristic of a specific class of problems where 

samples of one class appear more frequently than the other to 

design an optimized hardware architecture. 

Summarizing, in their majority, most of the previously 

presented works are application specific, and efficient ways to 

utilize the different computational demands of cascade SVMs 

stages have not been sufficiently examined. Moving towards 

large scale embedded applications and problems where 

thousands of samples need to be classified in real-time, the 

majority of which belong to one of the two classes, cascade 

SVMs will need to be utilized to provide speedups. As such, 

single SVM architectures, which do not exploit the properties 

of the cascade classification scheme, are not suited for this 

purpose. Hence, this paper is one of the first to explore the 

potential of a flexible and parallel hardware architecture and 

design methods that can be used to improve different aspects 

of SVM hardware architectures. 

III. PROPOSED HARDWARE ARCHITECTURE AND METHODS 

Cascade SVMs have demonstrated improvements over 

conventional SVM models (i.e. monolithic) in terms of 

classification speed [4]. However, it is still challenging to 

achieve real-time performance, especially as the amount of 

input samples that need to be classified increases. Hence, we 

propose a parallel hardware architecture to provide higher 

classification throughput and a hardware reduction method 

leading to a more compact hardware implementation suitable 

for embedded system applications. In addition, this work also 

develops a novel method to improve classification speed by 

taking advantage of cascade classification information to 

reduce the amount of input samples that reach the more 

computationally-intensive latter cascade stages. Finally, in 

many classification problems some form of feature 

extraction/preprocessing method needs to take place in order 

to deal with different variations and improve detection 

accuracy. Hence, the architecture also incorporates a feature 

extraction algorithm based on local binary pattern (LBP) 

descriptors, targeting object detection applications. 

A. Cascade SVM Hardware Reduction Method 

The proposed hardware reduction method exploits the fact 

that early stages in an SVM cascade are non-optimal 

classifiers in order to reduce the resources needed for their 

hardware implementation, by adapting their parameters (SVs 

and alpha coefficients), while maintaining their ability to 

discard a large amount of negative samples. The proposed 

hardware reduction method is to modify the SVs and alpha 

values of the low complexity SVMs by rounding them to the 

nearest power of two values instead of using the conventional 

fixed-point representation approach. Consequently, all 

multiplication operations in the SVM classification phase (the 

kernel dot-product calculations and computations related to 

the alpha coefficients) will become shift operations which 

require less resources to be implemented in hardware. 

Additionally, since the support vectors and alpha coefficients 

are now power of two values there is no need to store the 

binary representations of decimal numbers but only shift data 

(shift amount, shift direction, and number sign). This will 

result in an adapted cascade SVM with reduced storage and 

computational demands. However, the expense from 

approximating the support vectors and alpha coefficients with 

powers of two comes with the modified resulting classification 

accuracy will be different from that of the initial SVM 

cascade. The receiver-operating-characteristic (ROC) curve of 

each cascade stage whose parameters have been rounded off to 

the nearest power of two is used to adjust its accuracy to 

similar rates of that of the initial cascade stages. The ROC 

curve shows the performance of a binary classifier by 

illustrating the corresponding true positive and false positive 

rates, given a test set. As such, by setting the appropriate 

threshold the performance of the adapted stages in the SVM 

cascade can be adjusted to match the true positive rate of the 

initial SVM cascade stages. This is necessary since we are 

interested in maintaining the true positive rate. There are 

trade-offs which stem from changing the original classification 

model. Specifically, the reduced computational and storage 

requirements come at a cost of an increase in the false positive 

 
Fig. 2. (a) Hardware Reduction Method (b) Response Evaluation 
Method 
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rate of the adapted classifiers as shown in Fig. 10 in Section 

IV. However, the overall accuracy tends to meet the accuracy 

of the final classification stage and hence the increase is not 

significant (only a 1% drop as shown in Section IV). Adapted 

stages, which do not yield the targeted accuracy, are reverted 

back to the initial model. The process is shown in Fig. 2-a. 

The hardware reduction process takes place after the 

cascade structure is decided, meaning that the kernel function, 

and number of support vectors or reduced-set-vectors for each 

SVM cascade stage are determined. As such, the proposed 

method can easily be used with different SVM training 

frameworks. Furthermore, the method does not depend on the 

specific hardware architecture used for the implementation of 

the cascade and as such can be optimized to different 

architecture requirements. 

B. Cascade Response Evaluation Method  

Exploiting cascade information is a common technique used 

to speed up the training phase of cascade classifiers by 

eliminating samples from the training set. However, so far 

only a few works have attempted to do something similar in 

the classification phase. These methods [36] perform a joint 

logical operation (AND-OR) on the outcome of the cascade 

stages in order to correct/reevaluate the detection result. Such 

methods are usually used to improve detection and require that 

all the stages process the input data in order to reach a 

decision. However, this means that the overall detection speed 

is reduced. In order to improve performance there is a need for 

a mechanism that can indicate whether an input sample needs 

to move on to the more computationally demanding stages. In 

this work we propose to do this by examining the responses of 

early cascade stages in order to rapidly eliminate data samples 

prior to reaching the latter stages. It is based on the 

observation that when looked at collectively, the responses of 

the individual cascade stages can exhibit patterns which can 

help in discriminating between samples belonging to different 

classes. This adds an additional dimension to the cascade 

classification phase that amongst others can be used to 

speedup the overall process.  

Such a response processing mechanism can be constructed 

by following the process shown in Fig. 2-b. An integral part of 

this process is the construction of the training and test sets. 

Examples of positive and negative samples not used in the 

training phase of the SVM cascade are collected. Then these 

are fed to the selected cascade stages in order to collect the 

response of each stage and construct a corresponding response 

feature vector. Next, we select the response vectors of the 

samples which are predicted to belong to the positive class 

(i.e. have pass ed all stages) to form the set of response vectors 

which will be used to construct the response classifier. We 

then separate this set into the training and test sets  both of 

which must contain responses obtained from true negative and 

positive samples. Using this new training set a machine 

learning algorithm, which will act as a response evaluator, can 

be trained to discriminate between different responses. Of 

course, the positive and negative samples can often have 

similar cascade responses. Hence, the training goal for the 

machine learning algorithm is to make sure that the positive 

responses will be correctly classified so that the true positive 

accuracy of the whole cascade is not affected. With regards to 

responses corresponding to negative classes, any correct 

classification is beneficial since those samples will not need to 

be classified by the final stage. The desired true positive rate 

can be adjusted experimentally by setting an appropriate 

threshold value. This is a general approach of handling the 

cascade responses and thus can be used similarly to benefit 

both software and hardware implementations. With regards to 

software implementations the additional computations 

necessary for the latter cascade stages are eliminated, while 

for hardware implementations, the reduced workload can 

result in more compact architecture implementations for the 

latter stages. In this work we focus on the hardware aspects of 

this approach and the benefits of using this mechanism are 

outlined by the results in Section IV. 

C. Hardware Architecture 

The proposed architecture (Fig. 3) consists of cascade 

processing components as well as additional components 

which relate to the targeted benchmark application of object 

detection, an embedded application where samples of one 

class (non-object class) appear more frequently than the other 

(object class) [4]. The presented architecture is comprised of 

flexible and generic components and the parameters of each 

one can be adjusted to meet given requirements such as 

 

Fig. 3. SVM cascade system architecture comprised of the sequential processing module (SPM), the parallel processing module (PPM), the 
register array, frame buffer memory, the LBP processor and the response processing unit (RPU).  
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different data sizes and image dimensions. Thus facilitating 

the design of an optimized hardware accelerator that is 

tailored-made for a specific application. Furthermore, the 

modular design means that the architecture can support 

different processing modules which allows it to implement the 

operations required by each SVM in the cascade.  

1) Cascade SVM Hardware Architecture 

The proposed hardware architecture takes into consideration 

the throughput and processing needs of each stage in the 

cascade. Accordingly, the proposed hardware architecture for 

the cascaded SVM classifier consists of two main processing 

modules, which provide different parallelism with respect to 

the input data and SVs in order to meet the different demands 

of the cascade SVM models, and also the amount of input data 

that each will need to process. The first is a parallel processing 

module (PPM) which performs the processing necessary for 

all the adapted SVM stages (Fig. 4). The second is a sequential 

processing module (SPM), shown in Fig. 5, optimized for the 

high complexity SVM stages The cascade response processing 

is implemented with a low-resource consuming neural 

network architecture to minimize hardware overheads while 

boosting performance. 

a) Parallel Processing Module (PPM) 

The parallel processing module (PPM) handles the 

processing of the low complexity SVM stages which have 

been adapted using the proposed hardware reduction method. 

Specifically, the proposed architecture can process linear and 

2nd degree polynomial kernels, but the plug-and-play approach 

of the architecture means that other kernel modules 

implementing different kernel functions can be used instead 

[37]. The characteristic of the early cascade stages is that they 

require processing only a few SVs per input vector, while 

having to process the majority of input vectors. As such, 

parallelism focuses on processing vector elements in parallel 

to reduce the processing time per vector. 

The architecture of the PPM (Fig. 4) is comprised of three 

main regions: SVM shift operations, adder tree pipeline and 

kernel computation. The first region is comprised of parallel 

SV data memories, arithmetic shifters, and parallel sign 

conversion units. The second region is comprised of a tree of 

adders that sum the results of the previous stage in order to 

calculate the dot-product scalar value. The final region is 

dedicated to kernel processing and is also mostly implemented 

using arithmetic shift units. The operation of the parallel 

processing module begins with the processing of the input 

vector elements by the sign conversion units which are used to 

preserve the sign of the initial multiplication operation. The 

signed numbers are then processed by arithmetic shift units 

which perform the shift according to the data that they receive 

from the memories. The shift data are fetched in parallel from 

small memory units, and include the sign of the support 

vector, the shift amount, and the direction of the shift 

operation. The partial results are added together using a 

pipelined tree of adders so that the dot-product outcome can 

be obtained. The depth of the adder tree impacts the latency of 

the PPM and depends on the number of operands of individual 

adders used and the vector dimensionality, as well as the 

targeted frequency and amount of parallelism. The latency of 

the adder tree is given by (5):  

𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 = ⎾
𝑙𝑜𝑔(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

𝑙𝑜𝑔(𝑎𝑑𝑑𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒)
⏋ (5) 

Once the dot-product scalar value becomes available the 

kernel computation follows. In the case of linear kernels (Eq. 

2), adding a bias value to the dot-product outcome will suffice 

in order to obtain the classification result. However, for 2nd 

degree polynomial kernels, as well as other kernels, the kernel 

computation module handles the latter steps of the 

classification phase. Only one multiplier is used in the parallel 

processing module and is used to perform the square 

operation. The processing of the alpha coefficients is done 

with a sign conversion unit and an arithmetic shift unit 

similarly to the processing of the SVs. An accumulator is used 

to accumulate the result of each SV processing, and once all 

SVs are processed, an adder is used to process the bias with 

the accumulated result. The PPM stages are pipelined, so one 

SV enters the pipeline every cycle. Hence, the total number of 

cycles needed to process the input vector at stage 𝑛 is given by 

equation (6), where 𝑁𝑆𝑉(𝑖) is the number of support vectors 

that need to be processed by stage 𝑖. 

(∑ 𝑁𝑆𝑉(𝑖) + 𝑎𝑑𝑑𝑒𝑟_𝑡𝑟𝑒𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 + 1

𝑛

𝑖=1

) 
(6) 

 
Fig. 4. Parallel Processing Module (PPM) Architecture 

 
Fig. 5. Sequential Processing Module (SPM) Architecture 
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The PPM architecture describes a fully unrolled 

implementation and allows for all vector elements to be 

processed in parallel, thus providing higher detection speeds.  

In cases where the resources are not available or the vector 

elements cannot be accessed in parallel due to limited I/O or 

memory access, the PPM architecture can be implemented 

using fewer resources by reducing the unrolling factor. Of 

course this will have a negative impact on performance which 

becomes more apparent as the number of SVs increases, as the 

time needed to process a single vector also increases. 

b) Sequential Processing Module (SPM) 

The sequential processing module (SPM) is responsible for 

performing the computations necessary for the final SVM 

stage which requires processing of hundreds of high-

dimensional SVs. Hence, as the dimensionality of the vector 

increases it becomes prohibitive in terms of resources and 

power to have multiple units in parallel for processing of a 

single vector, as the wiring and memory management 

complexities also increase. In addition, processing less vector 

elements while having to also process hundreds of SVs leads 

to decreased performance. Hence, it is more efficient to use an 

alternative architecture, to that of the PPM, that will offer 

parallel processing tailored to the requirements of the more 

demanding SVMs [37]. Also, since this module will be used 

less frequently a flexible yet compact architecture is required.  

This is achieved with the architecture shown in Fig. 5, 

which is comprised of a series of pipelined processing and 

memory elements [37]. The majority of the units in the 

module are vector processing units (VUs) and each unit 

handles the dot-product for one support vector with the input 

vector. They are comprised of a multiply-accumulate unit, and 

also a Block RAM which acts as ROM and contains the data 

for one or more support vectors, along with register and 

multiplexer logic for data transfer between vector units. The 

final unit in the pipeline is the kernel processing unit which is 

equipped with multipliers and accumulators to carry out the 

scalar operations of the SVM processing flow. Multiple PPMs 

can be arranged in an array as in [37] to increase parallelism. 

The input vector is processed with a group of support 

vectors at a time, and each vector processing unit handles the 

processing of one support vector. Once a group of support 

vectors is processed the next group follows. In total depending 

on the number of groups a total of 𝑁𝑆𝑉/
𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋processing repetitions are necessary. Hence, 

the size of the pipeline can be adjusted to fit the available 

resources and processing requirements by adjusting the 

number of support vector groups. Each vector processing unit 

in the pipeline processes one support vector with the input 

vector at a time. The data in the SPM flows in different 

directions through dedicated transfer mechanisms. The input 

vector values and VU results are propagated from the first unit 

to the next through a register pipeline, while the SV data are 

fed to the VUs through parallel memories. When the 

processing of the input vector with the group of SVs is done, 

after 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 cycles, the multiplexers and registers in 

each vector unit are used to switch from propagating input 

vector values to scalar results. The scalar values are 

transferred sequentially through the pipeline and it takes 

𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 cycles for them to be processed by the kernel 

processing unit (with a 2 cycle initial delay due to the pipeline 

stages). In this way the kernel processing unit is shared 

between the units, reducing hardware requirements and also 

making it easy for the designer to substitute it with the desired 

kernel without having to change much of the system 

functionality. Each scalar value that enters the kernel unit is 

processed by the kernel operation and the alpha coefficient. In 

the case of the kernel described by (3), the operation involves 

a multiplier to find the square of the value and multiply-

accumulate units to process the alpha coefficients. Once all 

scalar values are processed, the final classification result is 

obtained by adding the bias to the accumulated result. Overall, 

the number of cycles needed to process an input vector is 

given by equation (7).  

⎾𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋×(𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 + 𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 + 2)  (7) 

c) Response Processing Unit (RPU) 

As previously described, the objective of the cascade 

response evaluation process is to remove samples prior to the 

final SVM classification in order to improve processing speed. 

As such, it acts as a complementary stage to the overall 

cascade structure and can be used with any number of cascade 

stages. However, this needs to be done in a hardware efficient 

manner in order to maintain performance and keep low 

resource utilization. Hence, computationally and memory 

intensive algorithms are not the desired choice. For this reason 

a computationally efficient feed-forward neural network (NN) 

model is selected to perform the response evaluation process, 

which as shown in Section IV, leads to a low-resource 

consuming architecture that can sufficiently differentiate 

between responses.  

The neural network model, shown in Fig. 6-a, has a two 

layer structure with one neuron in each layer in order to keep 

the resource requirements low. The first neuron receives the 

responses from the cascade stages, multiplies them with their 

respective weights, and accumulates the products. Then it adds 

the bias value and sends it through a hyperbolic tangent 

activation function to the output neuron, which performs the 

same process and generates the classification outcome. 

 
Fig. 6. Response Processing Unit (RPU): (a) Neural Network model 
(b) NN-based RPU Hardware Architecture 
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The neural network hardware architecture (Fig. 6-b) 

processes different number of inputs depending on the number 

of cascade responses produced by the desired stages. Since 

each response is generated at different time intervals, it can be 

processed sequentially once it becomes available by the PPM. 

Multiplexers are utilized to select the output of the desired 

classifier and its corresponding weight value, which is 

represented in a fixed point format. The two values are 

multiplied and accumulated. Once all the cascade responses 

are accumulated the bias is processed. A Look-Up Table 

(LUT) memory is used to implement the hyperbolic tangent 

function. We exploit the facts that this function is symmetric 

with respect to negative and positive inputs, and that its results 

range from [−1. .1]. Consequently, only the results for 

positive numbers are stored with the input being processed to 

obtain its absolute value. This leads to a more compact and 

efficient implementation. The sign of weighted accumulated 

sum is used to adjust the result of the hyperbolic function 

memory after the appropriate value is loaded since it is the 

same for negative and positive values. Then it is processed 

with the output layer weight which is implemented using an 

arithmetic shift unit. Finally, the bias is added and the final 

outcome is computed. It is not necessary to use a hyperbolic 

function for the output layer neuron since it does not change 

the sign of the result which determines the class. The RPU 

takes (𝑁𝑁_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑠𝑡𝑎𝑔𝑒𝑠 +  2) cycles to process the 

response vector that is generated from the PPM.  

d) Cascade Processing Flow 

The architecture processes a single input vector at a time 

starting from the early stages implemented using the PPM. 

The RPU follows next to classify the responses of preceding 

stages if the input vector has been classified as positive. If the 

response evaluation predicts a positive sample, the RPU 

informs the SPM which in turn proceeds to classify that 

sample to obtain the final classification result. The different 

throughput requirements of the cascade SVM processing 

modules require an I/O mechanism that can adjust for parallel 

as well as sequential data transfer depending on the needs of 

each module. It should also take advantage of the application-

specific characteristics to facilitate data reuse and reduce 

memory accesses. Furthermore, the cascade I/O structure 

should be able to handle classifier demands for different data 

points and data access patterns. Such architecture can be 

designed using a register array (Fig. 3) where data can be 

loaded to the array and outputted in parallel for the PPM and 

sequentially for the SPM.  

2) I/O and Preprocessing for Object Detection 

Additional components are incorporated into the 

architecture in order to handle the data flow and preprocessing 

for object detection, which requires processing data from the 

input image in a sliding window fashion to classify them as 

object or not. As such, the register array structure (Fig. 3) is 

also optimized for the object detection data flow so that it does 

not only provide sequential and parallel data access to the two 

processing modules but also to take advantage of potential 

data overlap and reduce memory I/O. A frame buffer is 

employed to hold part of the image for fast local access. 

Finally, the architecture incorporates a specialized processor 

that performs local binary pattern (LBP) histogram extraction 

which is used as features for object detection classification.  

a) Object Detection Processing Flow and I/O 

An optimized I/O mechanism for object detection can be 

developed based on register array structure (Fig. 3) that 

provides different access patterns and window data selection 

for the image segment that is currently being processed. The 

register array has a size of size 𝐻𝑚𝑎𝑥 × 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒, where 𝐻𝑚𝑎𝑥 

is the height of the window, and 𝑊𝑏𝑢𝑓_𝑠𝑖𝑧𝑒 corresponds to the 

width of the array (i.e. how may additional image columns are 

stored). The input image pixels enter the register array and are 

propagated row-wise into the structure. The image region that 

resides at the right-most part of the register array corresponds 

to a single 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥  window which is the active window 

that feeds the processing units with data. In this data flow the 

image region is processed in a window-by-window fashion. 

Once a window has been processed a part of it is shifted out of 

the array, while new pixels are shifted in. Thus a new window 

is formed at the rightmost region of the scanline buffer and is 

ready to be processed next. The data flow of the right-most 

registers changes depending on whether the data are used for 

parallel or sequential processing. In the case of the parallel 

processing module, window data are outputted and processed 

in parallel. In the case of sequential processing, which happens 

when the LBP features are generated, the registers form a 

chain so that data are outputted sequentially.  

b) Local Binary Pattern (LBP) Processing Unit 

Local Binary Patterns (LBPs) describe the relationship 

between a pixel and its neighborhood, and have been used in a 

wide range of computer vision applications [38]. Their major 

advantage is their low computational complexity [39] which 

makes them suitable for embedded applications. Generating 

the LBP descriptor [38] consists of the following steps (Fig. 7-

a): 1) Compare the values in a 3×3 neighborhood against a 

threshold (the center pixel or the window mean value) placing 

1 where the value is greater or equal, and 0 otherwise. 2) 

Multiply the resulting binary map with a powers of two mask. 

3) Sum the values to obtain the LBP Code. 4) Divide the LBP-

based image into 𝑘 blocks of 𝑖 × 𝑗 pixels (e.g. 4×4, 8×8) and 

construct a local histogram of 𝑙 bins for each block. 5) 
Concatenate the local histograms to form a single global 

histogram descriptor. The LBP descriptors can be used as 

features by the latter SVM stages which require better 

discrimination capabilities. Since only a fraction of input data 

will be processed using LBP, it is more efficient to explore a 

low area overhead architecture. 

 Accordingly, the developed LBP processor architecture, 

shown in Fig. 7-b, processes a single 3×3 image neighborhood  

from the input image at a time, to reduce processing 

requirements. It receives the values of that window in parallel 

every cycle from the register array structure. Each window 
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Fig. 8. Block diagram of the FPGA system 

 

 

Fig.  9. Cascade SVM Structure. 

value is compared against the center window value in parallel 

through dedicated comparators and the results are 

concatenated to generate the LBP code. The number of 

transitions in the LBP code is found next in order to identify it 

as uniform (which has 2 or less transitions e.g. 11110000) or 

non-uniform (which have more than 2 transitions e.g. 

10100101) [38]. The local histogram computation, which 

counts the uniform LBP codes against the non-uniform, 

follows next for each block in the LBP image. Since the bin of 

each LBP code is predetermined [38], a LUT is used to map 

the code to one of 59 possible histogram bins. Multiple local 

histograms are stored in the same central memory (of size 𝑘 ×
𝑙), hence, the hardware architecture needs to know the position 

of each LBP code in the image in order to determine the local 

histogram it belongs to. This is achieved by counting the row 

and column of each LBP code and monitoring the most 

significant bits (MSBs) of the row and column coordinates to 

indicate its corresponding block. Then by setting the 

appropriate address offset the corresponding local histogram 

region is selected and updated. To facilitate fast histogram 

update and reset a dual ported memory is utilized. The updated 

histogram bin is read from one port and written to the other 

the following cycle so no delays are observed. Second, this 

allows for an immediate reset to be performed right after the 

value is read from the SVM classification module to prepare 

the memory for the next histogram.  

IV. EXPERIMENTAL PLATFORM AND RESULTS 

The proposed hardware architecture and methods were 

evaluated using the popular embedded application of face 

detection, which has also been used by software 

implementations of cascade SVMs. The cascade structure was 

trained using MATLAB and was used for evaluation of the 

architecture and proposed methods, on 800×600 (SVGA) 

resolution images, in terms of frame-rate, detection accuracy, 

power consumption, as well as requirements in terms of 

computing resources. Additionally, the proposed hardware 

architecture, which will be referred to as the adapted cascade, 

is compared against a baseline system which implements the 

same cascade SVM structure including the RPU (Stage 4), but 

without applying the hardware reduction method, and thus the 

parallel processing module is implemented using multipliers. 

Both implementations were evaluated and compared using a 

Xilinx Spartan-6 Industrial Video Processing board equipped 

with a Spartan-6 XC6SLX150T FPGA (Fig. 8). A Microblaze-

based system was used for I/O and verification purposes, 

while for both systems an on-chip buffer is used to store the 

input image and a register array for data loading and 

processing which was experimentally found to provide an 

adequate balancing between I/O delays and hardware 

resources. The following sections detail the evaluation process 

and the results. 

A. SVM Cascade Training and Accuracy 

The training of the SVMs and neural network was 

conducted off-line using MATLAB with kernels and parameters 

similar to what has been used in the literature [4], [5], [6]. The 

resulting classification models were used to evaluate the 

proposed hardware architecture and approaches for on-line 

classification on an FPGA. We performed experiments with 

all possible LBP histogram parameters and selected those 

which provided the best accuracy results. The used parameter 

values are shown in Table I.  

Positive and negative samples from [40] were used to setup 

an initial training set which was later enhanced with additional 

samples. The first three cascade stages were trained in 

incremental fashion [4], [6], [15]. The final SVM stage was 

excluded from the process and was trained using the complete 

training set which was first processed using the LBP feature 

extraction. The first polynomial SVM (Stage 3, Fig. 9) was 

reduced to 20 RSVs which was the smaller number of reduced 

vectors needed to maintain the original accuracy. In contrast, 

100 RSVs where needed to maintain the accuracy [6], [15], for 

the final stage (Stage 5, Fig. 9). The first three stages retained 

similar accuracy level after being rounded-off to the nearest 

 

 
Fig. 7. (a) LBP descriptor (b) LBP Processing Unit Architecture 
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power of two as shown in Fig. 10, and hence were 

implemented on the PPM. However, for the final stage there 

was a significant discrepancy between the classification 

accuracies of the adapted and original models. Hence it was 

not approximated and the original model was used.  

After the SVM cascade, the training of the NN-based RPU 

followed using the process described in Fig. 2. The feed-

forward NN consisted of 1 neuron for each of the 2 layers and 

was trained using the gradient descent with momentum and 

learning rate backpropagation algorithm in MATLAB. For this 

purpose 30515 positive and 329383 negative window 

samples, not used in the SVM training phase, where extracted 

from various images and were passed through the first three 

adapted SVM cascade stages to collect their responses. This 

resulted in a three dimensional response vector per sample. 

The response vectors of the samples classified as positive by 

the cascade (which also include truly negative samples) were 

selected to form a new set (29117 response vectors for 

positive samples and 8803 response vectors for negative 

samples). This new pool of response vectors was then 

partitioned in a training and test set, both containing responses 

from negative and positive samples, in order to train and 

evaluate the NN-based PRU. A subset of cascade responses 

for the training set are shown in Fig. 11, where it is evident 

that the responses of the early stages exhibit different patterns 

for positive and negative class samples. The NN-based RPU 

training resulted in a correct classification rate of 99% for 

positive and 60% for negative cascade responses using the 

constructed responses test set. 

B. FPGA Implementation & Logic Resource Utilization 

The two cascade implementations (baseline and adapted) 

have the same basic architecture (Fig. 3) and data flow. The 

PPM architecture was based on a fully unrolled 

implementation, while the SPM was implemented with 50 

DSP units (𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 = 50) meaning that the input data to 

the SPM is processed two times with different SV groups. The 

NN-based RPU was mapped on the FPGA LUTs with a Block 

RAM used for the hyperbolic tangent implementation. The 

only difference between the two implementations is that in the 

adapted cascade case the PPM was optimized using the 

hardware reduction method from Section III.A. Consequently, 

the multiplication units were replaced with shift units and the 

SV data stored in the training data ROMs corresponded to 

shift values instead of real number values. Each ROM holds 

the support vector data for the first three cascade SVM stages 

for the specific vector elements. Finally, a single BRAM was 

used to implement the hyperbolic tangent function of the NN-

based RPU. Both implementations on the Xilinx Spartan-6 

XC6SLX150T FPGA have the same critical path, the SPM 

kernel unit mapped on the DSPs, and as such have the same 

operating frequency of 70 MHz. The implementation of the 

adapted PPM requires 40% fewer FPGA logic resources 

compared to the baseline PPM. This is reflected with a 25% 

reduction in the utilized resources when considering full 

system implementations, as shown in Table II. Overall, the 

proposed approaches can be used to meet different constraints 

in the design space for different FPGAs from low-end to high-

end. For low-end devices the immediate impact is a method to 

better fit the design to limited resources, while for high-end 

with enough resources, power consumption can be reduced by 

changing the multiplication units to shift units. Furthermore, 

for both cases the architecture components can be optimized to 

meet the available FPGAs resources. 

C. Classification System Accuracy and Frame Rate 

TABLE I 
CASCADE DETECTION SYSTEM PARAMETERS 

Search  

Window Size 

20×20 

(𝐻𝑚𝑎𝑥 × 𝑊max) 
LBP Block Size 

𝑖 = 3,
𝑗 = 6 

Downsampling 
Rate 

1.2 
(18 scales) 

Number of LBP 
Blocks 

𝑘 = 18 

Window 

Step 
5 pixels 

LBP  

Histogram Bins 
𝑙 = 59 

Image  
Resolution 

800×600 

(SVGA) 

Number of 
Windows 

56984 

TABLE II 
FPGA RESOURCE REQUIREMENTS PER UNIT AND SYSTEM 

FPGA 

Resources 

Registers 

(184304) 

LUTs 

(92152) 

BRAMs 

(268) 

DSPs 

(180) 

SPM 1736 (1%) 2241 (2%) 51(19%) 50 (27%) 

Adapted PPM 2679 (1%) 
19006 

(20%) 
1 (<1%) --- 

Baseline PPM 3724 (2%) 
30791 

(33%) 

NN-based RPU 82 (<1%) 379 (<1%) 2 (<1%) 6 (3%) 

LBP Processor 32 (<1%) 94 (<1%) 2 (<1%) --- 

Memory & I/O 

Units 

1831 

(1%) 

1200 

(1%) 

180 

(67%) 
--- 

Microblaze 

Video Pipeline 

10780 

(5%) 

9891 

(10%) 

20 

(7%) 

3 

(2%) 

Baseline Cascade 

System 

21214 

(11%) 

47396 

(51%) 256 

(96%) 

59 

(32%) Adapted 

Cascade System 

20153 

(11%) 

35532 

(38%) 

TABLE III 
STATISTICS FOR EACH CASCADE STAGE 

Cascade 

Stages 

Stage 1 

(PPM) 

Stage 2 

(PPM) 

Stage 3 

(PPM) 

Stage 4 

(RPU) 

Stage 5 

(LBP & 

SPM) 

Windows 

Processed 

56984 

(100%) 

3025 

(5%) 

2334 

(4%) 

713 

(1,2%) 

228 

(0,4%) 

Rejection 

Rate 
94,6% 22,8% 69,4% 76,4% --- 

Cumulative 

Cycles 
9 10 30 35 2697 

Vectors per 

stage 𝑵𝑺𝑽(𝒊) 
1 1 20 --- 100 
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This section outlines results related to accuracy and frame-

rate, two important metrics in object detection, and also 

highlights the overall impact of the LBP processor and RPU. 

The accuracy of the adapted cascade SVM was evaluated on 

the widely used CMU-MIT database of faces [41]. In addition 

images from the dataset were cropped and resized to 800×600 

(SVGA) resolution and used to evaluate the frame-rate of the 

cascade SVM implementation. Some full frame detection 

results are shown in Fig. 12. Each 800×600 image generates a 

total of 56984 20×20 search windows for 18 scales and a 

window step of 5 pixels. Each frame requires a different time 

to be processed, by the cascade implementations, depending 

on how many windows reach each stage, and by how many 

cycles it takes a stage to process an input. All windows are 

processed by the first SVM stage, however, only ~1% of them 

reach the final SVM stage, as shown in Table III. In addition 

to the actual processing time, the I/O delays per frame also 

negatively impact classification speed. In order to achieve 

higher detection rates, I/O and memory operations overlap 

with processing.  

As shown in Fig. 10, the adapted cascade SVM stages have 

similar accuracy to that of the initial SVMs in terms of true 

positive detection accuracy. However, the false positive rate 

has increased between 4%-15%. This is to be expected since 

the approximations introduced a discrepancy between the 

initial and adapted SVM models. However, the final detection 

accuracy (see Fig. 13) of the adapted cascade is determined by 

the latter stages, and so any discrepancies are effectively 

masked. Hence, both implementations are expected to have a 

similar overall accuracy (~80%). For more details on the 

effects of the approximations on the accuracy we refer the 

readers to [12]. 

Results for different system configurations of the adapted 

SVM cascade, with and without the LBP and RPU, are shown 

in Fig. 13. The cascade SVM boosted by the NN-based RPU 

was able to achieve an accuracy of 80% which was only 1% 

less than the same system without the RPU, which suggests 

that with additional training and enhancement of the data sets 

it would be possible to achieve the same accuracy. 

Nevertheless, the minimal drop in accuracy, when using the 

RPU, is offset by a 2× increase in performance. It allows the 

cascade system to operate at ~40 fps instead of ~20 fps, 

making the system capable of real-time operation. This 

happens because even though most windows are discarded by 

the first two cascade stages, the NN-based RPU manages to 

reduce the number of windows (~230 instead of ~715, Table 

III) that reach the slower SPM. Furthermore, the introduction 

of the LBP feature extraction process helped improve both the 

true positive (TP) rate as well as the false positive (FP) rate, 

the latter by an order of magnitude. In addition since the LBP 

features are only extracted during the final stage the improved 

accuracy has only a small impact on the frame-rate (40 instead 

of 45 fps). The results also indicate that in cases where the 

frame-rate is of much higher importance than accuracy (e.g. 

when processing videos from a static environment) the 

optimized SVM cascade without the LBP and RPU can also 

be used to offer higher performance. Overall, through the use 

of LBP features to improve accuracy, and the RPU to boost 

the frame-rate, we achieve an adequate trade-off between 

frame-rate and detection accuracy to meet application 

requirements. 

D. Power Consumption 

Power analysis tools from Xilinx were used to measure 

power consumption demands of the adapted and baseline 

cascade SVM FPGA implementations. The characteristic of 

the cascade architectures is that the PPM and SPM are not 

used at the same time since they implement different cascade 

stages. Hence, the dynamic power consumption ranges 

depending on which module is active. The total power budget, 

including the Microblaze I/O system, for the adapted cascade 

SVM system ranges from 4,1 W to 8 W while for the baseline 

cascade system it ranges from 4,1 to 9,9 W.  These figures 

correspond to a worst case scenario where all signals change 

every cycle. However, it is anticipated that on average the 

power consumption will be lower. The peak power 

consumption happens when the PPM module is used. The 

lowest consumption happens when the NN-based RPU is used 

when the SPM and LBP cores are used power consumption 

reaches 4,9W. Overall, the utilization of less LUT resources 

by the adapted PPM results in reducing the peak power needed 

 
Fig. 10. Restore accuracy using the ROC curves: (top) Part of ROC 
curves (bottom) Accuracies  and error after adaptation 

 
Fig. 11. Response vectors produced by the first three SVM cascade 
stages for negative (square) and positive (filled circle) samples. 

 
Fig. 12. Detection results on CMU-MIT images 

 
Fig. 13. Comparative results for different configurations 
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for the adapted cascade system by ~20%. 

E. Related Work Comparison 

Related works for object detection applications are shown 

in Table IV along with information regarding parameters and 

performance. These works use different algorithms, training 

and test sets, and benchmark applications and so it is difficult 

to make a direct comparison between implementations. 

However, since the SVM classification flow treats all data as 

vectors the number of samples and SVs processed, along with 

vector dimensionality can provide an indication to the 

processing performance for each work.  

A head-shoulder detection system is presented in [39]. It 

utilizes a linear SVM and LBP descriptors to classify 19200 

windows from 640×480 images from an already known 

environment. It sacrifices accuracy for performance by using a 

single linear SVM (with a clock frequency of 120 MHz) and 

processes only a few elements of the SV feature vector in 

parallel to keep the resource utilization low. In addition 

foreground detection is used to compensate for the linear 

SVM. The implementation in [23] scans a 512×512 image in 

non-overlapping blocks to perform bar-code detection. It 

performs the dot-product operations in 352 cycles for one 

window. However, the scalar operations are not included. It 

processes around 1024 16×16 window samples, corresponding 

to 256-dimensional vectors, per image, without downscaling 

the input image which simplifies the I/O and memory 

accesses. The hybrid FPGA-GPU pedestrian detection system 

[33] for 800×600 images is able to classify around 1000 

windows. The lower throughput can be attributed to the larger 

feature size. However, the number of processed windows is an 

order of magnitude less than our work. In addition, the use of 

GPU may prohibit such implementations to be used in 

embedded applications due to power consumption constraints. 

Overall, in order to achieve real-time performance existing 

works rely on processing a few window samples, smaller 

image resolutions, or process a few SVs. Through the 

proposed architecture and methods it is possible to process 

higher resolution images which generate more windows, with 

a higher number of SVs in real-time (~56000 per frame for 

~40 fps) while also reducing the implementation requirements.  

The SVM hardware implementations target different 

applications and thus accuracy is difficult to compare directly. 

On the other hand, software based implementations [4], [5], 

[6] have utilized cascade SVMs for face detection with 

accuracies that range between 78-80% with similar training set 

sizes and cascade structure to our work. The proposed 

optimized SVM cascade system achieves a detection rate of 

80% which is on par with these works while processing higher 

resolution images in real-time. 

V. CONCLUDING REMARKS 

The work presented in this paper considers the efficient 

hardware implementation of cascade SVMs which can be used 

to design intelligent embedded systems for on-line real-time 

classification applications. The hybrid processing architecture 

takes advantage of the nature of the cascade classification 

structure and in conjunction with the hardware reduction 

method and the novel response evaluation method, it manages 

to achieve adequate trade-off between accuracy, performance, 

power, and resource utilization. The proposed architecture and 

methods can be used to design low-cost parallel SVM 

coprocessors to accelerate more demanding monolithic SVM 

classifiers, or optimize cascade SVM classifiers for embedded 

classification applications. Thus allowing SVM architectures 

to tackle larger scale problems (e.g. classification on higher 

resolution images) to what has been addressed in the literature.  
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