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 

Abstract—Computer vision applications of Smart Camera 

Networks (SCNs) often require that the network cameras operate 

under limited or unreliable power sources. Therefore in order to 

extend the SCN lifetime it is important to manage the energy 

consumption of the cameras which is related to the workload of 

the vision tasks they perform. Hence by assigning vision tasks to 

cameras in an energy-aware manner it is possible to extend the 

network lifetime. In this paper we address this problem by 

proposing a market-based solution where cameras bid for tasks 

using an adaptive utility function. The early results for different 

SCN configurations and scenarios indicate that the proposed 

methodology can increase network lifetime. 

 

Index Terms— Embedded Vision Systems, Smart Camera 

Networks, Task Allocation, Adaptive Systems  

I. INTRODUCTION 

 

mart camera networks (SCNs) have a wide application 

spectrum ranging from security and surveillance, 

transportation systems, healthcare and industrial monitoring 

[1],[2]. As the cost of cameras is rapidly reduced, and 

deployment of several cameras is within feasible costs, many 

smart cameras will be able to collaborate to carry out different 

vision tasks in dynamically changing environments [3]. These 

tasks need to be performed under time-varying constraints 

such as energy, computational resources, and performance. 

Hence, the network must be able to reconfigure over time to 

adapt to these changes [4].  

In particular, energy is a key constraint that is of high 

importance in embedded vision systems especially in the case 

of battery-operated cameras or in environments with little 

infrastructure (e.g. limited power supply). Hence, it is 

necessary to efficiently utilize the available resources in a 

SCN to preserve energy and maximize the lifetime of the  

network. As such, the vision tasks that the network cameras 

need to perform must be allocated amongst them in an energy-

oriented manner that simultaneously satisfies task-specific 

requirements such as resolution and frame-rate. Attempts  

to tackle the problem of energy-aware task allocation assume  

that all cameras execute the same task (usually target tracking)  

[10]. In cases where multiple tasks can be executed by the 

cameras energy is not considered as a key task assignment 

constraint [8].  

The contribution of this paper with regards to the problem 

of energy-oriented multi-task allocation in heterogeneous 

SCNs is twofold. First, we formulate the problem and propose 

 
 

a distributed and adaptive market-based bidding solution that 

simultaneously considers multiple factors to determine which 

camera is most appropriate to satisfy a certain vision task. 

Second, a mechanism is proposed that enables a camera to 

change its bidding strategy according to its current state to 

further increase its lifetime. The proposed approach is 

evaluated using a fully simulated environment in MATLAB 

with different camera setups consisting of heterogeneous 

cameras and dynamic as well as static vision tasks. 

Preliminary results indicate that the lifetime of SCNs can be 

improved between 17% − 64%. 

The paper is organized as follows. Section II discusses 

related work. Section III presents the proposed distributed 

market-based approach. Section IV discusses the evaluation 

process and results, while Section V concludes the paper.  

II. RELATED WORK 

Dynamic reconfiguration and task allocation has been the 

subject of emerging research in SCNs. A centralized 

evolutionary algorithm has been proposed in [6] that 

simultaneously addresses area coverage and task assignment. 

It uses a two-step approach to first select cameras for area 

coverage and then assign tasks to cameras by considering only 

the frame-rate requirements of the tasks but not the energy 

resources of each camera. In [7], authors propose a 

decentralized approach for task assignment formulated as a 

stable marriage problem. The proposed approach is more 

suitable for one-to-one task assignment. Furthermore, energy 

is again not considered as a assignment criterion. A distributed 

algorithm that simultaneously considers area coverage of the 

cameras and subsequently target handover is presented in [8]. 

However, it only considers the tracking task and only for a 

small number of objects that can move within the area of 

observation of homogeneous cameras. The centralized and 

distributed approaches outlined in [9] attempt to reassign 

targets to cameras while managing their resources and also try 

to minimize the communication between them, rather than 

minimizing energy consumption to maximize their lifetime. 

Finally, the work in [10] attempts to perform energy-aware 

task assignment; however, it focuses only on target tracking 

with homogeneous cameras. Summarizing, most existing 

works assume that cameras are homogeneous, execute only 

the tracking task, and do not consider energy levels for task 

allocation purposes. In contrast, in our work we incorporate 

camera energy and resources with resolution and performance 

requirements in an adaptive distributed market-based task 

allocation framework in order to extend the lifetime of SCNs, 
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which are comprised of heterogeneous cameras that can 

execute different vision tasks with varying requirements. 

III. PROBLEM FORMULATION 

A smart camera network is considered where there are 𝑁𝐶  

static camera nodes 𝐶𝑗 that belong in the set 𝓒 =

{𝐶1, 𝐶2, … , 𝐶𝑁𝐶
} in a 2𝐷 field (Fig. 1), and 𝑁𝑉 vision tasks 𝑇𝑖  

in the set 𝓣 = {𝑇1, 𝑇2, … , 𝑇𝑁𝑉
} that need to be performed and 

each is related to either a target or area. We are interested in 

the assignment 𝓣 → 𝓒, that will lead to the output set: 

{(𝐶𝑗, 𝑇𝑖)} 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁𝐶  𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑁𝑉, which is the 

allocation of tasks to cameras. This assignment is dynamically 

updated every iteration 𝑡 as the tasks that must be performed 

in the network and camera resource and energy levels change 

over time. In this work we are interested in the assignment that 

maximizes the mean network lifetime defined as ∑ 𝐿𝑗 𝑁𝐶⁄𝑁𝑐
𝑗=1 , 

where 𝐿𝑗 is the lifetime of each node 𝐶𝑗 (i.e. the number of 

iteration steps where a node is alive). We propose a solution 

based on a market-based bidding process where the cameras 

bid for each task based on their current state and suitability.  

A. Camera Model 

Each camera 𝐶𝑗 in the network is modeled with a state 𝑆𝑗 =

(𝐸j, 𝑅j) that describes its remaining battery energy levels, and 

available computational and memory resources respectively. 

In general, a smart camera is equipped with an embedded 

processor with multitasking capabilities [6]. Hence, the 

definition of resources can be different depending on the 

desired granularity. It can represent CPU cycle slots, threads, 

or computing cores and memory. As such, we do not explicitly 

use a specific type of resource but rather resources are 

abstracted. Therefore the underlying architecture of each 

camera node may be different; and we assume that each 

camera can estimate its available resources and translate them 

to a common reference point. Furthermore, given tasks 

resource requirements, a camera 𝐶𝑗 can calculate the resulting 

frame-rate 𝐹𝑗𝑖  it can provide task  𝑇𝑖. It can also calculate the 

resolution 𝐷𝑗𝑖  at which it views a task-related area/target. The 

network can consist of heterogeneous cameras that have 

different features such as different Field-of-View (FoV), 

different energy levels, or different capabilities in terms of 

resources. Finally, the cameras that can communicate with 

each other, as well as camera image correspondences and 

target associations are considered known and available. 

B. Task Model 

Two different types of tasks are considered, namely static 

and dynamic. Static tasks (e.g. monitoring of restricted area) 

are associated with a specific area and are executed for a 

certain time after which they are considered obsolete. Also we 

assume that the tasks have no dependencies between them and 

that the vision tasks are suitable for distributed embedded 

processing and we in this work we primarily focus on the task 

assignment problem. Dynamic tasks, such as target detection 

and tracking, are associated with a moving target that can 

change its position resulting in being viewed by different 

cameras. Each vision task 𝑇𝑖  is characterized by different 

required resources, which each camera can translate to its own 

definition, and frame-rate. The resource requirements, 

complexities, and frame-rates of vision tasks are well 

documented and thus they can be configured a priori (e.g. in a 

look-up table). Finally, the location in 𝑥, 𝑦 coordinates of each 

task-related area/target can be estimated by each camera using 

calibration and ground plane information [5], to compute the 

resolution 𝐷𝑗𝑖  at which a camera views a task related 

area/target [5].  

C. Power Model 

The power consumption model of each camera is based on 

the computing and memory resources used for running vision 

task(s) and for communicating with other cameras [11]. In 

addition, it is assumed that a fixed amount of power is 

consumed at every time instance 𝑡 in order to perform 

necessary background tasks. Hence, we use the following 

energy consumption model for each camera 𝐶𝑗 to find the 

energy consumed (𝐸𝑗
𝐶) by each camera at iteration step 𝑛. 

𝐸𝑗
𝐶(𝑡) = 𝑃𝐼 + 𝑃(𝑅𝑗)  +   𝑃(𝑚) (1) 

where 𝑃(𝑅j) is a look-up based function that provides the 

energy consumption estimate based on utilized resources, 

𝑃(𝑚) is also a look-up based function that gives the power 

consumption for transmitting 𝑚 messages to other cameras, 

and 𝑃𝐼  is constant power used when the camera is idle. Also, 

as in other works, we assume that the processing power is 

comparable to communication power [14]. The remaining 

battery level of a node is thus given by: 

𝐸𝑗 = 𝐸𝑗
𝑇 − ∑ 𝐸𝑗

𝐶(𝑡)
𝑛

𝑡=0
 (2) 

where 𝐸𝑗
𝑇 is the total energy capacity of camera 𝐶j, and the 

second term is the sum of the energy consumed at each time 

iteration up to the current one. The subtraction gives as the 

remaining energy of each camera. 

D. Distributed Market-Based Multi-Task Bidding Process 

In distributed market-based approaches, task assignment 

happens by means of auctions where agents (cameras) play the 

role of bidders to gain an item (tasks) [3], [13]. This process is 

facilitated using the concept of utility function, which 

measures the ability and willingness of a camera to execute a 

certain task. Utility is a function that assigns a number 

(priority) to each camera such that if the utility is 

higher (𝑈𝑎 >  𝑈𝑏) then that camera is preferred. The utility 

function 𝑈𝑗(𝑇𝑖) (3) of camera 𝐶 𝑗 for task 𝑇𝑖  is given by a 

weighted sum of four factors which encapsulate the state of 

the camera as well as its suitability to meet the requirements of 

a task. These are the remaining energy 𝐸𝑗 of a camera, its 

available resources 𝑅𝑗; the frame-rate 𝐹𝑗𝑖 it can provide to the 

task and the resolution 𝐷𝑗𝑖  it views a task-related area/target. 

 
Fig.  1.  Model setup example: 𝐶1 is assigned static task 𝑇1, 𝐶3 is assigned 

dynamic task 𝑇3, and 𝐶2 is assigned dynamic task 𝑇4. Task 𝑇2 is 

unassigned, while 𝐶4is idle. 
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Each component is normalized between [0, 1]. This specific 

utility function was chosen due to its computational efficiency. 
𝑈𝑗(𝑇𝑖) = 𝑊𝐸𝐸𝑗 + 𝑊𝑅𝑅𝑗 + 𝑊𝐹𝐹𝑗𝑖 + 𝑊𝐷𝐷𝑗𝑖 (3) 

Prior to the actual task allocation the cameras first detect 

areas/targets of interest and exchange image descriptors in 

order to establish image correspondences and common FoVs. 

Then the cameras can coordinate to execute area/target related 

tasks such as intrusion detection and target tracking. The task 

allocation bidding process happens in an event driven manner 

where a bid for a task is initiated if there is an activity change 

in the FoV of a camera or if a camera is no longer operational. 

Once the task allocation process (Algorithm 1) is initiated each 

node that views a task-related area/target will have to evaluate 

its utility function 𝑈𝑗(𝑇𝑖) and also send a bid to the other 

nodes that view it. Each camera compares its bid with the 

received ones. The highest bidder takes over the task and 

updates its state and parameters while notifying the other 

cameras. A camera does not participate in the bidding process 

if it has no remaining available resources, no visibility of the 

task-related area/target, or no more remaining energy. In the 

current formulation, the bidding process happens iteratively 

for each item, however, without loss of generality 

combinations of items can also be considered. 

E. Adaptive Strategy Selection 

To enhance the performance of the market-based event-

driven multi-task bidding process we also propose an adaptive 

energy-oriented method for cameras to change their bidding 

strategy (Algorithm 2). The approach is motivated by the fact 

that initially the nodes have full energy resources and thus can 

focus on satisfying the task demands, while only at the latter 

stages of their lifetime they can gradually give more 

importance to the energy factor in order to conserve energy. 

To do this we first introduce two energy thresholds used by all 

cameras (𝛩1
𝐸 and 𝛩2

𝐸). While the energy levels of a camera 

remain above the first threshold the initial values for the 

weights (𝑤𝐸 , 𝑤𝑅 , 𝑤𝐹 , 𝑤𝐷) are used and the goal is to give more 

significance to the performance components of the utility 

function. Once, the energy drops below the first threshold the 

weights are adjusted so that the energy and resource factors in 

the utility function are given equal or higher importance than 

the performance factors in (3). Finally, once the energy drops 

below the second threshold the impact of the last two terms in 

(3) is further reduced. The weights can have different initial 

values and the update method can vary. In this work, at each 

threshold step the energy and resource weight values are 

halved. Furthermore, in cases where the initial value of the 

energy and resource weights is zero (e.g. Set 3 Table II), then 

the weights of the other two factors are halved and 

simultaneously the energy and resource weights are increased. 

This dynamic adaptation allows cameras to have different task 

assignment strategies depending on their operating 

environment, battery levels, and workload. Hence, it offers a 

balanced way of changing the objective of each camera, 

depending on its current state, in order to extend the overall 

network lifetime.  

 

 

 
 

Algorithm 1: Task Allocation 
For 𝑻𝒊 𝝐 𝓣 and event occurs 

If camera 𝑪𝒋 can execute task 𝑻𝒊 then 

Multicast 𝑼𝒋(𝑻𝒊) to cameras 𝑪𝒌 ∀ 𝒌 ≠ 𝒋 that also see the area/target 

Receive 𝑼𝒌(𝑻𝒊) ∀ 𝒌 ≠ 𝒋 of cameras that also see the area/target 

If 𝑼𝒋(𝑻𝒊)  > 𝑼𝒌(𝑻𝒊)∀ 𝒌 ≠ 𝒋 then 

Camera 𝑪𝒋 takes over Task 𝑻𝒊  

Update 𝑹𝒋, 𝑬𝒋 

end 

end 
 

Algorithm 2: Strategy Selection 
For 𝑪𝒋 𝝐 𝓒  

If 𝜣𝟏
𝑬   <  𝑬𝒋  ≤  𝑬𝒋

𝑻 

weights = Initial_Weights; 

end 

Maximum 

Performance 

State 

If  𝜣𝟐
𝑬  <  𝑬𝒋  ≤  𝜣𝟏

𝑬  

Halve Values of WD WF 

Increase Values of WE WR , if initial value was zero 

end 

Balance 

State 

If  𝑬𝒋  ≤  𝜣𝟐
𝑬 

Halve Values of WD WF 

Increase Values of WE WR , if initial value was zero 

end 

Energy 

Conservation 

State 

IV. EVALUATION & RESULTS 

To evaluate our proposed energy-aware task allocation 

approach we have developed a visual simulation environment 

in MATLAB. Within a 2𝐷 field, 𝑁𝐶  smart cameras with 

different battery levels and resources, and sensing range of 15 

units (and increments of this), are generated either randomly, 

or under a specific pattern (Fig. 3) in an attempt to maximize 

camera overlap in a 200 × 200 unit area. We also assume that 

all cameras are capable of communicating given that their 

fields overlap. In turn, random targets are generated that 

follow predetermined paths (e,g, staircase, straight line) with 

constant speed. In addition, observation areas corresponding to 

static tasks that have a random start and end time and also 

have different requirements regarding resources and frame-

rate are also generated within the field, resulting in a total of 

𝑁𝑉 vision tasks that need to be performed within the network. 

In total 11 different camera network setups (Fig. 2) were 

generated based on predefined structures and also random 

camera placement. The different network setups represent 

different scenarios where cameras can be used to monitor 

areas/rooms or transportation lines and crossroads, and 

random placements. The number of tasks also varied between 

scenarios, with an increasing number of tasks generated as the 

number of cameras increased as the proposed algorithms 

depend on the number of tasks and overlapping cameras in the 

network. We compare the proposed method for the same 

networks and setups with what we refer to as the baseline 

approach which uses the weights in Row 1 in Table II, and 

tasks are allocated in a periodic fashion and only based on the 

resolution and performance factors of (3), and without 

updating the weight values. The different parameter values are 

shown in Table I, while Table II shows the different initial 

weight values (Rows 2 − 4) used by the proposed approach. 

Various factors affect the performance of the energy-aware 

task allocation method such as the network structure, overlap 

between the FoV of the cameras, and the number and location 

of observation targets/areas, as well as the weight and energy 

threshold values. Networks with limited activity in the FoV of 
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most cameras or limited overlap (e.g. Setups 4 and 11 in Fig. 

2) result in a small lifetime increase since the cameras have 

limited interaction and the opportunities to allocate tasks in 

different ways in order to conserve energy are also limited. 

However, in real-world environments the placement of 

cameras in SCNs follows some structure such that the camera 

FoVs will often overlap to cover an area from different angles 

and hence the energy gains are expected to be higher. In our 

experiments we found that by weighing the energy and 

resource factor more at the initial stage resulted in reduced 

lifetime increase. We have also experimented with the 

different energy threshold values for the adaptive weight 

strategy outlined in Section III.D. The best thresholds were 

selected experimentally from various runs, with different 

target placements and movements, however, we will be 

exploring ways to automatically compute and adjust them as 

part of our future work. The best thresholds that maximized 

the lifetime while at the same time also consider the task 

requirements were between 60 − 70 for 𝜃1
𝐸 and 15 − 25 for 

𝜃2
𝐸. Setting the thresholds higher was found to cause 

unnecessary task reassignments between nodes resulting in 

energy lost due to communication and also from cameras 

executing more tasks than was otherwise necessary. Setting 

lower thresholds resulted in shorter lifetime improvement 

since the energy saving strategy was not initiated in time to 

migrate tasks to other cameras. The average lifetime of each 

network setup for the different task allocation approaches after 

multiple runs with different task configurations is shown in 

Fig. 3. For all setups, the average network lifetime is increased 

between 17% − 64% as shown in Fig. 4, which also 

illustrates the impact of each mechanism in the overall 

improvement, which shows that the adaptive weight strategy is 

a significant factor in the overall lifetime increase. 

V. CONCLUSIONS 

This paper presented results on distributed adaptive energy-

oriented multi-task-allocation in SCNs. As an immediate 

follow up we aim to futher improve the adaptive strategy 

assignment by exploring how the different parameters can be 

optimally and dynamically adjusted during network operation. 

We will also study the impact of different objective functions 

on the assignment problem.  
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TABLE I: NETWORK SETUP INFORMATION & PARAMETERS 
Number of Cameras (𝑁𝐶) 6-30 Number of vision tasks (𝑁𝑉) 30-90 

Vision Tasks Resource 

Requirements (%) 
5-25 

Vision Tasks Performance 

Requirements (FPS) 
6-30 

Energy Unit Consumed Per 

Processing Resource 
0.1 

Energy Unit Consumed Per 

Messaged Transmitted 
0.08 

 

TABLE II: DIFFERENT INITIAL WEIGHT VALUES IN DIFFERENT EXPERIMENTS 
 𝑤𝐸 𝑤𝑅 𝑤𝐹 𝑤𝐷 

Baseline 0 0 0.5 0.5 

Initial Set 1 0.15 0.15 0.35 0.35 

Initial Set 2 0.25 0.25 0.25 0.25 

Initial Set 3 0 0 0.5 0.5 

 

 
Fig.  2.  Examples of the different network camera setups used in simulations. 

 
Fig.  3. Average lifetime of network for different network setups and 
scenarios for proposed methodology and baseline model. 

 
Fig. 4. Percentage of average lifetime improvement of proposed approach 

over baseline. Breakdown of the impact of each component. 

 


