
A Probabilistic Approach for Failure Localization
Tania Panayiotou

Department of Electrical and
Computer Engineering
University of Cyprus

Email: panayiotou.tania@ucy.ac.cy

Sotirios P. Chatzis
Department of Electrical Engineering,

Computer Engineering, and Informatics
Cyprus University of Technology
Email: sotirios.chatzis@cut.ac.cy

Georgios Ellinas
Department of Electrical and

Computer Engineering
University of Cyprus

Email: gellinas@ucy.ac.cy

Abstract—This work considers the problem of fault localization
in transparent optical networks. The aim is to localize single-
link failures by utilizing statistical machine learning techniques
trained on data that describe the network state upon current
and past failure incidents. In particular, a Gaussian Process
(GP) classifier is trained on historical data extracted from the
examined network, with the goal of modeling and predicting
the failure probability of each link therein. To limit the set of
suspect links for every failure incident, the proposed approach is
complemented with the utilization of a Graph-Based Correlation
heuristic. The proposed approach is tested on a dataset generated
for an OFDM-based optical network, demonstrating that it
achieves a high localization accuracy. The proposed scheme can
be used by service providers for reducing the Mean-Time-To-
Repair of the failure.

I. INTRODUCTION

In practice, localization of network faults is usually per-
formed by knowledgeable network operations teams, who
work with associate on-call engineers to resolve problems
in real time with the help of monitoring data. Such an
approach can be time consuming; this may be further worsen
by monitoring noise and the increasing size of the networks.
As the scale of a network grows, automated fault localization
becomes increasingly important, since it can reduce MTTR
and service disruption.

In optical networks, the failure of a network element can
result in the failure of several lightpaths and can, thus, cause
huge data losses. This problem becomes more crucial when
lightpaths are migrated to high bit rates, such as 40, 100
Gbps and beyond (with the latter being expected to be ac-
commodated in future OFDM-based elastic optical networks).
Commonly observed faults in optical networks are caused by
fiber cuts, equipment failures, excessive bit errors, and human
error. After the detection of a failure, protection/restoration
techniques are invoked so that the traffic is recovered prior
to the localization and repair of the faulty component [2]–[4].
Most of the existing works deal with the single-link failure
scenario, since the occurrence of more than one simultaneous
link failures in an optical network is not very common.

In opaque optical networks, it is relatively simple to perform
failure detection and localization [11]. However, in transparent
optical networks, failure localization becomes a challenging
task. Existing fault localization approaches [6], [11]–[15],
where the term fault may refer to both equipment and/or
link failures, assume the use of monitoring equipment for

accurately localizing failures. Monitoring equipment is able to
send alarms and notifications when the optical signal deviates
from its expected value. Thus, failure management relies on
the information collected from the network through captured
signal alarms. Even though monitoring does not influence
optical signal transmission, it is costly, it may result in noisy
alarms, it leads to extra bandwidth resource utilization, as
well as to additional delay and extra control complexity at
the electrical domain.

In this work, we propose localizing single-link failures
in transparent optical networks, as accurately as possible,
by applying advanced statistical machine learning techniques
on historical data that can be found readily available in
network management databases, and provide information on
the network state upon failure incidents. We assume that a
Path Computation Element (PCE) is present (i.e., the ABNO
architecture [5]) that is resource aware and is able to maintain
a centralized traffic engineering (TE) database with detailed
spectrum availability information. Thus, it is capable of speci-
fying the full details of each link and each lightpath. From this
traffic engineering database, information can be extracted and
stored in a knowledge database for training/validating/applying
the fault localization model proposed. Further, we assume that
a failure is detected (at the destination nodes of the established
lightpaths) through a number of monitoring alarms capable
of identifying, among the established lightpaths, the affected
lightpaths. In the data plane, the optical network is considered
to be equipped with monitors, e.g., installed in the digital
signal processing of the coherent receivers (in a similar manner
as the one assumed in [6]). The affected/unaffected lightpahts
can be appropriately correlated for reducing the number of
links suspected for causing the failure. As the lightpath corre-
lation procedure may not unambiguously identify the suspect
link [6], a link failure probability is calculated aiming at
indicating the truth likelihood of each suspect link to be the
faulty link.

The novelty of this work stems from the fact that the
proposed fault localization scheme calculates a link failure
probability for each one of the links being suspect of caus-
ing the failure, aiming at reducing the Mean-Time-To-Repair
(MTTR). In particular, the proposed fault localization scheme
consists of two phases: (A) The first phase is activated upon the
detection of a failure and consists of correlating the affected
and unaffected lightpaths. Similar to [6], we assume that once

a failure is detected, the affected lightpaths are identified
according to a number of alarms triggered by the monitoring
equipment at the data plane. For the path correlation phase,
a Graph-Based Correlation (GBC) heuristic is developed. (B)
The second phase is activated only if the GBC heuristic reports
that more than one links are suspect for causing the failure.
This phase consists of computing a failure probability for each
suspect link, aiming at identifying as accurately as possible the
failed link. The failure probability is computed by a Gaussian
Process (GP) classifier trained on a set that describes past
failure incidents. In particular, the GP classifier is trained
according to a set that describes both the time dependencies
between the successively occurred failures and the network
state upon each failure incident.

As the proposed approach targets the accurate localization
of the failure, it can be used by service providers for reducing
the MTTR, and consequently the human effort required for
the identification and repair of the faulty component [2]. The
main advantage of the proposed approach is that it does
not assume the utilization of any probing lightpaths (extra
monitoring equipment), thus reducing the network cost and
the control management complexity. For ensuring the network
resiliency we assume that a fault protection scheme is invoked
immediately after the detection of the failure, independently
from the fault localization procedure.

II. APPROACH MOTIVATION

In this work we define as link failure the incident caused
by the abnormal operation of a fiber link or any component
attached to a fiber link. The proposed fault localization scheme
is based on the exploitation of the Mean-Time-Between-
Failures (MTBF). The MTBF is usually modeled by well
known distributions, such as the Exponential distribution or the
Weibull distribution. Both distributions have a scale parameter
describing the MTBF. The Weibull distribution, has also a
shape parameter that describes how MTBF changes over time.
Thus, the Weibull distribution is also capable of describing
the ageing effects of the network components. In this work,
and according to [7], we assume that the MTBF follows
the Weibull distribution, with each one of the network links
being described by their own scale and shape parameters.
In particular, in [7] it was shown that the empirical CDF
of the MTBF (of optical network related failures) is well
approximated by a Weibull distribution in which the failure
rate changes over time. This outcome, was the result of
analyzing a dataset consisting of failure information for all
links in the continental US for a period of seven months.

Specifically, we generate a dataset of failure information,
assuming that the MTBF of each link in the network follows
the Weibull distribution. To create a dataset that captures the
time dependencies between the successively occurred failures,
we count (1) the total number of failures in the network C(i)
and (2) the number of failures cj(i) associated with each link
ej in the network, up to the last known failure incident i. Then,
by dividing cj(i) with C(i), for each incident i, we manage to
keep failure information regarding the failure rate of each link,

which is relative to the failure rate of the other links in the
network. In the dataset we also include information describing
the network state upon each incident i (i.e., affected and non
affected connections).

Such historical information can then be utilized by a prob-
abilistic model for finding the truth likelihood of a link ej
to be the failed link upon incident i. In this work we use
a GP classifier for calculating such probability. The class of
GPs is one of the most widely used families of stochastic
processes for modeling dependent data observed over time.
Thus, GPs are useful for sequential data, such as time-series
and tracking applications and can be particularly used for
active data selection in such systems [8]. GPs constitute one
of the most important Bayesian machine learning approaches
and are based on a particularly effective method for placing a
prior distribution over the space of regression functions. They
have a small number of tunable parameters, can be trained on
relatively small training sets, and exhibit significant robustness
to outliers and the ability to handle sparse data without becom-
ing prone to overtraining. Compared to another popular form
of discriminative kernel machines, i.e., the Support Vector
Machine (SVM) [9], GPs possess several advantages, with the
most significant being that the GP model produces an output
with a clear probabilistic interpretation, providing a measure
of uncertainty for the obtained predictions, contrary to SVMs
which merely provide point predictions [10].

III. PROBLEM FORMULATION

The approach assumes a network topology represented by
the graph G = (V,E), where V corresponds to the set of
network nodes, and E to the set of links in the network.
Specifically, we denote E = {ej |j = 1, ..., D}, where D is the
total number of links in G. As pointed out, upon a link failure
the affected destination nodes will report the abnormal network
behavior. Upon failure detection, the Graph-Based Correlation
(GBC) heuristic described in detail in Section IV-A is utilized
for reducing the number of suspect links in the network.
Briefly, the GBC heuristic, upon failure i, takes as input the set
of affected paths P (i) and the set of unaffected paths P ′(i),
and through a path correlation procedure returns the set of
suspect failed links S(i). Assuming that for every incident
i the GBC returns a set S(i) with more than one suspect
links, the set S(i) is utilized for creating the observation vector
x(i) = [x1(i),, xD(i)] (independent variable), where

xj(i) =

{
− cj(i)

C(i)
, if ej ∈ S(i)

0, otherwise.
∀ej ∈ E (1)

cj(i) is the number of times link ej has failed up to incident
i−1, and C(i) is the total number of failures in the system up
to incident i, such that C(i) =

∑D
j=1 cj(i) + 1. Each vector

x(i) is associated with a corresponding dependent variable
vector y(i) = [y1(i),, yD(i)], where

yj(i) =

{
1, if ej has failed at i
−1, otherwise

∀ej ∈ E (2)

and
∑D

j=1 yj(i) = −D + 1, as we are only considering
a single-link failure scenario. Thus, a training set D =
{(x(i),y(i))}|i = 1, ..., n} is created, with n being the total
number of known failure incidents. The dataset D is then
utilized for training the used GP classifier, as described in
detail in Section IV-B. The generation procedure of the dataset
D follows in Section V.

IV. LINK FAILURE LOCALIZATION

As pointed out, a GP classifier is trained with the dataset
D for learning to predict the link failures in the network.
According to Eq. 1, the creation of dataset D depends on
a set of candidates S = {S(i)|i = 1,n}, calculated by
means of the GBC heuristic. As such, we first describe the
GBC heuristic, and then proceed with a brief presentation of
the GP classification technique.

A. GBC Heuristic

For the description of the GBC heuristic we define as
P ′(i) = {p′m(i)|m = 1, ..., t′(i)} the set of unaffected paths
upon incident i, and as P (i) = {pm(i)|m = 1, ...t(i)} the set
of affected paths upon incident i. Note that a path is considered
affected if it passes through the failed link. Otherwise, it is
considered unaffected. Additionally, a path is defined as the
set of links it traverses. On this basis, the GBC heuristic is
described in Algorithm 1.

Algorithm 1 GBC heuristic
Input: The sets P and P ′, where P = {P (i)|i = 1,n} and
P ′ = {P ′(i)|i = 1,n}.
Output: The set S, where S = {S(i)|i = 1,n}.

1: for i = 1 to n do
2: A(i) =

⋂t(i)
m=1 pm(i)

3: A′(i) =
⋃t′(i)

m=1 p
′
m(i)

4: if A(i) = ∅ then
5: A(i) = p1(i)
6: end if
7: S(i) = A(i)− (A(i)

⋂
A′(i))

8: end for
9: return S

The basic idea of the GBC heuristic is to intersect the
affected paths in order to get the set of links A(i) that are
common to every affected path. If, however, only a single path
is affected, then the set A(i) is just the set of links traversing
this path. Then, the GBC removes from set A(i) the links that
cannot be considered suspect as they also belong to the set of
unaffected links A′(i). The heuristic terminates by returning
the set S(i). Note that GBC assumes that there always exists
at least one affected path that triggers the fault localization
procedure.

B. GP Classification

If we consider an observation space X , then a GP f(x),
where x ∈ X , is defined as a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion [16]. A GP is completely defined by its mean function
and covariance function. If the mean function for a real process

f(x) is defined as m(x) and the covariance function evaluated
at x and x′ is defined as k(x,x′), then we have

m(x) = E[f(x)] (3)

and

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (4)

Hence, the GP can be written as

f(x) ∼ N (m(x), k(x,x′)) (5)

where N (·|µ,Σ) is a Gaussian distribution with mean µ and
covariance Σ.

Given the dataset D = {(x(i),y(i))}|i = 1, ..., n}, with
the D-dimensional variables x(i) and the targets y(i) defined
in Section III, we wish to make predictions for new inputs
x(∗) that have not been observed in the training set. In
particular, we wish to predict the corresponding outputs y(∗)
based on the information contained in the training set D. This,
however, corresponds to a multiclass classification problem
with D classes. Specifically, each link ej ∈ E is represented
by the class j, where j = 1, ..., D. GP classification can then
be formulated as either a single GP multiclass classification
problem, or as multiple GP binary classification problems; in
the latter case, we train D models, where the jth model is
trained to recognize the jth class versus all other classes.

In this work, we have formulated the problem according to
the GP binary classification in order to avoid the scalability
issues that may arise as the network grows. Thus, the dataset
D is decomposed into D datasets such that D = {Dj |j =
1, ..., D}, where Dj = {(x(i), yj(i)}|i = 1, ..., n}. Then,
each dataset Dj is utilized by a separate binary GP classifier,
that produces one probabilistic model for each link in the
network. Therefore, in the discussion that follows we focus
on the GP-based binary classification problem. Note that for
brevity, notation j is omitted in the remainder of this section.

1) Model Formulation and Training: In binary GP classifi-
cation the postulated model attempts to predict the probability
of the dependent variable being “on,” i.e., y = 1. Specifically,
binary GP classification postulates π(x) , p(y = 1|x) =
σ(f(x)), where σ(.) is the logistic function, and f(x) is a
real-valued latent function that constitutes the main modeling
mechanism of the GP classifier. Binary GP classification,
being a Bayesian inference approach, proceeds by imposing a
Gaussian prior over the inferred latent function f(x), jointly
over all the training instances X = {x(i)}ni=1 and the test
instance x(∗), yielding

[
f(X)

f(x(∗))

]
∼ N

(
0,

[
K(X,X) k(x(∗))
k(x(∗))T k(x(∗),x(∗))

])
(6)

where

k(x(∗)) , [k(x(1),x(∗)),, k(x(n),x(∗))]T (7)

and K is the matrix of the covariances between the n training
data points usually referred to as the gram matrix (shown in
Eq. 8 below).

K(X,X) ,

k(x(1),x(1)) k(x(1),x(2)) ... k(x(1),x(n))
k(x(2),x(1)) k(x(2),x(2)) ... k(x(2),x(n))

. . .

. . .

. . .
k(x(n),x(1)) k(x(n),x(2)) ... k(x(n),x(n))

(8)

Note that, in the above equations, k(x(z),x(m)) is the
kernel function of the postulated GP model, which expresses
the similarity between two data points x(k) and x(l) and
takes nonnegative values in R+. In our application, we employ
the automatic relevance determination (ARD) kernel [17].
Our selection is due to the capability of the ARD kernel
to determine how relevant each input component is, thereby
omitting input components that are deemed irrelevant [16].
The ARD kernel reads

k(x(z),x(m)) = θ0 exp{−
1

2

n∑
j=1

ηj(xj(z)− xj(m))2} (9)

Here, θ0 and {ηj}Dj=1 are hyperparameters of the kernel
function, that are optimized as part of the training procedure of
the GP classifier. For this purpose, we resort to maximization
of the marginal log-likelihood of the model w.r.t. θ0 and
{ηj}Dj=1, as discussed in [17].

2) Prediction Generation: Inference is divided into two
steps. First, we use Eq. 6 to derive the posterior distribution of
the latent function value corresponding to the given test case

p(f(∗)|X,y,x(∗)) =

ˆ
p(f(∗)|X,x(∗),f)p(f |X,y)df (10)

where we denote y = {y(i)}ni=1, f = f(X), and f(∗) =
f(x(∗)), while

p(f |X,y) = p(y|f)p(f |X)/p(y|X) (11)

is the posterior over the latent function values on the training
data points. Subsequently, we can use this posterior over the
latent f(∗) to produce a probabilistic prediction

π , p(y(∗) = +1|X, y, x(∗))

=

ˆ
σ(f(∗))p(f(∗)|X, y, x(∗))df(∗) (12)

Note that, for brevity, we denote y = {y(i)}ni=1, f =
f(X), and f(∗) = f(x(∗)). As the integral in Eq. 10 is
analytically intractable, we here employ a first-order Taylor
expansion of the integral around its mean. This approach,
commonly referred to as the Laplace approximation, yields
the predictive distribution expression [16]

π̄ ' Eq [π(∗)|X, y, x(∗))] =

ˆ
σ(f(∗))q(f(∗)|X, y, x(∗))df(∗)

(13)
where q(f(∗)|X, y, x(∗)) is the Gaussian approxima-
tion of p(f(∗)|X,y,x(∗)) obtained by the Laplace tech-
nique; its corresponding mean and variance expressions,
Eq[f(∗)|X, y, x(∗))] and Vq[f(∗)|X, y, x(∗))], respec-
tively, are omitted from here due to space restrictions, but
can be found in Eqs. (3.21) and (3.24) of [16].

V. DATASET GENERATION

In this work, the dataset D was generated for an OFDM-
based elastic optical network. In general, the dataset generation
process of our approach is divided into two phases. In the
first phase, a list of sequential, in time, failures is created.
Then, these failures are injected into a dynamic Routing and
Spectrum Allocation (RSA) system for creating the network
incidents from which the network features are extracted.

A. Link Failure Generation
For generating the specific points in time that each link

has failed, we assumed that the times between the successive
failures of each specific link ej follow the Weibull distribution
as explained in Section II. Each link ej , is thus characterized
by two parameters, the scale parameter λj indicating the
statistical dispersion of the probability distribution, and the
shape parameter βj indicating how quickly the failure rate of
the link increases with time. Then, a number of failure times
for each link are drawn by Lj ∼ Wei(λj , βj), where Lj is
the list in which the failure times of link ej are reported. Once
the lists Lj are generated, the list L is created by sequentially
adding into L the link with the minimum time of occurrence
among all the times reported in lists Lj . Thus, a list L is
created, in which links appear sequentially according to their
times of occurrence. Specifically, L = {ek(i)|i = 1,, n}
and ek(i) ∈ E is the failed link upon incident i.

B. Feature Extraction
Connection requests arrive dynamically into the network

according to a Poison process with exponentially distributed
holding times. The source-destination pair and the spectrum
demand for each connection request are randomly generated.
Then, for each request, the RSA algorithm is used for find-
ing a route and a free spectrum allocation for establishing
the connection. For the routing sub-problem, Dijkstra’s [18]
algorithm is used while for the spectrum allocation procedure
the first-fit algorithm is utilized. According to the first-fit
algorithm, the connection is established on the first free
spectrum slots that meet the spectrum continuity and sub-
carrier consecutiveness constraints [1]. A connection request
is accepted into the network if a route is found that meets
the the spectrum continuity and sub-carrier consecutiveness
constraints; otherwise it is blocked.

As the network evolves, link failures are injected sequen-
tially in order to capture the network state upon their oc-
currence. In particular, with every arriving request, a single-
link failure is injected, following the sequence of links in list
L. Upon the injection of each failure i, the network state is
inspected to identify the set of affected paths P (i) and the
set of unaffected paths P ′(i). A counter cj(i) is also kept for
each link ej ∈ E and for each incident i, according to Eq. 14:

cj(i) =

{
cj(i− 1), if ej 6= ek(i− 1) ∈ L
cj(i− 1) + 1, if ej = ek(i− 1) ∈ L.

∀ej ∈ E (14)

Finally, the counter C(i) is computed for each incident
i as C(i) = C(i − 1) + 1. Then, according to the above

e4

e2

e3 e1

e5

e6

e7

e8

e9

e10

e11

e12

e13

Fig. 1. Network topology with links ej denoted.

procedure, if the number of total incidents is n, the sets
P = {P (i)|i = 1,n} and P ′ = {P ′(i)|i = 1,n} are
generated as inputs to the GBC heuristic, as described in
Section IV-A. In addition, the sets C = {C(i)|i = 1,n} and
cj = {cj(i)|i, j = 1,n} are generated and used in conjunc-
tion with the GBP output set S = {S(i)|i = 1,n} for the
creation of the final dataset D = {(x(i),y(i))}|i = 1, ..., n},
as described in Section III.

VI. PERFORMANCE EVALUATION

The network topology of Fig. 1 was utilized for evaluating
the proposed fault localization scheme. The exact distances
for each link are shown in Table I. For generating the list L,
the λj and βj parameters of the Weibull distribution were
generated for each link. In particular, each λj parameter
was generated by multiplying the inverse of the distance of
each link with a random number generated by the uniform
distribution. This was done in order to assign to each link a
scale parameter relevant to its distance (i.e., longer links are
expected to fail more frequently than shorter links due to the
longer geographical distance that they are spanning and due
to the larger number of components expected to be attached
to that link). Each βj parameter was generated by multiplying
the distance of each ej link to a random number generated
by the uniform distribution. To avoid the generation of large
shape parameters, that very quickly increase the failure rate,
the βj parameters were divided by a large constant number.
The parameters used in the simulations are shown in Table I.

TABLE I
NETWORK AND DATASET INFORMATION

Link Distance λj βj Link Distance λj βj

(km) (km)

e1 1100 471 2.77 e8 800 229 1.77

e2 1600 202 1.55 e9 800 629 2.22

e3 2800 131 1.45 e10 1200 674 2.65

e4 600 971 2.53 e11 700 263 2.43

e5 1100 321 1.62 e12 900 636 2.5

e6 2000 67 2.71 e13 700 1094 2.1

e7 600 1454 2.1 − − − −

The dataset D was created by simulating dynamic point-
to-point connection requests for three different network sce-
narios: For a network load of (a) 7, (b) 10, and (c) 20
Erlangs. For all three cases, each spectral slot in the network

was set at 12.5 GHz, with each fiber link utilizing 400
slots. Fifteen-thousand (15, 000) connection requests were
generated with the connection bandwidth of each request
being randomly distributed in the set of bandwidth slots
B = {2, 4, 7, 8, 13, 16, 32, 64, 80, 100}. Note that such lightly-
loaded networks (7 to 20 Erlangs) were chosen in order
to create a large number of network incidents i for which
the GBC heuristic returns a set S(i) with more than one
suspect links in it (for heavier loads it is expected that the
GBC heuristic will succeed to isolate the failed link). The
network statistics related with the aforementioned simulation
parameters are shown in Table II. In summary, Table II reports
that for all network cases, the blocking probability is 0,
and that as the network load increases more lightpaths are
expected to be simultaneously established on the network upon
a failure incidence; that is, as the network load increases, more
information is passed to the GBC heuristic for isolating the
failed link.

For the creation of the dataset D, 10, 000 failures were
injected into the network. Thus, a dataset D was created for
n = 10, 000 incidents. The dataset D was then divided into the
training dataset Dtrain and into the test dataset Dtest that is
utilized for evaluating the efficiency of the proposed approach.
Specifically, the first 7, 000 incidents were utilized for training
the GP classifier while the last 3, 000 incidents were kept for
evaluation purposes.

As described in Section IV-B, the binary GP classifier was
applied to our data and thus the training was performed in a
“one versus the others” fashion. Thus, a probabilistic model
was computed for each link in the network. In our training
example, the training set Dtrain was modified for each link
ej ∈ E, in such way that from each Dtrain

j the incidents
for which only one link was reported as suspect and xj(.) =
0 were removed. The final number of training incidents for
each training dataset Dtrain

j and for each network scenario
examined, are shown in Table III.

After the training procedure, the evaluation phase was per-
formed on the Dtest. Amongst the 3, 000 incidents for which
we want to identify the failed link, a number of incidents for
which the GBC heuristic accurately identified the failed link,
were removed. Information regarding the Dtest

r , which is the
set created after the removal of the incidents identified by the
GBC heuristic is shown in Table IV. Further, Table IV denotes
the average, minimum and maximum number of suspect link
observed among all incidents in the Dtest

r .
For the incidents in Dtest

r , a probabilistic value was gener-

TABLE II
SIMULATION STATISTICS

Traffic load (Erlangs) 7 10 20

of Blocked Requests 0 0 0

Max. # of Established lightpaths 20 23 38

Av. # of Established lightpaths 4.2 5.41 10.58

Min. # of Established lightpaths 1 1 1

TABLE III
OF INCIDENTS IN Dtrain

j

Link 7 Erlangs 10 Erlangs 20 Erlangs

e1 771 550 299

e2 1937 1568 1388

e3 1819 1697 1542

e4 1102 762 424

e5 743 570 410

e6 3807 3685 3570

e7 444 242 61

e8 927 774 608

e9 546 313 135

e10 686 467 153

e11 812 472 202

e12 632 415 58

e13 694 481 238

TABLE IV
INFORMATION FOR Dtest

r PASSED TO THE GP CLASSIFIER

Traffic load (Erlangs) 7 10 20

of Incidents 1541 1184 686

Min. # of Suspect Links 2 2 2

Max. # of Suspect Links 12 9 5

Av. # of Suspect Links 3.24 2.77 2.18

ated according to each trained link model and the link with
the maximum value was chosen as the failed link. Table V
summarizes the results. In particular, Table V denotes the GP
accuracy for each network load and the total accuracy of the
proposed approach; that is, the percentage of all the correctly
classified incidents resulting from both the GP classifier and
the GBC heuristic over the total number of incidents tested.
The results clearly show that the approach achieves an overall
high accuracy (93% to 99%), for networks that are lightly
loaded (7 to 20 Erlangs). The results, also show that as the load
increases the approach accuracy increases significantly. This is
the case since the GBC heuristic performs better, as more paths
are simultaneously established for correlation. Further, the GP
classifier performs better as the average number of suspect
links in Dtest

r is reduced (i.e., the uncertainty is reduced).
Note that the GP classifier required approximately 1 hour for
the training procedure and approximately 1.3 sec to classify a
single incident on our MATLAB machine with a CPU @2.60
GHz and 8 GB RAM.

VII. CONCLUSION

A fault localization scheme is proposed that can be used by
service providers for reducing the MTTR and the human effort
required for fault localization purposes. The proposed fault
localization scheme consists of two phases. Once a failure
is detected, the GBC heuristic is performed for limiting the
number of suspect failed links. Then, if the GBC heuristic
returns more than one suspect links, the failure probabilities for
each suspect link are generated according to the probabilistic

TABLE V
APPROACH ACCURACY VS TRAFFIC LOAD

Traffic load (Erlangs) 7 10 20

Incidents in Dtest 3000 3000 3000

Correctly Classified Incidents by GBC 1459 1816 2314

Incidents in Dtest
r (Passed to GP) 1541 1184 686

Correctly Classified Incidents by GP 1327 1068 655

GP Accuracy 0.86 0.9 0.95

Total Accuracy (GBC and GP) 0.93 0.96 0.99

link models computed by a state-of-the-art GP classifier. The
proposed scheme achieved a high overall accuracy (reaches
99% for a network load of 20 Erlangs) without utilizing
any lightpath probing (extra monitoring equipment). Practical
feasibility issues, related to the proposed approach (i.e., how
much data is enough for training an accurate data-driven
model, how much time it would take for collecting such
number of data, scalability of the approach as the network
grows), are planned for future work.

REFERENCES

[1] K. Christodoulopoulos, et. al., “Elastic Bandwidth Allocation in Flexible
OFDM-Based Optical Networks”, IEEE/OSA J. Lightwave Technol.,
29(9):1354–1366, 2011.

[2] E. Bouillet, et. al.. Path Routing in Mesh Optical Networks. Wiley-
Interscience, 2007.

[3] G. Ellinas, et. al., “Practical Issues for the Implementation of Survivability
and Recovery Techniques in Optical Networks”, Optical Switching and
Net., 14(2):179–193, 2014.

[4] J. Rak. Resilient Routing in Communication Networks. Springer, Berlin,
2015.

[5] D. King and A. Farel, “A PCE-based Architecture for Application-based
Network Operations,” IETF RFC 7491, March 2015.

[6] K. Christodoulopoulos, et. al., “Exploiting Network Kriging for Fault Lo-
calization,” Proc. IEEE/OSA Optical Fiber Communications Conference
(OFC), Anaheim, CA, March 2016.

[7] A. Markopoulou, et. al., “Characterization of Failures in an IP Backbone,”
Proc. IEEE Infocom, Hong Kong, March 2004.

[8] R.A. Davis, “Gaussian Process: Theory”, Wiley StatsRef: Statistics Ref-
erence Online, 2014.

[9] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[10] S.P. Chatzis and Y. Demiris, “Echo State Gaussian Process,” IEEE Trans.

Neur. Netw., 22(9):1435–1445, Sept. 2011.
[11] C. Mas, et. al., “Failure Location Algorithm for Transparent Optical

Networks”, IEEE J. on Selected Areas in Com., 23(8):1508–1519, 2005.
[12] S. S. Ahuja, et. al., “Single-link Failure Detection in All-optical Net-

works Using Monitoring Cycles and Paths”, IEEE/ACM Trans. Netw.,
17(4):1080–1093, 2009.

[13] B. Wu, et. al., “A Novel Framework of Fast and Unambiguous Link
Failure Localization via Monitoring Trails”, Proc. IEEE Infocom, San
Diego, CA, March 2010.

[14] M. L. Ali, et. al., “Multi-link Failure Localization via Monitoring
Bursts”, IEEE/OSA J. Opt. Commun. Netw., 6(11):952–964, 2014.

[15] H. Herodotou, et. al., “Scalable Near Real-time Failure Localization of
Data Center Networks”, Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), NY, Aug. 2014.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006.

[17] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag, 2006.

[18] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”,
Numer. Math., 1(1):269–271, 1959.

