
A Virtual Object Stack for IoT-Enabled Applications Across the Compute
Continuum
GEORGE PAPATHANAIL, University of Macedonia, Greece
LEFTERIS MAMATAS, University of Macedonia, Greece
TRYFON THEODOROU, University of Macedonia, Greece
ILIAS SAKELLARIOU, University of Macedonia, Greece
PANAGIOTIS PAPADIMITRIOU, University of Macedonia, Greece
NIKOS FILINIS, National Technical University of Athens, Greece
DIMITRIOS SPATHARAKIS, National Technical University of Athens, Greece
ELENI FOTOPOULOU, National Technical University of Athens, Greece
ANASTASIOS ZAFEIROPOULOS, National Technical University of Athens, Greece
SYMEON PAPAVASSILIOU, National Technical University of Athens, Greece

5G and cloud computing are set out to address various business needs, often
related to the deployment of IoT-enabled applications across the compute
continuum. However, the provision of such hyper-distributed applications
is far from trivial, due to various interoperability and convergence aspects.
In this respect, we introduce a software stack (VOStack) for IoT-oriented
virtual objects in order to remove existing openness and interoperability
barriers in the convergence of IoT technologies.

We elaborate on physical convergence aspects with an emphasis on net-
working functionalities in order to address communication issues between
IoT devices, IoT gateways, and compute nodes that host virtual objects. In
particular, we present control plane functionalities, within the VOStack, for
time-sensitive networking (TSN) and reactive routing in order to ensure
the timely delivery of time-sensitive data and also alleviate any potential
implications due to intermittent connectivity or mobility.

1 INTRODUCTION
Internet of Things (IoT) technologies are evolving at a rapid pace
over the last years, leading to the development of various solutions
to enable the efficient, secure and reliable deployment of IoT applica-
tions [14]. Such solutions include the development of IoT platforms
in the form of middlewares to tackle interaction with IoT devices
and data fusion aspects, the development of data modeling solu-
tions for the representation of the entities in the IoT world and the
collected data, and the development of virtual counterparts of IoT
devices and systems in the form of Digital Twins (DTs) [20].
All the aforementioned types of software are provisioned over

resources with increased levels of heterogeneity. These resources
include -among others- IoT devices deployed usually at the end-
point of provision of the applications, IoT gateways deployed at
the extreme edge part of the infrastructure, compute nodes and
network management boxes (e.g., Software Defined Networking –

Authors’ addresses: George Papathanail, papathanail@uom.edu.gr, University of Mace-
donia, Greece; Lefteris Mamatas, emamatas@uom.edu.gr, University of Macedonia,
Greece; Tryfon Theodorou, theodorou@uom.edu.gr, University of Macedonia, Greece;
Ilias Sakellariou, iliass@uom.edu.gr, University of Macedonia, Greece; Panagiotis Pa-
padimitriou, papadimitriou@uom.edu.gr, University of Macedonia, Greece; Nikos Fili-
nis, nfilinis@netmode.ntua.gr, National Technical University of Athens, Greece; Dim-
itrios Spatharakis, dspatharakis@netmode.ntua.gr, National Technical University of
Athens, Greece; Eleni Fotopoulou, efotopoulou@netmode.ntua.gr, National Technical
University of Athens, Greece; Anastasios Zafeiropoulos, tzafeir@cn.ntua.gr, National
Technical University of Athens, Greece; Symeon Papavassiliou, papavass@mail.ntua.gr,
National Technical University of Athens, Greece.

SDN switches) deployed at the edge and cloud part of the infrastruc-
ture. The term computing continuum is introduced to represent the
aforementioned resources and the deployment of IoT applications
over resources that span across it.
A set of challenges are identified for managing the deployment

of IoT applications across resources in the computing continuum,
mostly associated with technologies openness, interoperability and
convergence aspects [22]. These challenges include the need for in-
teroperability with different communication protocols, the difficulty
to maintain a consistent level of Quality of Service (QoS) in dynamic
environments with varying connectivity and high mobility, the need
to consider various communication patterns from point-to-point to
mesh networks, the need to achieve low-latency communication
to serve various IoT applications, and the need to incorporate edge
computing capabilities and manage distributed computing resources
effectively.
In our work, we consider that a promising way to tackle such

challenges is the adoption of virtualization technologies and the
development of a software stack that can support the provision of
virtual counterparts of IoT devices [20, 23]. The virtual counter-
parts have to be able to support various IoT device management,
networking and security functionalities, while providing open and
interoperable interfaces for interacting with both the IoT devices
and the edge/cloud computing platforms. We introduce the concept
of the Virtual Object (VO) that acts as the virtual counterpart of
the IoT device or a virtual counterpart of a group of similar IoT
devices (e.g., by interacting with an IoT gateway over an IoT cluster)
[23]. This concept is further extended in cases that there is a need to
manage information coming frommore than one type of IoT devices.
In this case, a composite VO (cVO) is considered, able to interact
with more than one VOs, fuse information coming by them, as well
as enforce joint policies and behaviours to them. The functionalities
supported by the (c)VOs are based on the development of a software
stack, termed as VOStack [23].
In this paper, we focus on the presentation of the networking

mechanisms supported by the VOStack. Such mechanisms are nec-
essary in different real-world scenarios, for instance, managing
information flow in a large commercial port. In such a case, IoTs lo-
cated on transport trucks and/or cargo containers need to maintain



Papathanail et al.

Fig. 1. VOStack layers.

efficient communication in a challenging environment to support
a diversity of applications. Mechanisms to tackle such challenges
include time-sensitive networking (TSN) functionalities targeted
mainly in cases where latency-sensitive application components
have to be provisioned at the far-edge part of the infrastructure,
and reactive routing functionalities targeted mainly in the case the
communication among a group of IoT nodes has to be dynamically
managed through their virtual counterparts.

2 VIRTUAL OBJECT STACK
The VOStack is a software stack that aims to enable the convergence
of IoT, edge and cloud computing technologies and facilitate the
development of distributed IoT applications that can be manageable
across resources in the computing continuum [23]. The VOStack
aims at addressing challenges related to the convergence, interoper-
ability, and unified abstraction of IoT technologies and mechanisms,
as well as challenges related to the convergence of IoT technologies
with edge and cloud computing technologies.

With the term IoT interoperability, we refer to both protocols
and semantic interoperability. Protocol interoperability aims at sup-
porting (in an agnostic way) various network protocols for the
communication between Virtual Objects (VOs) and IoT devices (e.g.,
HTTP, MQTT, CoAP). Semantic interoperability refers to the sup-
port of different data modeling schemes (e.g., W3C WoT, NGSI-LD,
OMA LwM2M) for the representation of the data collected by the
IoT devices [21]. Semantic interoperability is mostly targeted to IoT
application developers.
The VOStack is based on a layered approach with discrete func-

tionalities and objectives per layer. It consists of three basic layers,
namely the Physical Convergence layer, the Edge/Cloud Convergence
layer, and the Backend Logic layer. A high-level layered view of the
VOStack is depicted in Fig. 1.

The Physical Convergence layer is responsible for managing the
connectivity and communication aspects of the VOs with the dif-
ferent type of IoT devices. It tackles registration, bootstrapping,
authentication aspects and management of the network mecha-
nisms applied for the interaction with the IoT devices. A set of
network-oriented functionalities are available to facilitate intermit-
tent connectivity of the devices, manage dynamic routing protocols,
support TSN mechanisms, and tackle mobility aspects.

The Backend Logic layer encompasses a set of functionalities to
support the operation of the VOs and cVOs. Each functionality is
represented in the form of a virtual function. A virtual function may
include IoT device’s operational behaviors, enhanced functionalities,
and services that the Object/Device can perform. A virtual function
may support both processing of the collected data from the IoT
device, as well as enforcement of actions or policies to the IoT device.
Subset of the virtual functions are going to be generic enough to be
applicable in a variety of IoT devices, while another subset may be
IoT-device specific.
The Edge/Cloud Convergence layer is responsible for support-

ing mechanisms and interfaces to enable the integration of (c)VOs
within application graphs and also render such components orches-
tratable by edge/cloud computing orchestration platforms. As such,
end-to-end orchestration mechanisms can be made available, able to
manage the deployment of application components across resources
in the computing continuum from the IoT to the edge to the cloud.

3 NETWORKING SUPPORT IN THE VOSTACK
As stated in Section 2, the networking functionalities supported by
the Virtual Object (VO) are accommodated within the Physical Con-
vergence layer of the VOStack. For instance, in the context of a smart
port use case, a network of IoT devices is deployed in the area, rang-
ing from cameras to sensors monitoring storage parameters (e.g.,
temperature, humidity) mounted on cargo containers. In the former
case of IoT devices, minimal latency and jitter are crucial metrics,
whereas in the case of cargo container sensors, dynamic routing
is crucial, since cargo container stacking, a usual practice in large
ports, can create signal interference that may lead to low quality or
even connectivity loss, in a rather dynamic mode as these contain-
ers are being constantly relocated. A plethora of network-oriented
functionalities are provided to support uninterrupted connectivity
with the devices, handle dynamic routing protocols, implement TSN
techniques, and also address mobility considerations.
The internal structure of the networking functionalities of the

VO is depicted in Fig. 2. These functionalities are organized as two
distinct elements, specifically the TSN Control plane and Reactive
Routing. Fig. 2 illustrates that the internal networking components
in the (c)VO may consist of either components exclusive to the
cVO (e.g., Clustering and Schedule Engine) or components that are
deployed either to VO and cVO (e.g., Network Model and Flow &
Path Model).
By utilizing TSN, we will ensure low latency and jitter in the

communication between IoT devices and their associated VOs. The
deployment of these VOs can be carried out as containers on servers
that are positioned at the network’s edge, or on network devices (i.e.,
IoT Gateways) at the far-edge of the compute continuum. TSN will
assign greater precedence to the transmission of data pertaining to
high-priority traffic communication. This communication may be
related to tasks, such as the streaming of videos captured by cameras,
the transfer of data collected by sensors, and the dissemination of
instructions to control robotic arms. In contrast, other types of
traffic, such as best-effort, will be assigned with a lower level of
priority. The Qbv-based TSN scheduler [3], specifically the TAPRIO

2



A Virtual Object Stack for IoT-Enabled Applications Across the Compute Continuum

Fig. 2. Physical convergence layer of the VOStack.

qdisc, is employed on IoT Gateways that are placed between IoT
devices and (c)VOs.
On the other hand, Reactive Routing maintains network con-

nectivity between wireless IoT nodes and the IoT gateway. The
former typically collect measurements from their environment and
communicate them periodically to a VO through the IoT gateway.
There are also cases of deployments with both sensors and actuators,
where the central system does not have the role of measurement
collection, but is instead notified of specific events or has a coordi-
nating role with the nodes. The network paths between the wireless
sensor nodes and the IoT gateway (or the wireless sensor nodes)
are occasionally multi-hop, as their distance may extend beyond
their individual network coverage. While traditional IoT network
protocols can be employed in such scenarios (e.g., RPL), our pri-
mary focus lies on Software-Defined Wireless Sensor Networking
(SD-WSN) approaches, which offer several distinct advantages. SD-
WSN enables dynamic routing adjustments based on a global view
of the network, e.g., handling routing changes due to mobility or
signal interference. Furthermore, they provide logically-centralized
and programmable routing control, allowing easy integration with
the distributed control across the compute continuum, fostering
enhanced network intelligence and monitoring capabilities.

4 SOFTWARE-DEFINED WIRELESS SENSOR
NETWORKING (SD-WSN)

SD-WSN can support intelligent, programmable, and logically-centralized
control mechanisms that dynamically adjust protocol functionalities
to achieve improved performance and resource utilization, address-
ing specific performance demands from IoT applications. However,
wireless IoT deployments are often affected by radio signal issues,
e.g., due to mobility or interference, which can impair control com-
munication. Furthermore, the latter may also be characterized by
increased overhead. To tackle the challenges of intermittent connec-
tivity with the controller, control message scalability, and mobility,
several SD-WSN solutions have been proposed in the literature.

For example, they target control channel issues, such as (i) SDN-
WISE [2] introducing stateful routing tables and proactive routing
decisions to reduce the number of interactions with the controller;
(ii) TinySDN [9] implementing a distributed control plane architec-
ture based on multiple controllers; and (iii) Atomic-SDN [4] propos-
ing a time-sliced mechanism that separates the SDN control from

the WSN data plane messages using designated flooding periods for
the control messages. Application-aware service provisioning is in-
vestigated in Soft-WSN [5], implementing topology control, device
and network management to meet run-time and application-specific
requirements.
CORAL-SDN [25] and its evolution VERO-SDN [27] solutions

adopt a modular controller architecture, multiple configurable topol-
ogy discovery and flow establishment mechanisms [26] and an
out-of-band approach to handle control overhead, i.e., utilize a long-
range low-rate control interface and a short-range high-rate data
interface. Furthermore, SD-MIoT [28] augments VERO-SDN with
a better support of mobile IoT nodes, through: (i) mobility-aware
topology control, utilizing a hybrid of global and local topology
discovery algorithms; (ii) routing mechanisms adapted to mobility
employing a hybrid combination of reactive and proactive flow es-
tablishment methods; and (iii) an intelligent algorithm that detects
passively in real-time the mobile network nodes.

We argue that the solutions above could benefit from their seam-
less operation over the Cloud-to-Edge continuum, in terms of im-
proved scalability, intelligent adaptability and performance. Our
approach builds upon the results from SD-MIoT [28].

4.1 SDN Control Plane
Hereby, we investigate a new SDN controller architecture where
the Compute Continuum Network manager implements high-level
network management functionalities (e.g., communicates applica-
tion or flow requirements), the cVO translates such requirements
into a customized protocol configuration for a number of VOs and
the latter implement autonomous network control features, e.g.,
topology discovery or flow establishment. As shown in Fig. 2, the
(c)VOs implement Reactive Routing through the following SDN
control facilities: (i) Topology Discovery, (ii) Network Model, (iii)
Clustering, and (iv) Path Computation, which we detail below.

Topology Discovery (TD).We currently support three topology
discovery mechanisms, as introduced, extended and utilized in [26],
[27], [28], i.e., the Node’s Advertisement Flooding (TC-NA), the
Node’s Neighbors Requests from the Controller (TC-NR), as well as
their hybrid combination. TC-NA is an epidemic algorithm inspired
by the topology discovery mechanism detailed in [29], employed
by the state-of-the-art non-SDN IoT routing protocol IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL). In TC-NA, TD
periodically communicates topology discovery control packets to
its assigned border router, triggering the broadcasting of “Neigh-
bors’ Discovery” short-range beacon message from the latter. Each
receiving neighbor creates a response message that informs TD for
any link existence between the beacon node and itself. TC-NR is
a centralized topology discovery algorithm better aligned to SDN
paradigm and dynamic topologies, i.e., collects topology informa-
tion through individual requests to the nodes from the TD. It is
flexible enough to send targeted topology requests on specific nodes
or parts of the network without overloading the rest of the topology.
Lastly, we also utilize a hybrid combination of TC-NA/TC-NR [28]
for heterogeneous topologies that consist of both mobile and fixed
nodes, for maximum adaptation to the dynamic characteristics of
the network. TD is implemented in each VO and can have bespoke

3



Papathanail et al.

configuration, depending on the deployed IoT application and the
network characteristics (e.g., level of dynamicity). The results of
TD are also being forwarded to the cVO, i.e., building up the global
picture of all deployments.

Network Model (NM). NM is responsible for topology mainte-
nance and representation, i.e., the former ensures that the latter
is up-to-date. Although IoT protocols such as RPL use distributed
mechanisms residing at the nodes (e.g., trickle timer [29]), our topol-
ogy maintenance is fully coordinated from the VO, allowing an easy
integration of context-sensitive solutions. For example, different
static topology refresh periods can be assigned to fixed (i.e., higher
values) compared to mobile nodes (i.e., lower values), regulating
control overhead and achieving efficient topology maintenance. The
topology representation assigns frequently updated link quality
values to each edge of the graph, which can be selected from the
administrator (e.g., Link Quality Indicator (LQI) or Received Signal
Strength Indicator (RSSI)). NM resides both at VOs, i.e., maintaining
the topology graph of IoT nodes assigned to it, and the cVO (i.e.,
keeping track of all IoT nodes in the area).

Path Computation (PC). PC specifies the end-to-end paths from
source to destination nodes (i.e., the latter could be the IoT gate-
way passing the data to the VO). These paths should be aligned to
the requirements of the IoT application, e.g., reduce delay, achieve
reliable communication, avoid loops or deadlocks, as well as con-
structing alternative paths. PC determines these paths that are being
translated to flow rules in tuples of Destination and Next Hop node
addresses, being stored to the individual flow table of each node. In
constrained and dynamic IoT environments the flow rule expiration
mechanisms are also important. In our case, the flow rule expira-
tion is being handled entirely by the PD, so it can be aligned to
other important network control decisions (e.g., topology discovery
or maintenance parameters). We currently support four types of
flow establishment processes (i.e., being responsible to construct
and maintain the forwarding tables of the nodes), the Next-Hop
Only (NHO), the Complete Path (CP), the NHO-CP combination as
well as the Proactive Flow Establishment (PFE) mechanisms. NHO
communicates to the nodes their own forwarding rule only, i.e.,
to reach the next node, where the CP informs all the intermediate
nodes participating in the routing path. An NHO-CP combination is
being employed in the case of topologies consisting of both mobile
and fixed nodes, where the fixed part employs CP and the mobile
the NHO, allowing the maintenance of the dynamic parts of the
paths, only. Lastly, PFE employs clustering to classify links based
on their connectivity quality history, which guides proactive flow
establishment rules.

Clustering. Clustering capabilities are being supported at the level
of cVO or Compute Continuum Network Manager for various rea-
sons, including: (i) the appropriate association of IoT nodes with
particular VOs, which may also involve a network slicing activity
at the IoT network level; (ii) the association of bespoke protocol
configuration per node type or characteristic, e.g.,mobile nodes may
be configured by TC-NR topology discovery and refresh their con-
nectivity status more frequently [28]; and (iii) implement proactive

routing by classifying links based on their connectivity quality his-
tory [12]. At this point of investigation, we experimented with the
K-means algorithm for IoT mobility and a combination of partitional
clustering with similarity based measures (i.e., based on dynamic
time warping and k-medoids algorithm) to implement proactive
SDN-based flow establishment.

In the current work, we employ the infrastructure implemented
in the context of [27], i.e., we assume IoT nodes, that support two
radio interfaces: a long range interface for the SDN control channel
and a short range for data communication, thus implementing out-
of-band SDN control. Although we assume one border router (BR)
is located at the IoT Gateway, the approach allows for multiple BRs,
thus supporting elaborate partition of the IoT infrastructure.
The protocol assumes a control and a data network stacks in-

stalled in each IoT node, with the former catering for the long range
communication and SDN control messages and processes, while the
latter handling low power short range wireless communication and
the forwarding layer of the SDN protocol.

4.2 Interactions between SDN Control and Data Plane
The southbound API manages control messages exchanged between
the SDN Controller and the IoT nodes in order to support the func-
tionality described in the previous section. Currently, we are inves-
tigating the extension of the API as reported in [27], in the lines of
which API messages fall under the following categories: topology
control, routing control and device control.
The topology control messages concern the basic functionalities

of topology discovery and maintenance. Thus, this message class
includes Border Router (BR) related messages (registration, solicita-
tion, new BR), and messages related to node discovery; for instance,
new node response messages, or messages related to the initiation
of neighbourhood discovery. The routing control message group con-
tains messages related to the establishment of paths among node
devices and include all the forwarding rule management actions;
for instance, adding forwarding rules to nodes. Finally, the data de-
livery control message group includes messages related to IoT data
delivery, i.e., add/remove subscription messages of nodes to data
generated by the node, since the VO will be in charge of controlling
IoT data delivery, as well.

5 TIME-SENSITIVE NETWORKING
Low-latency communication between IoT devices and their respec-
tive (c)VOs comprises a crucial requirement for meeting the various
strict service related KPIs (e.g., in terms of response time). TSN
comprises an enabler for low latency, as it can provide bounded
latency and jitter [13, 15, 16], as well as cater for the protection of
high-priority traffic, such that data can be delivered within certain
deadlines.
TSN, in particular, comprises a set of standards developed by

the Time-Sensitive Networking task group within the IEEE 802.1
working group. These standards define methods for transmitting
data over Ethernet networks with high time-sensitivity and deter-
minism. A relevant standard for the purpose of low-latency com-
munication between IoT-(c)VO is IEEE 802.1Qbv [11], associated
with the so-called Time Aware Shaper (TAS). More specifically, IEEE

4



A Virtual Object Stack for IoT-Enabled Applications Across the Compute Continuum

802.1Qbv introduces a transmission gate operation concept for each
traffic class queue. At the egress port of a TSN bridge, outgoing
packets go through a Traffic Classification block that categorizes
different streams to their respective traffic classes. The packets are
then enqueued into various traffic classes based on the state of the
transmission gates. These gates are either open or closed, and their
status is controlled by a Gate Control List (GCL). GCL are commonly
configured by the TSN control plane. A widely used instantiation
of a TSN control plane is the Centralized Network Control (CNC),
which has full knowledge of the network topology and flow require-
ments. In the fully centralized TSN control plane model, the flow
requirements are conveyed to the CNC via a logical entity, namely
Centralized User Configurator (CUC).

5.1 TSN Control Plane
As far as the TSN Control plane is concerned, we utilize a prototype
implementation of a Central Network Controller (CNC) that consists
of three internal modules: (i) Flow & Path Model, (ii) Schedule
Engine, and (iii) GCL Controller.

Flow & Path Model. Path and Flow Model module has two main
functionalities. The first one is the categorization of incoming flows
into distinct traffic classes, such as high-priority and best-effort.
This is achieved based on some predefined rules that can match
applications’ network requirements (e.g., latency less than 1 ms) to
traffic classes and determine whether the request should be cate-
gorized as critical or non-critical. The second functionality of this
module is the path configuration and by path, we define the fixed
network between the IoT Gateway and the VO. This path will be
used as an input to the Schedule Engine module.

Schedule Engine. The Schedule Engine module is implemented as
a cVO component and is responsible for implementing a scheduling
model to determine a scheduling pattern for the incoming flows
in order to satisfy their latency requirements. In this implementa-
tion, the scheduling model is based on constraint programming,
since the latter offers versatility in problem modelling, and efficient
heuristic search in combination with powerful constraint propaga-
tion techniques. It should be mentioned that the TSN scheduling
problem is classified as an NP-complete problem and various strate-
gies have been proposed to address this problem in the literature,
including Satisfiability Modulo Theories (SMT) [7, 24], Constraint
Programming [8], Heuristics [3, 18], and Genetic Algorithms [17].

GCL Controller. The GCL Controller module receives the output
of the Schedule Engine as its input and is responsible for configuring
time intervals on the Gate Control List, and determining the duration
over which each queue is open for transmission. The GCL Controller
utilizes YANG [6] in order to send the GCL configuration to the IoT
Gateway.

Furthermore, the TSN Control Plane incorporates two applica-
tion programming interfaces (APIs). The proposed system includes
a Northbound API, implemented using a well-defined JSON schema,
which is capable of processing requests related to application config-
uration and requirements from the Compute Continuum Network

Fig. 3. Interaction between the TSN data and control plane.

Manager. Additionally, a technology-specific Southbound API, uti-
lizing NETCONF [10], is responsible for transmitting the GCL con-
figuration to the IoT Gateway through the use of Remote Procedure
Calls (RPC).

5.2 TSN Data Plane
For TSN data plane activation, we utilize TAPRIO (Time-Aware
Priority Packet Scheduler) - a powerful queuing discipline available
in the Linux kernel’s traffic control (tc) tool. To ensure proper packet
classification into the appropriate traffic class, TAPRIO utilizes the
priority field of the socket buffer (skb) employed by the network
stack of the Linux Kernel. This enables TAPRIO to effectively assign
time-sensitive flows to their respective priority queues.

In our implementation, we map traffic classes to queues by mod-
ifying the DSCP (Differentiated Services Code Point) field of the
packet header. As such, we prioritize traffic based on specific service
requirements and deliver the desired quality of service (QoS) to
different types of data streams. To achieve the modification of the
skb priority field before packets are directed to the queuing disci-
pline, we employ the use of iptables, a versatile packet filter tool
operating at the IP layer. By incorporating the relevant classifier
rules into iptables, we effectively manipulate the skb priority field
with precision. As such, we establish the appropriate priority for
the skb (socket buffer) as packets traverse the network. Through
this comprehensive setup, we effectively integrate TAPRIO into the
data plane of our IoT Gateway, enabling the timely delivery of data
between IoT devices and (c)VOs.

5.3 Interactions between TSN Control and Data Plane
Leveraging on IEEE 802.1Qcc [1], we utilize a hybrid TSN implemen-
tation in order to automate the process of the TAPRIO configuration

5



Papathanail et al.

on the egress interface of the IoT gateway [19]. In principle, CNC
communicates with the TSN bridges via remote network manage-
ment protocols such as NETCONF, RESTCONF and IETF YANG data
models. In the case of a client/server-based network management
protocol architecture, the TSN bridge acts as a management server,
whereas CNC acts as a management client.

In the TSN architectural framework illustrated in Fig. 3, a YANG
Parser, deployed at the userspace of the TSN bridge, parses the
YANG-TSN model to a set of actions that can be applied directly
to the queuing disc layer of the Linux kernel (Fig. 3). The CNC
establishes communication through the NETCONF [10] plugin by
utilizing the YANG data model. The NETCONF plugin functions
as a management client and establishes communication with the
NETCONF server that is operational on each TSN bridge, such as
an IoT Gateway. Following the completion of their computational
process, the TSN schedules are transmitted to the IoT gateway.

6 CONCLUSIONS
In this paper, we presented a software stack for IoT-oriented virtual
objects in order to address various convergence and interoperability
aspects, mainly in terms of semantics and communication protocols.
Such a VOStack can further enhance the functionality of IoT devices
by offering the ability to plug into VOs generic and IoT-specific func-
tions that can lead to both performance and energy efficiency gains.
We mainly focused on the functionality of the Physical Convergence
layer of the VOstack, and more specifically on control plane func-
tionalities for TSN and reactive routing in order to address aspects in
the communication between IoT devices and their associated (c)VOs
at the (far-)edge of the network, such as intermittent connectivity,
mobility, as well as (ultra-)low latency requirements.

ACKNOWLEDGMENTS
This work was funded by the European Union’s Horizon Europe re-
search and innovation programunder grant agreement No. 101070487
(NEPHELE).

REFERENCES
[1] 2019. IEEE, Std 802.1Qcc-2019: Standard for Local and Metropolitan Area Networks–

Bridges and Bridged Networks–Amendment 9: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements.

[2] A. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo. 2015.
Towards a software-defined Network Operating System for the IoT. In 2nd
IEEE World Forum on Internet of Things. 579–584. https://doi.org/10.1109/WF-
IoT.2015.7389118

[3] Frimpong Ansah, Mohamed Amine Abid, and Hermann de Meer. 2019. Schedula-
bility analysis and GCL computation for time-sensitive networks. In 2019 IEEE
17th International Conference on Industrial Informatics (INDIN), Vol. 1. IEEE, 926–
932.

[4] Michael Baddeley, Usman Raza, Aleksandar Stanoev, George Oikonomou, Reza
Nejabati, Mahesh Sooriyabandara, and Dimitra Simeonidou. 2019. Atomic-SDN:
Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?
IEEE Access 7 (2019), 96019–96034.

[5] Samaresh Bera, Sudip Misra, Sanku Kumar Roy, and Mohammad S Obaidat. 2016.
Soft-WSN: Software-defined WSN management system for IoT applications. IEEE
Syst. J. 12, 3 (2016), 2074–2081.

[6] Martin Bjorklund. 2010. YANG-a data modeling language for the network configu-
ration protocol (NETCONF). Technical Report.

[7] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner.
2016. Scheduling real-time communication in IEEE 802.1 Qbv time sensitive net-
works. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems. 183–192.

[8] Jialin Dai, Zhongcheng Wang, and Long Zhong. 2021. Research on Gating Sched-
uling of Time Sensitive Network Based on Constraint Strategy. In Journal of
Physics: Conference Series, Vol. 1920. IOP Publishing, 012089.

[9] Bruno Trevizan De Oliveira, Lucas Batista Gabriel, and Cintia Borges Margi. 2015.
TinySDN: Enabling multiple controllers for software-defined wireless sensor
networks. IEEE Latin America Trans. 13, 11 (2015), 3690–3696.

[10] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. 2011. Network Config-
uration Protocol (NETCONF). In RFC 6241.

[11] IEEE. 2016. IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic. IEEE. 1–57
pages.

[12] Sarantis Kalafatidis, Sotiris Skaperas, Vassilis Demiroglou, Lefteris Mamatas, and
Vassilis Tsaoussidis. 2023. Logically-Centralized SDN-Based NDN Strategies
for Wireless Mesh Smart-City Networks. Future Internet 15, 1 (2023). https:
//doi.org/10.3390/fi15010019

[13] Gagan Nandha Kumar, Kostas Katsalis, Panagiotis Papadimitriou, Paul Pop, and
Georg Carle. 2021. Failure Handling for Time-Sensitive Networks using SDN and
Source Routing. In 2021 IEEE 7th International Conference on Network Softwariza-
tion (NetSoft). 226–234.

[14] Bertha Mazon-Olivo and Alberto Pan. 2022. Internet of Things: State-of-the-
art, Computing Paradigms and Reference Architectures. IEEE Latin America
Transactions 20, 1 (2022), 49–63. https://doi.org/10.1109/TLA.2022.9662173

[15] Gagan Nandha Kumar, Kostas Katsalis, Panagiotis Papadimitriou, Paul Pop, and
Georg Carle. 2023. SRv6-based Time-Sensitive Networks (TSN)with low-overhead
rerouting. International Journal of Network Management 33, 4 (2023).

[16] Ahmed Nasrallah, Akhilesh S Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing
Shao, Martin Reisslein, and Hesham ElBakoury. 2018. Ultra-low latency (ULL)
networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research.
IEEE Communications Surveys & Tutorials 21, 1 (2018), 88–145.

[17] Maryam Pahlevan and Roman Obermaisser. 2018. Genetic algorithm for schedul-
ing time-triggered traffic in time-sensitive networks. In 2018 IEEE 23rd interna-
tional conference on emerging technologies and factory automation (ETFA), Vol. 1.
IEEE, 337–344.

[18] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. 2019. Heuristic
list scheduler for time triggered traffic in time sensitive networks. ACM Sigbed
Review 16, 1 (2019), 15–20.

[19] George Papathanail, Lefteris Mamatas, and Panagiotis Papadimitriou. 2023. To-
wards the Integration of TAPRIO-based Scheduling with Centralized TSN Control.
In 2023 IFIP Networking Conference (IFIP Networking). IEEE, 1–6.

[20] Marco Picone, Marco Mamei, and Franco Zambonelli. 2023. A Flexible and
Modular Architecture for Edge Digital Twin: Implementation and Evaluation.
ACM Trans. Internet Things 4, 1, Article 8 (feb 2023), 32 pages. https://doi.org/10.
1145/3573206

[21] Hafizur Rahman and Md. Iftekhar Hussain. 2020. A comprehensive survey on
semantic interoperability for Internet of Things: State-of-the-art and research
challenges. Transactions on Emerging Telecommunications Technologies 31, 12
(2020). https://doi.org/10.1002/ett.3902

[22] C. C. Sobin. 2020. A Survey on Architecture, Protocols and Challenges in IoT.
Wirel. Pers. Commun. 112, 3 (jun 2020), 1383–1429. https://doi.org/10.1007/s11277-
020-07108-5

[23] Dimitrios Spatharakis et al. 2023. A Lightweight Software Stack for IoT Inter-
operability within the Computing Continuum. In 5th International Workshop on
Intelligent Systems for the Internet of Things.

[24] Wilfried Steiner. 2010. An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks. In 2010 31st IEEE Real-Time Systems Symposium.
IEEE, 375–384.

[25] Tryfon Theodorou and Lefteris Mamatas. 2017. CORAL-SDN: A Software-Defined
Networking solution for the Internet of Things. In IEEE Conf. on Netw. Function
Virtualization and Softw. Defined Netw. 1–2.

[26] Tryfon Theodorou and Lefteris Mamatas. 2017. Software defined Topology
Control Strategies for the Internet of Things. In IEEE Conf. on Netw. Function
Virtualization and Softw. Defined Netw. 236–241.

[27] T. Theodorou and L. Mamatas. 2020. A Versatile Out-of-Band Software-Defined
networking solution for the Internet of Things. IEEE Access 8 (June 2020), 103710–
103733.

[28] Tryfon Theodorou and Lefteris Mamatas. 2021. SD-MIoT: A Software-Defined
Networking Solution for Mobile Internet of Things. IEEE Internet of Things J. 8, 6
(2021), 4604–4617. https://doi.org/10.1109/JIOT.2020.3027427

[29] TimWinter et al. 2012. RPL: IPv6 routing protocol for low-power and lossy networks.
Technical Report. IETF. 641–648 pages.

6

https://doi.org/10.1109/WF-IoT.2015.7389118
https://doi.org/10.1109/WF-IoT.2015.7389118
https://doi.org/10.3390/fi15010019
https://doi.org/10.3390/fi15010019
https://doi.org/10.1109/TLA.2022.9662173
https://doi.org/10.1145/3573206
https://doi.org/10.1145/3573206
https://doi.org/10.1002/ett.3902
https://doi.org/10.1007/s11277-020-07108-5
https://doi.org/10.1007/s11277-020-07108-5
https://doi.org/10.1109/JIOT.2020.3027427

	Abstract
	1 Introduction
	2 Virtual Object Stack
	3 Networking Support in the VOStack
	4 Software-Defined Wireless Sensor Networking (SD-WSN)
	4.1 SDN Control Plane
	4.2 Interactions between SDN Control and Data Plane

	5 Time-Sensitive Networking
	5.1 TSN Control Plane
	5.2 TSN Data Plane
	5.3 Interactions between TSN Control and Data Plane

	6 Conclusions
	References

