Published October 25, 2017 | Version v1
Journal article Open

Boosting the Hardware-Efficiency of Cascade Support Vector Machines for Embedded Classification Applications

  • 1. KIOS Center of Excellence, University of Cyprus
  • 2. Imperial College London


Support Vector Machines (SVMs) are considered as a state-of-the-art classification algorithm capable of high accuracy rates for a different range of applications. When arranged in a cascade structure, SVMs can efficiently handle problems where the majority of data belongs to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, the SVM classification process is still computationally demanding due to the number of support vectors. Consequently, in this paper we propose a hardware architecture optimized for cascaded SVM processing to boost performance and hardware efficiency, along with a hardware reduction method in order to reduce the overheads from the implementation of additional stages in the cascade, leading to significant resource and power savings. The architecture was evaluated for the application of object detection on 800×600800×600 resolution images on a Spartan 6 Industrial Video Processing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing the proposed hardware reduction method we were able to reduce the utilization of FPGA custom-logic resources by ∼30%, and simultaneously observed ∼20% peak power reduction compared to a baseline implementation.


The final publication is available at Springer via Kyrkou, C., Theocharides, T., Bouganis, CS. et al. Int J Parallel Prog (2017).


Boosting the Hardware-Efficiency of Cascade Support Vector Machines for Embedded Classification Applications.pdf

Additional details

Related works

Is previous version of
10.1007/s10766-017-0514-1 (DOI)


KIOS CoE – KIOS Research and Innovation Centre of Excellence 739551
European Commission
FAULT-ADAPTIVE – Fault-Adaptive Monitoring and Control of Complex Distributed Dynamical Systems 291508
European Commission