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NEMOH is developed to solve potential flow problems using the boundary element method for computing 
wave loads on offshore structures. The solver solves the first-order problem in the frequency domain. 
An extended module enables computation of the second-order loads on a structure in bi-chromatic bi-
directional waves. NEMOH is released as open-source, developed, and distributed under the terms of GNU 
General Public License (GPLv3). Along with the source code, a user manual is available which facilitates 
the compilation and execution of the source files. In this new release, NEMOH v3.0 has new features; 
irregular frequencies removal method, new linear system solvers for enhancing computational efficiency, 
and a new module for computing the full quadratic transfer function (QTF) of drift forces. Verification 
cases are shown for a truncated cylinder, a truncated cylinder with a thin heave plate, a spar buoy 
platform (SOFTWIND), and a semi-submersible platform (OC4). The results are compared with reference 
data from commercial software, WAMIT, DIODORE, and HYDROSTAR, and the comparison showed that 
NEMOH v3.0 is accurate and efficient.

Program summary
Program Title: NEMOH
CPC Library link to program files: https://doi .org /10 .17632 /k9v4hjb5xj .1
Developer’s repository link: https://gitlab .com /lheea /Nemoh
Code Ocean capsule: https://codeocean .com /capsule /9256007
Licensing provisions: GPLv3
Programming language: Fortran
External libraries and programs: BLAS [1], LAPACK [2]
Nature of problem: NEMOH solves the potential flow problems of diffraction and radiation in wave-
structure interactions. Typical use is the estimation of the dynamic response of floating structures, e.g. 
floating offshore wind turbine platforms, or wave-energy converters.
Solution method: The linear potential flow problems, diffraction and radiation, are expressed in the 
boundary integral of the source distribution formulation. The equations are solved in the frequency 
domain and implemented using the boundary element method with quadrilateral panels. The source 
distribution on the body panels is obtained by solving the linear system. The hydrodynamic coefficients 
are computed with the known source distribution. The second-order potential flow problem is not 
solved directly; the Green formulation is used with an assisting function which is the instantaneous 
radiation potential, that allows the computation of second-order force for given first-order hydrodynamic 
quantities.
Additional comments including restrictions and unusual features:

• The previous version, NEMOH v2.0 [3], was available only for computing first-order hydrodynamic 
coefficients without the irregular frequency removal method. NEMOH v3.0 has new features, the 
extended boundary integral method is implemented for removing the irregular frequencies, new 
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linear system solvers are added for enhancing computational efficiency, and a new module is 
added for computing second-order wave loads. NEMOH v3.0 has better accuracy than v2.0 due to 
finer interpolation points of the free-surface Green function and a better integration method for 
constructing the influence coefficients.

• For the free-surface piercing bodies problem, it is known that non-unique solutions exist in the 
boundary integral equation at certain frequencies. In NEMOH, the extended boundary integral 
equation is applied to remove the irregular frequencies by providing the lid panels on the body 
waterplane. The second-order loads require the computation of the free-surface forcing terms in the 
integral forms. These free-surface integrals are essential for the sum-frequency wave loads but may 
be negligible in the difference-frequency loads. For now, it is suggested not to apply the lid panels 
when the free-surface integrals are computed.
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1. Introduction

Accurate and efficient computation of nonlinear wave loads on 
a floating structure is of particular concern in ocean engineering. 
In the design of floating structures, e.g., wave energy converter de-
vices or floating wind turbine platforms, nonlinear wave-structure 
interactions have to be taken into account. This concerns, for in-
stance, avoiding uncontrolled motion of the floating structure due 
to resonance phenomena, such as slow drift or springing, at the 
natural frequencies of the floating structure with the presence 
of moorings [1–3]. In this respect, potential flow codes, such as 
NEMOH, could play a role in the hydrodynamic design of the float-
ing structure.

NEMOH, developed at Ecole Centrale de Nantes, was the first 
open-source potential flow boundary element solver [4]. Since 
its first release in 2014, the software has been widely used for 
ocean engineering applications, such as the design of wave-energy 
converter devices [5–8], floating offshore wind turbine platforms 
[9,10] and hybrid wind-wave energy converter devices [11,12]. The 
hydrodynamic database from NEMOH is often used as an input for 
time domain body dynamic solvers as reported in [13]. NEMOH 
can compute the hydrodynamic interaction of multi-bodies and 
can be coupled with a wave propagation model for studying the 
far-field effect of the interaction as reported in [14] for wave en-
ergy converter arrays.

Performance of the previous NEMOH version (v2.0) has been 
reported in comparison studies against the commercial software 
WAMIT [15] in [5,7], and against the open-source software HAMS 
[16] in [7]. In the previous release version, NEMOH v2.0 was 
available only for computing first-order hydrodynamic coefficients 
without the irregular frequency removal method. The studies re-
ported that NEMOH had good accuracy in most applications with 
limitations in computational cost, irregular frequencies, and docu-
mentation. NEMOH v2.0 had poor accuracy when dealing with a 
thin structure, i.e. heave plate, due to the accuracy of the look-up 
table and the interpolation method on the free-surface Green func-
tion as noted in [4] and reported in [7].

This paper reports the release of NEMOH v3.0. In this version, 
an extended boundary integral method for irregular frequency re-
moval is implemented, new linear system solvers are added to 
enhance the computational efficiency, and an extended module 
to compute second-order wave load quadratic transfer functions 
(QTFs) is also available. NEMOH v3.0 has better accuracy than v2.0 
with finer interpolation points of the free surface Green function 
computation and the influence coefficients are now obtained by 
applying the Gauss-quadrature integration method. As in the pre-
2

vious version, NEMOH v3.0 can deal with multi-bodies interaction. 
NEMOH v3.0 can be extended for solving diffraction and radiation 
problems of deflection modes of a flexible body. This new feature 
is expected to be added in the updated v3.0 version.

The QTF module in NEMOH v3.0 is a new feature and proba-
bly the only open-source software that provides the module. The 
first development of the QTF module was reported in [17]. Exten-
sive verification of recent developments of the QTF module, against 
the commercial software developed by Bureau Veritas HYDROSTAR 
[18], for uni-directional QTFs, was reported in [19] and for bi-
directional QTFs in [20].

NEMOH software is available for downloading and contributions 
on the Gitlab platform [21]. The code is developed and redis-
tributed under the terms of the GNU General Public License as 
published by the Free Software Foundation. Along with the source 
code, documentation that describes the compilation and execution 
of the source files is also distributed.

Four floating platforms are considered for verification cases; 
a truncated cylinder, a truncated cylinder with a thin heave 
plate, a spar-buoy (SOFTWIND) and a semi-submersible (OC4). The 
NEMOH results are compared with WAMIT [15], HYDROSTAR [18]
and DIODORE [22] software.

This paper is organized as follows. Section 2 describes theoret-
ical and numerical aspects of the open-source NEMOH. Section 3
describes program documentation of the source files, compilation, 
execution of the codes, input/output files, and test cases. The ver-
ification cases with the comparison results are discussed in Sec-
tion 4. The conclusions are provided in Section 5.

2. NEMOH

In this section, the theoretical and numerical aspects of NEMOH 
are described.

2.1. Notation

As sketched in Fig. 1, we consider a fluid domain with the 
Cartesian coordinates xxx = (�x, z) with �x = (x, y) the horizontal co-
ordinates perpendicular to the z axis in the opposite direction of 
gravity ggg . The free-surface boundary S F is defined by the free sur-
face elevation at time t denoted as z = η(�x, t) with respect to the 
mean water level at z = 0, S F0 . The fluid velocity potential is de-
noted as �(xxx, t) with xxx in the fluid domain V� .

The rigid floating body has 6 degrees of freedom (DOF), ξξξ =
(XXX, θθθ) where the positions, XXX = (X, Y , Z) and the orientations, 
θθθ = (θ1, θ2, θ3) are determined at the center of gravity (COG), xxxC O G . 

https://netlib.org/blas/
https://netlib.org/lapack/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Sketch of the system.

Displacement of points at the hull is specified by a body of vector 
rrr with respect to the COG as XXX = XXX + R(rrr). R is a rotation oper-
ator where R(rrr) = θθθ × rrr. The velocity of the points at the hull is 
expressed as ẊXX .

On the body hull S B , the wetted part is defined as a function 
z = ζ(�x, t). The normalized normal vector is defined as directed 
toward the fluid domain, nnn = −NNN/|NNN| with NNN = (−∇2ζ,1) where 
∇2 is the two-dimensional gradient in �x. Then the six-dimensional 
generalized normal vector is defined as ννν = (nnn, rrr × nnn)T , with ()T

defining the matrix transpose operator. The normal vectors on the 
body at the mean position, S B0 are expressed as ννν0 and nnn0.

2.2. Hydrodynamic problem

In potential flow theory, the fluid is assumed to be inviscid and 
the flow is irrotational, ∇ × UUU = 0; the fluid velocity UUU can then 
be written as UUU = ∇� with � the velocity potential. The fluid in 
the interior domain, V� , is incompressible so that this velocity po-
tential satisfies the Laplace equation.

This fluid velocity potential has to satisfy a set of boundary con-
ditions: first, free surface conditions on S F ; second, the diffraction 
and radiation conditions on the body hull, S B ; third, the imper-
meable condition at the bottom, z = −D , and lastly, the radiation 
wave condition at the far field, |�x| → ∞.

The potential flow problem can be truncated in terms of non-
linearity by applying the perturbation series. These perturbation 
series are applied to the fluid potential, the wave elevation, the 
body displacement, the rotation operator, and the normal vector 
on the body hull. The fluid potential on the free surface and on 
the body hull is approximated using the Taylor series at the mean 
water level z = 0 and at the mean body hull S B0 , respectively. The 
hydrodynamic problem can then be reformulated at the first order, 
m = 1, and at the second order of nonlinearity, m = 2, as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇2�(m)(xxx, t) = 0 xxx ∈ V�

∂2
t �(m) + g∂z�

(m) = Q (m)
F xxx ∈ S F0

∂n�
(m) = ẊXX (m)

B ·nnn0 + Q (m)
B xxx ∈ S B0

∂z�
(m)(xxx) = 0 at z = −D

lim(�(m) − �
(m)
I ) = 0 for x2 + y2 → ∞,

(1)

where the free surface forcing term, Q (m)
F , and the body forcing 

term, Q (m)
B , are zero for m = 1, and for m = 2 are given by

Q (2)
F = −2∇�(1) · ∂t∇�(1) + 1

g
∂t�

(1)∂z

[
∂tt�

(1) + g∂z�
(1)
]∣∣∣∣

z=0
(2)

Q (2)
B =

[
ẊXX (1) − ∇�(1)

]
· R(1)(nnn0) −

[(
XXX (1) · ∇

)
∇�(1)

]
·nnn0

∣∣∣
S B0

.

(3)

The fluid potential is composed of the incident wave potential, 
�

(m) , and the perturbed potential, �(m) , as �(m) = �
(m) + �

(m) . 
I P I P

3

The perturbed potential is a sum of the diffraction potential and 
the radiation potential, �(m)

P = �
(m)
D +�

(m)
R . The radiation potential 

is defined as

�
(m)
R = ξ̇ξξ

(m) ·ψψψ (4)

where the instantaneous radiation potential vector, ψψψ =
(�R1 , �R2 , · · · , �R6 ).

In NEMOH, the first-order hydrodynamic problem is formu-
lated in the source distribution boundary integral equations and 
is solved using a panel method as in [4] and is described in Sec-
tion 2.3.

The second-order hydrodynamic problem is not solved directly, 
but the second-order force for sum- and difference-frequencies can 
be calculated using the indirect method as in [23,24]. This is de-
scribed in Section 2.4.

2.3. First-order problem

This section describes the definition of the incident wave po-
tential, the boundary integral equation for solving the first-order 
problem of Eq. (1), hydrodynamic forces, response amplitude oper-
ator of motion, and numerical implementations.

2.3.1. Incident wave potential
The first-order harmonic incident potential is defined as

�
(1)
I (xxx, t) = Re

{
�

(1)
I (xxx)e−iωt

}
, (5)

�
(1)
I (xxx) = −i

ag

ω
Z(k, D, z)ei�k·�x, (6)

with wave amplitude a, the radial frequency ω, the wave propa-
gation direction β that is the angle from the positive x-axis, the 
wave number vector �k = k(cos β, sin β), and the water depth D . 
The Airy vertical profile is defined as Z(k, D, z) = cosh(k(D+z))

cosh kD . The 

wave frequency and the wave number k =
∣∣∣�k∣∣∣ are related with the 

linear dispersion relation as

ω = �(k, D) =√gk tanh kD. (7)

2.3.2. Boundary integral equation
The three-dimensional linear potential flow problem around an 

arbitrary body condition, Eq. (1), is reformulated in the Boundary 
Integral Equation (BIE) and transformed into the two-dimensional 
problem of the source distribution, σ , on the body surface, S B , 
using Green’s second identity and the appropriate Green function, 
G(xxx, xxx′). The Green function is based on Delhommeau’s formulation 
and is available for finite and infinite water-depth, see [25,4].

The source distribution depends on the boundary condition 
problem considered. For each frequency and wave direction, the 
diffraction source distribution, σD (xxx), depends on the position of 
the panels while the radiation source distribution, σR j (xxx), depends 
on the position of the panels and the considered degree of free-
dom j. Then, the BIE for xxx ∈ S B with flow points xxx and source 
points xxx′ , is expressed as

1

2
σD,R j (xxx) − 1

4π

¨

S B

∂nG(xxx,xxx′)σD,R j (xxx
′)dS ′ = ND,R j (xxx), (8)

where N (xxx) is the body normal condition. The diffraction normal 
condition is defined as ND (xxx) = −∂n�

(1)
I (xxx), and the normalized 

radiation condition, NR j (xxx) = ∂n�R j (xxx) = ν0 j . This leads to a linear 
system with the known influence matrix and the unknown source 
distribution.
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After the linear system has been solved and the source dis-
tribution obtained, the diffraction potential, �(1)

D , the normalized 
radiation potential vector component j, �R j and the correspond-
ing velocities are then computed as follows, for the flow points in 
the fluid domain xxx ∈ S B ∪ V�F ,

�
(1)
D,R j

(xxx) = − 1

4π

¨

S B

G(xxx,xxx′)σD,R j (xxx
′)dS ′ (9)

∂xxx�
(1)
D,R j

(xxx) =1

2
σD,R j (xxx)nnnδxxxxxx′ − 1

4π

¨

S B

∂xxxG(xxx,xxx′)σD,R j (xxx
′)dS ′

(10)

where the Kronecker delta δxxxxxx′ = 1 for xxx = xxx′ , and δxxxxxx′ = 0 other-
wise.

2.3.3. Hydrodynamic forces
The first-order excitation force, FFF (1)

exc , is defined as

FFF (1)
exc = ρ

¨

S B

−iω
[
�

(1)
I + �

(1)
D

]
ννν0dS. (11)

The radiation force is defined, with the radiation potential in 
Eq. (4), as

FFF (1)

rad = ρ

¨

S B

−iω�
(1)
R ννν0dS = [MMMa]ξ̈ξξ + [BBB]ξ̇ξξ . (12)

The added mass matrix, [MMMa], and the damping coefficient matrix, 
[BBB], components are defined as

Ma
ij = −ρ

¨

S B

ν0i Re
{
�R j

}
dS (13)

Bij = −ρω

¨

S B

ν0i Im
{
�R j

}
dS. (14)

2.3.4. Response amplitude operator of motion
The Response Amplitude Operator (RAO) is obtained by solving 

the following equation of motion[
−[MMM + MMMa(ω)]ω2 − iω[BBB(ω) + BBBadd] + [KKK h + KKK M ]

]
ξξξ(ω)

= FFF exc(ω) (15)

where [MMM], [KKK h] are the matrices of the mass-inertia and the hy-
drostatic stiffness, respectively. The additional damping and stiff-
ness matrices, e.g. due to the mooring line, the power take-off 
model of WECs, may be specified in [BBBadd] and [KKK M ], respectively.

2.3.5. Numerical methods
The boundary integral in Eq. (8) is discretized using the con-

stant panel method with a quadrilateral mesh. The mesh is user-
specified with the normal direction toward the fluid. It is suggested 
that at least 15 panels per wavelength should be used for horizon-
tal discretization. The mesh needs to be defined only on the wetted 
part of the body hull. Body panels with small angles, high length 
and width ratio, and close to the free surface have to be avoided. 
NEMOH checks only the area of panels and gives a warning if the 
area is smaller than < 10−7m2.

After the body hull has been discretized with the panels, the 
influence matrix, in the BIE Eq. (8), is constructed with the Green 
function, [25], and implemented as in [4]. The free surface part 
of the Green function (the one involving the integration over the 
Fourier polar coordinate θ ) may be written as a function of a few 
4

functions depending on two non-dimensional variables. For rea-
sons of computational efficiency, the values are tabulated with the 
discretized non-dimensional variables of ω2r/g ∈ [0, 100] with 676 
points in a constant scale and ω2(z + z′)/g ∈ [−251, −1.6 10−6]
with 130 points in logarithmic scale. A polynomial surface interpo-
lation with the 5th order Lagrange formula is used to interpolate 
any values in the specified interval.

The source distributions on body panels are then obtained af-
ter solving the corresponding linear system. The linear system is 
solved using a user-chosen solver among the available ones, i.e., 
Gauss elimination, LU-decomposition, and GMRES-iterative solvers 
[26]. GMRES solver is effective for a large system with a num-
ber of panels larger than 3000. If the convergence of the spec-
ified threshold is not achieved in the GMRES solvers, the solver 
will be switched to LU-decomposition automatically to ensure the 
solution is obtained. For computation with fewer panels, the LU-
decomposition solver is the best choice.

It is known that the boundary integral equation for the free-
surface piercing bodies problem excites irregularities of the solu-
tion at certain frequencies. An irregular frequency removal (IRR) 
method has to be applied to remove the irregularities. In NEMOH, 
the IRR method is activated by the user providing the body lid 
panels at the waterplane z = 0. Then, the extended boundary inte-
gral equation is solved following [4,27]. As in [27], the lid panels at 
z = 0 are shifted to z = −εdB in order to avoid singularity in the 
free-surface Green function. The user specifies the ε parameter, the 
default value is 0.01 in input_solver.txt; dB is computed by 
the software as a maximum horizontal distance of points on the 
body. A zero normal condition is applied at the lid panels, result-
ing in the irregular frequencies being removed or shifted to higher 
frequencies. The maximum threshold for shifting z value can be 
estimated as in [27] based on the fact that the first irregular fre-
quency of the general body shape is higher than the first irregular 
frequency of an equivalent rectangular barge surrounding the body.

2.4. Second-order wave loads

The potential flow problem, Eq. (1), is truncated for the first-
order and the second-order problems by applying a perturbation 
series, as shown in [24,19,20]. This leads to the truncated hydro-
dynamic pressure and then to the truncated excitation forces. The 
first-order excitation force is defined in Eq. (11). The second-order 
excitation force is composed of the quadratic part and the poten-
tial part. The quadratic part can be computed directly based on a 
quadratic operation of the first-order variables. The potential parts 
of diffraction force can be computed using the indirect method, 
[23,24], without knowing the second-order diffraction potential. 
The diffraction force is reformulated in the Green formulation with 
an assisting function, which is the normalized radiation potential. 
The diffraction force is then composed of the body forcing integral 
and the free-surface integrals. An explicit formulation of the force 
is given in Sections 2.4.1 and 2.4.2 for the sum- and difference-
frequencies Froude-Krylov force and excitation force, respectively.

2.4.1. Sum- and difference-frequencies Froude-Krylov force
Bi-chromatic, bi-directional wave propagation with two radial 

frequencies ω j , with j = 1 and 2, wave number vectors �k j =
(k j cosβ j, k j sin β j), is described by the Airy potential as

�I (xxx, t) =Re
{
�I1(xxx)e−iω1t + �I2(xxx)e−iω2t

}
(16)

�I j (xxx) = − i
a j g

ω
Z(k j, D, z)ei �k j ·�x.

The product of two biharmonic functions is composed of 
the double frequency terms, the constant terms, the difference-
frequency terms, and the sum frequency terms. The difference-
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and sum-frequencies incident potentials are then obtained by 
applying the product identity of two bi-chromatic functions in-
volving the Airy potential, Eq. (16), in the evaluation of the 
free surface forcing terms, Eq. (2), [19]. The incident potentials 
are then expressed, with ω± = ω1 ± ω2, �κ± = �k1 ± �k2, |�κ±| =√

k2
1 + k2

2 ± 2k1k2 cos (β1 − β2), � j = �2(k j ,D)

g and the complex con-

jugate operator applied to a complex variable, i.e. γ as γ C− = γ ∗
and γ C+ = γ , as

�
(2)±
I (xxx, t) =Re

{
�

(2)±
I1

(xxx)e−iω±t
}

(17)

�
(2)±
I1

(xxx) = ia1aC±
2 g2ei�κ±·�xZ(|�κ±|, D, z)

−(ω±)2 + �2(|�κ±|, D)[
ω±

ω1ω2

(�k1 · �k2 ∓ �1�2

)

+ 1

2

[
k2

1 − �2
1

ω1
± k2

2 − �2
2

ω2

]]
.

The sum- and difference-frequencies Froude-Krylov force can be 
computed directly with the incoming potential given in Eq. (17) as

FFF (2)±
H I

= − iω±ρ

¨

S B0

�
(2)±
I ννν0dS. (18)

2.4.2. Sum- and difference-frequencies excitation force
The second-order excitation force is expressed as

FFF (2)
exc = FFF (2)

exc1 + FFF (2)
exc2 (19)

where FFF (2)
exc1 and FFF (2)

exc2 are the quadratic and the potential terms of 
the excitation force.

The quadratic part of the sum- and difference-frequencies 
excitation forces, with the quadratic transfer functions (QTFs), 
TTT F Q (β1, β2, ω1, ω2), is given as follows

FFF (2)
exc1 =Re

{
TTT −

F Q
a1a∗

2e−i(ω1−ω2)t
}

+ Re
{

TTT +
F Q

a1a2e−i(ω1+ω2)t
}

,

TTT ±
F Q

= [FFF ±
11 + FFF ±

12 + FFF ±
13 + FFF ±

14

]
/a1aC±

2 (20)

where FFF ±
11, FFF ±

12, FFF ±
13 and FFF ±

14 are defined as

FFF ±
11 = − ρg

2

ˆ

�0

[
η

(1)
1 − ζ

(1)

wl1

][
η

(1)
2 − ζ

(1)

wl2

]C±
ννν0 d� (21)

FFF ±
12 =ρ

2

¨

S B0

[
∇�

(1)
1 · ∇�

(1)C±
2

]
ννν0dS

FFF ±
13 =ρ

2

¨

S B0

[
XXX (1)

1 ·
(
−iω2∇�

(1)
2

)C± −XXX (1)C±
2 · iω1∇�

(1)
1

]
ννν0dS
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where �0 is the mean waterline, η(1) = −∂t�
(1)/g is the free-

surface elevation, ζ (1)

wl = XXX (1)(xxxwl) · eee3 with the unit vector eee3 =
(0, 0, 1) is the instantaneous waterline, and FFF I is the inertia force. 
The lower index of the variables on the right-hand side denotes 
the frequency index, i.e. η(1)

1 = η(1)(ω1).
The quadratic part depends only on the first-order quantities 

which are the first-order solution obtained in NEMOH. The first 
contribution is due to the free surface elevation over the waterline. 
The second contribution is due to the quadratic potential gradient 
of the Bernoulli pressure equation over the body hull. The third 
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ntribution is due to the product of body displacement and first-
der pressure gradient over the body hull. The last contribution 
due to the first-order rotation operator applied to the first-order 
ertia force.

As mentioned earlier that the potential part of the second-
der diffraction force is obtained using the indirect method. The 
ffraction problem that satisfies the boundary value problem in 
. (17) is reformulated in the boundary integral equations using 
e Green-Gauss theorem with an assisting function which is the 
rmalized radiation potential. In the boundary integrals, the in-

grals over the bottom surface, and over the far-field boundary 
nish. The boundary integral of the second-order diffraction po-
ntial is then composed of the boundary integral over the body 
ll and the boundary integral over the free surface. The potential 
rt of the excitation force is obtained by adding the second-order 
oude-Krylov force and the second-order diffraction force.

The potential part of the difference- and sum-frequencies ex-
ation forces, with the 6−DOF quadratic transfer function (QTF), 
P (β1, β2, ω1, ω2), is given as follows:

2)
xc2 =Re

{
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F P
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}
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2 , (22)

ere FFF ±
H I1

is the Froude-Krylov force computed as in Eq. (18). The 
ffraction force is composed of several terms: the body forcing 
rm, FFF ±

H D B1
, the free surface forcing term in the finite domain, 

D F1
, and the asymptotic free surface forcing term in the infinite 

main, FFF ±
H D F2

.

The diffraction force due to the body forcing terms is composed 
 i) the terms involving only the first derivatives, FFF ±

H D B11
, and ii) 

e second derivatives, FFF ±
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. The terms with second derivatives 
e expressed as a function of the first derivatives using the Green 
rmulation. The force is then expressed as
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ẊXX (1)C±

2 − ∇�
(1)C±
2

)
· R(1)

1 (nnn0)

]
S B0

⎞
⎠ ψψψ±dS

2)±
D B12

= iω±ρ

2

B0

[ (
∇�

(1)C±
2 · ∇

)(
ψψψ±XXX (1)

1

)
+
(
∇�

(1)
1 · ∇

)(
ψψψ±XXX (1)C±

2

)
−
(
∇ ·
(
ψψψ±XXX (1)

1

))
∇�

(1)C±
2 −

(
∇ ·
(
ψψψ±XXX (1)C±

2

))
∇�

(1)
1

]
·nnn0 dS

iω±ρ

2

ˆ

�0

[ (
ψψψ±XXX (1)

1

)
× ∇�

(1)C±
2 +

(
ψψψ±XXX (1)C±

2

)
× ∇�

(1)
1

]
· d���.

ere the segmented water-line, d��� = (n02 , −n01 , 0)d�.
The diffraction force due to the free-surface forcing over the 

ite domain S F1 , FFF (2)±
H D F1

, is calculated with the evaluated inte-

ands on a user-input free-surface mesh with a circular bound-
y at radius r = Re . The force is also composed of the terms 
 the first derivatives, FFF ±

H D F11
, and second derivatives, FFF ±

H D F11
. 

e second derivative terms are expressed with ∂2
z �I = k2�I and 

�P ≈ k2�P . The force is then expressed as

= FFF ±
H + FFF ±

H , (24)

D F1 D F11 D F12
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The diffraction force due to the free-surface forcing over the 
infinite domain is given as
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with the potentials expressed in asymptotic form as defined in [19,
20]. The potentials are the function of the vertical profile function,

F(k, D, z) = 1

kD(1 − tanh2 kD) + tanh kD
Z(k, D, z),

the perturbed or radiation Kochin functions with the coefficients 
(C P , S P , C R , and S R ), the Bessel function of the first kind ( J l) and 
ε0 = 0, εl = 2 for l ≥ 1. The integrals can then be rewritten as
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 integral over ϑ ∈ [0, 2π ] can be obtained analytically. The 
egral over r ∈ [Re, ∞] is computed analytically for r ∈ [0, ∞]
tracted by the numerical integration for r ∈ [0, Re].

Program documentation

This section describes the features of the main programs, their 
pilation, the procedure to run the programs, and test cases.

 Main programs

Fig. 2 shows a global overview of the software. There are three 
in programs: a mesh preprocessor, NEMOH1, and NEMOH2. The 
gram features are described as follows.

1. Mesh preprocessor
NEMOH mesh preprocessor, the executable file mesh, is used 
generate the NEMOH mesh file with a given geometry input file 
 an input Mesh.cal file. This mesh is not a meshing code 
 allows the user to refine an existing mesh and to calculate 
perties such as displacement, buoyancy center, and hydrostatic 
fness. It also makes estimates of masses and the inertia ma-
. The concept with this program is to write by hand a coarse 
cription of the body under consideration in a GeomInput file 
 to have the mesh preprocessor make the refined mesh for the 

MOH calculations.

2. NEMOH1: 1st-order solver
NEMOH1 solves the first-order potential flow problem. There 
 four modules: preProc, hydrosCal, solver and post-
oc, described as follows.

preProc: processes the input mesh file and generates the 
body condition for each calculation case (diffraction and ra-
diation). The outputs are used as input for solver.
hydrosCal: computes hydrostatic parameters, i.e. stiffness 
matrix and inertia matrix. The output file will be used in the
postProc to compute the RAOs.
solver: solves the boundary value problems for each prob-
lem, diffraction and radiation, defined in the file Normalve-
locities.dat, provided by the preProc.
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Fig. 2. Global flowchart of NEMOH software.
• postProc: post-processes the solver’s output files. The re-
sults are the excitation forces, added mass, and damping co-
efficients. Optionally, the program computes the impulse re-
sponse functions of radiation damping and excitation force, the 
Kochin coefficient, the free-surface elevation, and the motion 
response amplitude operator.

3.1.3. NEMOH2: 2nd-order QTF module
NEMOH2 computes the second-order wave loads that are ex-

pressed as Quadratic Transfer Functions (QTF). There are three 
modules in this program: QTFpreProc, QTFsolver and QTF-
postProc, described as follows

• QTFpreProc: computes the perturbed potential, the total 
potential, the normalized radiation potential, and the corre-
sponding velocities on the body panels, the waterline, and the 
free-surface panels.

• QTFsolver: computes the quadratic part and the potential 
part of the second order loads.

• QTFpostProc: adds all the computed QTF parts and pro-
duces the total QTF.

3.2. Compilation

NEMOH uses two external libraries, BLAS and LAPACK, that have 
to be installed before the compilation. For the compilation, two 
tools are required; i) a Fortran compiler (e.g., gfortran or ifort on 
Unix/Linux platforms), ii) a cross-platform tool, CMake, for build-
ing and testing the software package. The compilation produces all 
the executables for each module described above. The program can 
be compiled on any computer architecture. It has been tested on 
Windows and Unix/Linux platforms.

Note that the Gitlab releases provide pre-compiled executable 
files for Windows and Linux platforms.

3.3. Running NEMOH

NEMOH has been developed for command-line runs. Matlab 
wrapper files are also provided for running NEMOH in the Matlab 
environment. To run NEMOH, some input files have to be user-
provided. Section 3.3.1 describes the required input files and also 
the output files. Test cases for verifying the NEMOH results are 
provided with the reference data from commercial BEM solvers 
such as AQUAPLUS (which is the ancestor of NEMOH) and HY-
DROSTAR [18], described in Section 3.3.2.
7

3.3.1. Input and output files
The following files are needed for the input; some depend on 

the user-specified choice in Nemoh.cal:

• Nemoh.cal contains all the NEMOH computation parameters
• Mesh.cal contains information about the geomInput file. 

It is an input for mesh and hydrosCal.
• a meshfile, input for preProc, or geomInput file, input 

for mesh
• input_solver.txt contains solver parameters
• Km.dat and Badd.dat, are the additional stiffness and 

damping matrices. These optional inputs are used for post-
Proc/QTFpreProc

• FSmeshfile contains the free-surface mesh. This optional 
input serves to compute the total QTF, including the free-
surface integral.

NEMOH produces the following main output files, some depending 
on the user-specified choice in Nemoh.cal,

• hydrostatic files: inertia and stiffness matrices,
• hydrodynamic coefficients: Froude-Krylov force, excitation 

force, added-mass, damping coefficient,
• pressure field on the body hull, Kochin function, free-surface 

elevation,
• motion Response Amplitude Operator (RAO),
• total difference- and sum-frequencies QTFs.

3.3.2. Test cases
There are 13 test cases, 8 test cases for NEMOH1 and 5 test 

cases for NEMOH2, provided in the software package. These test 
cases enable the user to test and verify all the features in NEMOH. 
The test cases cover: i) different body inputs, such as single body 
or double bodies, symmetrical or non-symmetrical body, ii) the dif-
ferent solver options, iii) the post-processing options, Kochin func-
tion and free-surface elevation, iv) with and without the removal 
of irregular frequencies, v) sum- and difference-frequencies QTFs, 
vi) uni- or bi-directional QTFs, vii) geometry complexities from a 
simple cylinder, a spar-buoy (OC3-HYWIND or Softwind) floating 
wind-turbine platform and an OC4-semisubmersible platform.

In the test cases, the NEMOH results can be compared with the 
reference data from AQUAPLUS and HYDROSTAR provided in the 
package. A Tecplot [28] layout file and Matlab [29] post-processing 
files are provided to ease the comparison.

A makefile is provided for running the test cases on the 
Unix/Linux environment. The test cases can also be run in the Mat-
lab environment with an m-file, also provided.
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Fig. 3. Body boundary mesh for the truncated cylinder with thin heave plate.

4. Results

Extensive verification has been conducted for various geome-
tries, presented in [19,20] and in the user manual [30].

This section presents the results obtained with NEMOH cover-
ing the first-order solution for a truncated cylinder with a thin 
heave plate, the first-order and second-order solutions for the 
SOFTWIND [31] spar-buoy platform and the OC4-semisubmersible 
[32] platform. Similar second-order results for the platforms with 
different wave directions have been reported in [20].

4.1. Description of test cases

The geometries and dimensions of the platforms are as follows. 
The first platform is the truncated cylinder with a thin heave plate. 
The cylinder has a draft of 10 m and a radius of 10 m, the heave 
plate has a thickness of 0.1 m and a radius of 15 m. The center of 
gravity is located at (0,0,-7.5) m. Second, the SOFTWIND platform 
has a draft of 91.4 m, a radius of 5.6 m on the upper part, and 9 m 
on the bottom part. The center of gravity is located at (0,0,-71.56) 
m. Third, the OC4 platform is configured with the main column, a 
radius of 3.25 m, a draft of 20 m, three columns with heave-plates, 
the upper columns with a radius of 6 m, a draft of 14 m, the base 
columns with a radius of 12 m, and a draft of 6 m below the upper 
columns. The center of gravity is considered at (0,0,0) m. Infinite 
water depth is considered for the first platform, and a water depth 
of 200 m is considered for the second and third platforms.

The floating platforms are discretized in quadrilateral panels 
using the open-source mesh generator, GMSH [33], as shown in 
Fig. 3-5. The truncated cylinder with a thin heave plate is dis-
cretized by 3464 panels including 262 lid panels, Fig. 3. The SOFT-
WIND platform is discretized by 1872 panels and the OC4 by 2196 
panels. For the sum-frequency QTF computation with SOFTWIND, 
the free-surface integral terms are computed on an unstructured 
mesh with 8304 quadrilateral panels over a radius of 50 m, see 
Fig. 4. The choice of the number of panels is based on the con-
vergence study of the first-order hydrodynamic coefficients. The 
convergence test results for the OC4 platform are shown in [19].

For the case of the truncated cylinder with a thin heave plate, 
only first-order computation is conducted with the frequency in-
terval [0, 4] rad/s with a frequency step of 0.2 rad/s. The first-order 
results for the softwind and OC4 platforms are computed with 
wave frequency interval in [2π/100, 2π ] rad/s with a frequency 
step set to 2π/100 rad/s. The frequency interval is chosen such 
that in the QTF computation, the ω± are in the range of the spec-
ified frequency interval otherwise an interpolation procedure will 
be applied in NEMOH. In this case, the frequency step is chosen 
to be related to the interested low-frequency motion, period 100 s. 
Zero-degree wave direction is considered for the SOFTWIND plat-
8

Fig. 4. Body boundary mesh (left) and free surface mesh (right) for the SOFTWIND 
platform.

Fig. 5. Body boundary mesh for the OC4-platform.

form; 0 and 30 degrees wave directions are considered for the OC4 
platform.

For the QTFs, the results are shown for bi-chromatic waves 
with ω1 and ω2 in the interval [2π/100, π ] rad/s, uni-directional 
0 degrees for the SOFTWIND case and bi-directional β1 = 30 de-
grees and β2 = 0 degree for the OC4 platform. For both floating 
platforms, the difference-frequency QTFs of the surge, heave, and 
pitch are computed without the free-surface integrals. The sum-
frequency full QTFs, including the free-surface integrals, are com-
puted for the SOFTWIND platform. In most of the applications, the 
free surface terms are negligible in the difference-frequency QTFs 
but are important for the sum-frequency QTFs [34,35].

The computed results of NEMOH are compared with the results 
obtained using one or more of the following commercial software, 
i) WAMIT [15], ii) DIODORE [22], iii) HYDROSTAR [18] developed 
by Bureau Veritas. The QTFs results are compared only with HY-
DROSTAR results. For a direct comparison with the different soft-
ware, the same mesh is used in the computations.

The irregular frequency is applied in the computations of all the 
test cases except if it is mentioned as not applied. In NEMOH, the 
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Fig. 6. Comparison of CPU time per one computed frequency between HYDROSTAR with LU decomposition and GMRES solvers, DIODORE, NEMOH with Gauss elimination, LU 
decomposition and GMRES solvers, and the corresponding regression plots.
irregular-frequencies removal method is applied with the extended 
boundary integral method and will be applied if the lid panels are 
included in the mesh file. In the other software, a similar irregular 
frequency removal method is applied with the software-generated 
waterplane lid panels.

Note that the software packages have different Green function 
models and implementations. For the QTFs computation, NEMOH 
and the other software have different approaches for the semi-
infinite free surface integrals.

The following subsections describe the results of the first-order 
hydrodynamic coefficients and the second-order results (QTFs). The 
first-order results cover computations for enhanced computational 
efficiency, irregular frequency removal, the cylinder with a thin 
heave plate, and Softwind and OC4-Semisubmersible platforms

All the QTF results are normalized by ρg , where ρ = 1025
kg/m3 and g = 9.81 m/s2. The normalized QTF of forces and mo-
ments has unit N s2/kg and N ms2/kg, respectively.

4.2. First-order results

4.2.1. Enhanced computational efficiency
In the previous version of NEMOH, the Gauss-Elimination 

method was used to solve the linear system of the BIE, Eq. (8). In 
NEMOH v3.0, two more options for the linear system solver are 
available: LU-decomposition and GMRES-iterative solvers. These 
newly implemented solvers enhance the efficiency of the process-
ing time (CPU).

To demonstrate the computational performance, several compu-
tations were conducted on a substructure of the OC4 platform, a 
column assembled with the heave plate, with 30 different numbers 
of panels starting from 212 panels to 10927 panels. The computa-
tions were set for one single wave frequency, 0.879 rad/s, 0-degree 
wave direction, water depth of 535 m, one diffraction problem, and 
6 radiation problems. The computations were conducted for each 
solver and compared with those obtained using HYDROSTAR and 
DIODORE [22]. The computation was done without parallelization 
on a laptop with an Intel i7 processor and 32 GB RAM.
9

Fig. 6 shows the CPU time comparison between NEMOH with 
different solvers and with the other software packages. To solve a 
large system with more than 3000 panels, NEMOH with the GM-
RES solver is more effective than the other solvers. The CPU time 
for NEMOH with the LU-decomposition method is similar to that 
of DIODORE. The best computation performance is obtained by HY-
DROSTAR either with LU decomposition or with the GMRES solver. 
This may be due to a more efficient implementation of construct-
ing the influence matrix.

4.2.2. Irregular frequency removal (IRR)
As described in Section 2.3.5, the extended BIE with the lid 

panels are applied to remove the irregular frequencies. The per-
formance of this IRR method is shown in Fig. 7 for the added mass 
and damping coefficients of a substructure of the OC4 platform, a 
cylinder. NEMOH with the IRR method removes the irregular fre-
quencies. The NEMOH results agree well with HYDROSTAR, except 
that the HYDROSTAR results still have irregularities at frequencies 
close to 4 rad/s.

4.2.3. Truncated cylinder with a thin heave plate
A thin heave plate in the truncated cylinder aims to enhance 

the performance of the structure motion in waves. The thin heave 
plate with a small displacement could significantly change the 
added mass, damping, excitation forces and thus the motion per-
formance. However, as noted in [4,7] the thin heave plate is very 
challenging for boundary element methods when the distance of 
the source and flow points are very close. For the same struc-
ture, as shown in [7], NEMOH had poor performance compared 
to WAMIT and HAMS. An axisymmetric mesh is used and provided 
in [7]. It turns out that the axisymmetric mesh has panels with 
a high ratio of width and length at the center of the heave plate 
bottom. This gives inaccuracy in the NEMOH calculation.

To avoid the high aspect ratio panels, an unstructured mesh is 
generated as shown in Fig. 3. The same mesh is used for the com-
putations using NEMOH, WAMIT, HYDROSTAR and DIODORE. In the 
computation of WAMIT and NEMOH v2, the irregular frequency re-
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Fig. 7. Comparison of added mass (left) and damping coefficients (right) between HYDROSTAR with IRR (blue, solid line), NEMOH with IRR (red, dashed line), NEMOH without 
IRR (green, dash-dotted line) for the cylinder. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Fig. 8. Comparison of added mass (left top), damping coefficients (right top) and the excitation forces (bottom) between WAMIT without IRR (black, plus symbol), HYDROSTAR 
with IRR (blue, solid line), DIODORE with IRR (cyan, dotted line), NEMOH v2 without IRR (red, dashed line), NEMOH v3 with IRR (green, dash-dotted line) for the truncated 
cylinder with a thin heave plate.
10
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Fig. 9. Comparison of added mass (left) and damping coefficients (right) between HYDROSTAR (blue, solid line), DIODORE (cyan, dotted-line), and NEMOH (red, dashed line) 
for the SOFTWIND platform.

Fig. 10. Comparison of the response amplitude operator of excitation force (left) between HYDROSTAR (blue, solid line), DIODORE (cyan, dotted-line), and NEMOH (red, dashed 
line) for the SOFTWIND platform and of motion (right) between HYDROSTAR and NEMOH; the top, middle, and bottom rows are for surge, heave, and pitch, respectively.
moval method was not applied. The comparison of added mass, 
damping coefficient and excitation force in Fig. 8 shows that all 
the BEM codes perform quite well. NEMOH v3 gives slightly bet-
ter results than NEMOH v2. The NEMOH results are very close to 
the HYDROSTAR and DIODORE results. The slight differences with 
WAMIT results are observed in the heave and pitch added masses, 
the heave damping coefficient and the pitch excitation force. Ob-
serve that, the HYDROSTAR results have irregular frequencies near 
ω = 4 rad/s although the irregular frequency removal method was 
applied. Overall, the NEMOH results obtained here are much better 
than the corresponding results in [7].

4.2.4. Softwind and OC4-semisubmersible
The hydrodynamic coefficients, the added mass and damping 

coefficients, of the SOFTWIND platform are presented in Fig. 9. 
Fig. 10 shows the linear response amplitude operator of the ex-
citation force and the motion of the platform. The heave excita-
tion force shows the cancellation effect, Fexc ≈ 0 N at ω = 0.25
rad/s, due to the geometry tapering from the smallest radius to 
the largest radius, see Fig. 4.
11
The added mass and damping coefficients of the OC4-semi-
submersible platform are shown in Fig. 11. The RAOs of the ex-
citation forces are shown in Fig. 12 and the RAOs of the motions 
are shown in Fig. 13; the results are shown for the wave direction 
of 0 and 30 degrees.

As shown in the comparisons, NEMOH, DIODORE and HY-
DROSTAR are in excellent agreement. This verifies the first-order 
results of NEMOH against the commercial software. The only slight 
difference is the presence of an irregular frequency at ω = 4 rad/s 
in the HYDROSTAR result for the SOFTWIND case.

4.3. Second-order results

4.3.1. Difference-frequency QTFs
Comparisons of the normalized magnitude of difference-fre-

quency QTFs between HYDROSTAR and NEMOH are shown in the 
density plots, Fig. 14 for the SOFTWIND platform with wave di-
rection (β1, β2) = (0◦, 0◦) and in Fig. 16 for the OC4 platform with 
(β1, β2) = (30◦, 0◦). The normalized magnitude QTFs are computed 
as |TTT −

F |/ρg where TTT −
F = TTT −

F Q
+ TTT −

F P
, TTT −

F Q
as in Eq. (20) and TTT −

F P
, 

Eq. (22), is approximated as TTT −
F ≈

[
FFF ±

H + FFF ±
H

]
/a1aC±

2 . The dif-

P I1 D B1
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Fig. 11. Comparison of added mass (left) and damping coefficients (right) between HYDROSTAR (blue, solid line) and NEMOH (red, dashed line) for the OC4-semisubmersible 
platform.

Fig. 12. Comparison of the response amplitude operator of excitation force for the wave directions 0 degrees (left) and 30 degrees (right) between HYDROSTAR (blue, solid 
line) and NEMOH (red, dashed line) for the OC4-semisubmersible platform; the top, middle, and bottom rows are for surge, heave, and pitch, respectively.

Fig. 13. Comparison of response amplitude operators of motion for the wave directions 0 degrees (left) and 30 degrees (right) between HYDROSTAR (blue, solid line) and 
NEMOH (red, dashed line) for the OC4-semisubmersible platform; the top, middle, and bottom rows are for surge, heave, and pitch, respectively.
12
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Fig. 14. Density plots of the normalized uni-directional, (β1, β2) = (0◦, 0◦), surge difference frequency QTF magnitude (without the free-surface integrals) for the floating 
SOFTWIND platform; on the top, middle and bottom rows are for surge, heave, and pitch, respectively. HYDROSTAR results are on the left column, NEMOH results are on the 
middle column and the difference is on the right column.

Fig. 15. Comparison of the off-diagonal uni-directional, (β1, β2) = (0◦, 0◦), difference frequency QTF for the SOFTWIND platform between HYDROSTAR, real part (blue, solid-
line), imaginary part (blue, dashed-dot line) and NEMOH, real part (red, dashed-line), imaginary part (red, dotted-line). Top-left is for surge, the top-right for heave (the first 
off-diagonal) and the bottom for pitch (the third off-diagonal).
ference in the QTF results between HYDROSTAR and NEMOH are 
quantified by 

(|TTT −
F |HY D R O S T AR − |TTT −

F |N E M O H
)
/ρg .

The results show that excellent agreement is achieved between 
the two programs, with quite a small difference, < 10% for all the 
motion modes, as shown in the plots for surge, heave, and pitch. 
Fig. 16 shows more complex density plots due to the complex in-
teraction in the OC4 platform.

When computing QTFs, the off-diagonal QTFs are usually the 
most relevant information one is looking for, especially for the 
mooring design. The corresponding off-diagonal QTFs (real and 
13
imaginary parts) are shown for the SOFTWIND platform in Fig. 15
and for the OC4 in Fig. 17. The first off-diagonal QTFs are shown 
for the surge and heave motions, while for the pitch motion the 
third off-diagonal is shown. The ω− on the first off-diagonal QTF 
is at the surge natural frequencies and the third off-diagonal QTF 
is at the pitch natural frequencies of the OC4 platform.

In the plots, it is shown that the radiation effect due to the 
body displacement is dominant in the frequency interval ω < 0.5
rad/s, while the excitation effect is dominant in the other fre-
quency interval ω > 0.5 rad/s. Studying the off-diagonal difference-
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Fig. 16. Density plots of the normalized bi-directional, (β1, β2) = (30◦, 0◦), surge difference frequency QTF magnitude (without the free-surface integrals) for the floating 
OC4-semisubmersible platform; on the top, middle and bottom rows are for surge, heave, and pitch, respectively. HYDROSTAR results are on the left column, NEMOH results 
are on the middle column and the difference is on the right column.

Fig. 17. Comparison of the off-diagonal bi-directional, (β1, β2) = (30◦, 0◦), difference frequency QTF for the OC4-semisubmersible platform between HYDROSTAR, real part 
(blue, solid line), imaginary part (blue, dashed-dot line) and NEMOH, real part (red, dashed line), imaginary part (red, dotted line). Top-left is for surge, the top-right for 
heave (the first off-diagonal) and the bottom for pitch (the third off-diagonal).
frequency QTFs at the natural frequencies of the structure is im-
portant for understanding the low-frequency response of the float-
ing structure.

Similar to the density plots comparison, the comparison plots 
of the off-diagonal QTFs between the two programs show that 
excellent agreement is also achieved. This verifies the difference-
frequency QTF computation within NEMOH in the spar-buoy type 
SOFTWIND platform and a more complex structure such as the 
OC4-submersible platform.
14
4.3.2. Sum-frequency QTFs
A comparison of the sum-frequency full QTFs between the two 

programs is shown in the density plots, Fig. 18, and in the off-
diagonal line plots, Fig. 19. The normalized magnitude of sum-
frequency QTFs is computed as |TTT +

F |/ρg , where TTT +
F (0◦, 0◦, ω1, ω2)

= TTT +
F Q

+ TTT +
F P

, Eqs. (20) and (22). Good agreement is achieved, al-
though in this case the irregular frequency removal method in 
NEMOH was switched off due to an issue with the computation 
of the potential on the free-surface mesh. An improvement in 
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Fig. 18. Density plots of the normalized sum-frequency full QTF magnitude (including the free-surface integrals) for the floating SOFTWIND platform; the top, middle, and 
bottom rows are for surge, heave, and pitch, respectively. HYDROSTAR results are in the left column, NEMOH results are in the middle column and the difference plots are in 
the right column.

Fig. 19. Comparison of the off-diagonal sum-frequency full QTF for SOFTWIND platform between HYDROSTAR, real part (blue, solid line), imaginary part (blue, dashed-dot 
line) and NEMOH, real part (red, dashed line), imaginary part (red, dotted line). The top-left is for surge, the top-right for heave (the first off-diagonal) and the bottom for 
pitch (the third off-diagonal).
this part of NEMOH implementation will be added in the next 
release.

This verifies the full sum-frequency QTF computation (includ-
ing the free surface integral) within NEMOH in the spar-buoy type 
SOFTWIND platform.

5. Conclusion

The NEMOH code was developed to compute first- and second-
order wave loads on floating structures in the frequency domain. 
The first-order module has been used by many researchers and en-
gineers in the ocean engineering community. This new release in-
15
cludes a new extension module for computing QTFs, and improve-
ment in the first-order module, i.e. irregular frequency removal, 
and greater computation efficiency. The code has been shown to 
be accurate and efficient.

The NEMOH outputs can be used as input to a time-domain 
solver in order to estimate the dynamic response of a floating 
structure with the presence of moorings or a power take-off sys-
tem. In the EU-funded FLOATECH1 project on the development of 
an open-source QBlade-ocean, NEMOH outputs of the first- and 

1 www.floatech -project .com.

http://www.floatech-project.com
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second-order hydrodynamic coefficients are used as input for the 
time-domain solver of the structural design of the floating offshore 
wind turbine software, QBlade.2

NEMOH is an open-source code, redistributed under the terms 
of the GNU General Public License (version 3) as published by the 
Free Software Foundation. Along with the source code, documen-
tation [30] is provided which makes compilation and execution of 
the code easy. In addition, various test cases with reference data 
are provided in the software package to verify the results. To our 
knowledge, this NEMOH release will be the only open-source soft-
ware that provides the QTF module.
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