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Abstract—Networks of smart cameras, equipped with on-board
processing and communication infrastructure, are increasingly
being deployed in a variety of different application fields,
such as security and surveillance, traffic monitoring, industrial
monitoring, and critical infrastructure protection. The task(s)
that a network of smart cameras executes in these applications,
e.g., activity monitoring, object identification, can be severely
degraded because of errors in the detection module. However,
in most cases higher-level tasks and decision making processes
in smart camera networks (SCNs) assume ideal detection ca-
pabilities for the cameras, which is often not the case due
to the probabilistic nature of the detection process, especially
for low-cost cameras with limited capabilities. Realizing that
it is necessary to introduce robustness in the decision process
this paper presents results towards uncertainty-aware SCNs.
Specifically, we introduce a flexible uncertainty model that can be
used to characterize the detection behaviour in a camera network.
We also show how to utilize the model to formulate detection-
aware optimization algorithms that can be used to reconfigure
the network in order to improve the overall detection efficiency
and thus increase the effective number of detected targets. We
evaluate our proposed model and algorithms using a network
of Raspberry-Pi-based smart cameras that reconfigure in order
to improve the detection performance based on the position of
targets in the area. Experimental results in the lab as well as in a
human monitoring application and extensive simulation results,
indicate that the proposed solutions are able to improve the
robustness and reliability of SCNs.

Index Terms—Active Vision, Embedded Vision Systems,
Smart Camera Networks, Dynamic Reconfiguration, Optimiza-
tion Methods

I. INTRODUCTION

SMART Camera Networks (SCNs) consist of networked
cameras that collaboratively perform various computer

vision tasks (activity monitoring, object identification, etc.)
while monitoring an area and are thus becoming an integral
component towards more intelligent cities. Recently, emerging
platforms for SCNs, offer advanced sensing and processing
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capabilities that facilitate the development of a wide range
of applications from security and surveillance, autonomous
vehicles, traffic monitoring, personalized healthcare, industrial
monitoring, and augmented reality [1], [2]. These advanced
features enable a network of active cameras to collaborate
and carry out tasks much more efficiently. The performance of
applications such as activity monitoring, object identification,
etc., relates directly to the detection module capabilities of
the cameras in the network, which if not considered can
compromise the decision making process. Also, the detection
probability directly impacts the image acquisition rate for the
targets which is important in applications such as activity
recognition that need to capture multiple instances of the target
in order to reach an outcome. Hence, it is of key importance
to develop models, algorithms, and systems that take into
consideration different uncertainties in SCNs (such as the
detection performance) and use them to increase the robustness
of the application by reconfiguring the camera network.

Realistically, even cameras featuring sophisticated visual
sensors and on-board processors, are inherently uncertain due
to the probabilistic nature of the machine learning algo-
rithms used for object detection process [3], [4]. However,
the majority of existing works in SCNs do not take into
consideration this probabilistic aspect of such camera de-
tection modules when developing collaborative coordination
and reconfiguration algorithms [5],[6],[7],[8]. This problem
intensifies in cases where low-cost camera systems are used
[9], which are not equipped with the resources to efficiently
run state-of-the-art detection algorithms in real-time, and so
either use low resolution (which impacts the representative
object resolution) or run less demanding algorithms which
compromises the detection performance. Hence, there is the
need to address such uncertainty issues in the context of SCNs,
related to sensing and low-level processing [10]; an issue that
has received little attention in the literature, especially when
considering the detection module [11].

Motivated by the importance of dealing with uncertainties
in SCN applications this work presents a model to introduce
uncertainty awareness to the network and also develop algo-
rithms for reconfiguring the camera network to improve overall
detection performance and increase the expected number of
detected targets. Our previous work in [12] presented the
proposed detection model and a straightforward approach
(without any optimization) of configuring the camera network
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in the presence of a single target. In this work we significantly
improve our preliminary work in the following ways:
• We formulate the problem of optimizing the overall

detection probability in a smart camera network as a
Mixed Integer Linear Program (MILP) and develop two
optimization algorithms with different objectives for its
solution.

• Introduce a systematic procedure for the determination of
configurations (i.e., camera pan and tilt angles) of each
camera in order to identify all possible combinations of
targets that it can be simultaneously monitored by each
camera individually.

• Develop algorithms for scenarios with multiple targets
and varying number of cameras and targets and show
experimental as well as simulation results.

• Comparison of the proposed approaches to a baseline case
that aims to maximize the number of monitored targets
without considering the detection probabilities within its
optimization framework.

An experimental SCN platform, targeting low- to mid- range
smart cameras, was developed based on low-cost Raspberry-
Pi pan-tilt smart camera stations to validate and evaluate
the presented model, algorithms, and optimization solutions.
Furthermore, the proposed model and algorithms have been
evaluated using simulations to test the impact of various
parameters. The results show that the uncertainty aware algo-
rithms achieve higher overall detection performance compared
to approaches which do not consider the detection capabilities
of cameras.

The rest of this paper is organized as follows. Section
II outlines some key areas in emerging research concerning
SCNs. In Section III we introduce the problem and provide a
solution overview. In Section IV we outline the camera and
target models and assumptions, and introduce the proposed
probabilistic image-based detection model for the cameras
that will serve as a basis for further development. Section
V outlines an algorithm performed by each camera in the
network to determine its possible configurations for target
monitoring. Two optimization algorithms that utilize detection
information and a baseline algorithm for comparison purposes
are presented in Section VI, that determine the best configu-
ration for each camera in the network for different criteria. In
Section VII experimental evaluation results are presented, in
both the lab and real-world, that demonstrate the validity of
the model and the effectiveness of the dynamic reconfiguration
scheme when considering an active network scenario where
cameras collectively decide on how to adjust their parameters
to improve the overall detection performance. Furthermore, in
the same section we show simulation results regarding the
effect of scaling to more cameras and targets and how it
impacts the performance of the proposed algorithms. Finally,
Section VIII provides concluding remarks and discusses po-
tential improvements and future work.

II. RELATED WORK

Recent research efforts in multi-camera networks have pro-
duced promising results for various computer vision applica-
tions (e.g., collaborative tracking [13], collaborative feature

extraction [14]) especially for static cameras. Because of the
increasing need for enhanced flexibility and adaptability there
has been a lot of ongoing research concerning active camera
networks with pan-tilt-zoom (PTZ) capabilities [15], as well
as dynamic network reconfiguration [11], [16]. Improving the
performance, image-based control, and automated tracking
aspects of single cameras (static or PTZ) has been the subject
of many works in the literature [17], [18], [19]; and such
techniques can provide higher efficiency when considering
a network of such cameras. However, in a multi-camera
setting there are additional challenges to consider related to
coordination and control, which need to be addressed [1],[20],
[21].

Consequently, there has also been an increasing amount
of research effort, towards adapting and improving various
aspects of SCNs (utilization of resources, power conservation,
area coverage) by utilizing information from multiple cameras
and reconfiguring the network (i.e., changing camera orienta-
tion, position, and task assignment) [11]. For example, [22]
and [23] consider energy aware allocation of vision tasks to
cameras in order to increase the lifetime of battery-operated
networks, while in [24] the authors propose an algorithm to
optimize resource allocation in camera networks. Many works
deal with the problem of configuring a camera network in
such a way as to maximize the coverage of a monitored area
with static cameras such as [25], [26], and usually determine
the number, placement position, and orientation of cameras
in the area. Our work builds on such works assuming that a
deployment has already taken place and the positions of the
cameras are known and fixed.

More relevant to our work are methods which steer network
reconfiguration at run-time to better monitor specific targets
that are present in the area. Esterle et al. [7], present a dis-
tributed market-based mechanism that handles target handover
between cameras while also updating the network topology to
reduce future transactions. The works in [27], [28], deal with
the problem of consensus in SCNs where not all cameras
observe all targets, but need to maintain a state estimate
for each target. They utilize a Kalman filter in order to
achieve consensus amongst neighbouring cameras regarding
the position and velocity of multiple targets. The work in
[29] reconfigures a network of PTZ cameras to maintain
the overall coverage of the targets while compensating for
viewpoint changes of cameras that opportunistically acquire
high-resolution images of targets. A similar framework is used
in [20], which deals with the distributed control of a PTZ
camera network in order to meet various criteria for target
monitoring such as, tracking error, desired resolution, and risk
of losing a target. However, the detection module performance
is not considered as an objective. Proactive configuration for a
hybrid network, comprising of static wide view cameras and
PTZ active cameras, has been proposed in [30]. Using the
predicted target positions cameras are configured in such a way
as to reduce the number of target handoffs and assignments in
the network based on predefined goals. Natarajan et al. [31]
proposed a decision-theoretic approach for the control and co-
ordination of multiple active cameras in order to maximize the
coverage of observed targets at a predefined resolution. Static
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cameras are also used in the environment in order to provide
location and velocity information for the targets. However,
the proposed solution does not scale well with respect to the
number of targets. In [6], Piciarelli et al. proposed a technique
to determine the PTZ parameters of the active cameras that
lead to the optimal coverage of targets, based on activity
maps. The authors in [5] develop a distributed optimization
mechanism for configuring the PTZ parameters of the cameras
in order to permit for high resolution coverage of detected
events for a given camera placement. The cameras are also
equipped with a laser range node to identify obstacles, while
specific tags are used to aid recognition of events. However,
the detection performance and identification algorithms are
not studied. A reconfiguration approach is proposed in [32]
in order to select the most suitable pair of cameras to monitor
a target more efficiently. The approach is based on observing
human activities over extended time-periods in order to model
the frequently occurring events and steer the camera config-
urations accordingly. However, the detection performance of
each camera is not considered in the framework.

Cloud-based platforms [33], [34] have also emerged as
another paradigm for on-line video analysis, where the camera
views are transmitted over a wireless connection to a cloud
server for processing. An example of this is the work in
[35] where such a cloud infrastructure is used for on-road
pedestrian tracking. In our case we assume that the cameras
themselves are capable of performing the visual analysis task
without the use of cloud infrastructure for processing.

Although there has been significant research in camera
reconfiguration considering various problems and challenges;
little attention has been given on modeling the uncertainties
regarding the detection module; and formulating appropriate
algorithms for selecting a network configuration with the goal
of improving the overall detection performance. [5],[7],[8].
Only a few works have considered such issues in the con-
text of SCNs. For example, the work in [36] investigates
the impact of errors in the horizontal orientation (i.e., pan)
of cameras during target tracking, due to initial calibration
inaccuracies (modelled as Gaussian noise) and external effects
that cause the camera orientation to take arbitrary values.
Another example can be found in [37], which deals with
the development of algorithms to compensate for faults and
uncertainties related to the localization module of a camera.
In this paper, an uncertainty model is presented that can
describe the detection behaviour of a camera system and
is used for dynamic decision making and reconfiguration to
improve the overall monitoring performance of the smart
camera network. This model also provides a framework for a
systematic reconfiguration procedure complementing existing
work in the literature.

III. PROBLEM DESCRIPTION

We consider an active smart camera network consisting of a
set of camera nodes C and a set of targets T . Let also NC and
NT denote the number of cameras and targets, respectively.
A camera can detect a target with a certain probability based
on its position and viewpoint. The objective is to configure

1. Target 

Scanning 

2. Determination

of Camera 

Configurations

3. Camera

Network

Optimization

4. Reconfiguration

Fig. 1. Overview of the main steps towards reconfiguring the camera network

the pan and tilt angles of the cameras in the network so that
the overall detection probability for all observed targets is
maximized (or equivalently the miss-detection probability is
minimized), thus effectively maximizing the expected number
of detected targets. This is important as it can lead to improved
performance of computer vision applications such as activity
monitoring, object identification, and automated inspection.

In the context of this work we define four major steps,
outlined in Fig. 1, which need to take place in order to achieve
the objective of maximizing the monitoring performance of the
camera network. The procedure starts by determining the loca-
tions of all the observable targets in the area. This is referred
to as target scanning and can be performed from the cameras
themselves (e.g., [5]) by configuring them to first search the
viewing area, or through additional cameras (e.g., [31], [21],
[38], or complimentary sensors (e.g., [5]). The output of this
step is the location of each target in a global coordinate
system which can be used in the determination of camera
configurations step to identify the possible sets of targets that
each camera can monitor. Using this information the camera
network optimization step finds the best configuration for each
camera that maximizes the overall detection performance for
the targets in the area thus providing improved monitoring.
Finally, in the reconfiguration step, the new configuration
for each camera is applied so that target observations can
be captured and proceed with other higher level application
requirements. In this work we focus on the second and third
steps. Next, we describe a probabilistic detection model that
captures the detection behaviour of cameras and forms the
basis for the solution of the considered problem. Then we
outline an algorithm to identify all possible camera configura-
tions, and subsequent optimization algorithms are formulated
to identify the best action for each camera in order to maximize
the overall detection probability.

IV. SYSTEM MODEL

In this section we describe the main components of the
system model that comprises the camera, the targets, as well
as the camera detection module and how it extends to multiple
cameras.

A. Cameras

Cameras in active networks are endowed with degrees-of-
freedom (DoF) that can be utilize in order to change their
point of view and adjust to the activity in the monitored area
based on collective information. In this work we consider that
cameras are located at specific coordinates (xCi , y

C
i ), i ∈ C

and have two DoF, which are the pan and tilt angles denoted
as θPi and θTi respectively (as shown in Fig. 2). Both angles
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Fig. 2. (a) Camera parameters that affect configuration. (b) Zone model
definition

can be within the full range of motion or be restricted for
practical reasons (0◦ ≤ θPmin

i ≤ θPi ≤ θPmax
i ≤ 360◦,

and 0◦ < θTmin
i ≤ θTi ≤ θTmax

i < 90◦). All cameras i are
located at a height Hi. Given a fixed height camera i can
change the area that it monitors by appropriately setting the
values of θPi and θTi . Each pair of values creates a new FoV
which we denote as fi(θPi , θ

T
i ) and refer to it as local FoV.

The formation of the local FoV is also determined by the
viewing angles θVi (vertical angle-of-view) and θHi (horizontal
angle-of-view) as shown in Fig. 3, which we consider to be
constant. Hence, a local FoV is a subset of the global FoV Fi
which includes all possible areas that camera i can monitor
for the different pan and tilt angles, hence fi(θPi , θ

T
i ) ⊆ Fi.

A finite set of configurations Ki are defined for camera i,
where configuration k ∈ Ki denotes a specific pan and tilt
angle for the camera, following the procedure described in
Section V. We define the binary variable bik which is equal to
one if camera i ∈ C employs configuration k ∈ Ki and zero
otherwise. A network can consist of cameras with heteroge-
neous features meaning different constraints on the pan and
tilt angles, sensing range, and viewing angles. Furthermore,
it is assumed that every camera in the network operates the
same embedded target detection module which allows them
to extract target images from the whole viewing frame which
can be used to carry out higher level vision tasks.

B. Targets

Various applications of smart camera networks such as
activity monitoring, object identification, and automated in-
spection, first require the detection of a target that may be
present in the monitored area. Depending on its position
(xTj , y

T
j ), j ∈ T within the monitored area its distance and

orientation with respect to each camera can change. As a
result this will affect the detection performance of a camera
especially as its distance from the camera varies which can
either occlude part of it, or decrease its pixel resolution. It
is assumed that the location, and distance dij of each target
j relative to camera i can be determined based on the scale
size and resolution that it is detected, as well as geometric
information. Targets are moving within a 2D planar field.
Targets are not considered as point entities but rather as
occupying a 2D rectangular area, which is assigned around
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Fig. 3. How the local FoV is shaped by (a) the vertical angle of view θVi .
(b) the horizontal angle of view θHi

the centroid (xTj , y
T
j ) of each identified target (based on preset

width and length object dimensions) to account for its physical
dimensions. As such, in order for a target to be detectable and
able to be captured by the image processing algorithm, its
whole area needs to lie within the FoV.

C. Camera Detection Model

The proposed camera detection model is based on the local
FoV fi(θ

T
i , θ

P
i ) of each camera. Through this model, we

attempt to capture how the resolution of the target in the
camera image affects the probability of detection, as shown
in Fig. 2:
• The global FoV Fi of a camera i is segmented into m

detection zones Zim,m = 1, · · ·, Nz, where Nz is the last
zone that is located further away from the camera origin.

• Zone m is the locus of points within the global FoV of
camera i with distance between Di(m−1) and Dim from
the camera’s origin.

• A camera views a subset of the m zones which belong
to its local FoV fi(θ

T
i , θ

P
i ).

• Within each zone, there is a set of different detection
probabilities. However, for simplicity we average the
probabilities within the same zone and assume a uniform
constant detection probability.

• When a target is in zone Zim for camera i it is assumed
that on average is detected with probability Pim. Note
that the detection probability Pim of zone m is not given
by a specific equation but is inherent to the probabilistic
nature of the machine learning algorithm used for object
detection.

• A camera can determine Zim that a target j is detected
in through trigonometry using the pan and tilt angles
(θPi , θ

T
i ) and height Hi.

• Different cameras have distinct detection zones Zim and
detection probabilities Pim.

Each camera i in the network follows the aforementioned
model and independently monitors the targets in its FoV
for its current configuration k. The FoV corresponding to
configuration k contains a set of targets Sik, where each target
j in the set is detected with non–zero detection probability
pijk = Pim, such that Dim−1 ≤ dij ≤ Dim,m = 1, . . . , Nz .
It follows that the miss–detection probability of target j from
camera i using configuration k can be defined as qijk =



5

Pan Anchor Tilt Anchor

i i

(a) (b)

Fig. 4. Illustration of the same target as pan and tilt anchor. (a) Pan anchor
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Fig. 5. Illustration of how different configurations are formed for a given
anchor-pan-angle θ̂Piu (target 1 is tangent to the left side of generated FoVs),
for a simple scenario with two targets. Once each configuration is determined
the set of targets Sik is established: Si1 = {1}, Si2 = {1, 2}, Si3 = {1, 2},
Si4 = {2}.

1 − pijk. When a target j is observed by multiple cameras
then the overall detection probability Pj for that target is
the combination of the detection probabilities of all cameras.
Given that detections from multiple cameras are uncorre-
lated the combined probabilities can be obtained through the
generalized inclusion–exclusion principle. Alternatively, the
combined detection probability can be expressed in a simpler
form by using the product of the miss–detection probabilities:

Pj = 1−
∏
i∈C

∏
k∈Ki

qbikijk (1)

V. DETERMINATION OF CAMERA CONFIGURATIONS

In order to find the best configuration for each camera
that meets the given constraints for detection performance,
first all the appropriate configurations that a camera can
assume and the corresponding detection probabilities for all
targets/objects must be identified. To find this information we
devise a systematic procedure that can be executed by each
camera where, given that we have extracted the Cartesian
positions of the targets in the area, a camera can determine
the corresponding detection probabilities by varying its pan
and tilt angles, thus forming different FoVs (fi(θTi , θ

P
i )) and

checking which targets are located inside each one. For each
target its coordinates are registered and are available to all
cameras using a global coordinate reference system. Then

Algorithm 1 Determining Configurations for camera i
1: % Identify targets, extract and register coordinates
2: for (anchor-pan-angle θ̂Piu ∈ APi ) do
3: for (anchor-tilt-angle θ̂Tiuv ∈ ATiu) do
4: register (θ̂Piu, θ̂

T
iuv) for configuration k

5: determine Sik from local FoV fi(θ̂
P
iu, θ̂

T
iuv)

6: find pijk of targets j ∈ Sik
7: add configuration k to the set Ki if not redundant
8: end for
9: end for

Trapezoids formed by centering the FoV over a target

Trapezoid formed using the proposed approach

Fig. 6. Illustration of how our approach is able to find a FoV that covers
both targets compared to a more intuitive approach.

each camera independently runs the procedure to determine
all its appropriate configurations and corresponding detection
probability for each visible target.

The position of a camera i in an area is denoted by
(xCi , y

C
i ) which is fixed, whereas its configuration and pos-

sible FoVs that it can generate are determined by the tuple
(θPi ,θTi ,Hi,θVi ,θHi ). Since we assume that Hi,θVi , and θHi are
fixed only the former two angles are necessary to determine the
local FoV. These angles are adjusted by the corresponding mo-
torized 2 DoF pan-tilt stage on which the camera is mounted.
A downwards looking camera’s field-of-view is projected on
the ground plane over a trapezoid area (Fig. 4). The actual
dimensions of the trapezoid for specific pan-tilt angles depend
on the height (Hi) of the camera mount and viewing angles
of the camera θVi and θHi . Targets located within the FoV will
be visible in the captured image, assuming no obstacles.

In principle, there exist an infinite number of possible
configurations that a camera can have by changing its pan and
tilt angles. To avoid the brute force approach, a systematic
procedure for each camera i is performed that involves gener-
ating a finite number of configurations based on the location
of the existing targets. Rather than centering the FoV at each
target, we generate configurations corresponding to FoVs with
a target positioned at one of the FoV boundaries, thus maxi-
mizing the number of targets within each set Sik (i.e., monitor
as many targets as possible with a single configuration), as
shown in Fig. 6. Each target is used as reference to find a pair
of pan and tilt angles referred to as anchor angles that define
a FoV which contains a set of targets. Specifically, an anchor-
pan-angle θ̂Piu, is a pan angle of camera i where a target is
tangent to the left or right side of the resulting local FoV
(Fig. 4a). Similarly, an anchor-tilt-angle θ̂Tiuv , is a tilt angle
of camera i where a target is tangent to the near or far border
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of the resulting local FoV (Fig. 4b) for a given anchor-pan-
angle θ̂Piu. These anchor angles are calculated for each target
through trigonometry, resulting in the anchor-pan-angle setAPi
and the anchor-tilt-angle set ATiu. These anchor pan and tilt
angles determine a unique configuration and a corresponding
FoV fi(θ̂

P
iu, θ̂

T
iuv). As such, by only looking at the pan and

tilt angles that correspond to anchor targets we only need to
examine at most 4N2

T configurations.
Algorithm 1 describes the process followed individually by

each camera i to identify the configurations that it can assume.
First, in line 1 and 2 a camera identifies the pairs of pan and
tilt angles that can form a FoV for the anchor-pan-angle and
anchor-tilt-angle sets. The pair of angles define a configuration
k which is temporarily marked as a possible configuration,
as shown in line 4 of Algorithm 1. Next, in lines 5 and
6 the algorithm determines which targets are viewed by the
camera and the corresponding detection probability. Since the
distance from the camera is the major factor that affects the
detection probability the same target will be viewed with the
same detection probability in different configurations k ∈ Ki.
Also, after a certain distance the probability is zero and hence,
many targets may be present within the FoV but cannot be
detected by the camera. These factors lead to configurations
that are the same (cover the same targets with the same
probability) or are subsets of other configurations (the same
and additional targets are covered with the same probability)
that will incur unnecessary computational complexity for the
optimization process. Hence, whenever a new configuration
k is identified, it is first checked, in line 7 of Algorithm 1,
if it is not a subset of any configuration with Ki in which
case it is preserved, otherwise it is discarded as redundant.
This procedure is repeated for each target j in the area to
generate the configurations for the specific camera. Note that
the developed camera detection model can handle occluded
targets, i.e., targets which do not have direct line-of-sight with
a camera due to known obstacles. This can be achieved by
geometrically identifying the occluded target of each camera
(no direct line-of-sight), setting the corresponding detection
probabilities equal to 0 and excluding them from sets Sik.

VI. CAMERA NETWORK OPTIMIZATION

In order to maximize the detection capabilities of a SCN
that utilizes the probabilistic camera detection model defined
in Section IV, two optimization problems were formulated that
maximize different performance metrics. The first proposed
algorithm is the MODP (Maximize Overall Detection Prob-
ability) algorithm that takes into consideration the detection
capabilities of the cameras in order to find the network
configuration that maximizes the overall detection probability
of all targets in the area (or conversely that minimizes the
miss-detection probability). The second algorithm is called
MMDP (Maximize Minimum Detection Probability) which
aims to maximize the minimum detection probability of all
detectable targets. In this way the MMDP ensures that no
detected target has a very high miss-detection probability.
Hence, both algorithms address different problems and each
is suited to a different application scenario. Since, there is no

previous work that examines the same problem we have devel-
oped a baseline non-probability-aware optimization algorithm
for comparison, referred to as MNDT (Maximize Number
of Detectable Targets), that does not utilize any detection
information and instead focuses on maximizing the number
of targets that are covered by the cameras.

A. Maximize Number of Detectable Targets
In order to maximize the number of detectable targets in

the network we use the binary variables bik which are equal
to one if camera i ∈ C employs configuration k ∈ Ki and zero
otherwise, as well as uj which denote whether target j ∈ T
is detectable (uj = 1) or not (uj = 0). In addition, we define
Lij as the set of all configurations of camera i that can detect
target j, i.e., it is not occluded. Based on these definitions,
MNDT is formulated as:
MNDT Formulation

max
∑
j∈T

uj (2a)

s.t.
∑
k∈Ki

bik = 1, i ∈ C, (2b)∑
i∈C

∑
k∈Lij

bik ≥ uj , j ∈ T , (2c)

uj ∈ {0, 1}, j ∈ T , bik ∈ {0, 1}, i ∈ C, k ∈ Ki (2d)

In formulation (2), the objective is to assign exactly one
configuration to each camera, based on decision variables bik,
in order to maximize the number of detected targets given
by (2a). Constraint (2c) identifies which targets are actually
detected. Two cases have to be examined to understand why
this constraint provides the desired result. In the first case
no camera detects target j, i.e., the sum on the left hand
side of the inequality is zero, so that uj ≤ 0, and variable
uj is forced to be equal to zero. In the second case one or
more cameras detect the target so that uj ≤ 1; in this case
variable uj can take either value (0 or 1), so the optimizer will
choose the value maximizing the objective which is uj = 1.
Formulation MNDT belongs to the class of Mixed Integer
Linear Programming (MILP) optimization problems which can
be solved using standard optimization solvers.

B. Maximize Overall Detection Probability
The problem of maximizing the expected number of de-

tected targets or the overall detection probability is equivalent
to the minimization of the overall miss-detection probability.
Recall from Section IV that the overall miss-detection proba-
bility in case of target j is equal to

∏
i∈C

∏
k∈Ki

qbikijk, when
the detection probabilities of target j from multiple cameras
are uncorrelated. Hence, MODP can be formulated as:

min
∑
j∈T

∏
i∈C

∏
k∈Ki

qbikijk (3a)

s.t.
∑
k∈Ki

bik = 1, i ∈ C, (3b)

bik ∈ {0, 1}, i ∈ C, k ∈ Ki (3c)
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Notice that the objective of (3) is nonlinear and solution
with standard solvers is not possible. To deal with this issue
we transform the problem into an equivalent problem based on
[39]. Let 2−zj =

∏
i∈C

∏
k∈Ki

qbikijk. Taking the logarithm of
both sides gives zj = −

∑
i∈C

∑
k∈Ki

bik log2(qijk), zj ≥ 0,
and the formulation becomes

min
∑
j∈T

2−zj (4a)

s.t. Constraints (3b) - (3c), (4b)

zj = −
∑
i∈C

∑
k∈Ki

bik log2(qijk), j ∈ T , (4c)

zj ≥ 0, j ∈ T (4d)

The new formulation (4) is an integer programming problem
with the objective function composed of separable monoton-
ically increasing convex terms 2−zj . Following the analysis
from [40], each of these terms can be tightly approximated
from the convex envelop φ(zj) of a number of piecewise
linear functions. Towards this direction, let us assume that each
term 2−zj is approximated by Lj linear segments with slopes
α1,j ,...,αLj ,j and start-points β1,j ,...,βLj ,j . Let us also assume
that βLj+1,j = zmaxj . Because 2−zj is convex and monotoni-
cally increasing, the envelop approximation φ(zj) will also be
convex and the slopes will have monotone increasing values:
α1,j < α2,j < ... < αLj ,j . Let ξlj , l = 1, ..., Lj be the
value of zj corresponding to the lth linear segment so that
0 ≤ ξlj ≤ βl+1,j − βl,j , l = 1, ..., Lj . Under the assumption
that ξij = βi+1,j − βi,j , i = 1, ..., l − 1 when ξlj > 0, it is
true that zj =

∑Lj

l=1 ξlj and also that φ(zj) =
∑Lj

l=1 αl,jξlj .
In other words, zj can be replaced by the sum of variables
ξlj , l = 1, ..., Lj if we can ensure that the solution of the
optimization problem will always be such that each ξlj is
nonzero only when the variables ξlj , i = 1, . . . , l − 1 have
obtained their maximum value. As mentioned earlier, α1,j has
the smallest slope value and hence ξ1j will be the first variable
associated with zj to be assigned a nonzero value. Only when
ξ1j has been assigned its maximum value variable ξ2j will
be assigned a nonzero value and this procedure will continue
until zj becomes equal to the sum of the nonzero variables.
Thus, the assumption stated above is satisfied and formulation
(4) becomes:
MODP Formulation

min
∑
j∈T

Lj∑
l=1

αl,jξlj (5a)

s.t. Constraints (3b) - (3c), (5b)
Lj∑
l=1

ξlj = −
∑
i∈C

∑
k∈Ki

bik log2(qijk), j ∈ T , (5c)

0 ≤ ξlj ≤ βl+1,j − βl,j , l = 1, ..., Lj , j ∈ T (5d)

Formulation (5) is a MILP optimization problem that can be
solved with standard solvers. Increasing the number of linear
segments Lj improves the approximation of 2−zj by φ(zj) but
increases the computational complexity. Hence, to compute

the slopes and start-points of 2−zj we employ a piecewise
linear approximation scheme that minimizes the number of
linear segments limiting the maximum approximation error to
a desired value proposed in [41].

C. Maximize the Minimum Detection Probability

MMDP aims to maximize the minimum detection proba-
bility of all detectable targets, which means that the devel-
oped optimization formulation has to be able to identify the
maximum number of detectable targets and then maximize
the minimum detection probability or equivalently minimize
the maximum miss-detection probability of those targets. To
achieve this we combine formulation (2) with the mini-
mization of the maximum miss-detection probability given
by function maxj∈Td(

∏
i∈C

∏
k∈Ki

qbikijk), where Td = {j :
uj = 1, in formulation (2)} is the set of detectable targets.
This objective is equivalent to the mathematical program
{min 2−δ, s.t.

∏
i∈C

∏
k∈Ki

qbikijk ≤ 2−δ, j ∈ Td}, where δ
is an auxiliary continuous variable which ensures that term
2−δ minimizes the maximum miss-detection probability of all
detectable targets. Taking the logarithm of both sides of the
constraints and simplifying the objective function yields

max δ (6a)

s.t.
∑
i∈C

∑
k∈Ki

bik log2(qijk) + δ ≤ 0, j ∈ Td. (6b)

Combining formulations (2) and (6) yields
MMDP Formulation

max δ +M
∑
j∈T

uj (7a)

s.t. Constraints (2b) - (2d), (7b)∑
i∈C

∑
k∈Ki

bik log2(qijk) + δ +Muj ≤M, j ∈ T (7c)

Observe that we have employed the big-M approach; the
presence of M in (7a) and (7c) ensures that the detectability
of a new target is more important than an improvement in the
value of δ and that (6b) is satisfied only for j ∈ Td, respec-
tively. Regarding the practical value of M , M = 20 is high
enough since an increment of δ to be more beneficial that a
unit increase of the detectable targets implies a minimum miss-
detection probability smaller than 2−20 < 10−6. Formulation
MMDP is accurate and can be solved with standard MILP
solvers.

VII. EXPERIMENTAL SETUP AND EVALUATION RESULTS

To evaluate the proposed model and decision-making pro-
cess we have developed camera stations based on the Rasp-
berry Pi single-board computer [42]. Each Raspberry Pi is
connected with a webcam that is mounted on a motorized two
DoF pan-tilt stage, as shown in Fig. 7(a). The two angular
positions are controlled independently using a corresponding
servo which is equipped with a potentiometer-type position
sensor. The sensory feedback information allows accurate
angular positioning of the pan-tilt system. The servo mo-
tors are controlled by the Raspberry Pi and the associated
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Fig. 7. Experimental Setup: (a) The developed Raspberry-Pi pan-tilt smart
camera station. (b) The network of cameras collaboratively monitoring the
moving robots. View and detection results from camera 2 are also shown.
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Fig. 8. Detection accuracy degradation for downwards looking cameras.
Brighter color corresponds to higher detection probability.

control electronics using a pulse width modulation (PWM)
approach. The object detection module of each smart camera
is based on the cascade object detection algorithm with Local
Binary Pattern (LBP) and Histograms of oriented Gradients
(HoG) [43] features based on the seminal work by Viola
and Jones [44] which is available in the OpenCV computer
vision library [45]. The computer at every camera station
does not only execute the computer vision algorithm but also
runs a control program necessary to reconfigure according
to the optimization algorithm result. Communication between
the camera stations is realized via a dedicated local Wi-Fi
network. Information regarding the detected targets can either
be exchanged between cameras or be sent to a central station
using Wi-Fi network. Either way the potential configurations
for each camera are calculated and the respective detection
probabilities per target are computed. Then each camera or
a central server can run the optimization algorithms to find
the required configuration for each camera. Finally, for the
modelling and solution of the optimization problems defined
in Section VI, we used the Gurobi optimization solver [46].

Our first experiments examined the validity of the pro-
posed camera detection model described in Section IV and
helped identify its parameters. Then, using a static layout,
we experimentally implemented the configurations generated
by the optimization algorithms in order to demonstrate the
effectiveness of the optimization procedure and also verify
that the expected values (calculated using the detection model
and Eq. (1)) correspond to the actual camera measurements.
Experiments were also performed in a dynamic scenario where
the targets move within the field and the cameras dynamically
reconfigure to adjust the overall detection performance. Two

TABLE I
DETECTION PROBABILITIES FOR INDIVIDUAL CAMERAS FOR THE

CONFIGURATION PRODUCED BY MODP ALGORITHM

Camera ID Outcome Target ID
1 2 3 4 5 6

Camera 1 Expected 0.9 0 0 0 0.5 0
Experimental 0.85 0 0 0 0.68 0

Camera 2 Expected 0 0 0 0.5 0 0.9
Experimental 0 0 0 0.64 0 0.88

Camera 3 Expected 0 0.2 0 0.9 0 0
Experimental 0 0.16 0 0.88 0 0

TABLE II
COMBINED DETECTION PROBABILITIES OBTAINED USING THE

CONFIGURATIONS PRODUCED FROM THE OPTIMIZATION ALGORITHMS

Algorithm Outcome Target ID
1 2 3 4 5 6

MNDT Expected 0.2 0.2 0.5 0.95 0.5 0.2
Experimental 0.24 0.21 0.47 0.99 0.45 0.15

MODP Expected 0.9 0.2 0 0.95 0.5 0.9
Experimental 0.85 0.16 0 0.97 0.68 0.88

MMDP Expected 0.2 0.2 0.5 0.95 0.5 0.2
Experimental 0.18 0.23 0.48 0.91 0.46 0.23

experimental studies are presented, one using programmable
robot as targets in a lab environment with applications in
indoor environments [47], and a real case where people are
monitored in a building lobby. To test the scalability and
further investigate the properties of the proposed optimization
algorithms we performed simulations for a varying number
of cameras and targets based on the model and experimental
setup. All experiments were conducted in non-controlled en-
vironments with ambient light and varying factors such as the
position, size, and color of the targets.

A. Obtaining the Camera Detection Probabilities

The first step in the evaluation process was to verify the
validity of the model described in Section IV using one of the
developed Raspberry-Pi smart camera stations. The station was
configured with different orientations ranging from (θTmin

i ≤
θTi ≤ θTmax

i ) and for each one the detection performance of
the target object were measured and averaged for multiple runs
over 100 consecutive frames. The target object was positioned
within different locations covering the whole field. Thus we
effectively created a map of the detection probabilities, as
depicted in Fig. 8, which illustrates the detection probabilities
within the effective FoV of a camera. Notice that for this
specific application as the distance of the target increases the
detection probability deteriorates. This is because as the object
resolution decreases, and is represented with less pixels, slight
variations in a few pixels can cause the detection module
to produce the wrong outcome. Of course, the dimensions
and specific detection performance depend on the camera
resolution as well as the detection algorithm itself, as it will
become clearer in the following sections. We have used the
state-of-the-art Cascade object detection algorithm available in
the OpenCV computer vision library [45] which is a typical
and widely used detection algorithm. Hence, the general trend
is expected to remain the same and this type of modeling
to be also applicable to different camera configurations. The
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Fig. 9. FoV obtained from the experimental setup for an example scenario
with 6 targets. (a) Configuration produced by the MODP algorithm. (b)
Configuration produced by the MNDT and MMDP algorithm. (Camera 1 -
solid line, Camera 2 - dashed line, Camera 3 - dotted line)

general processs described herein is applicable to any case and
only the actual probability values and number of zones may
change between different configurations as it will be shown in
VII-C to accommodate the different uncertainties in various
applications.

B. Experimental Evaluation of the Proposed Algorithms

The model and the extracted values of its parameters were
used for further experiments in an active vision scenario.
For the experiments conducted in the laboratory, we used
three smart camera stations which monitored a (1.5× 1.5m2)
area in the laboratory and programmable Lego Mindstorm
robots were used as targets which are capable of executing
specified paths. This allowed to perform the same experiment
for different algorithms thus ensuring a fair performance
comparison. The detection module was trained to recognize
the Lego robots after training on positive (Lego robot images)
and negative (background images) samples. The number of
targets varied between 3-6 and they were placed in various
positions within the field to create different scenarios. The
cameras also communicate with a dedicated server PC through
local Wi-Fi, in order to exchange information and coordinate
their actions. The cameras were placed at the same height
at arbitrary initial orientations and for every initial target
placement, the cameras responded by accordingly adjusting
their configurations depending on the output of the opti-
mization algorithms. Based on the model in Section IV and
experimental detection measurements we employed a 3-zone
model and the assigned detection probabilities were 90% for
the proximal zone, 50% for the intermediate zone and 20%
for the distant one. These parameters were the same for all
cameras even thought different zone models are possible when
the sensing or detection algorithms are different.

1) Static Scenario: In order to validate how well the model
captures the camera detection behaviour we first set up a static
layout and measured the expected and experimental probability
values for each target for the specific three-camera setup in
Fig. 9-a. These values are collected in Table VII. The values
in the table indicate that the zone-specific detection rates
expected by individual cameras for specific configurations
are consistent. Furthermore, we evaluate the experimental and

expected results for the configurations produced by the three
optimization algorithms, as shown in Fig. 9. In each case
the network assumes a different configuration while trying
to meet the objective of each optimization algorithm. For
each algorithm we are interested in the combined detection
probability for each target for all cameras that monitor it. The
expected total detection performance achieved by the cameras
was calculated as described in Section IV using Eq. (1). The
experimental combined detection probabilities were measured
by considering the detection results of the cameras for 1000
consecutive frames. Table VII shows the combined detection
probabilities for each target after applying the configurations
obtained from the three optimization algorithms. First, the
results further validate that the expected detection probabilities
assigned to each zone are in agreement with the experimental
results. Second, we verify that the expected values when
combining detections from multiple cameras are close to the
experimental ones. For example, in Fig. 9-a cameras 2 and
3 both monitor target 4 with an expected combined detection
probability 1 − (1 − 0.5) × (1 − 0.9) = 0.95 which agrees
with the experimentally observed probability of 0.97, as shown
in Table VII. The table also highlights the impact of each
optimization criterion on the expected combined detection
performance achieved for each target. Overall, we see that
the MNDT and MMDP algorithms produce a configuration
that covers all targets, while the MODP algorithm trades-off
coverage for higher cumulative detection probability. These
trends have also been observed in the rest of the experimental
evaluation scenarios thus verifying the validity of the model
and the effectiveness of the optimization algorithms. The
impact of each algorithm is further illustrated in the Section
VII-D where simulation results are shown for larger setups.

2) Dynamic Scenario: For this particular scenario we have
extended the experimental setup with an overhead top-view
camera with the sole purpose of determining the locations of
all the observable targets in the area as in [21]. In this way,
the target scanning procedure is implemented (Step 1 of Fig.
1). A top view camera is not the only option as this process
can be performed by any other sensors and/or cameras [5], as
outlined in Section III. It can also be performed by the cameras
themselves but would require developing new strategies and
approaches for coordination that go beyond the scope of this
work. The server receives the target coordinates, determines
the set of possible configurations for each camera (Step 2 of
Fig. 1), executes the optimization algorithm under considera-
tion (Step 3 of Fig. 1), and sends the new pan and tilt angles
to the camera stations in real-time (Step 4 of Fig. 1). Based
on the new configuration, the cameras execute the machine-
learning-based detection algorithm and return the detection
results to the server. This procedure is continuously performed
to ensure that all targets are dynamically monitored. In this
scenario we have used 3 smart cameras and programmed 3
Lego Mindstorm robots to execute predefined paths in order
to monitor the detection performance of the solutions produced
by the three optimization algorithms.

Specifically, in Fig. 10 we compare the individual camera
detection probabilities with the combined detection probability
for a single moving target. We observe that the combined
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Fig. 10. Experimental results for dynamic scenario with robots: The individual
detection performance of each camera as it changes with the movement of a
target and the their combined detection performance.

average detection probability is maintained at a high level
(0.79) despite the individual cameras having a lower aver-
age performance (0.41, 0.38, 0.39 for cameras 1,2 and 3,
respectively), as well as fluctuations in the individual cam-
era detection probabilities. Fig. 11 illustrates the combined
detection probabilities for the three optimization algorithms.
Overall, we can observe that on average the two proposed
optimization algorithms provide a higher combined detection
performance (0.54 for MODP and 0.47 for MMDP) compared
to the baseline approach (0.45 for MNDT) that does not utilize
probability information. The same figure also highlights the
fact that there is discrepancy between the expected model
probabilities and the real observations due to environmental
uncertainties (e.g., movement, lighting conditions), as there
are time instances where the baseline scenario performs better
than the theoretically optimal (e.g., time instances 54-60 for
MNDT vs MMDP, and 58-59 for MNDT vs MODP). However,
the proposed approaches outperform, on average, the baseline
by up to 17% over the duration of the experiment.

With regards to the computational complexity of the pro-
posed solutions, the total duration of the whole process to
receive the target coordinates, solve the optimization problem,
and set the new camera configurations in the experiments
averaged around 0.018 seconds. Hence, this was not found
to introduce any significant delays and permitted the smart
cameras to monitor the moving targets at 15 frames-per-
second, which is close to the frame-rate achieved without the
networking components. Note that this execution time includes
the solution of the MILP formulations as obtained through a
MILP solver (Gurobi [46]), which in the worst case scenario,
has exponentially increasing execution time; in future work
we expect to improve execution time by developing highly
effective polynomial complexity algorithms.

C. Real-Case Evaluation of proposed algorithms

To demonstrate the generalization capabilities of our frame-
work we evaluate it under a real case scenario and a larger
physical space. The smart camera network was set up in a
building lobby to monitor people. The same camera stations

Time (sec)

Fig. 11. Experimental results for dynamic scenario with robots:The detection
performance of the network as it changes over time for the three optimization
algorithms.

with the previous scenario were used, this time placed at a
higher position (2.20m) and use a different cascade detection
algorithm able to detect humans, available in OpenCV. The
overall setup is shown in Fig. 12. For the particular experi-
ment, we have refined the model to reflect the fact that we
are now detecting a different object (humans) in a larger
operating environment (5 × 9m2). The model is suitable to
handle additional challenges that were not present in the robot
experiments with regards to the target (e.g., pose, appearance,
size) and environment (e.g., size, lighting, reflections). For
example, the full body of a person is necessary to be present
in the image in order to be detectable, and also good detection
modules for pedestrians often require sufficient margin around
the person [48]. To deal with inherent uncertainties associated
with detecting humans in a real environment, we have ex-
perimentally calibrated the model for various individuals and
characteristics by measuring the average detection probability
at various distances and adjusting accordingly the number of
zones and corresponding probabilities. Through this procedure
we established a 5-zone model with probability values {0.2,
0.5, 0.8, 0.5, 0.2}, resulting in a bell-shaped probability
distribution, with an effective capturing distance of 3 to 9
metres for each camera. The existence of a non-detection
region for distances below 3m arises because a person needs
to be at a certain distance away from the camera for its full-
body to be captured. This is evident in Fig. 12-c where camera
3 does not view the whole subject, and hence, is not able to
detect it; in contrast to the subject in Fig. 12-d, where all
cameras are able to detect it. Lower probability values in the
first few zones reflect the fact that when not enough margin
is present around the person it is not detected as frequently.

The detection performance of the proposed algorithms for
this scenario is evaluated using 3 cameras and 4 people moving
in the monitored area. People were walking with random
motion patterns and different velocities. The proposed model
is used to estimate the detection performance and through
the optimization process reconfigure the network to meet the
objective of each algorithm. The combined detection prob-
abilities for the three optimization algorithms are illustrated
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Fig. 12. Experimental setup for dynamic real-case scenario: (a) Setup for camera 1 station. (b) Two different views of the experimental setup and monitored
area with different targets. (c) Detections of one subject for the 3 cameras. Notice that C3 is not able to detect the target. (d) Detections of a different subject
where all cameras are able to detect it.
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Fig. 13. Experimental results for dynamic real-case scenario: Detection
performance of the network for the three optimization algorithms.

in Fig. 13. Overall, we can observe that on average the two
proposed optimization algorithms provide a higher combined
detection performance (0.80 for MODP and 0.78 for MMDP)
compared to the baseline approach (0.68 for MNDT) that
does not utilize probability information. In this scenario the
proposed approaches outperformed the baseline by up to 58%
for a specific time instance, and 15% on average.

D. Simulation Evaluation

Beyond the experimental evaluation which confirmed the
model and the expected results we also performed simulation
studies to evaluate the scalability in terms of performance
of the algorithms with respect to an increasing number of
cameras and targets as well as the temporal impact on overall
detection of each of the optimization algorithms. We have

developed a visual simulation environment in MATLAB which
was very close to the real-life experimental framework while
encapsulating all the aforementioned models and algorithms.
Within a square field area targets were generated in random
positions, while all cameras were placed in the perimeter
of the area with an equal number of cameras at each side.
We performed simulation experiments for different number of
targets (ranging from 5 to 30, with a step of 5) and cameras
(ranging from 4 to 24, with a step of 4). For each combination
of targets and cameras we run 1000 different scenarios and
compare the averaged outcomes for the three algorithms.

We first evaluate and compare the effectiveness of the
three algorithms in terms of achieved detection performance
for all targets in the area which is defined as the sum of
all camera combined detection probabilities for each target∑
j∈T (1−

∏
i∈C

∏
k∈Ki

qbikijk), where remember that qijk is the
miss-detection probability of camera i for target j in selected
configuration k. We also examine the impact of increasing
the number of cameras (Fig. 14(a)) and targets (Fig. 14(b))
respectively, in the effectiveness of the algorithm. For all
experiments the MODP algorithm achieves the best overall
detection probability, which is expected as it is tailored for
this task. The MNDT algorithm achieves the lowest overall
detection probability, as it is not aware of the detection
capabilities of the cameras. Finally, the MMDP algorithm
has the most interesting behaviour as it tries to balance both
objectives. For the plots in Fig. 14(a) it starts by achieving the
same results as the MNDT algorithm however as the number
of available cameras increases, it gradually reaches the results
of the MODP. Conversely, as observed by the plots in Fig.
14(b), as the number of the number of targets increases the
behaviour of the MMDP drifts further away from the MODP
and towards the MNDT.

Next, in Fig. 15 it is investigated how each algorithm
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Fig. 14. Total Detection Probability as (a) number of cameras increases. (b) number of targets increases
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Fig. 15. Effective number of monitored targets as the number of cameras
increases (top) and as the number of targets increases (bottom)

performs with regards to the total number of covered targets
(targets that can be detected with a non-zero probability)
given by

∑
i∈Cd

∑
j∈T d1 −

∏
k∈Ki

qbikijk)e/NCe. First it is
observed that the MNDT and MMDP algorithms achieve the
same results. On the other hand, the MODP covers fewer
number of targets as it tries to maximize the overall detection
probability by making cameras overlap and only covers the
same number when there are sufficient number of cameras
to monitor the previously uncovered targets. Notice that the
MNDT and MODP algorithms do not cover all the targets
either. Interestingly, these results can provide an indication on
the number of cameras that need to be placed in an area to
ensure maximum coverage depending on the number of targets
and assignment algorithm.

Finally, we evaluate how each of the three algorithms
performs in terms of the minimum achieved detection proba-
bility, for an individual target which is given by minj∈T (1−∏
i∈C

∏
k∈Ki

qbikijk)). This is important in cases where we need
to monitor targets with a certain probability which may be
necessary to capture as many instances of the target as possible
for better activity recognition or identification. These results
are depicted in Fig. 16. As expected the MMDP algorithm

demonstrates the highest minimum detection probability in
all scenarios as it considers this as one of the objectives
of the optimization problem. In the case of fixed number
of cameras and varying number of targets (Fig. 16(a)) the
MNDT algorithm outperforms the MODP algorithm up to a
certain point where there are enough cameras to allow for more
overlapping detections. The reason for this is that the main
objective of the MODP algorithm is to maximize the overall
detection probability which is achieved by seeking overlaps
between targets. Hence, in some cases when the number of
cameras is not sufficient enough some targets will be left with
limited coverage resulting in lower detection probability. This
is something that the MMDP algorithm considers and hence
can be used for those types of scenarios. The opposite is true
for the case of fixed number of cameras and varying number of
targets (Fig. 16(b)), where the MODP outperforms MNDT for
small number of targets. However, as the number of cameras
increases the MODP manages to achieve better results in terms
of the minimum detection probability.

The previous results focused on a static configuration where
the cameras, after becoming aware of all target locations,
reconfigure to maximize a specific optimization metric. To
provide an indication of when the network can reconfigure
again we examine how the detection probabilities change after
τ time instances once a configuration has been set, which is
given by

∑
j∈T (1−(

∏
i∈C

∏
k∈Ki

qbikijk)
τ ). As the detections at

different time instances are independent we can combine them
to obtain estimate detection probabilities over time. In this
way we identify the time instances necessary for the network
to confidently acquire detections from all targets. Results are
obtained for different scenarios in Fig. 17. It is observed that
the MODP and MMDP converge faster as the number of
cameras increase, while the MNDT takes more time instances
to converge. The MMDP is the fastest to converge overall in
all the cases, while the MODP and MNDT change depending
on the number of targets and cameras. Hence, MMDP is
particularly useful when the targets are monitored with the
same camera configurations for multiple time-instances.

Conclusively, the two proposed optimization algorithms
demonstrate significant trends that determine their appropri-
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Fig. 16. Minimum Detection probability in the network as (a) the number of cameras increases and (b) as the number of targets increases
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Fig. 17. Detection probability over time as the number of cameras increases
(top) and as the number of targets increases (bottom)

ateness for a specific application. As expected the MODP
and MMDP perform better in terms of detection performance.
Overall, the MMDP algorithm offers a compromising solution
which manages to increase the overall detection probabilities
for the targets while also trying to maximize the coverage. It
is possible to develop an adaptive approach where the MMDP
algorithm can weight the two different objectives emphasizing
on the one that is needed currently.

VIII. DISCUSSION AND FUTURE WORK

In this work we have developed a probabilistic image-based
model that can be used to describe the detection character-
istics of cameras. This model was employed to formulate
optimization problems with different objectives to select the
best configuration for each camera in the network in order to
achieve optimal detection performance; demonstrating the im-
portance of incorporating such a model into the configuration
selection process. The proposed framework can be generalized
to diverse application scenarios, in terms of the physical
size of the monitored area and object, and type of detection
module and object category. This generalization is achieved
by appropriately adjusting the parameters of the proposed

probabilistic model to fit a specific scenario. In particular, the
model can scale with the size of the monitored area and object,
by adjusting the number of zones as well as their physical
size. In addition, the behavior of the detection module for
different object categories can be captured by appropriately
adjusting the probabilities in each zone. Finally, the cameras
can have different model parameters and probabilities to adapt
to differences in camera specifications or the area monitored
by each camera. One possible drawback of our approach lies
perhaps in the off-line calibration process to determine the
detection probabilities which can incur additional deployment
time. To address this, we are currently developing an au-
tomated approach for extracting the detection probabilities
using the concept of pixels-on-target and multi-scale resolution
pyramids. Another refinement is to also consider the camera
zoom capabilities as an additional factor that can change the
detection performance. Hence, the optimization algorithms
will have to choose from a larger set of configurations for
each camera. Finally, with the increasing deployment and
availability of low-cost smart cameras, we are also looking to
explore how additional, and perhaps mobile, cameras can be
used to compensate for areas that remain unobserved despite
the reconfiguration.
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