CEGAR-based approach for solving combinatorial optimization modulo quantified linear arithmetics problems — Technical Appendix —

Kerian Thuillier¹, Anne Siegel¹, Loïc Paulevé²

¹ Univ. Rennes, Inria, CNRS, IRISA, UMR6074, F-35000 Rennes, France ² Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France kerian.thuillier@irisa.fr, anne.siegel@irisa.fr, loic.pauleve@labri.fr

Theorem 1 ($\phi \Rightarrow \phi_{\text{approx}}$). Let ϕ a SAT+qLP problem and ϕ_{approx} *its Boolean abstraction. For any model* $(x, y) \in \mathbb{B}^n \times$ $\overline{\mathbb{R}^m}$ of ϕ , there exists $\overline{f} \in \mathbb{B}^{|D|+|E|+|H|}$ such that (x, \overline{f}) is a *model of* ϕ_{approx} *.*

Proof. Let $(x, y) \models \phi$ and \bar{f} such that: $\forall c_h \in D \cup E \cup$ $H, \tilde{f}_{c_h} = \top \iff x \not\models c_h$. For $(x, \bar{f}) \models \phi_{\text{approx}}, (x, \bar{f})$ should satisfy the Eqs. 4.

- (4a) As Eq. 1a equals Eq. 4a and $x \models \bigwedge_{c \in C} c(x)$, we have $(x,\bar{f}) \models \bigwedge_{c \in C} c(x).$
- (4b) By definition of \bar{f} , $\bar{f}_d = \top$ for each clause $d \in D$ not satisfied by x. Thus, each clause $d \in D$ is satisfied by either x or \bar{f} . Therefore, $(x, \bar{f}) \models \bigwedge_{d \in D} \bar{d}(x, \bar{f}).$
- (4c) Using same reasoning as for (4b), there are (x, \bar{f}) \models $\bigwedge_{e \in E} \overline{e}(x, \overline{f})$ and $(x, \overline{f}) \models \bigwedge_{h \in H} \overline{h}(x, \overline{f})$. Therefore, $(x, \overline{f}) \models \bigwedge_{e \in E} \overline{e}(x, \overline{f}) \wedge \bigwedge_{h \in H} \overline{h}(x, \overline{f}).$

Therefore $(x, \bar{f}) \models \phi_{\text{approx}}$, and $\phi \implies \phi_{\text{approx}}$.

Models of (g, ϕ) are subsets of models of ϕ and by definition $\models (g, \phi)$ if $\models \phi$. Hence, $(g, \phi) \iff \phi$, i.e., $(g, \phi) \implies \phi_{\text{approx}}.$

Let $\nu^* = (x, y)$. Suppose that $\nu^* \models (g, \phi)$ with $g(\nu^*)$ its optimal value. By previous statements, $\exists f, (x, f) \models \phi_{\text{approx}}$. As $g: \mathbb{B}^n \to \mathbb{R}$, then $g((x, \overline{f})) = g(x) = g((x, y))$. \Box

Corollary 1.1. $(g, \phi) \implies \phi_{approx}$.

Proof. Models of (q, ϕ) are subsets of models of ϕ and by definition $\not\models (g, \phi)$ if $\not\models \phi$. Hence, $(g, \phi) \iff \phi$. Therefore by Theorem 1, $(g, \phi) \implies \phi_{\text{approx}}$. \Box

Lemma A. *Given* C_h *a set of hybrid clauses and* x ∈ B ⁿ *a Boolean variables assignment,* $y \models \mathcal{C}_x^{C_h} \iff (x, y) \models \bigwedge_{c_h \in C_h} c_h(x, y).$

Proof. (\rightarrow) Let $y \in \mathbb{R}^m$ such that $y \models C_x^{C_h}$. By re- $\bigwedge_{c_h \in C_h} c_h(x, y)$. The hybrid constraint $c_h(x, y)$ is of the *ductio ad absurdum*, suppose that $\exists c_h \in C_h$, $(x, y) \not\models$ form $\bigwedge_i x_i \bigwedge \neg x_j \land f_{c_h}(y) \leq 0$. Thus, there are $x \not\models$ $\bigwedge_i x_i \bigwedge \neg x_j$ and $y \not\models f_{c_h}(y) \leq 0$. By definition of $\mathcal{C}^{C_h}_x$, if $x \not\models \bigwedge_i x_i \bigwedge \neg x_j$ then $f_{c_h}(y) \leq 0 \in C_x^{C_h}$. As $y \models$ $\mathcal{C}_x^{C_h}$, then $y \models f(y) \leq 0$. Otherwise, $x \models \bigwedge_i x_i \bigwedge \neg x_j$. This contradicts the hypothesis that $\exists c_h \in C_h, (x, y) \not\models$ $\bigwedge_{c_h \in C_h} c_h(x, y)$. Therefore, $(x, y) \models \bigwedge_{c_h \in C_h} c_h(x, y)$. (←) Let $(x, y) \models \bigwedge_{c_h \in C_h} c_h(x, y)$. Thus, $\forall c_h \in C_h$ either $x \models \bigwedge_i x_i \bigwedge_j \neg x_j$ or $y \models f_{c_h}(y) \leq 0$. Therefore, by definition of $\mathcal{C}_x^{C_h}$, $y \models \mathcal{C}_x^{C_h}$. П

Lemma B. *Given* C_h *a set of hybrid clauses,* \hat{c}_h *a hybrid clause and* $x \in \mathbb{B}^n$, $\nvDash C_x^{C_h} \lor f_{\hat{c}_h}^*(C_x^{C_h}) \leq 0$ *if and only if* $x \models \forall y \in \mathbb{R}^m, \bigwedge_{c_h \in C_h} c_h(x, y) \Longrightarrow \hat{c}_h(x, y).$

 $\begin{array}{llll}\textit{Proof.} & (\rightarrow) \ \ \text{If} \ \ \nvDash & \mathcal{C}^{C_h}_x, \ \text{then} \ \ \forall y \ \ \in & \mathbb{R}^m, (x, y) \ \ \nvDash & \land_{c_h \in C_h} c_h(x, y). \ \ \ \text{Therefore,} \ \ \ x \ \ \ \vDash & \forall y \ \ \in & \end{array}$ $\mathbb{R}^m, \bigwedge_{c_h \in C_h}^n c_h(x, y) \qquad \Longrightarrow \qquad \hat{c}_h(x, y).$ Otherwise, $\exists y \in \mathbb{R}^m, y \models \mathcal{C}^{C_h}_{x} \text{ and } f^*_{\hat{c}_h}(\mathcal{C}^{C_h}_{x}) \leq 0.$ Thus, $\exists y \in \mathbb{R}^m, \bigwedge_{c_h \in C_h} c_h(x, y)$. By *reductio ad absurdum*, suppose that $\exists y' \in \mathbb{R}^m$, $(x, y') \models \bigwedge_{c_h \in C_h} c_h(x, y')$ and $f(y') > 0$. Thus, $f_{\hat{c}_h}^*(\mathcal{C}_{x}^{C_h}) < f(y')$. However, by definition of $f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}), \forall y \in \mathbb{R}^m, y \models \mathcal{C}_x^{C_h} \implies f(y) \leq f_{\hat{c}_h}^*$. It contradicts the hypothesis that $f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}) \leq 0$. Therefore, $\models \mathcal{C}_x^{C_h} \quad \lor \quad f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}) \leq 0$ implies that $x \models \forall y \in \mathbb{R}^m, \bigwedge_{c_h \in C_h} c_h(x, y) \implies \hat{c}_h(x, y).$ (←) Suppose that $x \models \forall y \in \mathbb{R}^m$, $\bigwedge_{c_h \in C_h} c_h(x, y) \implies$ $\hat{c}_h(x, y)$. By *reductio ad absurdum*, suppose that $\exists y \in \mathbb{R}^m$ such that $y \models C_{x}^{C_h}$ and $f_{\hat{c}_h}^*(\hat{C}_{x}^{C_h}) > 0$. Thus, $\exists y \in \mathbb{R}^m$, $(y \models C_x^{C_h} \land f(y) > 0$. By definition of $x, \forall y' \in \mathbb{R}^m, (y \models \mathcal{C}^{C_h}_{x}) \Rightarrow f(y) \leq 0$. This contradicts that $\exists y \in \mathbb{R}^m$, $(y \not\models C_x^{C_h}) \wedge f_{\hat{c}_h}(y) > 0$. Therefore, $x \models \forall y \in \mathbb{R}^m, \bigwedge_{c_h \in C_h}^{s} c_h(x, y) \implies \hat{c}_h(x, y)$ implies that $\not\models \mathcal{C}_x^{C_h} \vee f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}) \leq 0.$

Theorem 2. *Let* ϕ *be a* SAT+qLP *formula and* ϕ_{approx} *its Boolean abstraction. Given* $\overline{x} \in \mathbb{B}^n$ *and* $y \in \mathbb{R}^m$, $(x, y) \models \phi$ *if and only if the following three conditions* $\phi_{\text{infl}}(c) = \mathcal{F}_{\overline{f}}(x, \overline{f}) \models \phi_{\text{approx}}(c) \text{ or } \models c_x^D;$ (C3) $\not\models \mathcal{C}_x^E \lor \bigwedge_{h \in \mathcal{C}_x^H} f_h^*(\mathcal{C}_x^E) \leq 0.$

□

Proof. (\rightarrow) Suppose that $(x, y) \models \phi$. By Theorem 1, $\phi \Rightarrow \phi_{\text{approx}}$. Thus, *C1* holds. As $(x, y) \models \phi$, then $(x, y) \models \Lambda_{d \in D} d(x, y)$. Thus, Lemma A concludes that *C2* holds. As $(x, y) \models \phi$, then $x \models \forall z \in \phi$ \mathbb{R}^p , $\bigwedge_{e \in E} e(x, z) \implies \bigwedge_{h \in H} h(x, z)$. Thus, $\forall h \in$

Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

 $\mathcal{C}_x^H, x \models \forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z) \implies h(x, z)$. Lemma B concludes that *C3* holds. Therefore, $(x, y) \models \phi$ implies *C1*, *C2* and *C3*.

(←) Suppose that all three conditions hold. By *C1*, $\exists \bar{f}, (x, \bar{f}) \models \phi_{\text{approx}}$. Thus, $x \models \bigwedge_{c \in C} c(x)$ (Eq. 1a). $C2$ and Lemma A concludes for Eq. 1b. *C3* and Lemma B conclude for Eq. 1c. Therefore, *C1*, *C2* and *C3* implies $(x, y) \models \phi$. П

Corollary 2.1. *Given* $x \in \mathbb{B}^n$ *and* $y \in \mathbb{R}^m$ *a real-valued variables assignment, if* $(C1') \exists \bar{f}, (x, f) \models (g, \phi_{approx})$ *,* $C2$ *and C3 hold, then* $(x, y) \models (g, \phi)$ *.*

Proof. As $(x, \bar{f}) \models (g, \phi_{\text{approx}})$, then $(x, \bar{f}) \models \phi_{\text{approx}}$. Thus, *C1* holds. Moreover, $\forall (x', \bar{f}') \models \phi, g(x) \leq g(x')$. By Corollary 1.1, $(g, \phi) \implies \phi_{\text{approx}}$. Therefore, *C1*, *C2*, *C3* hold and x is minimal according to g. Therefore, *C1'*, *C2* and *C3* implies $(x, y) \models (g, \phi)$. \perp

Lemma 3. $\phi \implies \phi_{approx} \wedge \phi_r^{\exists}(x)$.

Proof. Let \bar{f}' such that $\forall c_h \in D \cup E \cup H, \bar{f}'_{c_h} = \top \iff$ $x' \not\models c_h$. By Theorem 1, we have $(x', \bar{f}') \models \phi_{\text{approx}}^{\pi}$. If (x, \bar{f}) satisfies C^2 then $\phi_r^{\exists}(x)$ does not generate new constraints. Thus, $\phi_r^{\exists}(x) \wedge \phi_{\text{approx}} = \phi_{\text{approx}}$. Otherwise, C2 does not hold for (x, \bar{f}) . Let $\mathcal{C}_{\text{unsat}}$ be an unsatisfiable core of \mathcal{C}_x^D . By *reductio ad absurdum*, suppose that $\exists (x', \bar{f}') \not\models \phi_{r,x}^{\exists (\bar{x})}$. Thus, $\forall f \in \mathcal{C}_{\text{unsat}}, \bar{f}' = \top$. By definition of \bar{f}' and $\bar{\mathcal{C}}_{x'}^D$, it means that $\mathcal{C}_{\text{unsat}} \subseteq \mathcal{C}_{x'}^D$. Hence, $(x', f') \models \phi_r^{\exists}(x) \land \phi_{\text{approx}}$. Therefore, $\phi \implies \phi_{\text{approx}} \wedge \phi_r^{\exists}(x)$.

Property 4. *Given a linear objective function* f *and two linear optimization problems* (f, C_1) *and* (f, C_2) *,* $\mathcal{C}_1 \subseteq \mathcal{C}_2 \implies \hat{\bm{f}}^*(\mathcal{C}_1) \geq \hat{\bm{f}}^*(\mathcal{C}_2).$

Proof. By *reductio ad absurdum*, suppose that $C_1 \subseteq C_2$ and $f^*(\tilde{C}_1) < C_2$. Let $y = \text{argmax}_{y \in C_2} \tilde{f}(y)$. As $C_1 \subseteq C_2$, then $y \models C_1$. Since $f(y) = f^*(C_2)$ and $y \models C_1$, its contradicts $f^*(\mathcal{C}_1) < \mathcal{C}_2$. Therefore, $\mathcal{C}_1 \subseteq \mathcal{C}_2 \implies f^*(\mathcal{C}_1) \ge \mathcal{C}_2$. \Box

Lemma 5. $\phi \implies \phi_{approx} \wedge \phi_r^{\forall}(x)$

Proof. Let \bar{f}' such that $\forall c_h \in D \cup E \cup H$, $\bar{f}'_{c_h} = \top \iff$ $x' \not\models c_h$. By Theorem 1, we have $(x', \bar{f}') \not\models \phi_{\text{approx}}$. If (x, \bar{f}) satisfies *C3* then $\phi_r^{\forall}(x)$ does not generate new constraints. Thus, $\phi_r^{\forall}(x) \wedge \phi_{\text{approx}} = \phi_{\text{approx}}$. Otherwise, *C3* does not hold for (x, \bar{f}) . By *reductio ad absurdum*, suppose that $\exists (x', \bar{f}') \not\models \phi_r^{\forall'}(x)$. Let $h \in H$ such that $f_h \in C_x^H$ and $f_h^*(C_x^E) > 0$. Such h exists as *C3* does not hold for x. By definition of $(x', y') \models \phi$ and \bar{f}' , there are either $\bar{f}'_h = \bot$ or $\bar{f}'_h = \top \wedge f_h^*(\mathcal{C}_{x'}^E) \leq 0$. For the first case, \bar{f}'_h satisfies the constraint of $\phi_r^{\exists}(x)$ associated with h. For the second case, suppose that $\bar{f}'_h = \top \wedge f_h^*(\mathcal{C}_{x'}^E) \leq 0$. Let $\mathcal{C}_{opt}^{f_h}$ be an optimal core of (f_h, C_x^E) . Thus, $\forall e \in E, f_e \notin C_{\text{opt}}^{f_h} \implies \overline{f}_e' = \bot$ and $\bar{f}_h = \top$. By definition of \bar{f}' and $\dot{C}_{x'}^E$, it means that $\mathcal{C}^E_{x'} \subseteq \mathcal{C}^{f_h}_{\text{opt}}$. However, we have that $f_h^*(\mathcal{C}^E_{x'}) < f_h^*(\mathcal{C}^E_x)$. This contradicts property 4. Hence, $(x', f') \models \phi^{\forall} r(x) \land \phi_{\text{approx}}$. Therefore, $\phi \implies \phi_{\text{approx}} \wedge \phi_r^{\forall}(x)$.

Theorem 6. *Given* (x, \bar{f}) \models ϕ_{approx} , $\phi \Rightarrow \phi_r^{\exists}(x) \land \phi_r^{\exists}(x)$ $\phi_r^{\forall}(x) \wedge \phi_{approx}.$

Proof. By Lemma 3, we have $\phi \implies \phi_r^{\exists}(x) \wedge \phi_{approx}.$ By Lemma 5, we have $\phi \implies \phi_r^{\forall}(x) \wedge \phi_{\text{approx}}$. As the constraints generated by $\phi_r^{\exists}(x)$ and $\phi_r^{\forall}(x)$ impact disjoint sets of variables \bar{f} , then $\phi \implies \phi_r^{\exists}(x) \land \phi_r^{\forall}(x) \land \phi_{\text{approx}}$.

Corollary 6.1. $(g, \phi) \implies \phi_r^{\exists}(x) \wedge \phi_r^{\forall}(x) \wedge \phi_{approx}.$

Proof. By definition, $\phi \iff (g, \phi)$. Therefore by Theorem 6, $(g, \phi) \implies \phi_r^{\exists}(x) \wedge \phi_r^{\forall}(x) \wedge \phi_{\text{approx}}$. \Box

Corollary 6.2. $\forall \nu^* \models (g, \phi) \implies \exists \nu' \models \phi_r^{\exists}(x) \land \phi_r^{\forall}(x) \land \phi_r^{\forall}(x)$ $\phi_{approx}, g(\nu') = g(\nu^*).$

Proof. Suppose that $(x', y') \models (g, \phi)$ with $g((x', y'))$ its optimal value. By definition, $\exists \bar{f}', (\bar{x}', \bar{f}') \models \phi^{\exists}_{\bar{r}}(x) \land \phi^{\forall}_{\bar{r}}(x) \land \phi^{\forall}_{\bar{r}}(x)$ ϕ_{approx} . As $g : \mathbb{B}^n \to \mathbb{R}$, then $g((x', \bar{f}')) = g(x') =$ $g((x', y')).$

Lemma 7. $\exists y \in \mathbb{R}^m, C_x^D \iff \bigwedge_{\mathcal{P}_i \in \mathcal{P}_x^D} y \models \mathcal{P}_i$.

Proof. (→) Suppose that $\exists y \in \mathbb{R}^m$, C_x^D and it exists $\mathcal{P}_i \in$ \mathcal{P}_x^D unsatisfiable. We know that \mathcal{P}_x^D is a partition of \mathcal{C}_x^D , hence $P_i \subseteq C_x^D$. If P_i is unsatisfiable, so is C_x^D . Therefore, it could not exists $P_i \in \mathcal{P}_x^D$ unsatisfiable if \mathcal{C}_x^D is satisfiable. (←) Suppose that $\forall P_i \in \mathcal{P}_x^D, y_i \models \mathcal{P}_i$. We know that \mathcal{P}_x^D is a partition of \mathcal{C}_x^D such that no variables are shared among the constraints of different partitions. Hence $y = y_{i_i}$ \models $\bigwedge_{\mathcal{P}_i \in \mathcal{P}_x^D} \mathcal{P}_i$, and $\bigwedge_{\mathcal{P}_i \in \mathcal{P}_x^D} y \models \mathcal{P}_i$. As y is a model of all the subsets in the partition \mathcal{P}_x^D , $y \models \mathcal{C}_x^D$. \Box

Lemma 8. If \mathcal{C}_x^E is satisfiable, then $f_h^*(\mathcal{C}_x^E) = f_h^*(\mathcal{P}_x'^E)$.

Proof. By definition of P , we have that all the linear constraints that can have an impact on the variables involved in f_h are in P' . Therefore, linear constraints in the other subsets will not impact the variables involved in f_h . These constraints can only impact the satisfiability of the problem, however, we supposed that \mathcal{C}_x^E is satisfiable. Hence, the optimum of (f_h, \tilde{C}_x^E) depends only of the constraints in $\mathcal{P}_x'^E.$