CEGAR-based approach for solving combinatorial optimization modulo quantified linear arithmetics problems — Technical Appendix —

Kerian Thuillier¹, Anne Siegel¹, Loïc Paulevé²

 ¹ Univ. Rennes, Inria, CNRS, IRISA, UMR6074, F-35000 Rennes, France
² Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France kerian.thuillier@irisa.fr, anne.siegel@irisa.fr, loic.pauleve@labri.fr

Theorem 1 ($\phi \Rightarrow \phi_{approx}$). Let ϕ a SAT+qLP problem and ϕ_{approx} its Boolean abstraction. For any model $(x, y) \in \mathbb{B}^n \times \mathbb{R}^m$ of ϕ , there exists $\overline{f} \in \mathbb{B}^{|D|+|E|+|H|}$ such that (x, \overline{f}) is a model of ϕ_{approx} .

Proof. Let $(x, y) \models \phi$ and \overline{f} such that: $\forall c_h \in D \cup E \cup H, \overline{f}_{c_h} = \top \iff x \not\models c_h$. For $(x, \overline{f}) \models \phi_{\text{approx}}, (x, \overline{f})$ should satisfy the Eqs. 4.

- (4a) As Eq. 1a equals Eq. 4a and $x \models \bigwedge_{c \in C} c(x)$, we have $(x, \overline{f}) \models \bigwedge_{c \in C} c(x)$.
- (4b) By definition of *f*, *f_d* = ⊤ for each clause *d* ∈ *D* not satisfied by *x*. Thus, each clause *d* ∈ *D* is satisfied by either *x* or *f*. Therefore, (*x*, *f*) ⊨ ∧_{*d*∈*D*} *d*(*x*, *f*).
- (4c) Using same reasoning as for (4b), there are $(x, \bar{f}) \models \bigwedge_{e \in E} \bar{e}(x, \bar{f})$ and $(x, \bar{f}) \models \bigwedge_{h \in H} \bar{h}(x, \bar{f})$. Therefore, $(x, \bar{f}) \models \bigwedge_{e \in E} \bar{e}(x, \bar{f}) \land \bigwedge_{h \in H} \bar{h}(x, \bar{f})$.

Therefore $(x, \overline{f}) \models \phi_{\text{approx}}$, and $\phi \implies \phi_{\text{approx}}$.

Models of (g, ϕ) are subsets of models of ϕ and by definition $\not\models (g, \phi)$ if $\not\models \phi$. Hence, $(g, \phi) \iff \phi$, i.e., $(g, \phi) \implies \phi_{\text{approx}}$.

Let $\nu^* = (x, y)$. Suppose that $\nu^* \models (g, \phi)$ with $g(\nu^*)$ its optimal value. By previous statements, $\exists f, (x, \bar{f}) \models \phi_{\text{approx}}$. As $g : \mathbb{B}^n \to \mathbb{R}$, then $g((x, \bar{f})) = g(x) = g((x, y))$.

Corollary 1.1. $(g, \phi) \implies \phi_{approx}$.

Proof. Models of (g, ϕ) are subsets of models of ϕ and by definition $\not\models (g, \phi)$ if $\not\models \phi$. Hence, $(g, \phi) \iff \phi$. Therefore by Theorem 1, $(g, \phi) \implies \phi_{\text{approx}}$.

Lemma A. Given C_h a set of hybrid clauses and $x \in \mathbb{B}^n$ a Boolean variables assignment, $y \models \mathcal{C}_x^{C_h} \iff (x, y) \models \bigwedge_{c_h \in C_h} c_h(x, y).$

Proof. (\rightarrow) Let $y \in \mathbb{R}^m$ such that $y \models \mathcal{C}_x^{C_h}$. By reductio ad absurdum, suppose that $\exists c_h \in C_h, (x, y) \not\models \bigwedge_{c_h \in C_h} c_h(x, y)$. The hybrid constraint $c_h(x, y)$ is of the form $\bigwedge_i x_i \bigwedge \neg x_j \land f_{c_h}(y) \leq 0$. Thus, there are $x \not\models \bigwedge_i x_i \bigwedge \neg x_j$ and $y \not\models f_{c_h}(y) \leq 0$. By definition of $\mathcal{C}_x^{C_h}$, if $x \not\models \bigwedge_i x_i \land \neg x_j$ then $f_{c_h}(y) \leq 0 \in \mathcal{C}_x^{C_h}$. As $y \models$ $\begin{array}{l} \mathcal{C}_x^{C_h}, \text{ then } y \models f(y) \leq 0. \text{ Otherwise, } x \models \bigwedge_i x_i \bigwedge \neg x_j. \\ \text{This contradicts the hypothesis that } \exists c_h \in C_h, (x,y) \not\models \\ \bigwedge_{c_h \in C_h} c_h(x,y). \text{ Therefore, } (x,y) \models \bigwedge_{c_h \in C_h} c_h(x,y). \\ (\leftarrow) \text{ Let } (x,y) \models \bigwedge_{c_h \in C_h} c_h(x,y). \text{ Thus, } \forall c_h \in C_h \text{ either } x \models \bigwedge_i x_i \bigwedge_j \neg x_j \text{ or } y \models f_{c_h}(y) \leq 0. \text{ Therefore, by } \\ \text{definition of } \mathcal{C}_x^{C_h}, y \models \mathcal{C}_x^{C_h}. \end{array}$

Lemma B. Given C_h a set of hybrid clauses, \hat{c}_h a hybrid clause and $x \in \mathbb{B}^n$, $\not\models \mathcal{C}_x^{C_h} \lor f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}) \leq 0$ if and only if $x \models \forall y \in \mathbb{R}^m, \bigwedge_{c_h \in C_h} c_h(x, y) \Longrightarrow \hat{c}_h(x, y).$

 $\begin{array}{l} \exists y \in \mathbb{R}^m \text{ such that } y \models \mathcal{C}_x^{C_h} \text{ and } f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}) > 0. \\ \text{Thus, } \exists y \in \mathbb{R}^m, (y \models \mathcal{C}_x^{C_h}) \wedge f(y) > 0. \text{ By definition of } \\ x, \forall y' \in \mathbb{R}^m, (y \models \mathcal{C}_x^{C_h}) \Longrightarrow f(y) \leq 0. \text{ This contradicts } \\ \text{that } \exists y \in \mathbb{R}^m, (y \models \mathcal{C}_x^{C_h}) \wedge f_{\hat{c}_h}(y) > 0. \text{ Therefore, } \\ x \models \forall y \in \mathbb{R}^m, (A_{c_h \in C_h} c_h(x, y)) \Longrightarrow \hat{c}_h(x, y) \text{ implies that } \\ \notin \mathcal{C}_x^{C_h} \vee f_{\hat{c}_h}^*(\mathcal{C}_x^{C_h}) \leq 0. \end{array}$

Theorem 2. Let ϕ be a SAT+qLP formula and ϕ_{approx} its Boolean abstraction. Given $x \in \mathbb{B}^n$ and $y \in \mathbb{R}^m$, $(x, y) \models \phi$ if and only if the following three conditions hold: (C1) $\exists \overline{f}, (x, \overline{f}) \models \phi_{approx}$; (C2) $y \models \mathcal{C}_x^D$; (C3) $\not\models \mathcal{C}_x^E \lor \bigwedge_{h \in \mathcal{C}_x^H} f_h^*(\mathcal{C}_x^E) \leq 0.$

Proof. (→) Suppose that $(x, y) \models \phi$. By Theorem 1, $\phi \implies \phi_{\text{approx}}$. Thus, CI holds. As $(x, y) \models \phi$, then $(x, y) \models \bigwedge_{d \in D} d(x, y)$. Thus, Lemma A concludes that C2 holds. As $(x, y) \models \phi$, then $x \models \forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z) \implies \bigwedge_{h \in H} h(x, z)$. Thus, $\forall h \in H$

Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

 $C_x^H, x \models \forall z \in \mathbb{R}^p, \bigwedge_{e \in E} e(x, z) \implies h(x, z)$. Lemma B concludes that C3 holds. Therefore, $(x, y) \models \phi$ implies C1, C2 and C3.

(\leftarrow) Suppose that all three conditions hold. By C1, $\exists \bar{f}, (x, \bar{f}) \models \phi_{approx}$. Thus, $x \models \bigwedge_{c \in C} c(x)$ (Eq. 1a). C2 and Lemma A concludes for Eq. 1b. C3 and Lemma B conclude for Eq. 1c. Therefore, C1, C2 and C3 implies $(x, y) \models \phi$.

Corollary 2.1. Given $x \in \mathbb{B}^n$ and $y \in \mathbb{R}^m$ a real-valued variables assignment, if (C1') $\exists \overline{f}, (x, \overline{f}) \models (g, \phi_{approx}), C2$ and C3 hold, then $(x, y) \models (g, \phi)$.

Proof. As $(x, \bar{f}) \models (g, \phi_{approx})$, then $(x, \bar{f}) \models \phi_{approx}$. Thus, *C1* holds. Moreover, $\forall (x', \bar{f}') \models \phi, g(x) \leq g(x')$. By Corollary 1.1, $(g, \phi) \implies \phi_{approx}$. Therefore, *C1*, *C2*, *C3* hold and x is minimal according to g. Therefore, *C1'*, *C2* and *C3* implies $(x, y) \models (g, \phi)$.

Lemma 3. $\phi \implies \phi_{approx} \land \phi_r^\exists (x).$

Proof. Let \bar{f}' such that $\forall c_h \in D \cup E \cup H$, $\bar{f}'_{c_h} = \top \iff x' \not\models c_h$. By Theorem 1, we have $(x', \bar{f}') \models \phi_{approx}$. If (x, \bar{f}) satisfies C2 then $\phi_r^{\exists}(x)$ does not generate new constraints. Thus, $\phi_r^{\exists}(x) \land \phi_{approx} = \phi_{approx}$. Otherwise, C2 does not hold for (x, \bar{f}) . Let C_{unsat} be an unsatisfiable core of C_x^D . By reductio ad absurdum, suppose that $\exists (x', \bar{f}') \not\models \phi_r^{\exists}(x)$. Thus, $\forall f \in C_{unsat}, \bar{f}' = \top$. By definition of \bar{f}' and $C_{x'}^D$, it means that $C_{unsat} \subseteq C_{x'}^D$. Hence, $(x', f') \models \phi_r^{\exists}(x) \land \phi_{approx}$. Therefore, $\phi \implies \phi_{approx} \land \phi_r^{\exists}(x)$.

Property 4. Given a linear objective function f and two linear optimization problems (f, C_1) and (f, C_2) , $C_1 \subseteq C_2 \implies f^*(C_1) \ge f^*(C_2)$.

Proof. By *reductio ad absurdum*, suppose that $C_1 \subseteq C_2$ and $f^*(C_1) < C_2$. Let $y = \operatorname{argmax}_{y \models C_2} f(y)$. As $C_1 \subseteq C_2$, then $y \models C_1$. Since $f(y) = f^*(C_2)$ and $y \models C_1$, its contradicts $f^*(C_1) < C_2$. Therefore, $C_1 \subseteq C_2 \implies f^*(C_1) \ge C_2$. \Box

Lemma 5. $\phi \implies \phi_{approx} \land \phi_r^{\forall}(x)$

Proof. Let \bar{f}' such that $\forall c_h \in D \cup E \cup H$, $\bar{f}'_{c_h} = \top \iff x' \not\models c_h$. By Theorem 1, we have $(x', \bar{f}') \models \phi_{approx}$. If (x, \bar{f}) satisfies *C3* then $\phi_r^{\forall}(x)$ does not generate new constraints. Thus, $\phi_r^{\forall}(x) \land \phi_{approx} = \phi_{approx}$. Otherwise, *C3* does not hold for (x, \bar{f}) . By *reductio ad absurdum*, suppose that $\exists (x', \bar{f}') \not\models \phi_r^{\forall}(x)$. Let $h \in H$ such that $f_h \in C_x^H$ and $f_h^*(C_x^E) > 0$. Such h exists as *C3* does not hold for x. By definition of $(x', y') \models \phi$ and \bar{f}' , there are either $\bar{f}'_h = \bot$ or $\bar{f}'_h = \top \land f_h^*(C_x^{E'}) \leq 0$. For the first case, \bar{f}'_h satisfies the constraint of $\phi_r^{\exists}(x)$ associated with h. For the second case, suppose that $\bar{f}'_h = \top \land f_h^*(C_{x'}^E) \leq 0$. Let $C_{opt}^{f_h}$ be an optimal core of (f_h, C_x^E) . Thus, $\forall e \in E, f_e \notin C_{opt}^{f_h} \implies \bar{f}'_e = \bot$ and $\bar{f}_h = \top$. By definition of \bar{f}' and $C_{x'}^E$, it means that $C_{x'}^E \subseteq C_{opt}^{f_h}$. However, we have that $f_h^*(C_{x'}^E) < f_h^*(C_x^E)$. This contradicts property 4. Hence, $(x', f') \models \phi^{\forall}r(x) \land \phi_{approx}$.

Theorem 6. Given $(x, \overline{f}) \models \phi_{approx}, \phi \implies \phi_r^{\exists}(x) \land \phi_r^{\forall}(x) \land \phi_{approx}$.

Proof. By Lemma 3, we have $\phi \implies \phi_r^\exists (x) \land \phi_{approx}$. By Lemma 5, we have $\phi \implies \phi_r^\forall (x) \land \phi_{approx}$. As the constraints generated by $\phi_r^\exists (x)$ and $\phi_r^\forall (x)$ impact disjoint sets of variables \bar{f} , then $\phi \implies \phi_r^\exists (x) \land \phi_r^\forall (x) \land \phi_{approx}$. \Box

Corollary 6.1. $(g, \phi) \implies \phi_r^{\exists}(x) \land \phi_r^{\forall}(x) \land \phi_{approx}$.

Proof. By definition, $\phi \iff (g, \phi)$. Therefore by Theorem 6, $(g, \phi) \implies \phi_r^\exists (x) \land \phi_r^\forall (x) \land \phi_{approx}$.

Corollary 6.2. $\forall \nu^* \models (g, \phi) \implies \exists \nu' \models \phi_r^\exists (x) \land \phi_r^\forall (x) \land \phi_{approx} = g(\nu') = g(\nu^*).$

Proof. Suppose that $(x', y') \models (g, \phi)$ with g((x', y')) its optimal value. By definition, $\exists f', (x', \bar{f}') \models \phi_r^{\exists}(x) \land \phi_r^{\forall}(x) \land \phi_{approx}$. As $g : \mathbb{B}^n \to \mathbb{R}$, then $g((x', \bar{f}')) = g(x') = g((x', y'))$.

Lemma 7. $\exists y \in \mathbb{R}^m, \mathcal{C}^D_x \iff \bigwedge_{\mathcal{P}_i \in \mathcal{P}^D_x} y \models \mathcal{P}_i.$

Proof. (→) Suppose that $\exists y \in \mathbb{R}^m, \mathcal{C}_x^D$ and it exists $\mathcal{P}_i \in \mathcal{P}_x^D$ unsatisfiable. We know that \mathcal{P}_x^D is a partition of \mathcal{C}_x^D , hence $\mathcal{P}_i \subseteq \mathcal{C}_x^D$. If \mathcal{P}_i is unsatisfiable, so is \mathcal{C}_x^D . Therefore, it could not exists $\mathcal{P}_i \in \mathcal{P}_x^D$ unsatisfiable if \mathcal{C}_x^D is satisfiable. (←) Suppose that $\forall \mathcal{P}_i \in \mathcal{P}_x^D, y_i \models \mathcal{P}_i$. We know that \mathcal{P}_x^D is a partition of \mathcal{C}_x^D such that no variables are shared among the constraints of different partitions. Hence $y = y_{i_i} \models \bigwedge_{\mathcal{P}_i \in \mathcal{P}_x^D} \mathcal{P}_i$, and $\bigwedge_{\mathcal{P}_i \in \mathcal{P}_x^D} y \models \mathcal{P}_i$. As y is a model of all the subsets in the partition $\mathcal{P}_x^D, y \models \mathcal{C}_x^D$.

Lemma 8. If \mathcal{C}_x^E is satisfiable, then $f_h^*(\mathcal{C}_x^E) = f_h^*(\mathcal{P}_x'^E)$.

Proof. By definition of \mathcal{P} , we have that all the linear constraints that can have an impact on the variables involved in f_h are in P'. Therefore, linear constraints in the other subsets will not impact the variables involved in f_h . These constraints can only impact the satisfiability of the problem, however, we supposed that \mathcal{C}_x^E is satisfiable. Hence, the optimum of (f_h, \mathcal{C}_x^E) depends only of the constraints in \mathcal{P}'_x^E .