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Theorem 1 (¢ = Gapprox). Let ¢ a SAT+gLP problem and
Gapprox its Boolean abstraction. For any model (x,y) € B™ x

R™ of ¢, there exists f € BIPIHIEITIH gych that (z, f) is a
model of @approx-

Proof. Let (z,y) = ¢ and f such that: Ve, € DU E U

H f, =T <= a ¢ For (2, f) E Gupproxs (@, f)
should satisfy the Egs. 4.

(4a) AsEq. laequals Eq. 4aand 2 = A .. c(z), we have
(@) E Avec @),

(4b) By definition of f, f; = T for each clause d € D not
satisfied by x. Thus, each clause d € D is satisfied by
either x or f. Therefore, (z, f) = Ayep d(z, f).

(4¢) Using same reasoning as for (4b), there are (z, f) =
Necp €z, f) and (2, f) = Apcy h(z, f). Therefore,
(:E, f) ): /\eEE é(‘r7 f) A /\heH h(xv f)

Therefore (z, f) = Gapprox> and @ = Papprox-

Models of (g, ¢) are subsets of models of ¢ and by def-
inition £ (g,¢) if [~ ¢. Hence, (g,¢) <= ¢, ie,
(9 ¢) = Qapprox-

Let v* = (x,y). Suppose that v* = (g, ¢) with g(v*) its
optimal value. By previous statements, 3f, (x, f) = dapprox-

As g :B" — R, then g((z, f)) = g(z) = g((,y)). 0
Corollary 1.1. (9,¢9) = Pappror-

Proof. Models of (g, ¢) are subsets of models of ¢ and by
definition [~ (g, ¢) if & ¢. Hence, (g, ) <= ¢. There-
fore by Theorem 1, (g, ¢) = Qapprox- O

Lemma A. Given C, a set of hybrid clauses
and x € B"™ a Boolean variables assignment,

Y ': th — (I7y) ': /\ChECh Ch(zvy)'

Proof. (—) Let y € R™ such that y | CS». By re-
ductio ad absurdum, suppose that 3¢, € Ch,(v,y) F
Ae, ec, cn(®,y). The hybrid constraint ¢, (7, y) is of the

form A, z; A—x; A fe,(y) < 0. Thus, there are x [~
A;zi A—z; and y £ fo, (y) < 0. By definition of C$™,
if o = N,z A—xj then f,(y) < 0 € CS". Asy E
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CSn, then y = f(y) < 0. Otherwise, z = A, z; \ ~;.
This contradicts the hypothesis that dc;, € Ch, (z,y) W
/\C}LEC}L cn(z,y). Therefore, (z,y) /\C}LEC}L cn(z,y).

(«<) Let (z,y) = A, ec, cn(@,y). Thus, Vep, € Cy ei-
therz = A\, i \; —zjory = fe,(y) < 0. Therefore, by
definition of C$7, y |= CSn. O

Lemma B. Given C}, a set of hybrid clauses, ¢, a hybrid
clause and x € B", [£ CS" Vv f2 (CS*) < 0 if and only if
x =Yy e R™, /\chech en(zy) = én(z,y).

Proof. (—) If = CSn, then Vy € R™ (x,y) W
Ae,ec, cn(®,y).  Therefore, z = Yy €
R™ A, co, cn(T,y) = ép(z,y). Otherwise,
Jy € R™y E €S and fg‘h(th) < 0. Thus,
Jy € R™ A\, cc, cn(,y). By reductio ad absurdum,
suppose that 3y € R™, (z,y') & A, cc, cn(z,y') and
f(¥') > 0.Thus, fz (CS*) < f(y'). However, by definition
of fz (CS*), Yy € Ry = C" = fly) < fZ.
It contradicts the hypothesis that f7 (CS*) < 0.
Therefore, [~ CS» v f2 (CS") <0  implies that
rEVy e Rm»/\chech en(zyy) = én(z,y).

(«) Suppose that z = Vy € R™, A\ ¢, cnlz,y) =
én(z,y). By reductio ad absurdum, suppose that
Jy € R™ such that y | C&* and fgh(th) > 0.
Thus, 3y € R™, (y = CS") A f(y) > 0. By definition of
z,Vy' € R™, (y = CS") = f(y) < 0. This contradicts
that 3y € R™ (y = CS*) A fs, (y) > 0. Therefore,
rEVYy € R™ A, cc, cn(®,y) = ¢én(z,y) implies that
pci vz () <0 O

Theorem 2. Let ¢ be a SAT+qLP formula and Qupprox
its Boolean abstraction. Given x € B"™ and y € R™,
(z,y) | ¢ if and only if the following three conditions
hold: (C1) 3f,(x,f) | Gupror (C2) y | CI; (C3)
£ CEV Nyeen F1(CE) < 0.

Proof. (—) Suppose that (x,y) = ¢. By Theorem 1,
¢ =  Gapprox- Thus, CI holds. As (z,y) = ¢,
then (2,y) = Agepd(x,y). Thus, Lemma A concludes
that C2 holds. As (xz,y) E ¢, then z | Vz €
RP Aeepe(r,z) = Apcyhl(x,z). Thus, VA €



Ao EVzeR N\ cpelr,z) = h(z,z). Lemma B
concludes that C3 holds. Therefore, (z,y) | ¢ implies C1,
C2 and C3.

(«<=) Suppose that all three conditions hold. By ClI,

3f. (2, f) E Gupprox- Thus, z = A.ccc(z) (Eq. la). C2
and Lemma A concludes for Eq. 1b. C3 and Lemma B
conclude for Eq. lc. Therefore, CI/, C2 and C3 implies

(z,y) E ¢ O

Corollary 2.1. Given x € B" and y € R™ a real-valued
variables assignment, if (CI’) 3f, (z, f) = (g, bapprox), C2
and C3 hold, then (z,y) = (g, ¢).

Proof. As (z, f) = (g, Gapprox)» then (x, f) = Papprox- Thus,
CI holds. Moreover, V(z', f') E ¢,9(x) < g(a’). By
Corollary 1.1, (9,¢) = @approx. Therefore, C1, C2, C3
hold and z is minimal according to g. Therefore, CI1’, C2
and C3 implies (z,y) = (g, ®). O

Lemma3. ¢ = Quprox N 7 ().

Proof. Let f' suchthatVe, € DUEUH, fl =T <
#' [~ ¢;,. By Theorem 1, we have (27, f') = Gapprox. If (, f)
satisfies C2 then ¢7 () does not generate new constraints.
Thus, ¢2(x) A Gapprox = Papprox- Otherwise, C2 does not
hold for (z, f). Let Cynea be an unsatisfiable _core of ch.
By reductio ad absurdum, suppose that 3(z’, ') £ (;53( )
Thus, Vf € Cunsai, f/ = T. By definition of f"and CL, it

means that Cynsae € C2. Hence, (27, ) = ¢7(2) A Gapprox-
Therefore, ¢ = Gapprox N &7 (). -

Property 4. Given a linear objective function f and
two linear optimization problems (f,C1) and (f,Ca),
Cl - CQ - f*(Cl) > f*(CQ)

Proof. By reductio ad absurdum, suppose that C; C Co and
f*(C1) < Co. Lety = argmaxy‘:CQf(y). As C1 C Cq, then
y | Cy. Since f(y) = f*(Cs) and y = Cy, its contradicts
f* (Cl) < Cy. Therefore, C; C Co — f* (Cl) > Co. O

Lemma 5. ¢ - (bapprox A 05\:(@

Proof. Let f' such that Ve, € DUE U H, féh =T <
z' £ cp,. By Theorem 1, we have (2/, f') E ¢approx- If
(w, f) satisfies C3 then ¢Y () does not generate new con-
straints. Thus, ¢ () A @approx = Papprox- Otherwise, C3 does
not hold for (z, f). By reductio ad absurdum, suppose that
(2, f) ¥ ¢Y(x). Let h € H such that f, € CH and
f7(CE) > 0. Such h exists as C3 does not hold for z. By
definition of (z',y’) = ¢ and f’, there are either f; = L
or fi = T A f;(CE) < 0. For the first case, f}, satisfies the
constraint of ¢ (x) associated with h. For the second case,
suppose that f; = T A £(CE) < 0. Let Cgl;; be an optimal
core of (f,CE). Thus, Ve € E, f. ¢ C({& = fl=1
and f, = T. By definition of f’ and CZ, it means that
CE C ¢l However, we have that f;(CZ) < f;(CEF). This
contradicts property 4. Hence, (2/, f') = ¢"r(z) A Gapprox-
Therefore, ¢ = Gapprox A Py (). O

Theorem 6. Given (z,f) E Gupros & = ¢2(z) A
¢Y~ () A Papprox-

Proof. By Lemma 3, we have ¢ = ¢2(2) A Gupprox-
By Lemma 5, we have ¢ = ¢%(z) A @approx- As the

constraints generated by ¢>(x) and ¢Y (z) impact disjoint
sets of variables f, then ¢ = ¢ (2) ADY () APapprox- I

Corollary 6.1. (9,6) = ¢7(2) A 6Y(x) A duppron-

Proof. By definition, ¢ <= (g, ¢). Therefore by Theo-
rem 6, (9,6) == ¢7(z) A ¢](%) A Gapprox- m

Corollary 6.2. Vv* |= (g,¢) = ' = ¢2(z) Aol () A
¢¢zpproxag(y/) = g(V*)

Proof. Suppose that (z/, 3/’ |_: g, Z hgg ")) i
timal value. By definition, 37, (z', f’) |: g&r (z) A @Y (z) A
(bapprox As g : B" — R, then (( )) = g(x/) =
9((=",y)). O

Lemma7. Jy € R™,CP «— Np,cpp v = Pi

Proof. (—) Suppose that 3y € Rm,Cf) and it exists P; €
PD unsatisfiable. We know that PP is a partition of C?

hence P; C CP.If P; is unsatlsﬁable sois CP. Therefore
it could not exists P; € P2 unsatisfiable if C~ D'l satisfiable.
(<) Suppose that VP; € PP y; = P;. We "know that Pb
is a partition of C2 such that no variables are shared among
the constraints of different partitions. Hence y = y;; =

Np,epp Pisand Ap cppy = Pi. As y is a model of all
the subsets in the partition P2, y |= CP. O

Lemma 8. [fCE is satisfiable, then f;:(CE) = f;(PIE).

Proof. By definition of P, we have that all the linear con-
straints that can have an impact on the variables involved
in fj are in P’. Therefore, linear constraints in the other
subsets will not impact the variables involved in f;. These
constraints can only impact the satisﬁability of the prob-
lem, however, we supposed that CF is satisfiable. Hence,
the optlmum of (fn,CE) depends only of the constraints in
PIE O
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