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Theorem 1 (ϕ ⇒ ϕapprox). Let ϕ a SAT+qLP problem and
ϕapprox its Boolean abstraction. For any model (x, y) ∈ Bn×
Rm of ϕ, there exists f̄ ∈ B|D|+|E|+|H| such that (x, f̄) is a
model of ϕapprox.

Proof. Let (x, y) |= ϕ and f̄ such that: ∀ch ∈ D ∪ E ∪
H, f̄ch = ⊤ ⇐⇒ x ̸|= ch. For (x, f̄) |= ϕapprox, (x, f̄)
should satisfy the Eqs. 4.

(4a) As Eq. 1a equals Eq. 4a and x |=
∧

c∈C c(x), we have
(x, f̄) |=

∧
c∈C c(x).

(4b) By definition of f̄ , f̄d = ⊤ for each clause d ∈ D not
satisfied by x. Thus, each clause d ∈ D is satisfied by
either x or f̄ . Therefore, (x, f̄) |=

∧
d∈D d̄(x, f̄).

(4c) Using same reasoning as for (4b), there are (x, f̄) |=∧
e∈E ē(x, f̄) and (x, f̄) |=

∧
h∈H h̄(x, f̄). Therefore,

(x, f̄) |=
∧

e∈E ē(x, f̄) ∧
∧

h∈H h̄(x, f̄).

Therefore (x, f̄) |= ϕapprox, and ϕ =⇒ ϕapprox.
Models of (g, ϕ) are subsets of models of ϕ and by def-

inition ̸|= (g, ϕ) if ̸|= ϕ. Hence, (g, ϕ) ⇐⇒ ϕ, i.e.,
(g, ϕ) =⇒ ϕapprox.

Let ν∗ = (x, y). Suppose that ν∗ |= (g, ϕ) with g(ν∗) its
optimal value. By previous statements, ∃f̄ , (x, f̄) |= ϕapprox.
As g : Bn → R, then g((x, f̄)) = g(x) = g((x, y)).

Corollary 1.1. (g, ϕ) =⇒ ϕapprox.

Proof. Models of (g, ϕ) are subsets of models of ϕ and by
definition ̸|= (g, ϕ) if ̸|= ϕ. Hence, (g, ϕ) ⇐⇒ ϕ. There-
fore by Theorem 1, (g, ϕ) =⇒ ϕapprox.

Lemma A. Given Ch a set of hybrid clauses
and x ∈ Bn a Boolean variables assignment,
y |= CCh

x ⇐⇒ (x, y) |=
∧

ch∈Ch
ch(x, y).

Proof. (→) Let y ∈ Rm such that y |= CCh
x . By re-

ductio ad absurdum, suppose that ∃ch ∈ Ch, (x, y) ̸|=∧
ch∈Ch

ch(x, y). The hybrid constraint ch(x, y) is of the
form

∧
i xi

∧
¬xj ∧ fch(y) ≤ 0. Thus, there are x ̸|=∧

i xi

∧
¬xj and y ̸|= fch(y) ≤ 0. By definition of CCh

x ,
if x ̸|=

∧
i xi

∧
¬xj then fch(y) ≤ 0 ∈ CCh

x . As y |=
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CCh
x , then y |= f(y) ≤ 0. Otherwise, x |=

∧
i xi

∧
¬xj .

This contradicts the hypothesis that ∃ch ∈ Ch, (x, y) ̸|=∧
ch∈Ch

ch(x, y). Therefore, (x, y) |=
∧

ch∈Ch
ch(x, y).

(←) Let (x, y) |=
∧

ch∈Ch
ch(x, y). Thus, ∀ch ∈ Ch ei-

ther x |=
∧

i xi

∧
j ¬xj or y |= fch(y) ≤ 0. Therefore, by

definition of CCh
x , y |= CCh

x .

Lemma B. Given Ch a set of hybrid clauses, ĉh a hybrid
clause and x ∈ Bn, ̸|= CCh

x ∨ f∗
ĉh
(CCh

x ) ≤ 0 if and only if
x |= ∀y ∈ Rm,

∧
ch∈Ch

ch(x, y) =⇒ ĉh(x, y).

Proof. (→) If ̸|= CCh
x , then ∀y ∈ Rm, (x, y) ̸|=∧

ch∈Ch
ch(x, y). Therefore, x |= ∀y ∈

Rm,
∧

ch∈Ch
ch(x, y) =⇒ ĉh(x, y). Otherwise,

∃y ∈ Rm, y |= CCh
x and f∗

ĉh
(CCh

x ) ≤ 0. Thus,
∃y ∈ Rm,

∧
ch∈Ch

ch(x, y). By reductio ad absurdum,
suppose that ∃y′ ∈ Rm, (x, y′) |=

∧
ch∈Ch

ch(x, y
′) and

f(y′) > 0. Thus, f∗
ĉh
(CCh

x ) < f(y′). However, by definition
of f∗

ĉh
(CCh

x ), ∀y ∈ Rm, y |= CCh
x =⇒ f(y) ≤ f∗

ĉh
.

It contradicts the hypothesis that f∗
ĉh
(CCh

x ) ≤ 0.
Therefore, ̸|= CCh

x ∨ f∗
ĉh
(CCh

x ) ≤ 0 implies that
x |= ∀y ∈ Rm,

∧
ch∈Ch

ch(x, y) =⇒ ĉh(x, y).
(←) Suppose that x |= ∀y ∈ Rm,

∧
ch∈Ch

ch(x, y) =⇒
ĉh(x, y). By reductio ad absurdum, suppose that
∃y ∈ Rm such that y |= CCh

x and f∗
ĉh
(CCh

x ) > 0.
Thus, ∃y ∈ Rm, (y |= CCh

x ) ∧ f(y) > 0. By definition of
x, ∀y′ ∈ Rm, (y |= CCh

x ) =⇒ f(y) ≤ 0. This contradicts
that ∃y ∈ Rm, (y |= CCh

x ) ∧ fĉh(y) > 0. Therefore,
x |= ∀y ∈ Rm,

∧
ch∈Ch

ch(x, y) =⇒ ĉh(x, y) implies that
̸|= CCh

x ∨ f∗
ĉh
(CCh

x ) ≤ 0.

Theorem 2. Let ϕ be a SAT+qLP formula and ϕapprox
its Boolean abstraction. Given x ∈ Bn and y ∈ Rm,
(x, y) |= ϕ if and only if the following three conditions
hold: (C1) ∃f̄ , (x, f̄) |= ϕapprox; (C2) y |= CD

x ; (C3)
̸|= CE

x ∨
∧

h∈CH
x
f∗
h(CE

x ) ≤ 0.

Proof. (→) Suppose that (x, y) |= ϕ. By Theorem 1,
ϕ =⇒ ϕapprox. Thus, C1 holds. As (x, y) |= ϕ,
then (x, y) |=

∧
d∈D d(x, y). Thus, Lemma A concludes

that C2 holds. As (x, y) |= ϕ, then x |= ∀z ∈
Rp,

∧
e∈E e(x, z) =⇒

∧
h∈H h(x, z). Thus, ∀h ∈



CH
x , x |= ∀z ∈ Rp,

∧
e∈E e(x, z) =⇒ h(x, z). Lemma B

concludes that C3 holds. Therefore, (x, y) |= ϕ implies C1,
C2 and C3.
(←) Suppose that all three conditions hold. By C1,
∃f̄ , (x, f̄) |= ϕapprox. Thus, x |=

∧
c∈C c(x) (Eq. 1a). C2

and Lemma A concludes for Eq. 1b. C3 and Lemma B
conclude for Eq. 1c. Therefore, C1, C2 and C3 implies
(x, y) |= ϕ.

Corollary 2.1. Given x ∈ Bn and y ∈ Rm a real-valued
variables assignment, if (C1’) ∃f̄ , (x, f̄) |= (g, ϕapprox), C2
and C3 hold, then (x, y) |= (g, ϕ).

Proof. As (x, f̄) |= (g, ϕapprox), then (x, f̄) |= ϕapprox. Thus,
C1 holds. Moreover, ∀(x′, f̄ ′) |= ϕ, g(x) ≤ g(x′). By
Corollary 1.1, (g, ϕ) =⇒ ϕapprox. Therefore, C1, C2, C3
hold and x is minimal according to g. Therefore, C1’, C2
and C3 implies (x, y) |= (g, ϕ).

Lemma 3. ϕ =⇒ ϕapprox ∧ ϕ∃
r (x).

Proof. Let f̄ ′ such that ∀ch ∈ D ∪ E ∪ H, f̄ ′
ch

= ⊤ ⇐⇒
x′ ̸|= ch. By Theorem 1, we have (x′, f̄ ′) |= ϕapprox. If (x, f̄)
satisfies C2 then ϕ∃

r (x) does not generate new constraints.
Thus, ϕ∃

r (x) ∧ ϕapprox = ϕapprox. Otherwise, C2 does not
hold for (x, f̄). Let Cunsat be an unsatisfiable core of CD

x .
By reductio ad absurdum, suppose that ∃(x′, f̄ ′) ̸|= ϕ∃

r (x).
Thus, ∀f ∈ Cunsat, f̄

′ = ⊤. By definition of f̄ ′ and CD
x′ , it

means that Cunsat ⊆ CD
x′ . Hence, (x′, f ′) |= ϕ∃

r (x) ∧ ϕapprox.
Therefore, ϕ =⇒ ϕapprox ∧ ϕ∃

r (x).

Property 4. Given a linear objective function f and
two linear optimization problems (f , C1) and (f , C2),
C1 ⊆ C2 =⇒ f∗(C1) ≥ f∗(C2).

Proof. By reductio ad absurdum, suppose that C1 ⊆ C2 and
f∗(C1) < C2. Let y = argmaxy|=C2

f(y). As C1 ⊆ C2, then
y |= C1. Since f(y) = f∗(C2) and y |= C1, its contradicts
f∗(C1) < C2. Therefore, C1 ⊆ C2 =⇒ f∗(C1) ≥ C2.

Lemma 5. ϕ =⇒ ϕapprox ∧ ϕ∀
r (x)

Proof. Let f̄ ′ such that ∀ch ∈ D ∪ E ∪ H, f̄ ′
ch

= ⊤ ⇐⇒
x′ ̸|= ch. By Theorem 1, we have (x′, f̄ ′) |= ϕapprox. If
(x, f̄) satisfies C3 then ϕ∀

r (x) does not generate new con-
straints. Thus, ϕ∀

r (x)∧ϕapprox = ϕapprox. Otherwise, C3 does
not hold for (x, f̄). By reductio ad absurdum, suppose that
∃(x′, f̄ ′) ̸|= ϕ∀

r (x). Let h ∈ H such that fh ∈ CH
x and

f∗
h(CE

x ) > 0. Such h exists as C3 does not hold for x. By
definition of (x′, y′) |= ϕ and f̄ ′, there are either f̄ ′

h = ⊥
or f̄ ′

h = ⊤ ∧ f∗
h(CE

x′) ≤ 0. For the first case, f̄ ′
h satisfies the

constraint of ϕ∃
r (x) associated with h. For the second case,

suppose that f̄ ′
h = ⊤ ∧ f∗

h(CE
x′) ≤ 0. Let Cfh

opt be an optimal
core of (fh, CE

x ). Thus, ∀e ∈ E, fe ̸∈ Cfh
opt =⇒ f̄ ′

e = ⊥
and f̄h = ⊤. By definition of f̄ ′ and CE

x′ , it means that
CE
x′ ⊆ Cfh

opt. However, we have that f∗
h(CE

x′) < f∗
h(CE

x ). This
contradicts property 4. Hence, (x′, f ′) |= ϕ∀r(x) ∧ ϕapprox.
Therefore, ϕ =⇒ ϕapprox ∧ ϕ∀

r (x).

Theorem 6. Given (x, f̄) |= ϕapprox, ϕ =⇒ ϕ∃
r (x) ∧

ϕ∀
r (x) ∧ ϕapprox.

Proof. By Lemma 3, we have ϕ =⇒ ϕ∃
r (x) ∧ ϕapprox.

By Lemma 5, we have ϕ =⇒ ϕ∀
r (x) ∧ ϕapprox. As the

constraints generated by ϕ∃
r (x) and ϕ∀

r (x) impact disjoint
sets of variables f̄ , then ϕ =⇒ ϕ∃

r (x)∧ϕ∀
r (x)∧ϕapprox.

Corollary 6.1. (g, ϕ) =⇒ ϕ∃
r (x) ∧ ϕ∀

r (x) ∧ ϕapprox.

Proof. By definition, ϕ ⇐⇒ (g, ϕ). Therefore by Theo-
rem 6, (g, ϕ) =⇒ ϕ∃

r (x) ∧ ϕ∀
r (x) ∧ ϕapprox.

Corollary 6.2. ∀ν∗ |= (g, ϕ) =⇒ ∃ν′ |= ϕ∃
r (x)∧ϕ∀

r (x)∧
ϕapprox, g(ν

′) = g(ν∗).

Proof. Suppose that (x′, y′) |= (g, ϕ) with g((x′, y′)) its op-
timal value. By definition, ∃f̄ ′, (x′, f̄ ′) |= ϕ∃

r (x) ∧ ϕ∀
r (x) ∧

ϕapprox. As g : Bn → R, then g((x′, f̄ ′)) = g(x′) =
g((x′, y′)).

Lemma 7. ∃y ∈ Rm, CD
x ⇐⇒

∧
Pi∈PD

x
y |= Pi.

Proof. (→) Suppose that ∃y ∈ Rm, CD
x and it exists Pi ∈

PD
x unsatisfiable. We know that PD

x is a partition of CD
x ,

hence Pi ⊆ CD
x . If Pi is unsatisfiable, so is CD

x . Therefore,
it could not exists Pi ∈ PD

x unsatisfiable if CD
x is satisfiable.

(←) Suppose that ∀Pi ∈ PD
x , yi |= Pi. We know that PD

x
is a partition of CD

x such that no variables are shared among
the constraints of different partitions. Hence y = yii |=∧

Pi∈PD
x
Pi, and

∧
Pi∈PD

x
y |= Pi. As y is a model of all

the subsets in the partition PD
x , y |= CD

x .

Lemma 8. If CE
x is satisfiable, then f∗

h(CE
x ) = f∗

h(P ′E
x ).

Proof. By definition of P , we have that all the linear con-
straints that can have an impact on the variables involved
in fh are in P ′. Therefore, linear constraints in the other
subsets will not impact the variables involved in fh. These
constraints can only impact the satisfiability of the prob-
lem, however, we supposed that CE

x is satisfiable. Hence,
the optimum of (fh, CE

x ) depends only of the constraints in
P ′E
x .


