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Abstract

A new method to design Application-Specific Processors (ASP) for computation-intensive
scientific and /or embedded applications is presented. Target application areas include scien-
tific and engineering programs and mission-oriented signal-processing systems requiring very
high numerical computation and memory bandwidths. The application code in conventional
HLL such as Fortan or C is the input to the synthesis process. Latest powerful VLSI chips are
used as the primitive building blocks for design implementation. The eventual performance
of the application-specific processor in executing the application code is the primary goal of
the synthesis task. Advanced code scheduling techniques that go beyond basic block bound-
aries are employed to achieve high performance via exploitation of fine-grain parallelism.
The Application-Specific Processor Design (ASPD) method divides the task of designing
an special-purpose processor architecture into Specification Optimization (behavioral) and
Implementation Optimization (structural) phases. An architectural template resembling a
scalable Very Long Instruction Word (VLIW) processor and a suite of compilation tools are
used to generate an optimized processor specification. The designer quickly explores vari-
ous cost versus performance tradeoff points by performing repeated compilation for scaled
architectures. The powerful microcode compilation techniques of Percolation Scheduling
and Enhanced Pipeline Scheduling extract and enhance parallelism in the application object
code to generate highly parallelized code, which serves as the optimized specification for the
architecture. Further performance/efficiency enhancement is obtained in Implementation
Optimization by tailoring the implementation template to the execution requirements of the
optimized processor specification. A scalable implementation template constrains the im-
plementation style. Graph-coloring algorithms that exploit special graph characteristics are
used to minimize the amount of hardware to support execution of the optimized application
microcode without impairing code performance. Compilation techniques to allocate data
over multiple memory banks are used to enhance concurrent access. The entire architecture
synthesis procedure has been implemented and applied to numerous examples. Speedups
in the range of 2.6 to 7.7 over contemporary RISC processors have been obtained. The
computation times needed for the synthesis of these examples are on the order of a few
seconds.
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Chapter 1

Introduction

This thesis presents an automated approach, called architecture synthesis, to design application-
specific processors (ASP) that are performance efficient and cost effective. Applications of
interest include problem-specific algorithms in scientific and engineering computation, and
mission-oriented /embedded signal and image processing systems. Architecture synthesis can
be viewed as a specialized form of high-level digital system synthesis[56], and integrates and
leverages recent research results from other research areas, namely application-specific in-
tegrated circuit (ASIC) CAD, fine-grain parallel architectures, and optimizing microcode

compilers.

1.1 Motivation

Current approaches to design special-purpose or application-specific systems involve the use
of either off-the-shelf general-purpose processors (GPP) or custom-designed special-purpose
processors (SPP). The GPP-based approach selects an available GPP that is the best suited
to the application, and programs the GPP to carry out the application algorithm. This
approach minimizes the system development cost and time, and involves little or no custom
hardware design. Such systems are easy to use and can be readily adapted to other ap-
plications. Typical strategies to achieve high-performance in a general-purpose computing

system involve the use of:
¢ technology, i.e. faster devices and higher levels of integration

e parallelism in the system architecture to allow concurrent execution of tasks

1



CHAPTER 1. INTRODUCTION 2

e algorithm selection and improvement.

However, the GPP-based approach cannot meet the performance requirements of many
computation-intensive applications, and/or frequently involves very inefficient utilization
of available resources. For example, a recent high-performance microprocessor with fine-
grained parallelism, the Intel 1860, is rated at 80MFLOPS. However, performance close to
peak is unfrequently achieved on specific tasks. In a digital-signal processing task, processor
utilization ranges between 10% to 20% of the processor’s peak performance[73] due to ar-
chitectural mismatch with the application and difficulties in compilation. Furthermore, the
typical strategies for achieving high-performance are gradually becoming more tedious and
costly. Device cycle times are slowly reaching a technology limit, and the programming and
run-time control of systems with many processors are extremely difficult tasks[45].

For those applications for which existing GPPs do not provide acceptable performance
or performance/cost, SPPs are developed which exploit characteristics of the application to
enhance the performance for given applications. The SPP-based approach involves custom
architecture and hardware design, and results in well-balanced and highly-efficient architec-
tures. However this is usually a costly and time-consuming process, and system reusability
and flexibility are usually quite limited.

An alternative approach is to take advantage of more application-specific information
and develop processors that are adapted to the needs of the particular task at hand, hav-
ing better synergy between hardware and software. High performance is a requirement of
many scientific and engineering computation, and mission-oriented/embedded signal and
image processing systems. Many application areas require high-performance special-purpose
processors[58], including hardware accelerators for computation-intensive algorithms, hard-
wired processors for signal processing, coprocessors for scientific computation, and embed-
ded processors for many mission-oriented systems. Special-purpose processors have been
designed to solve problems in areas such as numerical simulation, digital signal process-
ing, image processing[74], speech understanding, and engineering design using finite-element
analysis[52].

The need for high-performance processors can be cost-effectively satisfied by ASPs. These

systems are prime candidates for performance enhancement by a hardware coprocessor ded-
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icated to execute the task at hand. The approach described in this work provides pow-
erful tools which generate efficient special-purpose systems by combining the use of high-
performance components with the use of fine-grained parallelism in the hardware. This
allows the system designer to concentrate his efforts on the development of efficient algo-

rithms.

Furthermore, it is not uncommon that the primary use of a general-purpose scientific
engineering workstation is to run a single compute-intensive application, e.g. finite-element
analysis or circuit simulation[91], not to mention the computational requirements of high-
quality graphics. The current trend towards standard binary interfaces and standardized
busses make feasible the inclusion of hardware accelerator cards with software packages.
This trend, already noticeable in the personal computer world[75], may become increasingly

common in case of reduction of the cost of designing an ASP.

This work is intends to fill a gap in the range of cost vs. performance alternatives from
low-cost general purpose processors that have limited processing power, e.g. the Motorola
MC68000 family, to full custom SPP design. It aims at providing the performance of special-

purpose processors at costs comparable with those of the general-purpose processors.

Cost-effectiveness is achieved by the use of off-the-shelf parts that are manufactured
in high volume. High-performance VLSI building blocks are becoming available. These
off-the-shelf building blocks include: fast array multipliers, floating-point processors, inte-
ger processors, multi-ported register files and other data path functional modules [28, 86].
These fully-custom VLSI chips can function as standard building blocks, or macros, in a
semi-custom design approach. What is needed is a semi-custom design and implementation
methodology for architectural-level design of high-performance application-specific comput-
ing systems. Automated tools reduce both the cost of the processor design phase, e.g: CAD
software, and the cost of using the special-purpose processors, e.g. smart compilers and
Operating Systems. High performance is achieved via a processor structure customized to

exploit the fine-grained parallelism inherent to the target application.

Automated software tools to support the proposed semi-custom design and implementa-
tion approach are presented. Results from a number of active research areas are leveraged

for the development of such software tools. These research areas include the computer-
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aided design of fully-custom and semi-custom VLSI circuits, design of optimizing com-
pilers for microcode optimization[37, 59, 62] and automated synthesis of general-purpose
processors[29, 80, 3]. With the richness of research results in these related areas, the devel-
opment of software tools to support the automated design of ASPs is quite promising. This
thesis presents a semi-custom design methodology, associated techniques and software tools

for architectural synthesis of application-specific processors.

1.2 Background

Behavioral synthesis tools, also known as structural design tools, are concerned with the task
of transforming the primitives of the algorithmic specification (behavior) of the system to
the primitives of structural representation[56]. The result of structural design is a detailed
description of an implementation in the form of a register-transfer level structure. Structural
design tools are similar in spirit with architecture synthesis, and constitute a very active field
of research(29, 83, 82, 17, 42, 56]. A number of relevant past and ongoing structural design
projects are briefly reviewed.

The pionering work of Barbacci[12] in the EXPL system used a behavioral specification
in ISP and a register-transfer module set for the target implementation of the design. This
system proposed a number of heuristics to exploit parallelism through transformation on
a graph representation of the design. Interestingly, this early project included means for
automated exploration of the design space, a task which has been relegated to the user by
many of the later tools.

The CMU-DA project[29] produced a number of datapath generators. EMUCS[80] uses
a heuristic approach to design the datapath. The procedure takes as input a dataflow graph
generated from an ISP description of the target application. The dataflow graph is called
Value Trace[80], and is similar to dataflow graphs commonly used by programming language
compilers with some extensions to describe control sequencing. EMUCS considers each
operation in the graph in succession, binding graph elements to hardware and generating
appropriate interconnect or creating new functional elements according to table-driven cost
estimates. The control step allocator assigns operations to control steps before hardware

binding.
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The DAA project takes a knowledge-based approach[49]. A number of patterns com-
monly encountered in datapath design are encoded in DA A’s knowledge base. The synthesis
tasks are performed by a number of temporally ordered subtasks. It uses ASAP scheduling
to generate a parallel design. Example DAA designs were judged of adequate quality by

expert human designers.

Facet[84] takes an algorithmic approach based on clique-partitioning. Facet uses the
notion of compatibility among elements like registers or operations in the dataflow represen-
tation of the target application. A graph is built with vertices corresponding to elements in
the dataflow graph. Vertices corresponding to compatible elements are linked by an edge. A
clique partitioning heuristic is used to find cliques of compatible elements in the graph. Each
clique may then be bound to a hardware structure. For example, during register allocation,
variables whose lifetimes do not overlap are found to be compatible and may be allocated
into the same physical register. The same notion is employed to allocate operations to data-
path operators, and to schedule the use of busses in the datapath. Facet allocates hardware
elements after scheduling has been performed. Scheduling of basic blocks is performed using
a simple ASAP scheduling technique. Basic blocks are sequences of code which contain no
branches except for the last instruction in the block, i.e. code with a single entry and a single
exit point. The Facet implementation allows user intervention to modify the code sequence

for a basic block, thus allowing manual exploration of the design space.

The System’s Architect Workbench(SAW)[27] converts a behavioral description of a piece
of hardware into a set of register-transfer components plus a control sequence table. It sup-
ports two methodologies to design: a general approach using design algorithms that support
designs of many styles, and an approach tuned to microprocessor design. A number of
behavioral transformations are performed on the Value-Trace representation of the design,
such as procedure inlining, recombination of multiway jumps (SELECT), motion of opera-
tions in/out of SELECT branches. These transformations allow exploration of system-level
design alternatives, enhance fine-grained parallelism and achieve some inter-basic-block op-
timization. Automated partitioning of large designs is also supported. SAW implements
combined scheduling, allocation and mapping via force-directed scheduling[22]. SAW’s ad-

vanced hardware allocation techniques[78)] under cost constraints is of particular relevance
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to this work.

The IBM synthesis project[17] is one of the few systems capable of scheduling parallel
operations which come from different basic blocks. In the IBM system, all operations in the
dataflow graph for a loop body are initially scheduled to be performed in a single clock cycle.
This violates the assumption that a register may only be written once per cycle. Repeated
passes are then made to break paths in the loop into different states, thus removing violations
of the single-write restriction. This is a powerful technique which has generated good results,
and has been capable of producing a design for a 32-bit RISC CPU with quality comparable
to that of manual design. However, this system does not have the capability of automatically
generating pipelined designs; this feature is left to the user. Furthermore, in a worst case
1t may perform complete enumeration of all paths in the loop body, and thus may be of
exponential complexity. This technique is applied only to innermost loops. This approach
is useful in generating instruction set processors where the number of distinct alternatives
(instructions) is not too large, but becomes too costly if the input is an arbitrary program
loop including nested loops. More recently, the IBM system has been extended with path-
based scheduling[18]). This approach considers the possible sequences of operations in a
control-flow graph, stressing optimization across conditional branches. Enumeration of all
paths in a control-flow graph may require time that grows exponentially with the number
of nodes in the graph. Experimental results have found that computation times for small to

medium-sized problems are still manageable.

The Flamel[82] system is also capable of scheduling concurrent operations from multi-
ple basic blocks by using extended techniques for tree height reduction|2]. Limited software
pipelining effects are achievable in Flamel only through loop unrolling. Other behavioral syn-

thesis projects include MIMOLA [90], Chippe[14], ADAM]3, 66], Bridge[21], and Become[71].

Most foregoing synthesis approaches perform scheduling optimization only within basic
block boundaries. Scheduling optimization dictates performance, because it determines the
number of clock cycles required for the execution of the application code. Scheduling lim-
ited to basic blocks is not capable of achieving high-performance through exploitation of
parallelism because of the limited parallelism in basic blocks. Early experiments[39], later

confirmed by [64], have found that the speedup achievable by exploiting parallelism in basic
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blocks is bounded by a factor of three. The architecture synthesis method presented in this
thesis achieved high performance by performing scheduling optimization beyond basic block
boundaries.

Recent progress in compilers that extract fine-grain parallelism has addressed the problem
of compilation beyond basic blocks. Trace Scheduling[37] (TS) is a technique capable of
extracting parallelism beyond the basic block boundaries. TS relies on identifying the most
probable execution paths in the application code, and on optimizing the execution of these
paths. Each path may span a number of basic blocks. Code is generated by scheduling
concurrently the execution of the operations on each path. Scheduling constraints and
additional code for correction are necessary in case the path is not followed in its entirety
during the execution of the application. Experiments with TS in scientific FORTRAN
programs have found speedups of up to one or possibly two orders of magnitude. However,
the effectiveness of trace scheduling is limited to those applications with a predictable flow
of control. Furthermore, TS entails extra overhead in the case the predicted execution
paths are not taken. Percolation Scheduling[62] (PS), a technique which evolved from trace
scheduling, overcomes these limitations and is a“t.)le to subsume trace scheduling. PS allows
the concurrent execution of operations which belong to different paths in the execution of
the application, thus benefiting a class of applications not amenable to traditional techniques
of concurrency extraction. Software Pipelining[30, 5, 54] (SP) is a technique to speed up
execution of loops by initiating the execution of future iterations while the current iteration
is still in progress. Modern PS techniques are applicable to loops which contain conditional
statements in the loop body. The combination of both PS and SP techniques is a key
factor in achieving considerable optimization of programs with unpredictable flow of control.
Speedups on the range of five to tenfold on a VLIW architecture with 16 ALUs have been
observed for large realistic programs, such as some UNIX utilities and parts of the SPEC

benchmark suite[59], thus overcoming basic block limitations on available parallelism.

1.3 Architecture Synthesis Approach

The approach proposed in this thesis addresses the architecture synthesis problem by exploit-

ing recent advances in compilation techniques and leveraging latest VLSIC and hardware
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technology. Attributes which characterize this approach are as follows:

e Targeted Application.

1. The effort focuses on the synthesis of special-purpose processors for specialized
application areas, namely scientific and engineering computations, and mission-
oriented signal-processing systems. General purpose functionality is sacrificed for

performance and efliciency.

2. These applications frequently require very high numerical computation and mem-
ory bandwidths, e.g. multiple hundreds of MFLOPS and comparable I/O rates
for each processor. The targeted performance range is beyond that of most single,

or small number of, off-the-shelf general purpose processors.

e Design Style.

1. The behavioral description, i.e. input to the synthesis process, is the actual appli-
cation code written in a conventional HLL such as Fortran or C. The description

serves as the architecture specification as well as the application source code.

2. Latest powerful VLSI chips are assumed as the primitive building blocks for design
implementation. Examples include 32-bit integer processors, 64-bit floating-point
processors, multi-ported register files, and 32-bit complex address generators. Us-
ing the large-grain building blocks alleviates some of the optimization complexity

and produces realistic and practical designs.

3. The approach addresses the design of the complete processor including the dat-
apath, control path, and the data memory, with regards to achieving a balanced
processor architecture. Advanced techniques to perform parallel memory access
from a multi-banked memory subsystem are crucial in achieving high memory

bandwidth and in turn high computation rate.

e Design Optimization.

1. The eventual performance of the application-specific processor in executing the
application code is the primary goal of the synthesis task. The secondary consid-

eration is the efficient utilization of hardware resources.
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2. Advanced code scheduling techniques that go beyond basic block boundaries are
" employed to achieve high performance via exploitation of fine-grain parallelism.

The scheduling algorithms are rigorous and automated.

3. The optimized code produced by the compiler serves as the optimized specifica-
tion for the architecture. Second level optimization is performed, without using

arbitrary and ad-hoc metrics, to ensure efficient utilization of hardware resources.

1.4 Thesis Overview

This dissertation presents a new approach for architecture synthesis. Chapter 2 describes the
architecture synthesis method, which divides the design task into Specification Optimiza-
tion and Implementation Optimization phases. Appropriate architectural and implemen-
tation templates for supporting semi-custom design optimization are introduced. Chapter
3 describes the techniques for specification optimization. Advanced microcode scheduling
techniques that go beyond basic blocks, their characterization for use in architecture syn-
thesis and extensions are presented. Chapter 4 describes a retargetable microcode compiler
that implements specification optimization techniques, accepts high-level C source code and
produces optimized VLIW code for a range of target architectures. Chapter 5 describes
implementation optimization via the use of graph-coloring techniques, and special charac-
teristics of conflict graphs to allocate data over low-cost distributed register files. Memory
bandwidth between CPU and the memory sybsystem is a key factor to achieving overall sys-
tem performance. Chapter 6 describes compilation and memory allocation techniques used
to enhance memory bandwidth in a memory organization with multiple banks. Chapter 7
demonstrates the application of the architecture synthesis method to a number of examples.
The thesis is summarized in Chapter 8 along with conclusions and directions for further

research.






Chapter 2

Architecture Synthesis

The basic tenet of the ASPD approach is to exploit characteristics of the application pro-
grams in the design of highly-efficient special-purpose processors. This research starts with
the formulation of a preliminary design method. The key features identified in the prelim-
inary method are the use of fine-grain parallelism to obtain high performance, the use of
powerful VLSI components for efficient and low-cost design, and the provision of connectivity
between components to streamline data transfers. A trial implementation of the preliminary
method ensued via the hand-design of an application-specific processor[87]. The selected
target application is finite-element analysis. Finite-element algorithms are widely used, and
are extremely compute-intensive; hence, constitute ideal candidates for hardware/firmware
acceleration.

Experience with the finite-element project led to refinement of the preliminary method.
This includes the identification of a good architectural template, with provision for suitable
memory and I/O bandwidths. Development of techniques and tools evolved from experi-
ence in the development and implementation of compilation techniques for the IBM VLIW
architecture[31]. This helped identify desirable characteristics of compilation techniques
for performance optimization, architectural models suitable for scalability, and performance

bottlenecks.

2.1 White Dwarf Experimental Project

This section documents an experimental project, called the White Dwarf[87], which explores

the feasibility of the architecture synthesis approach. The results and experiences from this

10
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project served as the basis of and the model for the architecture synthesis method pre-
sented herein, called Application-Specific Processor Design (ASPD). The White Dwarf ASP
is a multiple board, single user coprocessor for a SUN 3/160C workstation. It is designed,
using the architecture synthesis approach, to accelerate a particular finite element analysis
application[91] which performs two dimensional magnetic field analysis using the Incomplete
Choleski preconditioned Conjugate Gradient (ICCG) method. The application program re-
quires a large number of floating-point operations, is heavily used and well understood, and

uses a unique sparse matrix data format.

2.1.1 FEM Application

The Finite Element Method is a powerful numerical procedure for the simulation of a wide
range of engineering problems. It is widely used in engineering and scientific applications,
extremely computation intensive and the existing algorithms are mature and stable. FEM
seeks a numerical solution to a given problem by subdividing the problem space into a
mesh of similar geometric shapes called finite elements. By selecting simple, easily analyzed
elements, the governing equations for the system are approximated over each finite element.
The analogous descriptions are used to approximate the equations over a large number of
elements by imposing boundary conditions. |

Finite Element discretization creates a large set of simultaneous equations to be solved.
These equations are expressed as a single large matrix equation of the form S = § where the
matrix S and the vector § are known, and S is sparse. The FEM system at CMU is used for
design and simulation of a wide range of two dimensional magnetic and electronic devices[91].
The user describes problems via an interactive graphics interface. A partitioning algorithm
creates a mesh of triangular elements to cover the design, increasing the density of elements
in areas where more detail and accuracy are needed. The program then builds a system of
equations based on the geometry of the elements and the known boundary conditions of the
problem. This system of equations is solved using the Incomplete Choleski preconditioned
Conjugate Gradient (ICCG) algorithm[9]. The most time consuming part of the procedure
is the solution of the system of equations. Runtimes on a dedicated workstation range from

minutes to solve simple problems to hours for larger and more detailed problems. The ASP
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processor replaces this algorithm in the FEM code, and is transparent to the user. It is

called the White Dwarf and is composed of two VME boards in a Sun workstation.

2.1.2 'White Dwarf Design process

The White Dwarf design process is dictated by the commercial environment. Performance
is considered the primary criterion for evaluating design decisions, however in cases where
a significant cost saving could be realized only with a slight loss in performance, cost con-
siderations are allowed to determine design decisions. The application algorithm is well
defined before the design procedure begins, and it is possible to estimate the performance of
a proposed processor design with reasonable precision. The control flow of the finite element
algorithm is seldom affected by the run time values of data items. The distribution of sparse
data in the matrices is well known. Therefore, the primary effect of data on problem solving
time is the number of iterations through the main loop. It is possible to estimate overall
system performance with reasonable accuracy by estimating the time required to execute the
main loop on a proposed design. Cost evaluations are less precise. Estimates are made of the
number of parts involved in each board. As design modifications are made, it is necessary
to reassess physical resources such as board space and power consumption. Any decision
that increases the system cost from original estimate is required to enhance performance by
a similar percentage.

Using the conventional intuitive design approach, the problem is analyzed with the as-
sumption that no resources are available. As each operation is analyzed, it is first determined
whether the operation can possibly be completed with the existing resources. If not, then
additional resources must be added to the architecture. If the operation can be completed,
then the designer must determine whether or not the addition of resources will improve per-
formance and allow the operation to complete faster. This approach forces the designer to
justify cost/performance benefits of each addition to the design. A potential failing of this
constructive method is that it is difficult to establish that all of the potential parallelism has
been located. This procedure is likely to repeatedly identify trouble spots in the application
code, indicating the possible benefit of restructuring the problem at the algorithmic level.

Furthermore, the granularity of design changes may influence the process. For example,
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there are situations where the addition of a single resource, e.g. an adder or multiplier,
does not improve performance but the combined effect of the addition of a number of such
resources provides a substantial performance boost[76]. The combinatorial nature of the
kind of search required to cover these cases may prove too time consuming and tedious for
a human, or even automated, designer.

Given the above considerations, the alternative design approach adopted in ASPD as-
sumes a machine with a large number of resources and unconstrained connectivity between
resources. The entire application is analyzed; maximum parallelism is extracted and oper-
ations are assigned {o resources as needed to achieve maximum computation throughput.
Once the analysis is complete, all unused resources, either operators or communication paths,
are eliminated. The remaining architecture identifies a starting point which may exceed
performance, as well as cost, requirements. By gradually constraining the architectural par-
allelism, additional scheduling techniques are employed to remap the algorithm to a further

constrained architecture.

2.1.3 White Dwarf Processor Architecture

The White Dwarf processor, illustrated in Figure 2.1, is partitioned into a number of boards
connected by a dedicated high-speed bus called Dwarfbus. The CPU board contains all the
data path logic, microcode memory and timing control unit. The system board contains
the interface to the VME bus and the logic to download microcode and data memories.
The Dwarfbus connects these boards to the memory subsystem. The memory subsystem is
expandable with up to eight memory boards, but a basic White Dwarf system may contain
only one memory board.

The data path is composed of separate integer and floating-point units. The integer unit
can read and write pointer data from three integer memory banks. These banks correspond
respectively to the row, column and link fields of an element in the data structure that
represents the sparse matrix. The floating-point unit can access three floating-point data
banks, which store the floating point elements of the ICCG algorithm data structures. Figure
2.2 illustrates the structure of the White Dwarf data path.

The floating-point unit, illustrated in Figure 2.3, has two AMD Am29325 32-bit floating-
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point ALUs. Each device executes addition, multiplication or subtraction in a single cycle. In
fully clocked mode, each operation is completed in 100ns. The two floating-point ALUs have
a sparsely interconnected system of 4-ported register files. Each register file supports two
reads and two writes per cycle. Each floating point unit has a register file for temporary data

and a memory buffer, also implemented by a register file. ALU results are always written
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into the same register in both register files. Alternatively, the ALUs can take their inputs
from the memory buffers. The memory buffers serve as memory data registers, receiving
data from memory and storing it until the next cycle. Results are transferred between the
two ALUs by writing them back into both register files. Data arrives from memory on three
separate data busses. The implicit connectivity of the memory buffers is used to route data
from the busses to the ALU input ports. A 2x3 crossbar switch routes data returning to
memory. Each ALU generates a result per cycle. The two results can be routed to any of
the three floating-point data busses to be stored in memory. This interconnection structure
allows all FEM procedures to operate effectively and is much cheaper and faster than full
connectivity, e.g. a full crossbar. Division, a relatively rare operation in the FEM algorithm,
is available in only one of the ALUs. It is implemented using the Newton-Raphson iterative

method.
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Figure 2.3: White Dwarf Floating-Point Unit

The integer unit, illustrated in Figure 2.4, generates addresses for data in memory, and
is used to test for terminating conditions in matrix operations. The integer unit has a single
AMD Am29332 32-bit integer ALU. It has a pair of register files which serve as both general

purpose register and memory buffers. A complete register to register operation is executed
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in one cycle. The equality tester is used to monitor matrix addresses in order to detect

diagonals or ends of rows and columns.
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The White Dwarf processor employs a wide instruction word. All of the control fields

for the ALU’s register files, data path routing, memory control and microsequencing are

contained explicitly in each microinstruction word. The finite element algorithm takes a rel-

atively small number of microinstructions. Thus, chip cost is not a factor in the design of the

control memory. Figure 2.5 illustrates the control path. The Am29331 microsequencer pro-

vides control flow features, conditional branching, nested subroutine calls and loop counters.

Each microinstruction contains a microsequencer parcel.
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2.1.4 White Dwarf Performance Evaluation

The White Dwarf prototype system has been designed to operate with a 112ns cycle time.
The two floating-point unit can perform two floating-point operations per cycles, therefore
the White Dwarf can reach a peak processing rate of 17.8 MFLOPS. Several of the finite ele-
ment procedures, such as the véctor inner product, operate at close to peak speed. The four
sparse matrix procedures that form the bulk of the processing operate with 90% utilization
of the floating-point unit. Some vector triad operations require reading and writing into the
same memory bank per iteration, and thus reduce ALU utilization to 29%. These routines
comprise a small portion of the computational load. Overall, an average rate of 80% uti-
lization is maintained, giving the system a useful sustained throughput in the 15 MFLOPS
range. For comparison, the execution of simple gather operations on sparse matrices has
been reported at sustained throughput of 5 to IIMFLOPS on the Cray-1S[15]. The CMU
WARP systolic array has achieved sustained performance of 12.5 MFLOPS[85]. Compared
to the Sun 3/160 host, the White Dwarf executes the compute-intensive portion about 40

times faster.
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The White Dwarf experience has validated the use of a wide-instruction word architecture
and the effectiveness of the synchronous execution model for the efficient use of compile-time
extracted parallelism. A key point in the White Dwarf project involves the importance of
having adequate memory bandwidth to keep multiple functional units busy. Such bandwidth
is achievable with memory organization with multiple banks. Limited connectivity among

functional units provides the required data transfers at low cost and fast cycle time.

2.2 Architectural and Implementation Models

The architectural template is further elucidated in this section; specification optimization
and architecture generation techniques are presented and illustrated in subsequent chapters.
The architectural template is a highly scalable processor architecture model that can be
customized according to the specific requirements of the application code. The emphasis of
the customization process is to achieve high performance with efficient use of hardware.

The key architectural issues of parallelism, interconnection, and the use of specialized
components were identified from experience with the White Dwarf project. Parallelism in the
architecture enables high performance by the concurrent execution of the operations required
to execute the program. Furthermore, the interconnection structure among the components
of a high performance architecture must be adapted to perform quickly the data transfers
required by the target application program. Ideally, the communication paths (e.g. busses
and multiplexers) between functional units that exchange data must be as simple and direct
as possible. Full connectivity, such as that provided by cross-bar switches, is simple and
direct but entails a high cost both in hardware requirements and longer cycle times.

As seen above, one of the keys to high-performance is the use of fine-grained, or instruction-
level, parallelism. The architecture is capable of concurrent execution of several ALU oper-
ations by having multiple functional units. However, the existence and use of parallelism in
the architecture introduces the problem of synchronization, the time correlation of related
activities. The coordination of operation execution and data transfers must be such that all
operations and data transfers are executed and completed in timely fashion according to the
data dependencies in the application algorithm.

The extraction of parallelism may be performed either at runtime, by mechanisms to
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issue operations concurrently such as scoreboarding, dispatch stacks and dataflow engines,
or at compile time. At run time all data dependencies are explicit, and there is no ambi-
guity between indirect references. However, the extraction of parallelism at run time incurs
potentially significant overheads in terms of increased cycle time and cost of hardware for
scheduling of operations and interlocking mechanisms to ensure dependency preservation.
The alternative approach is compile-time code parallelization. This approach eliminates
runtime overheads by performing the scheduling work at compile time. This yields simpler,
and potentially faster and cheaper, machines. Furthermore, this approach can exploit par-
allelism that is not readily available at coarser levels of granularity, and is far too costly
to be expressed explicitly at the user application level. The compiler performs extensive
analysis of the program to achieve eflicient hardware utilization. Such an analysis is not
always feasible, or economically viable, at runtime. For example, for a given point in the
program, the compiler may use global information about the code characteristics and control
flow of computations forthcoming from that point. This “view of the future” is usually not
available to purely hardware-based mechanisms.

Code parallelization at compile time is in line with the ASPD philosophy because, by us-
ing extensive code analysis, the compiler produces efficient code schedules that make uniform
use of hardware resources. The goal is to find code schedules to keep the available functional
units busy most of the time. This allows efficient exploitation of the available parallelism by

a hardware mechanism that is tailored to and efficiently used by the application program.

2.2.1 The VLIW Architecture

Modern VLIW machines[36, 46, 31] combine the advantages of RISC architectures with the
speed benefits of parallel machines. The canonical VLIW model has a load/store, register-to-
register instruction set, with unit execution time and uniform and conflict free data-access for
all operations. In this model, n operations are issued synchronously to n ALUs that operate
on a shared data file and complete execution concurrently in one cycle. Upon completion of
one instruction, the next instruction issues and the process repeats. One, or usually more, of
the operations in the instruction can combine to dynamically determine the next instruction

to execute i.e, conditional jumps. While multiple conditionals may occur in one instruction,
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they always combine, in more or less general fashion depending on the implementation, to
form a single multiway jump. Thus a characteristic of VLIW machines is that there is a
single thread of flow of control from instruction to instruction, even though each instruction

may have a multitude of potential successors.

The synchronous execution model, the uniform data-access, combined with the ability
to execute multiple and different machine language level operations in every cycle make the
VLIW model effective in exploiting very fine grain parallelism not available to traditional
MIMD/SIMD multiprocessors, due to the absence of synchronization, communication and
runtime scheduling overheads. While the uniformity of the model would prevent arbitrary
scalability in a real-world implementation (notably due to the difficulty to provide uniform
and conflict-free access time for a large number of processors), the model has still been
shown as viable for implementation on a medium scale (tens of processors) notably in the
Multiflow [36] and IBM VLIW [31] machines. Of the two, the IBM machine is the one closest
to the “pure” VLIW model. It can be thought of as executing program graphs, one node at
a time. Each node in the program graph corresponds to a VLIW instruction, and contains
a tree formed from RISC like operations with control-flow operations defining the tree, and

non-control-flow operations such as multiply, load, etc, populating the branches.

The execution of a VLIW instruction can be thought of as a three-steps process. In the
first step, all operands for all operations in the instruction are read. In the second step,
all conditions are evaluated and a path to the unique successor instruction is chosen. This
yields the next VLIW instruction to execute. In step three, results of the operations on
the path chosen in step two are written into their destinations and control is transferred to
the next instruction which is then executed. Note that, as an intentional side-effect of this
three-step process, operations in a given instruction can only read the results computed by a
previous instruction, since all reads occur before any writes take place. If several operations
on the chosen path in the instruction have the same destination, the last operation on the
path takes precedence i.e. gets to write to the location. In practice, on the IBM VLIW
machine, these three steps are efficiently executed as part of the basic machine cycle. Note
that all operations in one instruction will have completed before the next instruction is

issued. State-of-the-art technology is used to avoid undully lengthening the cycle time when
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performing traditionally costly operations e.g. floating point. The cycle time of the IBM
VLIW machine will vary with the precise technology used, but is comparable with that of
state-of-the-art RISC processors implemented in the same technology.

The chosen architectural template is a scalable VLIW-like architecture with conditional
execution of operations[31]. The VLIW architecture, inspired by the IBM VLIW project

and illustrated in Figure 2.6, is characterized by the following attributes:

1. Single Instruction Stream with Application Software implemented directly in wide

instructions.

2. N functional units and M memory banks supported by a global register file, and all

controlled by a wide instruction.

3. Conditional execution is supported by the functional units; explicit conditional branch-

ing is carried out by the sequencer.

The actual values for N and M are scaled to match the optimized application code,
Possible decomposition of the global register file into multiple distributed register files with
sparse interconnection is applied to match the requirements of the optimized code. The
VLIW architecture is an effective template for specialized scientific processors because it
effectively achieves high performance by exploiting parallelism, as exemplified by the use
of VLIW machines for scientific computation[36, 81, 31], and because of its flexibility for
scaling and customization. Furthermore, it exploits fine-grain parallelism at the level of
individual ALU (micro)operations via compile-time synchronization. This kind of parallelism
is more commonly present in applications than the coarse-grain parallelism that is efficiently
used by other architectural models such as MIMD and SIMD. Existing multiprocessors
cannot effectively exploit fine-grain parallelism because the relative cost of synchronization
would easily overcome the benefits of parallelism. Even a few cycles of communication and
synchronization overhead are much longer than the execution time of a single operation.
SIMD architectures, while not having the synchronization overhead, are only applicable to
a certain class of tasks in which a number of operations is applied regularly over large sets

of data.
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Figure 2.6: Wide Instruction Word Architectural Template

The use of conditional execution of operations in the VLIW architecture provides addi-
tional performance enhancement by reducing the performance penalty involved in executing
conditional statements. In a conditional-execution model, condition code bits in the proces-
sor determine whether the result of an operation performed conditionally is stored into the
register file or discarded. For example, in order to execute a conditional operation in a RISC
processor, a minimum sequence of three instructions is necessary. The instructions compute
the condition code, branch conditionally to an instruction to perform the operation and, if
the branch is taken, perform the operation. A conditional-execution architecture reduces
this critical path to two instructions that compute the condition code and execute the oper-
ation conditionally. Furthermore, the conditional-execution feature allows the execution of
operations concurrently with the conditional branch. In case the branch is taken, operations
in the branch-taken path that depend on the results of operations executed conditionally are

ready for execution. Due to this fact, the conditional-execution model is particularly use-
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ful to speed-up branch-intensive programs. Examples of this kind of programs are systems
programs such as editors, operating systems and compilers, and programs that use dynamic
pointer-based data structures and sparse matrices.

The VLIW architectural template serves as a virtual and scalable target architecture
during, possibly repeated, application code compilation for specification optimization. This
template 1s scaled by constraining the resources and used as candidate target architectures.
During architecture generation the scaled architecture is used as a framework to hardware
allocation. Optimization is performed during this phase to ensure efficient hardware imple-

mentation of the scaled architecture.

2.2.2 Implementation Architectural Template

In addition to the architectural template, an implementation template is used to permit
further customization for achieving efficient utilization of hardware resources. The imple-
mentation template of the data section is the multiple-bus organization illustrated in Figure
2.7. This organization, inspired by the one presented in [42], is composed of a number of
single-ported register files and functional units joined by a sparsely interconnected multiple-
bus organization. Data are organized into the distributed register files to support the specific
requirements of concurrent access of this code. Sparse interconnect is allocated to support
the required data transfers between the multiple register files and functional units.

The architecture operates on a two phase clock. In the first phase, data are transferred
from the register files to functional unit inputs. On the second phase, data from the func-
tional unit outputs are stored back into the register files. The multiple bus structure provides
sparse connectivity between register files and functional units. In Figure 2.7, each horizontal
bus is associated with a register file, and vertical busses are connected to functional unit
inputs and outputs. Tri-state buffers and multiplexers at some crosspoints in Figure 2.7
provide sparse connectivity between register files and functional units. Each register file is
organized as memory with a single read/write port. This organization has both lower cost
and higher speed than multiported memories[13].

The set of register files allows concurrent access to data allocated into distinct register files

and thus implements the function of the global shared register file of the VLIW architecture
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at much lower cost. This is done by careful allocation of data that are concurrently accessed
into distinct register files and by providing the interconnection paths to the functional units

that operate on these data.
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Figure 2.7: Implementation Template

The bus associated with a register file allows broadcast of values to the input busses of
functional units. Connections are directional: functional unit input busses may only read
from the busses associated with a register file, while functional unit output busses may only
write into those busses. This is illustrated in Figure 2.8, for a realization technology that
uses busses and tri-state drivers. To read a value from a register file R into an input of a
functional unit there must be a connection from R’s bus (horizontal) to the (vertical) bus
associated with that functional unit input. Similarly, to store the result generated by a
functional unit into register file R there must be a connection from that functional unit’s
output bus to the (horizontal) bus associated with R. Control for the tri-state buffers at

crosspoints is issued by the instruction.



CHAPTER 2. ARCHITECTURE SYNTHESIS

1 @ 1

[ He ® 2

[j ‘:_6;% \ NB
es ) N\ VL

FUNCTIONAL

UNITS MEMORY

BANKS

3-state driver

control

Figure 2.8: Detail of Sparse Interconnect

2.3 Application-Specific Processor Design (ASPD)

Based on the White Dwarf experience, the Application-Specific Processor Design (ASPD)

method has been developed. A semi-custom framework is used to reduce the complexity

and effort of the design task. This is analogous to and can be viewed as an architecture-

level extension of the semi-custom design of ASICs. The input to the synthesis process is

the actual application source code written in a conventional HLL such as Fortran or C. The

description serves as the architecture specification. The method produces as a result a netlist

description of the generated ASP, along with the associated application code.
The ASPD framework is characterized by:

1. the use of an architecture model and simplified design rules to constrain the design

style and reduce the design task complexity;

2. the use of predesigned and well-characterized large-grain building blocks as primitives;

and
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Figure 2.9: Application-Specific Processor Design Method.

3. the extensive use of sophisticated software tools to perform design customization and

optimization.

The ASPD method achieves high performance by extracting and exploiting fine-grain
parallelism, beyond basic-block boundaries, in the application code and implementing the
necessary hardware resources to support its execution. The overall ASPD method is illus-

trated in Figure 2.9 and involves the following four key components:

1. Architectural Template: The architectural template implements the semi-custom
design framework, defines a scalable architecture model, and is used to constrain the
design style. The range of scalability of the template constitutes the entire design

space. The template can be scaled via the imposition of various resource constraints.

2. Specification Optimization: The first of two optimization phases, specification
optimization has as its objective the maximization of application code performance.
It employs a powerful retargetable VLIW compiler to translate the application source

code into highly optimized object code containing much fine-grain parallelism. An
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efficient architecture is generated by scaling the architectural template and performing
repeated compilation of the application code with varying resource constraints. Based
on the compiled object code, detailed hardware resources are allocated using systematic
procedures. The optimized code serves as the optimized specification of the ASP

architecture.

3. Implementation Template: The implementation template addresses the issues of
efficiency in the architecture design, while maintaining downwards code compatibility
with the architecture template. Given one specific instance of the optimized code gen-
erated for an scaled version of the architectural template, the implementation template
is further scaled in terms of resource utilization by allowing detailed allocation of data
and connectivity to satisfy the resource and communication requirements of this object

code at a reduced cost.

4. Implementation Optimization: The aim of this second optimization phase is to
achieve efficiency, or high utilization of hardware resources. The direct mapping of
the optimized specification into hardware produces a canonical implementation. This
canonical implementation is then pruned, via hardware allocation algorithms, to pro-
duce the optimized efficient implementation. Graphs are used to represent relationships
of concurrent activation of the hardware resources by the program. Graph-coloring al-
gorithms are employed to map non-overlapping activities to the same hardware unit,
thus saving hardware resources. Characteristics of the target application and architec-
ture template are used to identify special kinds of graphs for which efficient algorithms

exist.

The system-level interfacing for the generated ASP is as a coprocessor similar to the
White Dwarf. The processor is viewed by the host as an efficient “hardware subroutine”.
Data is loaded under control of the host processor into the processor’s data memory, via
DMA, prior to execution and transferred back to the host after processing is finished.
The multiple bank organization of data memory allows high-bandwidth data transfers, thus
minimizing overheads. For example, this organization is suitable for high-bandwidth DSP

algorithms[43]. This coprocessor model does not take interrupts or context switches, which
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are handled by the host.

The principal input to the ASPD design process is the high-level language code for the
application. Under control of the designer, repeated compilation for scaled versions of the
VLIW template is performed to search the design space. The performance attained for a
given scaled architecture is obtained via execution on a simulator, or may be estimated, for
simple programs, by code inspection. Once a design point is selected, the result of specifica-
tion optimization is presented in the form of optimized code for a scaled VLIW architecture.
The VLIW architectural template is then scaled to allow execution of this application code.
Operations are assigned for execution by functional units and data are distributed into multi-
ple register files to allow concurrent access to values in registers as required by the application
code. Communication paths are provided to support the required data transfers. The im-
plementation template is then pruned to eliminate unnecessary resources without degrading
the performance. The resulting ASP design describes the number, sizes, and data allocation
of register files, and their interconnection to the functional units and memory banks. The

object code to execute the application is also provided.



Chapter 3

Specification Optimization

The specification optimization phase is responsible for achieving performance optimization
in the ASPD method. It takes as input the application program, in C or FORTRAN, and
produces highly optimized (in terms of extracted parallelism) horizontal microcode, which
serves as the optimized architecture specification. The primary workhorse in this phase is a
highly retargetable optimizing VLIW, or microcode, compiler.

During the specification optimization phase, the retargetable compiler is first invoked
on the input application code using the VLIW architecture template, without any resource
constraints, as the target architecture. The resultant parallelized code serves as the initial
optimized specification for the ASP architecture. The number of functional units and mem-
ory banks needed are determined by the resource requirements of this parallelized code. If
the resources required are too impractical to implement or too inefficient in their utilization,
the compilation is repeated with resource constraints imposed. This process of repeated
compilation with gradual imposition of resource constraints leads to the final optimized
specification. The powerful compilation techniques employed in this project and their use

in Specification Optimization are presented in this chapter.

3.1 Specification Optimization Procedure

The keyword for the specification optimization phase of the ASPD method is performance.
During this phase the designer is concerned with locating the performance levels which
are attainable for the target application. This performance is to be achieved under cost

constraints. The goal is to find quickly the cost versus performance tradeoff point that

29
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matches the designer’s requirements.

The ASPD method makes use of the architectural model to explore the design space.
This is achieved by compiling the high-level application code for various scaled versions of
the ideal VLIW architecture. The designer quickly explores various cost versus performance
tradeoff points by performing repeated compilation for scaled architectures. Initially, the
compiler 1s allowed to schedule without resource constraints as many parallel operations as
it can find, and is requested to report the amount of resources required. The result of this
compilation locates the point of maximum obtainable performance. By repeatedly scaling
down resources available to the compiler, the designer generates a set of possible design

options and performs tradeoffs between cost and performance.

The process of repeated compilation places certain requirements on the compilation tech-
niques to be used. In order to have broad application and usefulness, the compilation tech-
niques must be general, scalable and monotonic. A general fine-grain parallelization tech-
nique is applicable to a wide range of programs. Such a technique is not pattern-sensitive,
i.e. only applicable to programs that exhibit definite patterns of data and control actions.
Examples of parallelization techniques that are not general include vectorization techniques,
which require regular data access patterns, and systolization, which places strict require-
ments on data access and recurrences. Early software pipelining techniques[81] are also not
general, because they only apply to single-statement loops having simple recurrences. The
non-general techniques exhibit a form of all-or-nothing behavior: if the target application
and the compilation technique have a good match, extremely high performance may be ob-
tained, but benefits from the same technique for any other kind of application may be almost
nil.

The parallelization technique must be scalable: the speedups obtained with the tech-
nique must be well correlated with the amount of resources required. Trace Scheduling|37]
is an example of a technique that is neither general nor scalable. It is not general because
it requires target applications that have highly predictable flow of control. It is also not
scalable because a wide range of cost and performance tradeoffs is only possible if the target
application has long traces. Furthermore, the presence of conditional jumps in the code

may cause non-linear growth in the resulting code size. This breaks the correlation be-
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tween resource requirements and performance. It is known[37] that many subroutines for
computation-intensive scientific applications have characteristics suitable for trace schedul-
ing. However, present day scientific applications also include many kinds of code beyond the
computation-intensive kernels, e.g. user communication and system interfaces. These codes
do not usually exhibit characteristics that match trace scheduling. A compilation technique
is not monotonic if the code produced by using more resources executes slower than a code

schedule with less resources.

A general parallelization technique achieves a broad range of applicability for ASPD. It
must also be scalable, to simplify exploration of the design space, due to the good correlation
between performance obtained and amount of resources available. Furthermore, due to
consistent speedup across various kinds of code, a general and scalable technique achieves
speedup for the whole application as opposed to only benefiting the highly parallel kernels
in the program. The PS transformation finds parallelism among operations from beyond
basic blocks. Some operations from beyond conditional branchs whose operands are ready
are scheduled speculatively. A possible source of non-monotonicity is the case in which the
compiler is overly aggressive at the early scheduling of speculative operations. This may
waste some resources to execute operations whose results are not used most of the time.

The heuristic choice functions are carefully chosen to avoid such situation.

The intended application domain of ASPD is scientific and engineering embedded com-
putation. In this application domain, a substantial fraction of the computation time is
spent executing loops. Therefore a general and scalable optimization mechanism that han-
dles loops efficiently is a key factor to achieve efficient performance. The specification op-
timization phase implements both intra-loop-iteration and inter-loop-iteration scheduling
techniques. Intra-iteration techniques find parallelism among operations belonging to the
same loop iteration. This optimization is also applicable to code belonging to outer loops
or in between loops. Examples of intra-iteration techniques are trace scheduling[36] and
percolation scheduling(62]. Inter-iteration techniques are capable of scheduling concurrently
operations belonging to distinct iterations of the loop. Speedup is obtained by achieving
overlapped execution of loop iterations. This is done by starting the execution of a future

iteration before execution of the current iteration is completed. Examples of techniques for
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inter-iteration optimizations are loop unrolling and software pipelining techniques [54, 5, 33].

3.2 Intra-Iteration Techniques

Traditional microcode compilation techniques are limited to finding parallelism among op-
erations from a single basic block[1l]. However, experiments have shown that the maximum
speedup attainable from parallelism in basic blocks is usually only a factor of two to three[64].
To increase the amount of parallelism achievable it is necessary to go beyond conditional
jumps by concurrently executing operations from multiple basic blocks. Trace scheduling[37)
1s a technique to extract parallelism beyond basic block boundaries. Experiments with trace
scheduling in scientific FORTRAN programs have found speedups of up to one and possi-
bly two orders of magnitude[64]. However, trace scheduling has a reduced scope because it
requires programs that exhibit a highly predictable flow of control. Another limitation of
trace scheduling is that it cannot achieve inter-iteration optimization by fully pipelining loop
iterations (see [4]). Trace scheduling achieves a limited form of inter-iteration optimization
via loop unrolling [35], but this approach entails pipeline startup and flush overheads at
every group of unrolled loop iterations.

To extract fine-grain parallelism, an enhanced version of Percolation Scheduling [62, 34]
is adopted in this work. Percolation Scheduling (PS) is a code parallelization technique that
evolved from experience with trace scheduling[37]. It is applicable to more general classes of
code than trace scheduling, being particularly good at finding parallelism in branch-intensive
code such as systems programs. Furthermore, it has been demonstrated to obtain comnsis-
tent speedups for many classes of code [59]. Percolation Scheduling is also the compilation
technique selected for the IBM VLIW project, which is a general-purpose VLIW processor
for efficient execution of systems and general-purpose applications.

Percolation Scheduling is composed of a set of semantics-preserving transformations that
convert an original program graph into a more parallel one, globally rearranging the code
to extract parallelism. The core transformations regulate the conditions under which an
operation or conditional jump may be moved between adjacent microinstructions. The op-
timization process starts with serial code containing one operation or conditional jump per

instruction. By repeated application of core transformations it is possible to move, or per-
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colate, operations and conditional jurnps to preceding instructions to achieve more parallel
code. The treatment of operations and conditional jumps is unbiased and regulated by data
dependencies. Percolation Scheduling approximates, at compile time, the execution sched-
ules of operations in a dataflow processor. The set of candidate operations that may be
scheduled in a given instruction are those operations whose input arguments are available.
For example, after one operation o is moved to a preceding instruction, other operations
which use values produced by o become eligible for motion to the instruction previously
occupied by o. Because operation scheduling is done at compile time, it is feasible to per-
form extensive code analysis to determine the priority of execution of operations. This may
avoid the waste of resources which happens in a dataflow processor, where operations, whose
inputs are ready but whose outputs are not immediately needed or not needed at all, are exe-
cuted too soon. Therefore, Percolation Scheduling achieves efficient extraction of parallelism

without requiring the expensive hardware mechanisms of dataflow processors.

Percolation Scheduling is not restricted to optimizing one execution path at the possible
expense of other execution paths, as in trace scheduling. Operations belonging to distinct
execution paths are treated uniformly, and the effects of parallelization can benefit multi-
ple execution paths. This feature is particularly useful for branch-intensive applications.
In [33], a variation on Percolation Scheduling, called Extended Percolation Scheduling, has
been adapted to the conditional-execution model and extended to avoid blocking of the
motion of operations due to data dependencies other than direct flow dependency. Perco-
lation Scheduling generates high-performance code for branch-intensive code which is very
difficult to speed up with other conventional techniques. Performance improvements on the
order of tenfold for a 16-ALU VLIW have been obtained[33]. The Percolation Scheduling
transformations can expose large amounts of parallelism even in the presence of conditional

jumps.

In ASPD the main concern is not only absolute performance, but also efficient hardware
usage. Nicolau and Ebcioglu[34] extended Percolation Scheduling to handle target architec-
tures with constrained resources by defining the notion of unifiable-ops. For each instruction
L, unifiable-ops(L) is the set of operations and conditional jumps in the program that could

be moved to L without requiring other operations to move first. Algorithms to compute
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and maintain unifiable-ops information during the compilation process are presented. A
choice function assigns priorities to the operations and is used to decide which operations
in unifiable-ops(L) are actually moved to Instruction n in the presence of limited resources.
This approach provides a separation of concerns: the computation of unifiable-opsis algorith-
mic and rigorous, and the Percolation Scheduling transformations that perform the motion
are semantics-preserving and provably correct. The problem of optimal code scheduling
with constrained resources is NP-complete, thus the heuristic choice function is necessarily
sub-optimal[34]. The use of a sub-optimal heuristic may introduce non-monotonicity in the
resulting code schedule.

In our implementation, the algorithms in [34] have been extended to account for the
possibility of renaming destination registers of operations during percolation. Furthermore,
an efficient representation of operation sets using bit-sets has been proposed and implemented
in what is, to the best of our knowledge, the first and only implementation so far of the
algorithms presented in [34]. The use of force-directed scheduling[69] is proposed in this
work as the choice function for Percolation Scheduling. Force-directed scheduling[69] is a
technique which attempts to achieve uniform use of resources and has produced good results
in practice. As initially proposed, force-directed scheduling applies only to straight-line
code or simple conditional constructs. Unifiable-ops provides information about where each
operation could be scheduled (across basic block boundaries). The force-directed heuristic
is used as the choice function to select where each operation should go. This approach

effectively extends the applicability of force-directed scheduling beyond straight-line code.

3.2.1 Percolation Scheduling Core Transformations

Percolation Scheduling is composed of three primitive transformations: move-op, move-
cj and delete. These transformations are local, involving only two consecutive microcode
instructions. By repeated application of primitive core transformations, powerful code mo-
tions are performed. These transformations are atomic, i.e. involve the motion of a single
operation or conditional jump, which is the smallest quantum of execution on the VLIW
architecture. After each transformation the code is semantically equivalent to the original

program[4]. This allows detailed control of the fine-grain (operation-level) parallelization
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process and a wide range of tradeoffs between resource requirements and performance ob-
tained from concurrency. This feature makes Percolation Scheduling a scalable fine-grain
parallelization technique. Similarly, Percolation Scheduling is a general parallelization tech-
nique, because it schedules concurrent execution at the fine granularity level of concurrent ex-
ecution of operations and conditional jumps. Therefore, it is able to capture highly irregular
forms of parallelism not visible at coarser levels. Parallelism at coarser grains e.g. iteration-
level or subprogram level, may also be found at the fine-grain level (e.g, [8]). The importance
of fine-grain parallelism exploitation has already been recognized to some extent, and is re-
flected in the use of horizontal microcode in many’ high-performance application-specific
processors[75, 81, 51]. Furthermore, [4] shows that the Percolation Scheduling core trans-
formations are complete with respect to the set of all possible local, dependency-preserving
transformation on program trees. This means that no alternate parallelization system that
also has locality of application and is dependency-preserving is capable of exposing more
parallelism at this level.

Figure 3.1 illustrates the move-op transformation. In this example, Operation a in In-
struction L2 is moved to a predecessor instruction L1. After the move, the successor of L1 on
that path is a new instruction L2_p which is a copy of L2 without the moved operation. The
motion is allowed only if no data-dependency constraints are violated. These constraints are
direct dependency or write-live dependency. A direct dependency exists if some operation in
L1 computes an input value for a. A write-live dependency® exists if a writes a register or
memory location which is either read by some other operation in L2 or live at Instruction
Ly. After the motion of Operation a, L2 is preserved because it has other predecessors. This
guarantees semantic correctness because the upward motion of a on the path L1-L2 does
not affect other execution paths that traverse L2 but not L1. Other invocations of move-op
might move a to the other predecessors of Instruction L2. If L2 has no other predecessors
and all operations have been moved from it, it is removed by the delete transformation.

Similarly, Figure 3.2 illustrates the move-cj transformation. In this example Instruction
L1 is followed by Instruction La which executes a conditional jump. If the condition code

which determines the jump condition is available at Instruction L1, it may execute the

'In some texts, this dependency is called “write-after-read” or “anti-dependency”.
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Figure 3.1: Move-op Example

conditional jump itself. The conditional jump is moved into Instruction L1 which is changed
to target two new unconditional instructions Lx and Ly. Lx is a copy of La that behaves
as if it is known that the condition code is true, and Ly is a copy of La that behaves as
if it is known that the condition code is false. As in the previous case, La is preserved
in its original form if it has predecessors other than L1. If the conditional jump may be
moved to all predecessors of La, it becomes an empty instruction and is deleted. The
move-cj mechanism allows for early resolution of conditional jumps. This is desirable to

allow motion of operations from paths after the conditional jump whose motion is otherwise
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Figure 3.2: Move-cj Example

blocked by write-live dependencies on the other path.

3.2.2 Percolation Scheduling with Register Renaming

In many situations, the upward motion of an operation o is blocked only by a write-live
dependency. This happens if 0 is moved from some Instruction L2 into Instruction L1 and
the old value of the destination register of o, say register z is needed at some other path
starting at the tip of L1. In these cases, the motion can still be performed, by using a new
destination register for 0. The opcode for o is changed to store its result into a new register
z’. A copy operation to move the contents of z’ into z is left in L1 in the place of o. Figure
3.3 illustrates Move-op with renaming. The addition of x and y is moved from the right

branch of L2 to L1. However, the old contents of register z are required by a load operation
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in the left branch of L2. The destination register of the addition is changed to write the

result into z’, and a copy from z’ into z is left in L2.
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Figure 3.3: Example of Move-op with Register Renaming

The move-op transformation with renaming has the drawback of introducing an extra
copy operation in the code. It is desirable, however, because the result of operation o
becomes available at least one cycle earlier, inducing further possibilities of code motion.
Other operations that require the new value of z computed by the addition may be moved
into L2, and thus execute earlier, by reading the required value from register z’ instead.

Furthermore, if all such operations are changed to read directly from z’, the copy operation
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becomes dead and may be removed from the code.

The move-op transformation with renaming is a key to achieving efficient loop pipelin-
ing. Frequently, each loop iteration computes a value in some register which is last used
some cycles later in the same iteration. Without the renaming transformation, future loop
iterations that would overwrite the same register location are delayed until the value is last
used. This reduces the amount of pipelining achievable. By using register renaming, the
copy operations preserve the value until it is last used. This allows more overlap between
loop iterations. Percolation Scheduling with register renaming is inspired by [25], which
demonstrates its usefulness for enhanced extraction of parallelism. The use of register re-
naming in Percolation Scheduling is first implemented in the VLIW compiler for the IBM
VLIW prototype[33].

3.2.3 Computation of Unifiable-ops

For each instruction L, unifiable-ops(L) is the set of operations or conditional jumps that can
be immediately moved from anywhere in the program to the top of L by a sequence of core PS
transformations. In other words, if there exists in the program some operation or conditional
jump o such that o could be moved to an imaginary empty predecessor of L by a series of PS
transformations involving only o or its copies, then o is present in unifiable-ops(L) . unifiable-
ops(L) is a dataflow attribute, similar to live-variables or reaching definitions information.
The algorithm to compute unifiable-ops presented in [34] is intuitively described as a
kind of “simulated Percolation Scheduling”. Consider every operation or conditional jump
o in some instruction L of the program. Initially the algorithm finds the data-dependency
conditions under which o could be moved to each predecessor of L. If the data dependency
constraints are satisfied for some attempted motion, the operation or conditional jump is
annotated into the unifiable-ops set of that instruction. The algorithm then proceeds recur-
sively, considering as candidates for motion not only the operations originally present in each
instruction but also the operations in the unifiable-ops sets. The direction of the motion of
operations of conditional jumps is against the control flow, attempting to move operations
“closer” to the program’s entry point. The program’s control flow graph is a directed graph

and motion along loop back-edges is prevented.
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If some instruction L contains an operation that computes a new value for register a,
then the motion into L of an operation that uses the value of a as an argument is prevented
by data dependencies. In other words, the motion of the set of all operations that use a
as one input argument is killed at L. For each instruction L, the set of all operations that
require values computed at L is constructed. This is the set of operations whose motion
through L is killed due to direct dependency. The set of operations whose motion through
L 1s killed due to write-live dependency is computed similarly. For an instruction L that
has a successor Instruction S, candidate operations to the unifiable-ops set are operations in
the unifiable-ops set of S and operations in L on the path to S. Candidate operations that
are not killed on the path in L to S are in the unifiable-ops set of L. The unifiable-ops set
of L is computed by considering all of its successors. The process of simulated percolation
scheduling is performed quickly by manipulating sets of operations. Care is taken to avoid
blocking the motion of operations that are available on all successors and whose motion
is killed only by their write-live dependencies. The unifiable-ops sets is computed in one
pass by visiting instructions in reverse depth-first order starting from the entry point of
the program. The algorithm in [34] uses these sets to simulate the percolation of many
operations quickly. It also suggests the use of a bit set representation of sets of operations

to allow efficient implementation.

Furthermore, unifiable-ops information may be maintained incrementally and locally with
the PS transformations. This is possible if each instruction is only considered as a target for
motion of operations after all of its predecessors have been considered. We have implemented
and extended the algorithm of [34] to use the renaming of destination registers. This is
done by using an alternative definition of the set of killed operations that ignores write-live
dependencies. For each instruction L, two kinds of unifiable-ops information are computed:
unifiable-ops(L) and runifiable-ops(L). Unifiable-ops(L) is the set of operations that could
be immediately moved to L, as before. Runifiable-ops(L) is the set of operations that could
be immediately moved to L by a series of PS transformations, but would require renaming
of the destination register. This information is used to find code schedules that require fewer
registers, while maintaining parallelism. During Percolation Scheduling, operations that do

not require renaming are moved first, to attempt to use available functional units without
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requiring extra registers.

3.2.4 Memory-Reference Disambiguation

Indirect memory references due to the use of array indices and pointers pose problems to the
computation of data dependencies. For example, assume that a memory store operation is
followed by a load operation. To determine whether the load operation could be performed
either concurrently or before the store, it is necessary to check whether the memory loca-
tions accessed by the two memory references may be the same. A conservative approach
would assume that there is always a data dependency. This serializes the memory access
and preserves the original order specified in the program. This approach may cause con-
siderable reduction in the achievable performance. The alternative approach is to perform
memory-reference disambiguation®. The compiler attempts to determine whether two mem-
ory references may access the same memory location. This is done by constructing symbolic
expressions for the memory addresses, and then checking if the expressions may ever have the
same value. For example, for array accesses A[i] and A[i+1] it is not difficult to determine
that the memory locations involved are never the same. However, in memory references such
as A[i] and A[j], where i and j are input variables, no disambiguation is possible and the
memory accesses must be performed serially. Memory-reference disambiguation is crucial for
high-performance architectures because of the higher memory bandwidth required to keep
the multiple functional units busy.

Our algorithm for Memory-reference Disambiguation is an enhanced version of the al-
gorithm sketched above, which is fully described in [35]. To build symbolic expressions,
the compiler expresses the address of every memory access in terms of loop invariants, loop
indices, and definitions of other variables. Initially, the symbolic expression of every oper-
ation o is initialized to o. Each operation o corresponds to a free variable that represents
its result in a symbolic expression. For example, let us assume that operation ol writes
variable a which is an argument of some other operation 02, that 02ism := a + 1, and
that the definition of a in oI is the only one that reaches 02. By substituting the symbolic

expressions of the operations that define inputs of 02, the symbolic expression for the value

In some texts, memory-reference disambiguation is called “memory anti-aliasing”.
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of the result of 021s ol + I . To complete the symbolic expression for m, the algorithm
is applied recursively to find the symbolic expression for the result of oJ. This is done by
creating an expression in which the operator is the opcode of ol and substituting in that
expression the symbolic expressions for the operations that define input arguments for o1.
The goal is to build linear expressions of the form &y * 01 + ko * 0y + k3 % 03 + kg x 04 + ... + kp,
where the o; are variables and the k; are integer constants. An operation may be reached
by more than one definition of an input argument. Here, the symbolic expressions contains
the “OR” operator to express alternative values for that argument. In the above example,
if there are two definitions of a reaching 02, say ol and 03, the symbolic expression for the
result of 02 will initially be (01 + 1) OR (08 + 1) . Substitution of the symbolic expressions
for 0! and 08 completes the expression. If the number of alternatives makes an expression
impractically large, it is feasible to substitute the values represented by those alternatives
by a newly created free variable. The resulting expression contains less detailed, but still
useful, information at a reasonable cost.

To compare two memory accesses whose addresses are expressed by such symbolic ex-
pressions e; and ey, the compiler checks if the symbolic equation e; — e; = 0 has a solution.
Expressions of this form are called linear diophantine equations. The process of substitution
stops for operations other than addition, subtraction or multiplication because, in this case,
the resulting expression would contain operators other than addition and multiplication.
This leads to complex non-linear equations that cannot be handled by the mechanism to
solve diophantine equations. In such cases, the compiler takes the conservative approach
and schedules the memory accesses serially.

Similarly, the process of substitution must stop if the symbolic expression of o is required
while deriving the symbolic expression for o itself, otherwise infinite recursion follows. This
happens if operation o may use a value previously computed by itself, possibly in a previous
loop iteration. In this case, the result of operation o may be a loop induction variable[2]. A

simple example of an induction variable is the loop counter in

for(i=j,i<10,i=i+3){
ovlil.. vli+t]
¥

Loop induction variables are detected before the creation of symbolic expressions. The
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induction variable in a symbolic expression is substituted by a closed form expression in
terms of an imaginary loop counter. In the example loop above, i is an induction variable,
and its symbolic expression at the beginning of the loop is ¢g + & * 3. The value of i at the
entry point before the loop entry is represented by ¢p. The imaginary counter associated with
the loop, a, starts at zero and is initialized by one on every loop iteration. In the above loop,
the memory address referenced by v[i] is expressed by Kaddress—of—v + 20 + a * 3, where
the constant K, 4gress—of—» 15 the memory address of the start of vector v. Similarly, the
memory address accessed by v[i+1] is given by K ddress—of—v + %0+ a*3+ 1. The difference
of the two symbolic expressions is f and thus the corresponding memory addresses in these

memory references are never the same.

3.2.5 Detection of Induction Variables via Symbolic Substitu-
tion

In this subsection, an algorithm for the detection of induction variables is presented. It is
inspired by the “variable folding” method presented in [60]. The traditional algorithm for
detection of induction variables is described in [2]. That algorithm works by identifying
those variables whose only definition in the loop is an operation of the form var = var
+ K for some constant K. Notice that K may also be a loop invariant. These are called
basic induction variables. Next, variables whose value is a linear function of basic induction
variables are detected. This is done by performing repeated passes over the loop body,
which may be expensive computationally. Furthermore, the simple algorithm cannot detect
the case of mutually referencing recurrences in which there are no basic induction variables.
One example is the following loop:

for(..){
varl = var2 + Ki;
var2 = varl + K2;

¥

The proposed algorithm works by identifying loop variables which are candidates to be

induction variables. Such are variables that:
e are live at the entry of the loop, and

e have a definition inside the loop that reaches the loop entry.
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The algorithm proceeds by computing the symbolic expression for the values of candidate
induction variables at the loop entry. The symbolic expression for the result of an imagi-
nary copy operation that copy the candidate induction variable into itself is computed. To
compute the symbolic expression, only definitions that reach the loop entry from inside the
loop are considered. A candidate variable a is found to be a loop induction variable if the
resulting symbolic expression for result of the copy operation a = a is of the form ag + K

where K is a constant and aq is the value of a at the start of the loop.

The closed form expression for an induction variable a at the loop entry is ag+a* K where
ag 1s the symbolic expression for a before the loop, a is the imaginary counter associated
with the loop, and K is the constant value by which a is incremented on every loop iteration.
The algorithm continues recursively to find the symbolic expression for ag by tracing back
definitions of a that reach the loop entry. The algorithm is applicable to loops that have
multiple entry points. In this case, the symbolic expression for an induction variable must
be of the form ag + K with the same value for K on every path in the loop from one entry

point to another entry point.

This technique handles naturally the chains of operations that define induction variables.
In this case, the symbolic expressions built for the results of operations in a chain are
expressed in terms of the result of the operation in the chain that is closer to the loop entry.
When the variable associated with that expression is found to be an induction variable and
its value is expressed in closed form, the other expressions that refer to it also use the closed
form. Furthermore, this algorithm handles the case of loops that have conditional statements
and the induction variable is incremented in distinct ways in the paths inside the loop. For
example, the loop in Figure 3.4 has two paths in the loop body. The induction variable, i,
is incremented by 4 in one path through the loop and is incremented by 2, and then by 2
again, in the other path. Traditional induction variable detection algorithms do not detect

such cases.

The use of symbolic expressions to detect induction variables requires the powerful mech-
anisms of reaching definitions flow analysis and construction of symbolic expressions. There-
fore, the above algorithm is probably too costly for implementation in a simple compiler for

sequential processors, e.g. CISC. However, a powerful compiler with advanced scheduling



CHAPTER 3. SPECIFICATION OPTIMIZATION 45

for(..) {
if(..) then
i=1+ 4;
else
{
i=1i+2
i=1i+2
g
}

Figure 3.4: Induction Variable Detection in Loop Body With Conditional

capabilities such as required by highly pipelined RISC processors and modern superscalar
architectures requires these mechanisms for other reasons. In this case, the improved induc-
tion variable detection capabilities, faster execution speed and simplicity of implementation

make the use of this algorithm desirable for the compiler implementation.

3.3 Inter-Iteration Techniques

The speed at which inner loops are executed is critical for the total run time of an algorithm.
If each of the inner loop iterations can be independently executed then vector instructions
can be used in a supercomputer, or iterations can be allocated to distinct processors in a
MIMD or SIMD architecture. The alternative case happens if an iteration depends on input
values which are produced by some previous iteration. In this case the best performance
is obtained with overlapped execution of loop iterations, when loop iterations are started
without waiting for previous iterations to complete. Ideally, each loop iteration should be
scheduled to produce the values needed for the subsequent iterations as quickly as possible.
The subsequent iterations would then be started and execution would proceed concurrently.
Multiple loop iterations, in different stages of execution, are in progress simultaneously. In
a VLIW and horizontally microcode architectures, the schedule for overlapped execution
of iterations is generated statically. This is called software pipelining[81, 30, 54, 4], which
consists of scheduling the operations in each iteration such that the iterations can be con-
tinuously initiated in pipelined fashion to yield optimal throughput. Figure 3.5 illustrates
Software Pipelining. Assume that the loop in the figure has no inter-iteration dependencies

and that Operation A produces a value used by Operation B which in turn produces a value
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for Operation C. The overlapped execution of loop iterations with an issue rate of one it-
eration per cycle is illustrated at the center of the figure. A software pipelined schedule to
achieve this execution rate is illustrated at the right. In this case, the software pipelined

schedule has a steady state composed of one instruction that jumps back to itself.

Iteration i i+1 i+2 i+3

— A

A 5 B| [A
& % —I[C| [B] [A]—

?_ C| [B

Figure 3.5: Software Pipelining Example

3.3.1 Enhanced Software Pipelining

The inter-iteration optimization technique adopted in this work, called Enhanced Software
Pipelining[33], is capable of handling loops that have conditional statements inside the loop
body. Both “while” loops and “for” loops are treated in the same way. The resulting schedule
for these loops may have distinct iteration issue rates for each path through the loop body.
Other software pipelining techniques[24, 54] are restricted to a single issue rate for iterations,
by constraining all paths through the loop body to the same length. Enhanced Software
Pipelining is capable of pipelining loops with conditionals so that distinct iteration issue
rates are achieved for the distinct paths in the loop. The generated schedule is capable of
handling the case in which, say, iteration ¢ + 2 finishes before iteration i. This may happen

if iteration ¢ takes a “long” path through the loop body, and future iterations take shorter
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paths. Enhanced Software Pipelining was developed and first implemented in the compiler

for the IBM VLIW prototype.

IR Mo I o
e
© 1o |\©-

Figure 3.6: Enhanced Software Pipelining Algorithm

The algorithm for Enhanced Software Pipelining is best understood by observing the
idealized characteristics of overlapped execution of loops. For simplicity of presentation,
the following discussion assumes single-cycle execution of operations. Let us assume that
a target issue rate of one iteration per cycle is desired. During execution of the loop,
an idealized pipelined schedule should issue all operations of the first loop iteration whose
input arguments are available. These are called “Level 1” operations. The execution of these
operations computes arguments for some other operations in the first loop iteration. In the
second cycle of execution, the execution of the first loop iteration continues by issuing those
operations that require arguments computed by Level 1 operations and become ready for
execution after the first cycle. These are called Level 2 operations. The idealized execution
of the first loop iteration continues in this manner by issuing operations in Level :+7 in the
cycle immediately after operations in Level «. Operations from the first iteration are issued
until cycle NV, where N is the length of the longest dependency chain in the first iteration.
Similarly, in this idealized execution schedule with pipelining, the Level 1 operations of
the second loop iterations are also issued in the second cycle concurrently with Level 2

operations of the first iteration. In the next cycle, Level 1 operations of the third iteration
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are issued concurrently with Level 2 operations of the second iteration and Level 3 operations
of the first iteration. The overlapped execution of loop iteration continues in this way until
there are no more iterations to be issued and the remaining operations are issued until the
loop execution is completed. In the example in Figure 3.5, operation 4 is the only Level
1 operation. Similarly, B is the only Level 2 operation, and C is the is the only Level 3

operation.

The Enhanced Software Pipelining algorithm simulates the above process. It works
by performing controlled Percolation Scheduling of operations through the loop back edge.
First, it uses the Percolation Scheduling transformations to fill the instruction at the loop
entry with operations that are ready for execution (Level 1 operations). The search for Level
1 operations spans the whole loop body, stopping at the loop backedge. Next, the algorithm
fills the successors of the instruction just filled with Level 2 operations. Before doing any code
motion, the algorithm also adjusts the compiler’s view of the position of the loop backedge,
to include the entry instructions of the loop, which are the instructions just filled. In this
manner, data-ready operations (Level 1) of the next iteration are also visible to the compiler
and are scheduled concurrently with Level 2 instructions of the current iteration. The process
1s repeated by moving the loop back edge past the instructions just filled. Initially, a loop
back edge is defined by the last instruction in a path through the loop body that jumps to
the instruction at the loop entry. A path through the loop forms a cycle of directed edges.
By moving the back edge to the successors of the loop entry instructions, a search for data
ready instructions that starts at those instructions will also include the operations in the
loop entry instructions just filled. In other words, the Percolation Scheduling mechanism
will move operations through the original loop back edge. This will cause the instructions
containing those operations to be replicated, because they are located in instructions that
have predecessors outside of the loop. The replicated instructions will compose the loop
prologue in the pipelined schedule. The algorithm continues by moving the loop back edge
and filling up the instructions after the back edge with operations in the loop body that are
data ready. The process stops when there are no more operations from the first iteration
to be scheduled. The process eventually terminates because there is a finite number of

operations in the first loop iteration.
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It is important to notice that the algorithm works by controlled application of Percolation
Scheduling transformations. Because each PS transformation is atomic, the code after each
transformation is semantically equivalent to Ithe original program. Therefore, the process
of compilation can be stopped at any time. This provides the scheduling mechanism with
considerable flexibility to satisfy various requirements of resource constraints and memory
bandwidth during the scheduling process, and is a key factor in the efficient resource utiliza-
tion achieved. For example, if the target architecture has limited resources, e.g. N ALUs,
the search for Level 1 operations only percolates upwards the N most important operations
before moving the loop back edge. In this case the pipelined schedule achieves a lower is-
sue rate as compared with an idealized dataflow schedule. The amount of overlap among
iterations, i.e. the amount of parallelism, is effectively matched to and controlled by the
amount of available resources. This feature makes Enhanced Pipeline Scheduling a scalable

fine-grain parallelization technique.

3.3.2 Removing Extraneous Copy Operations from Pipelining

When the minimum distance between the definition of a value and the last use of that same
value in a loop iteration is greater than one cycle, the pipelining procedure uses register
renaming to achieved increased iteration issue rate. This introduces copy operations to
preserve the value until its last use, because future itérations that execute in overlapped
fashion overwrite the register originally holding the value. It is possible to avoid these copy
operations having each overlapped loop iteration using its own register to hold the value.
This approach involves code replication: the loop steady-state code must represent the fact
that the overlapped iterations using distinct register names lead to distinct code sequences
to represent the states of execution of those iterations. These COPY operations require
the use of functional units for their execution. To reduce the program’s requirements for
functional units, it is possible to reduce the functional units usage at the cost of having
increased code size. Figure 3.7 illustrates this situation. Figure 3.7 (a) shows a loop in
which overlapped execution of successive iterations on each cycle will cause overwriting of
the contents of register a before it is last used. By preserving register a into a’, via a copy

operation, the next loop iteration is allowed to start in overlapped fashion, thus enhancing
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throughput. However, in this example, the value of a must be preserved for two cycles,
and the copy operation in the next iteration will overwrite register a’. Thus, another copy

operation a’ « a” is necessary, as illustrated in Figure 3.7 (b).

The copy-avoidance mechanism in the IBM VLIW project unrolls the loop before the
pipelining algorithm, and writes the unrolled loop iterations in static single-assignment
form[32] so that each iteration uses its own registers. Therefore, iteration overlap may
occur without requiring COPY operations to save intermediate values. The amount of loop
unrolling is a function of the longest distance between the creation and last use of a value in
a single loop iteration, and also of the iteration issue rate. The code is compiled twice. The
first compilation is used to determine the amount of loop unrolling, and code is again sub-
mitted to the compiler after unrolling is performed. A drawback of this procedure happens
for loops having conditional execution, and therefore may have distinct iteration issue rates
on different paths through the loop. Unrolling loops prior to compaction and pipelining

results is both increased compilation times and longer static code size.

An alternative approach inspired by the object code unrolling method of[54] is presented
here. The idea is to unroll the object code on loop paths exhibiting chains of copy operations.
Such chains of copy operations, in time, preserve a series of values of a renamed variable.
The transformation is applied to the loop steady-state object code after compaction and
pipelining has been performed. Loop unrolling is performed on each path through the loop
steady state code. The amount of unrolling on each path is determined by the length of the
longest chain of copy operations along that path. Unrolling of execution paths in the loop
steady state code is followed by register renaming to eliminate copy operations. Figure 3.7
(c) illustrates the chain of copy operations copy a’ «+— a and copy a’’ « a’ in the loop
steady state VLIW instruction. That instruction holds the two COPY operations and the
operations that define register a and use register a’’. Copy removal substitutes that VLIW
instruction for a series of three instructions that define and use registers a, b and c. Figure
3.7 (d) illustrates the loop execution after unrolling and register renaming is applied, thus

removing the need for copy operations.

Since this procedure is applied to loop steady state code, some copy operations may

still remain in the loop prologue. However, loop prologue is not likely to exceed resource
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limitations. Furthermore, because the number of executions of the loop prologue instructions
is much lower than the number of executions of the loop steady state instructions, simple
solutions such as splitting loop prologue instructions to fit available resources may be applied
without considerable loss in performance.

The algorithm works by identifying chain of copy operations. These chains take the form
of:

L: a’ <- op
a <- a’
1(a)
goto L
in the same instruction (assuming one-cycle steady-state code). In the above example,
all operations in the same VLIW instruction are listed vertically.
By unrolling once the (only) path through the loop and renaming registers, the resulting

code does not require copy operations. For example, after unrolling and renaming of the

distinct incarnations of register a to a and b the above loop becomes:

L: a <- op
1(a)
goto L1

Li: b <- op
£(b)
goto L

Instructions in the loop steady state code contain the code that controls overlapped
execution of multiple loop iterations. Programs in which the inner loop has multiple paths
compound the the problem of unrolling to remove copies because consistency in the use of
register names must be maintained. For example, let us consider the execution of pipelined
iterations proceeding through distinct paths, and assume that iteration i assigns a value to
program variable z in instruction L, and this value is reused in the same iteration two cycles
later. All instructions reachable from L in two cycles (including L itself) must contain code
that refers to the correct location for the value of z. For example, in a loop with three paths,
a possible execution scenario is iteration 1 taking path 1, iteration 2 also taking path 1 and
iteration 3 taking path 2. A software pipeline state corresponds to a number of overlapped
loop iterations, e.g. iterations i..j taking respectively execution paths p;,pii1,-.,p; through

the loop.
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The unrolling algorithm must be such that register names are reused as much as possi-
ble, to avoid code explosion. The algorithm in [30], originally proposed as a form of soft-
ware pipelining, may be extended for loop unrolling. The algorithm constructs a software
pipelined scheduled by overlapping loop iterations that are in distinct phases of execution.
The algorithm attempts to reduce the number of possible states in a pipelined loop exe-
cution while maintaining execution throughput. This algorithm identifies opportunities to
reuse pipeline states, and therefore is applicable to reduce the number of loop unrollings in

the removal of extraneous copy operations.



CHAPTER 3.

SPECIFICATION OPTIMIZATION

53

lteration Iteration Iteration
i i+1 i+2..
define a
d Next lteration overwrites (a)
efine a ~t——— value of a
r I
| |
use a | |
use a | I
| |
lteration Iteration Lo s |
i i+1 b
Copy preserves value of a ( )
define a
copy a' <-a || define a
copy a" <= a) copya'<-a r I
| |
use a" oopy 8" <~df ; |
use a” I I
| |
L
Chain of copy (C)
operations in
VLIW instruction:
define a copy a' <-a |copy a" <- a| use a”
Iterati lterati d
er? o eir;on Renaming + Unrolllng( )
avolds COPY
define a
define b
define ¢
use a define a
use b
use ¢
use a

Figure 3.7: Avoidance of COPY operations Introduced by Pipelining






Chapter 4

Retargetable Optimizing Compiler

As part of this research, a retargetable microcode compiler has been developed. It is capable
of generating code for a spectrum of specialized target architectures within the range of
the VLIW architecture template, and implements the foregoing powerful intra-iteration and

inter-iteration optimization techniques.

4.1 Fine-Grain/Microcode Compilation Task

A parallelizing compiler for a general purpose and widely used programming language such
as C is necessary to help demonstrate the effectiveness of the specification optimization
techniques. During development, the possibility of integrating the parallelization techniques
into a previously existing compiler was investigated. The cost involved in adapting and
enhancing the trace-scheduling compiler Bulldog[35] with percolation scheduling was con-
sidered. It was discarded because of the difficulty involved in handling and absorbing a
highly complex piece of software that evolved over a long period of time and was developed
by many researchers. Furthermore, a secondary goal of the compiler development is to cre-
ate a framework, available to other researchers, to support and stimulate further research
in compilation for architectures with fine-grained parallelism such as VLIW and superscalar
architectures. Therefore, the choice of C as the compiler implementation language eases
integration in UNIX platforms thus enhancing portability of the system, as opposed to the
distinct dialects of LISP used in the Bulldog and IBM VLIW compilers. Presently, this
compiler development is a joint effort with researchers led by professor Alex Nicolau at

U.C.Irvine. Initial design and data structures definition was performed at CMU, based on

54
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experiences from the research and development of the VLIW compiler at the T.J.Watson
Research Center.

To reduce development effort, pre-existing compilation tools are used as much as possible.
The retargetable compiler is composed of two parts: the front-end compiler, which translates
the C source files into optimized code for an idealized RISC-like uniprocessor architecture,
and a back-end parallelizing scheduler, which rearranges the operations of the RISC-like
code for concurrent execution on the target VLIW architecture. This is illustrated in Figure

4.1.

C input program

GNU COMPILER

T
NADDR intermediate file

|

VLIW ——tesource constraints
PARALLELIZER l———user control

Y

VLIW microcode L
Figure 4.1: Compilation Flow

4.2 Compilation Framework

The front-end is based on the GNU public-domain optimizing compiler. This compiler is
robust, supports code optimization, and generates code of good quality. At U.C.Irvine, it
has been retargeted to generate code for the idealized RISC architecture. The processor
description file for the target RISC architecture is adapted from the GNU configuration file
for the MIPS processor[79]. The standard scalar optimizations[2] are performed by the GNU
front-end.

The intermediate format is inspired by the NADDR][35] format used in the Bulldog trace-

scheduling compiler. The general form of an intermediate-code operation is a list

(OPCODE destination arg-1 arg-2 ... arg-N )
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The first element in the list is the operation specifier. The second element designates the
destination of the result of the operation. The remaining list of elements designate the
required input arguments for the operation. Except for jumps and memory LOAD and
STORE operations, the argument designate either registers or immediate constants. Control
flow operations include jumps, immediate and conditional. Some assembly-level pseudo-
operations are used to designate instruction labels and procedures. The C source code, and
the corresponding NADDR code for a simple program to find the minimum of an array are

illustrated in Figure 4.2.

int min;

min (4)
int A[];
{

for(i=0; i< N; i++)
{
if ( A[i] < min)
min = A[i];

}

(PROC_BEGIN  LOOP

(LABEL LOOP)
(IGE $cc0 $i $n)
(IF $cc0 (LABEL exit))
(IVLOAD $u 100 $i)
(IGE $ccl $u $min)
(IF $cci (LABEL L5))
(IASSIGN $min $u)
(LABEL L5)
(IADD $i 2 $i)
(GOTO (LABEL LOOP))
(LABEL exit)
(IGOTO $31)
(PROC_END LDOP)
)

Figure 4.2: Example: min.c Source Code and Intermediate Code

The retargetable compiler is structured to have two modes of operation: a batch mode and
an interactive mode. In batch mode, the user creates a specification file with the sequence

of optimizations and parallelizing transformations to be applied to the code. The use of
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the specification file been structured to allow selection between alternative parallelization
techniques without the need for the creation of multiple versions of the compiler. This allows

easy experimentation with distinct compilation techniques in a single integrated framework.

NPUT PROGRAM
NADDR format

\

PARSER

DATAFLOW
ANALYSIS

LOOP and
Induction Variable
ANALYSIS

Gesource constraints)

LOOP PRINT X-Window
DAG J SIMULATOR

PIPELINING COMPACTION CODE Editor

VLIW PROGRAM
LISTING

Figure 4.3: Structure of Control Flow in VLIW Parallelizer

The interactive mode is used to display, under user control, the program at distinct
stages of parallelization. It presents the program’s control flow graph on the screen and
allows interactive inspection of the contents of each VLIW instruction. This feature has
been extensively used during development of the compiler itself, to help debug the compiler
by visual inspection of the generated code. There is also provision, not fully implemented, to
interactively control the application of the parallelization optimizations: operation motion,
compaction of the selected section of code via Percolation Scheduling, and loop pipelining.
These features allow the use of a mouse and graphics interface to choose a parallelization
transformation, e.g. loop pipelining, and select individual operations or sections of code to

which the chosen transformation is applied. This feature, when fully implemented, should
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allow the compiler to be used as an interactive microcode editor similar to the one described
in [7]. It is expected that with this feature the user can enhance parallelization by performing
the optimizations interactively. Furthermore, the interactive graphics interface is also useful
for research on compilation techniques, since it may be used to help identify good heuristics
for parallelization with constrained resources. Presently, the graphics interface displays the
control flow graph of the parallelized program, along with detailed description of selected

instructions. There is provision to extend it to display information on resource utilization.

The input to the system is the set of C source files of the application program. The
user invokes the front-end GNU C compiler to generate optimized code for the idealized
RISC architecture, producing a file with the NADDR intermediate code. The parallelizing
back-end is subsequently invoked. A specification file, called standard.ops, contains a
list of procedures to be invoked. In the implementation, each of these procedures receives
as argument a pointer to the global data structure describing the program. A file called
vliw.resources describes the available resources. Presently, the user specifies the maximum
number of ALU operations and the maximum number of conditional jumps allowed in each
VLIW instruction. There is provision to provide a detailed description of resources by

distinguishing between resources such as adders, multipliers, etc.

A number of parallelizing transformations are then performed under user control via the
specification file. Conditional execution of operations may be disabled by an specification
argument to support VLIW implementations with simpler sequencing mechanisms. With
this option activated, all operations that are scheduled in a VLIW instruction are executed
unconditionally. The parallelizing transformations update the global data structure. The
user may choose to apply pipeline scheduling to all loops, or to apply percolation scheduling
on a single iteration of these loops. In the figure, intra-iteration optimization is referred to
as DAG Compaction. The loop body is viewed as a Directed Acyclic Graph, and Percolation
Scheduling transformations are applied within the loop boundary. Percolation Scheduling
of the code between loops may also be invoked by a command in the specification file.
The user may elect to visually inspect the code by invoking graphics display interface at
any point between transformations. Figure 4.3 illustrates the above alternatives. In the

Figure, the first three stages of parsing, dataflow analysis, and loop and Induction Variable
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analysis are mandatory. Once the analysis is complete, the user may select alternative code

parallelization techniques.

4.3 Graphics Interface

When invoked, the graphics interface starts by displaying a window with the program control
flow graph. This is called the program window and is identified by the window name vliw
at the top, as illustrated in Figure 4.4. The program window has the title “Code View”
right above a horizontal scroll bar. Scroll bars on the sides of the window allow viewing of
large programs and large instructions.

Each instruction is represented by a unique label, assigned by the program. The mouse
selects instructions to be displayed in more detail. By using the mouse to click on an
instruction in the program window, the user opens a window which displays the selected
instruction in detail. This window, called an instruction window, is identified by the “instr”
window name at the top. The instruction window has the title “Instruction” followed by the
unique instruction identifier above the horizontal scroll bar. Instructions are displayed in a
tree-shaped format. The unique label for the instruction is presented, underlined, at the top.
Each instruction which contains conditional jumps and conditionally executed operations is
displayed as a tree. The code of each operation, its destination and operands are presented.

The tree-like display of an instruction is not a canomnical representation. Instructions
that contain conditionally executed operations may be represented in several alternative
ways. The instruction tree displayed corresponds closely to the internal representation of
the instruction. The ordering of operations on a path through a given instruction is one that
bears correspondence with the initial ordering of operations in the original NADDR program,
and reflects the way in which Percolation Scheduling transformations are used to populate
the instructions. The adoption of this representation is helpful to help debug the compiler.
It suffers the drawback of possibly presenting multiple times an operation which is present
on multiple paths through the instruction. Alternatively, a canonical representation for each
instruction is considered. Its use has been discarded because the savings in memory use and
execution time did not offset the benefits of helping debug the highly complex parallelizer.

The graphic display of the program of Figure 4.4, immediately after parsing and before
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Figure 4.4: Graphics Interface - Program and Instruction Windows for min.c

any parallelizing transformation has been applied, is illustrated in Figure 4.4. This figure
has been obtained via a screen dump of the graphics interface. The program window is
shown at the left, all instructions are selected, and instruction windows are placed on the
screen accordingly to execution flow. The instruction window at the top represents the entry

instruction of the program and successive instructions are placed below it. Each instruction
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contains a single RISC-like operation. For example, Instruction L10122274 executes the

igoto $31 operation.

jump to a register.
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This operation implements the procedure return, via an indirect
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Figure 4.5: Graphics Interface - min.c after first Move-op

Figure 4.5 displays the same program after the first Percolation Scheduling transforma-

tion, in this case move-op, has been performed. Instruction L10120d1c originally contained a
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memory load operation (IVLOAD $u 100 $i). This operation loads the contents of memory
location addressed by $i plus offset 100 into register $u. In other words it may be described
as $u = Memory[ 100 + $i ]. The load operation is moved to the preceding instruction,
Instruction L1011e8d8. After the move, Instruction L10120d1¢c became empty and has been

removed from the program. After the move, the load operation is executed conditionally by

Instruction L1011e8d8.

vliw ﬁ instr =-ﬂ

close Instruction L1011=G9c

done  compact

Code Yiew
L1011e59c

ige $ccO $i $n

L1011e539¢c ivioad $u $i 100
L101212b4 jadd i 2 $i
— —
L10122274 L10121094 : B )
77?7 @ instr ﬁ

clozse Instruction L101212b4

L101212bh4

if $ccl

goio (label L10122274)  ige $cel $u §min
goto (label L101210534)

Rttt

Tl

instr @ﬁ] [Bﬂ i.n;tr

cloze cloze  Instruction L101210B54

Instruction L10122274 2 R
n = L10121h94

if gecl

igoto $31

goto (label L1011e59c)  iassign $min $u
goto (label L1011e59c¢)

Figure 4.6: min.c after Intra-iteration Optimization
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Figure 4.6 illustrates the same program after intra-iteration optimization has been ap-
plied. Here the compiler is allowed to schedule the operations belonging to a loop iteration
as soon as possible, without concern with resource constraints. For one loop iteration, the
longest path through the loop body happens when a new value for the minimum of the
array is found. It has been reduced from 7 instructions to 3 instructions. The shortest path
through the loop body has been reduced from 6 instructions to 3 instructions. The speedup
achieved for this code ranges between 2 and 2.3 depending on which path through the loop
is more frequently taken. The parallelized code requires a VLIW CPU with the ability to

perform 2 ALU operations, one memory load, and a conditional jump concurrently.

Figure 4.7 illustrates the program after inter-iteration optimization. Instructions .1011e59c
and L101212b4 represent the pipeline prologue. These instructions start execution of the
first and second loop iterations in overlapped fashion. Instruction L10120d1c represents the
loop steady state code. Here a throughput of one iteration per cycle is obtained. This hap-
pens because on some execution paths Instruction L10120d1c jumps back to itself. In this
example, exit from the loop does not require epilogue instructions because future loop iter-
ations that are started in overlapped fashion do not alter variables that are required outside
of the loop. This assumes that the only live variable after the loop is $min. The parallelized
code requires a VLIW CPU with the ability to perform 3 ALU operations, 1 memory load
and 2 register-to-register copy operations concurrently. The speedup over the RISC code
ranges between 6 and 7. It should be noticed that the sequencer is also considered a resource
while computing the amount of parallelism in the VLIW architecture. The NADDR original
code contains explicit GOTO operations, whereas the VLIW instructions carry a next-address

field.

In Figure 4.6, it is seen that variable $u is defined by a given loop iteration in its first cycle
of execution and is last used by that iteration two cycles later. Therefore, register renaming
is required when overlapped iterations are started on every cycle. As a new iteration starts,
it attempts to overwrite the value of $u, and therefore value of $u must be preserved. The
compiler renames the destination register in the operation attempting to overwrite $u, and
the starting iteration defines a new variable (in the example the ivload operation defines

variable $u’). In the following cycle, the value just defined is copied into place by the
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aavliw E@] (48] instr @E
done  compact A close Instruction L1011e%%c -
u
Code Yigu
. u L1011e59c

ige $cc0 $i $n

L1011e53¢c ivioad $u $i 100
Ligjzizha jadd $i2 $i
goto (label L101212n4)
L10122274 L10120d1ic |
29979
- [@ ingtr =5
close Instruction L101212h4
| |
1101212h4
if_scch
goto (label L10122274)  ige $ccl $u $min
ige gccO $i $n
ivioad gu‘ $i 100
5F inst jadd $i 2 $i
Ao goto (label L10120d1c)
clase Instruction L10122274
L10122274
igoto §31
instr

close  Instruction L10120dlc

L10120d1c

——— L

iassign $u $u’ iassign $min $u
if_gcch fassign $u $u*
IT_seccd
goto (label L10122274) ige $cet $u $min

ige $ccb i $n goto (label L10122274) ige $ccl $u $min
ivioad $u’ $i 100 ige $ccl $i $n
iadd 3i 2 i ivioad $u’ $i 100
goto (label L10120d1c) iadd $i 2 $i

goto (label 110120d1c)

Figure 4.7: min.c after Software Pipelining inter-iteration optimization

copy operation iassign $u $u’ and the old value of $u is last used. The copy happens

concurrently with the last use of the original value.

4.4 Code Parallelization Techniques

The VLIW parallelizing back-end is composed of 25 thousand lines of C code. It reads a
program in the RISC-like intermediate format and organizes RISC operations into VLIW

instructions. The features implemented in the back-end compiler are:
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e enhanced percolation scheduling with register renaming
o software pipelining

e computation of unifiable-ops with renaming

e memory disambiguation

e compilation with resource constraints

e an X-window based interactive code editor

A number of the standard dataflow analysis to support parallelization are also imple-
mented. These include live variables flow analysis, reaching definitions, loop analysis and
detection of induction variables. The back-end initially parses the NADDR-like intermedi-
ate code and creates a global data structure describing the input program. Subsequently,
dataflow analysis is performed. The information acquired during this analysis is stored
into the global data structure. This is followed by loop analysis and detection of induc-
tion variables to allow memory disambiguation. This completes the analysis phase, and
parallelization transformations ensue.

The files which compose the back end are classified, according to their function, in the

following categories:

e Core Percolation Scheduling

Guidance Layer Routines

Computation of Auxiliary Dataflow Information

Loop Analysis, Induction Variable Analysis and Disambiguation

User Interface

Auxiliary Routines

The Core Percolation Scheduling routines move-op, move-cj, and delete are contained
in files rmovop.c, movecj.c and delete.c, respectively. The first two routines receive

as arguments a pointer to an operation, the instruction where it is located, and a pointer
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to the destination in the preceding instruction. The data-dependency conditions for the
move are checked and, if satisfied, the move is performed. The program data structure
is updated accordingly. The routine for the delete transformation receives a pointer to an
instruction, checks whether it is composed entirely of no-operations and in that case removes

the instruction from program.

Guidance Layer routines, contained in file rmaxcomp . c, use the core Percolation Schedul-
ing routines to achieve inter-iteration and intra-iteration optimization. The mazcomp rou-
tine performs intra-iteration optimization of a loop body, under resource constraints. It uses
routine fill-instr to fully populate a target VLIW instruction until resource constraints are
exceeded. It heuristically selects operations in the unifiable-ops set of the target instruc-
tion and uses migrate to perform the move. fill-instr uses the migrate transformation, which
applies a series of core PS transformations to bring a designated operation to an instruction.
Similarly, routine pipeline-ilist receives as argument the list of operations in the loop body
and implements the Enhanced Pipeline Scheduling transformation. It proceeds by using
fill-instr to fill the instructions at the entry of the loop and changing attributes in the data
structure that show the position of the loop back edges.

Computation of Auxiliary Dataflow Info in file live.c contains routines that perform
live variables dataflow analysis. Similarly, Reaching Definitions flow analysis is performed
by routines in files reach.c, attreach.c, genreach.c, killreach.c. These routines im-
plement the standard algorithms presented in [2]. The computation and incremental update

of unifiable-ops information, with and without renaming, is found in runifiable.c.

Loop Analysis is found in files loop.c,bdloops. c,backedge.c,dominat.c,innerloop.c
and dfnumber.c. These files contain routines to identify loops in the program, and construct
a list of the instructions in an inner loop. This is performed by computing dominators|2]
in the control flow graph of the program. Induction Variable Analysis, implemented at
U.C.Irvine and contained in file getivs.c, uses algorithms from [60] and [2]. The result of
Induction Variable Analysis is required to initialize symbolic derivation of loop induction

variables, which is required to perform Memory-Reference Disambiguation.

Memory-Reference Disambiguation is contained in files fold.c, depend.c, normadd.c,

normmul.c, interf.c. The key routine is check-dependency, which receives two operations
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including memory load and store, as argument and informs whether there is a data depen-
dency. A data dependency exists if the result of the first operation, which may be a store
into memory, may be an input argument of the second operation, possibly a memory load
operation. User Interface routines are contained in files executive.c, which interprets the
batch control file standard.ops and activates appropriate routines as specified. The X-
Window graphics interface, initially developed by Dan Nydick of Carnegie-Mellon University,
is contained in files editcode.c and Graphic.c. Output of program listings is performed
by routine pr-program in file print.c.

The parser routines translate the input NADDR code into program representation in
the global data structure. File stlex.y contains the yylex driver routine for the lexical
analysis routines. File opcodes.c handles NADDR instruction and builds the program
data-structure

Auxiliary Routines to traverse the program data structures, update links between el-
ements of the data structure, allocate and release dynamic memory are contained in file
aux.c. Sets are represented as bit vectors. Routines for set operations such as set creation,

intersection and union are found in file sets.c.

4.5 Data Structures

The program data structures are allocated dynamically, under programmer control. This
approach may save memory at run time and result in potentially faster compiler execution.
The key data structures in the compiler are those describing VLIW instructions and their
operations. The program is represented as a linked list of instructions. This representation
contains information about the successors and predecessors of each instruction, and corre-
sponds closely to the Control Flow Graph[2] of the program. Data-dependency information
is not stored explicitly in the data structure, and is computed dynamically as required. The
description of each instruction contains pointers to the operations it performs. Auxiliary
data structures are used to represent arguments of operations, assign unique identification
numbers to operations (to allow bitsets of ops) and loop identification numbers. The key
data structures of the compiler are defined in file microcode .h.

Figure 4.8 illustrates the data structure nodes that represent instruction and operations.
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Fach instruction in the VLIW program is represented by an Instruction type node. The
program is represented by the linked list of Instruction nodes. An Instruction node contains
links to its predecessors and successors in the list. Other fields in an Instruction node are
pointers to bitsets that represent dataflow information: the sets of live variables and the sets
of definitions that reach the instruction. Similarly, each operation is represented by an Oper-
ation node. Operation nodes are linked in tree structures, reflecting the tree representation
of the conditional-execution VLIW instruction. FEach Instruction node contains a pointer
to its corresponding tree of Operation nodes. Furthermore, there is a path descriptor node
associated with each path through the instruction. The path descriptors contain summary
information about each execution path of the instruction. For a given path, the path de-
scriptor node points to the successor instruction on that path in the control flow graph, and
contains the sets of values that are read and written on that path. This summary infor-
mation is used to compute data dependency during Percolation Scheduling. Furthermore, a
Path Descriptor node describes all copy operations on the corresponding path. This is used
during the Percolation Scheduling transformations to allow the motion of operations whose
input arguments are defined by copy operations. If the operation being added to a path
uses an input argument that is the destination register of a copy operation, it is changed
to read directly the source of the copy operation. This is done by scanning the list of copy

operations on a path.

An Operation node contains the unique id associated with the operation, the operation
type and opcode. Operation types are ALU operation, control flow, or dummy. Dummy
operation nodes are used as list headers. An operation node points to a data structure
describing each argument. The sets of variables read and written by the operation are also
included, to allow quick checks of data dependency via set intersection. Memory operations
also include a pointer to a data structure describing the symbolic derivation of the target
memory address. The length of the dependency chain, in a loop iteration, starting at the
operation is also included. It is used in the heuristic choice of operations to move in case
of constrained resources. Depth-first numbering of the operations in the original NADDR
program is also used as a heuristic. This information is also used by the heuristic to choose

operations to move[59].
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Figure 4.8: Data Structures - Instruction and Operation Nodes

illustrates the data structures corresponding to a VLIW instruction that con-
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tains two operations. A textual description of the instruction is presented at the top. One
of the operations, a = b + c ,is executed unconditionally. The second operation, i = i +
1 , is only executed if the condition code ccl is true. In the figure, the Instruction node is
presented at the left, with a pointer to the associated tree of Operation nodes and the list
of Path Descriptor nodes. Dummy nodes used as list headers are not shown. Here this list

has two elements, corresponding to the two possible values of the conditional jump.

4.6 Compilation Effectiveness

This section presents compilation time and speedup obtained for a number of small bench-
marks, as illustrated in Figure 4.10. Times are measured in CPU seconds on a DecStation
5000. The benchmarks include Livermore loops 1 to 12 and a number of selected small
benchmarks which have previously been reported on the literature[31]. The fourth column
indicates the amount of resources for execution of the compiled VLIW program. The first
number is the number of operations in the widest VLIW instruction, and the second number
if the maximum number of conditional jumps in an instruction. Speedup is given by the
ratio between the number of execution cycles measured by simulation of the serial code to
the number of cycles for VLIW execution. All programs are compiled to achieve maximum
speedup. As expected, compilation times are relatively large in comparison to a typical
workstation compiler. This is a consequence of the additional number of optimizations and
data flow computations in a parallelizing compiler. Furthermore, it is seen from Figure 4.10
that the increase of compilation times is correlated with increased size of the input pro-
gram and with the amount of speedup obtained. A great number of Percolation Scheduling
transformations are involved when a large amount of parallelism is uncovered, e.g, in the
case of a large inner loop that achieves an Inter-Iteration optimized throughput of one cycle
per iteration. Here, this happens for Livermore loops 1 and 7. Another cause of increased
compilation time is the presence of complex array index expressions. This requires extra
computational effort for memory-reference disambiguation. Finally, removal of extraneous
copy operations is not applied, and the aggressive scheduling heuristics result in the large
number of copy operations for some of the examples. For example, the steady-state code of

Livermore Loop 7 contains 34 such COPY operations.
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Benchmark Size Compilation Time Resources Speedup
(NADDR lines) seconds (ALU, Cond. Jump)

[L1 31 21.2 (21,1) 13.5
LL2 55 1.8 (11,3) 3.0
LL3 26 1.1 (8,1) 8.9
LL4 45 1.5 (6,1) 3.0
LL5 25 1.7 (9,1) 5.5
LL6 46 2.1 (10,3) 3.6
LL7 48 24.9 (65,1) 23.6
LL9 80 5.6 (9,1) 3.6
LL11 25 2.7 (10,1) 8.9
LL12 23 1.5 (10,1) 8.9
inserc 31 0.9 (11,2) 8.8
minmaxc 32 1.1 (21,15) 12.7

Figure 4.10: Compilation Effectiveness: Speedup, Resources, Compilation Time
4.7 Compiler Status and Future Direction

Increased compiler code size is a consequence of the choice of C as the implementation lan-
guage. In our experience, a LISP implementation with roughly the same capabilities requires
cne half or one third of the number of code source lines. This agrees with the claims about
the ease of implementing experimental compilers in LISP of [35]. In a LISP implementa-
tion, memory allocation and deallocation is performed by the runtime system. This results
in an increased cost in terms of compiler execution time and memory space requirements.
The chosen approach of programmer-controlled memory allocation has led to bugs during
compiler development primarily because of programming errors in pointer references and
maintaining consistency in a highly interconnected the data structure. However, it is be-
lieved that the resulting savings in execution speed and memory space requirements should
make it the approach of choice for an industrial-strength compiler implementation.

The VLIW compiler is presently functional, and the full cycle from source C code to
NADDR intermediate code, and then to optimized VLIW microcode has been exercised and
verified by simulation on some examples. Presently unimplemented are the capabilities to
handle multiple procedures, procedure calls and multiple input files. There is plan to extend
the compiler with techniques to handle pipelining of outer loops{61]. The compiler has

been extended at U.C.Irvine with a Percolation Scheduling technique capable of supporting
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pipelined and multi-cycle latency ALU operators[65], and with an intra-iteration scheduling
technique that does not require unifiable-ops information. This scheduling technique is
directed by the mobility of operations on a critical dependence path. The inter-iteration
optimization routines may convert the input program from a reducible flow graph into an
irreducible one, thus preventing further applications of loop analysis. There is plan to
enhance the present loop detection analysis routines to handle programs with non-reducible
flow graphs[2]. Our Induction Variable detection algorithm presented in Chapter 3 is first
implemented in the IBM VLIW compiler, and there is plan to extend this compiler which

implements the traditional algorithms from [2].



Chapter 5

Implementation Optimization

The specification optimization phase produces highly parallelized application microcode
which in turn serves as the optimized, in terms of code performance, specification for the ASP
architecture. The number of functional units and the number of memory banks needed to
support the parallelized code execution are specified. However, the straightforward mapping
of this specification to hardware may not produce the most efficient implementation. Cost
and performance factors reduce the justifiable usefulness of the canonical VLIW to execute a
single application. The global shared register file has a cost that grows proportionally to the
square of the number of ports[13]. Furthermore, for a given implementation technology, the
increased fan-out of memory elements in the register file causes an increase in the minimum
cycle times achievable. This chapter describes algorithms used during the Implementation
Optimization phase to efficiently allocate hardware resources to support execution of the

optimized application microcode without impairing code performance.

5.1 Implementation Optimization Procedure

The architecture template used during specification optimization assumes a global register
file. Direct implementation of a global register file in hardware may be too costly or too
ineflicient. However, for a given application, it is possible to allocate data into distinct
single-ported register files such that concurrent accesses, as required by the application, can
still be performed. During the Implementation Optimization phase, the register utilization
in the optimized microcode is analyzed to produce a more efficient implementation involving

multiple single-ported register files.

74
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The data section implementation template uses a number of single-ported distributed
register files and sparse connectivity(see Figure 2.7). Thus, it is likely to have lower cost
than the canonical VLIW because of lower connectivity. It also has faster cycle times due
to the use of single ported register files and lower fanout load on register file elements.

The problem of implementation optimization involves finding the appropriate number of
distributed register files, their sizes, and their connections to the functional units. Heuris-
tics to allocate variables into multiple distinct single-ported register files are presented in
[42]. These heuristics are only applicable to straight-line microcode without branches. The
algorithms in this chapter are applicable to more realistic programs with arbitrary flow of
control. Furthermore, for some classes of programs, it is demonstrated that these algorithms
are capable of allocating the globally optimum (minimal) number of register files.

The total number of functional units is constrained by the designer during Implementa-
tion Optimization. This, in turn, constrains the number of possible functional units a register
file may connect to (vertical busses in Figure 2.7). To further reduce possible interconnect
cost, 1t is necessary to pack variables in the smallest number of single-ported register files
that will still allow concurrent accesses as required by the microcode.

Implementation Optimization first allocates values into register files, in order to minimize
their total number (horizontal busses in Figure 2.7). Then, operations are assigned to the
functional units. This assignment determines the required interconnection points between
functional units and register files: a connection is created between a given register file bus
and a functional unit’s input (output) if the functional unit reads(writes) a value from(into)
that register file.

Operations allocation should be performed so that the total number of connections be-
tween register files and functional units ( dots at crosspoints in Figure 2.7) is reduced. There
are two objective functions to be minimized during the process of allocating operations to

functional units:

o Total number of conneclions to busses: each functional unit connection to a bus is
either a multiplexer input, or a tri-state buffer. Therefore, by minimizing the number

of connections, total hardware cost is reduced.

o Bus loading: Bus load is proportional to the total number of connections to a given
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bus. The final clock cycle of the architecture depends on the maximum delay on each
bus, which is strongly affected by the number of connections. Therefore, to maximize
speed, a good balance must be found to avoid over-loading a single bus. Unbalanced
organizations with less interconnection points may have longer cycle times, even though

total hardware cost is reduced.

The allocation process to simultaneously minimize the above objective functions is a
difficult task, and is related to another research project at CMU. It is a separate research
task to find efficient heuristics to solve this problem, as well as an adequate formulation
to allow adequate expression of the distinct objective functions. The Least-Cost Clique
Partitioning Procedure (LCCPP) of Springer[77] may be adaptable to perform this task. A
second order consideration may be cost reduction on the functional units. For example, if all
operations assigned to a given functional unit are additions, then that functional unit may be
implemented by an adder, instead of using a general-purpose functional unit. These second-
order cost considerations are likely to be of lesser importance for our target application area
of board-level ASPD. However, this possibility should be considered if the techniques in this
thesis are extended for application in large chip design.

In this work, a guided locally greedy approach is adopted. The least-cost allocation is ap-
proximated on an instruction-per-instruction basis. Allocation is performed first on instruc-
tions that are likely to be the most constrained in terms of interconnection requirements.
These instructions are identified from our knowledge of the algorithm for inter-iteration
optimization. In a software pipelined loop, the instruction sequences for pipeline startup
(prologue) and pipeline wind-down (epilogue) contain a subset of the operations in the loop
steady state. Therefore, operation allocation is performed first on instructions belonging to
the loop steady state. This allocation is likely to be a good match for loop prologue and

epilogue instructions.

5.2 Register Files Allocation

For the target application, the final architecture must be capable of emulating the canonical
VLIW'’s global shared register file with a minimum number of single-ported register files.

In the implementation template, it should be noticed that the interconnection of N register
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files to M functional units may have cost proportional to N« M. Furthermore, each register
file creates a logical “bus” and, therefore, it is important to reduce the total number of
register files used. Register files allocation allocates values into positions in single-ported
register files. In the implementation template, the execution of each microcode instruction
proceeds through the three phases of: reading input values from register files, execution of
the operations, and writing the results back into the register files. Because register files are
single-ported, distinct values that are accessed concurrently either for reading or writing by

some microcode instruction cannot be allocated in the same register file.

At the Implementation Optimization stage, the optimized specification for the target
application is expressed in the form of microcode for a canonical VLIW architecture with a
multiported register file. Microcode operations in the optimized specification are expressed in
terms of symbolic references to register file positions in the canonical VLIW. In the following
discussion, positions in the canonical VLIW’s register file are referred to as variables. A
microcode operation x := y + z 1is said to define variable x and to use variables y and z.
If there is a possible execution path in the program such that the value of variable x defined
at instruction M; may be used as an operand for some operation in instruction M,, the

definition of x in M; is said to reach M,.

For example, assume that canonical VLIW register file position $1 is assigned a value by
some microcode operation O1 and this value is subsequently last used by a distinct operation
O2; and later, the same position is reused to hold a value created by operation O3 which is
last used by operation O4. Here, O1 defines a value of $1 which is used by O2 and O3 defines
another value of $1 which is used by O4. In the following discussion, the pair {definition,use}

of variable $1 is called a name of $1.

The mapping from variables to names may be one-to-many due to reuse of each logical
register. In the above example, register files allocation is capable of allocating physical
single-ported register file 1, position 1, to hold the first name of §1, and later using another
register file and position to hold the second name for $1. This is done if the allocation results
in a lower total number of register files needed. Furthermore, busses in the implementation
template allows broadcast of a value from a functional unit to multiple register files, as well as

from a register file output to several functional unit inputs. Therefore, it is possible to have
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one operation that defines a variable x create multiple names of x, by using this broadcast
feature. By allocating names instead of variables into positions in the distributed register-
file, register files allocation is able to better exploit the flexibility of the multiple single-ported
register files to achieve a lower overall cost. For example, assume that variables x, y and z are
defined in distinct instructions, but x and y are concurrently read in some instruction, x and
z are concurrently read in some other instruction and that y and z are concurrently read in a
third instruction. Due to concurrent-access conflicts, a one-to-one mapping between names
and variables would require three single-ported register files. However, by using the bus
broadcast feature, it is possible to write two copies of x into two register files, write y into
one of these register files and write 2z into the other register file. This organization supports
the above concurrent accesses while requiring only two register files. The broadcast feature
gives more flexibility in the scheduling of busses and register files, and allows the multiple
single-ported register files to efficiently emulate the ideal multi-ported global register file at
a much lower cost.

In the above example, one extra register file position is used to avoid the need for a
new register file. Tolerating register file growth to reduce the total number of register files
is a desirable tradeoff, because a reduction in the total number of register files results in
considerable reduction in the interconnection cost. In the worst case, interconnection cost
may grow proportionally to the square of the number of register files, and because register
files are implemented as regular silicon structures, their cost grows proportionally to the
number of positions they hold.

Allocation of names into register files is done using a graph-coloring algorithm. In the
colored graph, colors correspond to register files. After allocation of names into register
files, the number of positions in each register file is also minimized. This is achieved by
using standard register allocation techniques[2] to reuse register file positions. A register file

position may be reused to hold names that are not concurrently alive.

5.2.1 Graph Coloring Algorithm

A graph G is constructed having two vertices for each microcode instruction M; in the

optimized specification. The vertices are called the read-vertex M;, denoted as MF, and the
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write-vertex of M;, denoted as M}V. If there is a possible execution path in the program such
that variable v defined at instruction M; may be used as an operand for some operation in
instruction My, Graph G has an edge labeled v between write-vertex M)’ and read-vertex
MPE. The edge is denoted (My, M)y. In other words, M, uses the name v defined at M.
The relationship of concurrent-access of names in register files is represented in Graph G by
edges that share vertices: if variables x and y are concurrently written by some microcode
instruction M, Graph G has two edges labeled x and y emanating from the write-vertex of
M. Similarly, if x and y are concurrently read by microcode instruction M, there will be

two edges labeled x and y emanating from the read-vertex of M.

To construct graph G, reaching definitions[2] flow analysis is performed. A definition of
variable v in instruction M that reaches instruction N creates in Graph G an edge labeled
v between the read-vertex of N and the write-vertex of M. Because graph G summarizes
the requirements for concurrent access, the obvious approach of applying edge coloring to
graph G can be used to assign names to register files. This was suggested in [42]. Edge
coloring of a graph is an assignment of colors to the edges in the graph such that no two
edges which have a common vertex are assigned the same color. Each color corresponds to a
register file. If two names x and y share a vertex in G, they are assigned distinct colors and
thus located in distinct register files. Therefore, such an allocation satisfies single-ported
register file constraints, allowing concurrent access from multiple single-ported register files
as required by the application microcode. The minimum number of colors should be used,
to reduce the overall number of register files needed. Obviously, graph G is bipartite since
each edge is between a read-vertex and a write-vertex. Minimum edge coloring of bipartite
graphs may be done efficiently in O(NlogN) time by the efficient algorithm of Cole and
Hopcroft [23].

However, the edge-coloring method has two important drawbacks. First, straightforward
application of this method will unnecessarily store copies of a new definition in two register
files when the definition reaches two distinct microcode instructions. For example, writing
a name for v at instruction M and reading that name at instructions N1 and N2 creates an
edge (M, N1)y and another edge (M, N2),. Because these two edges share the write-vertex

of M they are assigned distinct colors, which correspond to distinct register files. This will
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force the new value for variable v generated at M to be stored into two distinct register files,
thus generating unnecessary copies (see Figure 5.1). In [42], this drawback is alleviated by
changing the graph coloring subroutine to ignore the interference between two edges labeled
with the same variable if they only have a write-vertex in common. This seemingly arbitrary
change makes algorithmic performance hard to characterize. It is not clear if this method

still produces optimal results, even for straight-line programs.

L_d :x =a +b ; definition of x .
These vertices
L utl:t=x+1; first use of x should be allowed

to have same color

L_u2:v=x+y;second use of x
Bipartite Line Gra@/
Graph:

. (xL_d,L_ul)
- (x,L_d,L_u2)

Figure 5.1: Definition reaching multiple uses

Secondly, this simple edge-coloring method as presented above is only applicable for the
case of straight line programs. A problem happens if some use of a variable is reached by
multiple definitions. For example, assume that distinct branches of an if-then-else statement
assign new values to variable x and the variable is later used at the rejoin. In the simple edge-
coloring method, each pair {definition,use} of x generates an edge in Graph G. Because the
edges share the read-vertex, the corresponding names are allocated into two distinct register
files. Consequently, the definition of x in the then side is stored in one register file, and the
definition of x in the else side is written into another register file. When program execution
reaches the use of x at the rejoin point it is not known which register file holds the proper
value of x, since it depends on p‘ast history of the execution of the program. (See Figure
5.2).

A two-step solution to both of the above problems has been derived and is presented

below. The following problem cases are solved:

e Problem A: definition reaching multiple uses
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Program:
if cc1 goto L_d2; conditional jump

L_d1:x=a+b; first definition of x
goto L_join

L_d2:x=w+ 1; second definition of x

L_join:v=x+y; use of definitions of x

Bipartite Line Graph:
Graph: LV xL_d1L_join)

- / (x,L_d2,L_join)

L_d2W o

L_join ™ < . \ .
~
~ < [ These vertices
should have

same color |

Figure 5.2: Multiple possible definitions reaching an use

¢ Problem B: use reached by multiple definitions

Graph G is transformed into another graph representation that conveys the same concurrent-
access requirement, but is amenable to efficient coloring algorithms. The above problem cases
are identified and corrected by adjusting the transformed graph. It is shown that this is of-
ten done without losing algorithmic performance, and the optimal number of register files is
obtained.

First, the line graph L(G) of Graph G is generated. The line graph[53] L(G) of a graph
G is a graph which has a vertex corresponding to each edge of G. Vertices of L(G) are
connected by an edge iff the corresponding edges of G have a vertex in common. Notice that
a vertex in L(G), denoted as (L1, L2),, represents the communication of a value between
instructions L1 and L2, i.e, the value of variable x computed by an operation in microcode
instruction L1 may be used as an operand in some operation in microcode instruction L2. In
other words, the definition of variable x at instruction L1 reaches an use of x in instruction
L2.

Furthermore, Graph L(G) conveys the same concurrent-access requirement as graph G.
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For example, assume that values for two distinct program variables, v1 and v2 are concur-
rently computed by some instruction L. In Graph G, there is an edge labeled v1 between
the write-vertex L and the read vertex Lx”, assuming the definition of v1 is used at Lx.
This is denoted as (L, Lz),;. Similarly, Graph G also has edge (L, Lz),2, assuming that the
value of v2 computed at instruction L is used at instruction Lz !. These edges share the

write-vertex of L. This represents the fact that both names are concurrently defined at L.

Graph L(G) has two vertices corresponding respectively to edges (L, Lz),1 and (L, Lz),,
of Graph G, and these vertices are connected by an edge. This edge in L(G) represents the
fact that both v1 and v2 are defined concurrently in instruction L, and the corresponding
edges in Graph G share the write-vertex of L. The case of two variables y1 and y2 being
concurrently read by an instruction L is analogous. The presence of an edge between any two
vertices of L(G) indicates that the corresponding names have a concurrent-access conflict,

and therefore should not be allocated into the same register file.

The above discussion illustrates how Graph L(G) represents the same requirements about
concurrent-accesses as Graph G, hence vertex-coloring of L(G) can be used to allocate names
into register files. Vertez-coloring of a graph is an assignment of colors to its vertices such
that no two vertices connected by an edge receive the same color. Colors correspond to
register files, and a minimum number of colors should be used. Because L(G) is the line
graph of G, edge-coloring of G corresponds to vertex-coloring of L(G). Furthermore, because
line graphs of bipartite graphs belong to the class of claw-free perfect graphs, vertex-coloring
may be performed in polynomial time by the algorithm of Hsu[44]. Therefore, algorithmic
efficiency is not lost. Claw-free graphs are graphs which do not contain the graph K s (the
“claw”) as a vertex-induced subgraph (see Figure 5.3). Perfect graphs are graphs in which
the coloring number is the same as the size of the maximal induced clique for the graph itself
and any of its induced subgraphs.

Before vertex-coloring, L(G) is adjusted to account for the problem cases of definition
reaching multiple uses, and uses reached by multiple definitions. The procedure to adjust

L(G), resulting in graph G+, is:

1This discussion assumes that both names computed in instruction L are alive, i.e., will be eventually
used|[2].
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K43 the claw graph X
NON claw-free graph
claw: (x,y,z,t)

Figure 5.3: K ;3 graph and non-claw-free graph

Procedure 5.1 ADJUST-GRAPH:

o Step A: remove edges in L(G) that correspond to some definition of a variable reaching

multiple uses.

o Step B: merge those vertices in L(G) that correspond to multiple definitions of a

vartable reaching the same use.

Step A in procedure ADJUST-GRAPH above avoids the unnecessary writing of the same
value into distinct register files, because by removing the edge between the vertices affected,
they are allowed to receive the same color. Note, however, that the flexibility of writing
copies of this value into multiple register files is preserved, because it is still possible to assign
distinct colors to these vertices. Similarly, Step B constrains multiple definitions reaching a
common use of a variable to use the same register file by merging the corresponding vertices
in L(G).

ADJUST-GRAPH works by scanning once the vertices in the bipartite graph G: whenever
two edges emanating from a write-vertex correspond to a definition of some variable reaching
two uses, the edge between the corresponding vertices in L(G) is removed. Similarly, if two
incoming edges of a read-vertex correspond to two definitions of the same variable, the
corresponding vertices in L(G) are merged. The procedure involves visiting once each vertex
of Graph G, and performing pairwise comparison between all edges on that vertex. Scanning

the vertices in Graph G takes time proportional to the number of instructions in the program.
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Comparing edges takes time proportional to the square of the number of edges incident on
a vertex. To compute the maximum number of edges on a vertex in Graph G, let us assume
that the microcode resulting from specification optimization is composed of L instructions,
and 1s compiled for a canonical VLIW that has N functional units. Therefore, Graph G
has L read-vertices and L write-vertices. Further, each write vertex may define at most NV
variables (since there are N functional units). In the worst case, these definitions may reach
all instructions in the program. Thus the maximum number of vertices in a write vertex is
L « N. Similarly, a read-vertex may use at most 2 x /V distinct variables (assuming dyadic
operations). Assuming these variables are defined in all instructions of the program, there
are at most L definitions for each variable. Therefore, the maximum number of edges in a
read-vertex is 2% L« N. Thus, the worst-case complexity of ADJUST-GRAPH is proportional
to O(L® « N%). Experimentally the worst case performance is rarely experienced because

Graph G is usually sparse.

A possible problem with procedure ADJUST-GRAPH is that it may alter graph L(QG)
into G+ so that G+ no longer belongs to the claw-free perfect class of graphs. This indeed
happens for some programs and in this situation, a general graph-coloring algorithm is
required. Figure 5.4 illustrates one such case. In that example, graph G+ has a claw. The
definition of variable a reaches multiple uses. The edges between the three names of a are

removed from L(G).

A check for the claw-free perfect graph property may be performed efficiently in poly-
nomial time by the algorithm of Chvatdl and Sbihi [20]. If the graph is claw-free-perfect,
the check also informs the minimum number of colors required. Here, the optimal (mini-
mum) number of single-ported register files is used. If this property is not present in G+,
a coloring heuristic must be used because the graph coloring problem on general graphs is
NP-complete. A good heuristic for an approximate solution to the vertex-coloring problem
has been proposed by Chaitin[19]. This heuristic frequently achieves the optimal solution
for sparse graphs. Experimental evidence indicates that Chaitin’s algorithm is particularly
good for sparse graphs[70]. Figure 5.5 below shows a simple experiment with a linear-phase
B-spline filter. In that experiment, the number of functional units available for specifica-

tion optimization ranges from one (single operation per cycle, a la RISC) until saturation is
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Graph G: L(G): G+:
PROGRAM:  B|PARTITE GRAPH LINE GRAPH after ADJUST-GRAPH
L1: definea, x Liw @Lr

L2: use a L2r a a
i L3r X
L3: use a X A a
L4: use a Lar Sl )
a
L5: use x qd

Figure 5.4: Claw Graph Resulting from ADJUST-GRAPH

reached with 16 functional units, when maximal parallelism is achieved and further increases
on resource availability do not result in reduced execution time. The number of colors, cor-
responding to number of register-files used by Chaitin’s heuristic is compared against the
optimal number of colors computed by the procedure to check for the claw-free-perfect graph
property.

In this experiment, all graphs are claw-free perfect. From this experiment it is seen that
Chaitin’s heuristic frequently achieves the optimal number of colors for claw-free perfect
graphs. Our implementation applies the test for the claw-free perfect graph property to G+
and uses Chaitin’s heuristic for coloring. Because the test also produces the optimal number
of colors required if the graph passes the test, it is known how far from optimality is the

result of Chaitin’s heuristic.

After variables have been grouped into register files, minimization of the size of each
individual register file is performed by standard graph-coloring-based register allocation.
Register allocation was proposed by Chaitin for use in optimizing compilers[19]. It attempts
to reduce the number of registers required for program execution by reusing registers. Sim-
ilarly, it is possible to reuse a register file position to hold names whose lifetimes do not
overlap. For each register file, an interference graph is built. This graph has a vertex cor-

responding to each name allocated to that register file. There is an edge between any two
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Figure 5.5: Linear-Phase filter experiment: Register Files Needed

names whose lifetimes overlap. Vertex-coloring of the interference graph assigns colors, cor-
responding to positions in the register file, to names. Names with non-overlapping lifetimes
may receive the same color, and thus reuse the same register file position. If the minimum

number of colors is used, the minimum-size register file is obtained.

5.2.2 Performance of ADJUST-GRAPH

This section investigates characteristics of programs that preserve the claw-free-perfect graph
property of Graph L(G) even with application of ADJUST-GRAPH.

The Strong Perfect Graph Conjecture is valid for claw-free graphs [67]. The Strong
Perfect Graph Conjecture[41] states that G+ is perfect if and only if:

Condition i: G+ does not have odd holes (odd cycles) of length greater than 3.
Condition ii: G+ does not contain odd anti-holes

A hole is a vertex-induced subgraph of C+ which is a cycle. A anti-hole is the complement

of a hole. For claw-free graphs, Ben-Rebea’s lemma simplifies the above conditions:



CHAPTER 5. IMPLEMENTATION OPTIMIZATION 87

Lemma 5.1 (Ben-Rebea) Let G be a connected claw-free graph with chromatic number

a(@) >=3. If G contains an odd antihole then it contains a hole of length five.[20]

Therefore, according to Ben-Rebea’s lemma, if Graph G+ satisfies condition ¢, then it will
also satisfy condition ii. If Graph G+ has a chromatic number equal to 2 or less, it obviously
cannot contain a cycle, because K3, the smallest cycle, has chromatic number equal to 3.

The revised set of conditions of the Strong Perfect Graph Conjecture for claw-free graphs is:

Condition a: G+ is claw-free (so [67] applies)

Condition b: G+ does not have odd holes (odd cycles) of length greater than 3.
We proceed to investigate situations in which claws and odd holes are created in G+.

Observation 1: The case of Step B of ADJUST-GRAPH never occurs for straight-line
programs.

This is true because, in straight line programs, the use of a variable may only be reached
by a single definition. If two operations define new values for variable v consecutively

before an use of v, only the last definition reaches the use.

Observation 2: For straight-line programs, if vertices (Lwa, Lra)s and (Lwb, Lrb)y, are

adjacent in Graph G+ , then either Lwa = Lwb or Lra = Lrb.

Informally, vertices in G+ correspond to definition-use pairs of some variable. Fach
vertex in Graph G+ corresponds to one edge in Graph G, because ADJUST-GRAPH does
not execute the vertex-merging step on L(G) for straight-line programs. Therefore, two
vertices are adjacent in G+ only if the corresponding edges share a vertex in G. That vertex
may either be a read-vertex of a write-vertex. If the two vertices of G+ are labeled with
variables x and y this means that x and y are either both assigned values in some microcode

instruction, or are simultaneously used in some microcode instruction.

Observation 3: For straight-line programs, a claw in G+ involves vertices labeled with at

most three variables
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This is verifyed by analyzing all possible cases. Let us assume that G+ has a claw
composed of vertices labeled with variables x, y, z and t, and edges (xy), (xz), (xt). Assume
that x is distinct from y. Without loss of generality, the proof consists in showing that either
z or t is the same as y.

Edge (xy) implies that names x and y are either concurrently read or written (Observation
2). Assume, without loss of generality, that they are concurrently read (the proof of the
alternative case is symmetrical) and that x is distinct from y. Edge (xz) implies that names
x and z also are either concurrently read or written, or are the same name. If they are the
same name, the observation is proved. x and z must be concurrently written, otherwise edge
(zy) would exist, and the subgraph induced by vertices {x,y,z,t } would not be a claw. Edge
(xt) implies that names x and t are either concurrently read or written, or the same name.
If both are distinct and concurrently written, edge (t,z) would exist and the graph is not a
claw.

If both are distinct and concurrently read, edge (ty) would exist and the graph is not a

claw. Therefore, here x and t must be the same name, and the observation holds.

Observation 4: Graph G may only contain even holes

This results from the fact that Graph G is bipartite. Each edge in Graph G is between
a write-vertex and a read-vertex. Since the hole is a closed path that connects all vertices,
the number of vertices must be even.

A consequence of Observation 4 is that holes in L(G) are also even [41]. This happens
because the line graph of cycle C,, the cycle with n vertices, is also C,. An odd hole is created
in G+ if ADJUST-GRAPH disconnects an edge of a hole, and the vertices connected by that
edge are adjacent to a third vertex. An example is shown in Figure 5.6.

If all consecutive edges of a hole in Graph G are labeled with distinct variables, the hole
is preserved in G+, because no edge is ever removed from that hole (edges are only removed
between vertices labeled with the same variable). A problem happens when consecutive
edges of a hole in Graph G are labeled with the same variable. This is the case when a
definition reaches multiple uses, and another definition in the same instruction reaches some

use. From Observation 1, the case of an use reached by multiple definitions does not happen
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PROGRAM:
L1: x=t+1; z=l-m; define x and z

L2: a=w/3; b=n*p ; define aandb

L3: u=x-a ;use; xanda
L4: v=x*b ; use xandb
Lz: ... ; use z

BIPARTITE GRAPH:

CORRECTED LINE GRAPH G+:
(L1L7),

Edge removed:
definition reaching
multiple uses

(L1,L4), (L1,L3)

(L2,L4) (L2,L3) 5

Figure 5.6: Example of straight-line program that generates an odd cycle in G+

for straight line programs. If a hole in Graph G contains an even number of such cases, an
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even number of edges is added to the corresponding hole in G+ and the claw-free perfect
graph property is preserved.

In the example of Figure 5.6, the optimal number of colors is the same for the 5-cycle as
it would be if the edge between vertices (L1, L4), and (L1, L3), had not been removed. One
might be tempted to imagine that the removal of an edge that creates an odd hole would
produce a graph which requires the same number of colors as the graph in which the edge has
not been removed. Avoiding removal of the edge might be useful, because the graph without
the edges removed is claw-free-perfect and thus the polynomial-time coloring algorithm is
applicable. One possible implementation is to recognize those cases when the removal of
an edge in G+ introduces an odd hole. ADJUST-GRAPH can be altered to identify the
creation of odd holes, and leave the edge to preserve the claw-free perfect graph property.
However, the above is not the case for all graphs, as is shown next.

Let us concentrate in the case for edge removal when consecutive vertices of L(G) cor-
responding to the same definition reaching two uses concurrently with another definition
happens twice. Assume that Graph G has an even hole, and the above case of edge removal
happens twice. The removal of the first edge introduces an odd hole, and later removal of the
second edge transforms the hole into an even hole. It may be easily seen that the resulting
graph is an even cycle, and only 2 colors are necessary, whereas 3 colors would be needed in

case the edges (which compose 3-cliques) were left.

5.2.3 Discussion

The preceding section illustrates the situations in which the claw-free-perfect graph property
is lost in the application of ADJUST-GRAPH. This may be used during Specification Opti-
mization to create schedules in which the property is most likely to be preserved. These are
situations in which there are free slots in the microcode, and it is possible to schedule a given
operation in one of multiple instructions, without impairing code performance. Preference
is given to schedules in which definitions that reach multiple uses are performed in isolation.
It is also possible to replicate the execution of the operation. If there are empty slots in the
microcode, this is done for free.

To keep things in perspective, however, it must be realized that a resulting graph G+
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may not be claw-free-perfect but still be amenable to a specialized coloring algorithm. For
example, the claw is a bipartite graph, and thus can obviously be colored with two colors.
A future possibility is to integrate the information about graphs, claws and odd holes
with the scheduling algorithm. Graph G and L(G) could be incrementally maintained during
Percolation Scheduling. The possibility of preserving the claw-free-perfect graph property

may be considered as yet another scheduling parameter.



Chapter 6

Memory Organization for
Concurrent Access

The communication bandwidth between the CPU and the memory is a key factor in deter-
mining the overall performance of a computer system[10, 45]. This interface, if not properly
designed, can become a serious bottleneck and, as VLSI technology progresses and CPUs
become faster[68], the problem can get even worse. Traditionally, this problem is overcome
by the use of caching and memory interleaving techniques[45, 50]. These techniques have

provided acceptable solutions.

In horizontally microcoded engines and VLIW computers[38], each wide instruction spec-
ifies several ALU operations and memory accesses that are executed concurrently. This ca-
pability requires even more memory bandwidth to keep the multiple functional units busy. A
VLIW computer is capable of making multiple simultaneous memory accesses. This charac-
teristic, coupled with the relationship between the memory addresses referenced in the same
instruction, may be used at compile time to achieve higher memory bandwidth. By appro-
priately allocating data over multiple memory banks at compile time, concurrent accesses
can be enhanced at run time. This chapter describes compilation and memory allocation
techniques to take advantage of commonly-occurring memory access patterns to achieve

enhanced memory bandwidth.

6.1 Parallel Memory Access Techniques

92
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Figure 6.1: Memory Subsystem with Multiple Memory Banks.

The memory subsystem is composed of multiple banks, each of which can be independently
accessed through a dedicated path to the CPU, as illustrated in Figure 6.1. For a given
memory technology, one such organization with N memory banks has a potential bandwidth
increase by a factor of N. However, the increase may not be achievable due to occasional
concurrent accesses of data located in the same memory bank. True multiported main
memory is expensive. The practical solution generally adopted is to stretch the cycle time
when there is a memory bank collision. Performance is degraded if collisions are frequent.
Furthermore, the amount of hardware needed to detect bank collision is proportional to the
square of the number of memory banks.

The key idea behind the proposed method is to use information, available at compile
time, to allocate into separate memory banks data that are concurrently accessed. The
compiler has the freedom to decide at compile time the starting address and the memory bank
where each array variable is stored. This fact is used to enhance the utilization of memory
bandwidth provided by multiple banks. A key motivation is the observation access to data
structures in scientific programs is structured, as demonstrated by the success of vector
architectures[26]. The proposed method concentrates on optimizing concurrent accesses of
array variables in FORTRAN-like DO loops, because arrays (possibly multi-dimensional)
usually constitute the most important data structure in scientific programs. Furthermore,
there exists the opportunity to enhance the performance of a large body of existing scientific

FORTRAN programs.

Most indirect references in inner loops of scientific code are made to array variables. The
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predictable and structured nature of DO loops provides excellent opportunity for successful
compile-time analysis and determination of the access patterns to the array variables in-
volved. In this context, the nature of memory accesses generated by the VLIW instruction

word can be efficiently exploited.

The above is not true in the general case, for example, of memory accesses to arbitrary
linked data structures. Such memory references, including following pointers into a list
of indirect references, depend on runtime information which cannot be easily predicted at
compile-time. This renders compile-time analysis of memory access patterns very difficult
if not impossible. However, techniques like memory reference disambiguation[60] have been
successfully employed, even though their scope of application concentrates only on handling
array references. This shows that opportunities exist and dramatic performance gains are

achievable by optimizing memory access of array variables.

Several researchers proposed hardware techniques to streamline access to data in multiple
memory banks. Budnick and Kuck[16] proposed an interleaved memory organization in
which having a prime number of memory banks reduces the probability of concurrent accesses
to the same bank. Modern architectures like Cydrome’s CYDRA 5[24] computer use a
hardware hashing scheme to spread out the address of words over multiple memory banks.
These techniques require extra hardware for decoding memory addresses and increase the
latency of memory access. Shapiro[72] studied the theoretical limitations on concurrent

accesses to elements of matrices in SIMD architectures.

In the following section, a graph-coloring technique to allocate entire arrays into memory
banks is described. This is done to allow concurrent access of elements of different arrays.
When several elements of an array are referenced by same VLIW instruction, the array must
be distributed across several memory banks to allow concurrent access of these elements.
In Section 6.3 a schema to distribute elements of an array over multiple memory banks
to accommodate a class of frequently occurring memory accesses is presented. Theorems
characterizing the conditions to allow concurrent access are presented. Section 6.4 describes
the associated compilation techniques along with their application to a number of examples.

The last section describes the possible future extensions of this method.
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6.2 Bank Allocation by Graph Coloring

It is always possible to make concurrent access of elements of two different arrays if the arrays
are allocated into different banks. By extending this idea, concurrent access of elements of
several distinct arrays is possible by allocating each array into its own memory bank. This
may not be a practical solution if there are many array variables because an excessive number
of memory banks may be required.

Arrays that are not concurrently accessed may be stored in the same memory bank, thus
reducing the number of memory banks needed. A graph coloring procedure is employed to
efficiently allocate the arrays into memory banks. Two array variables X and Y are said to
wnterfere if elements from X and Y are concurrently accessed by the same instruction in the
application code. The set of all interferences among array variables is found by scanning the
application code. An interference graph is constructed in which each vertex corresponds to
an array variable, and edges connect array variables that interfere. An example is shown in
Figure 6.2. In this example, arrays A and B are accessed by the first instruction and thus
interfere. Similarly, arrays B, C, and D also interfere because the second instruction accesses

one element from each.

A
(1] , ,
t = A[i]; u = B[i]

= x = B[j] + Cli+j]+ D[j]
(2]

(3] [1]

Figure 6.2: An Example Interference Graph

Vertex-coloring of the interference graph is used to allocate the array variables into the
memory banks to allow conflict-free access. The approach of allocating entire arrays into
memory banks may provide an acceptable solution for several applications, and the same

technique may also be employed to allocate scalar variables into memory banks. However, it
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is still a problem when multiple concurrent accesses are made to elements of the same array
variable. This situation is important in practice, because multiple accesses to the same array
variable are frequently present in the original code, or are introduced by code transformation
techniques like loop unrolling, loop quantization[61] or inter-iteration optimization[81, 30].
For example, assume that elements X[i] and X[i+1] of vector X are accessed concurrently.
In this case, it is necessary to partition the elements of X over several memory banks so that
references to concurrently accessed elements are made to distinct memory banks.

One example solution is to split vector X into two sub-vectors, X-odd and X-even. X-odd
is composed of the odd-indexed elements of X, and X-even is composed of the even-indexed
elements of X. By storing X-odd in one memory bank, and X-even into another, X[i] and
X[i+1] always refer to data stored in different memory banks and can be accessed concur-
rently, thus doubling the effective memory bandwidth.

The above approach may be phrased as: rewrite all references to vector X in the original
program in terms of two new vectors, X-odd and X-even such that the transformed program
is equivalent to the original, but has no concurrent accesses to multiple elements of the same
array variable. Then, the graph coloring technique described before can be used to allocate
the new array variables of the transformed program into memory banks.

The problem of mapping data over the memory banks, then, reduces to one of determin-
ing how to partition the original program’s array variables to allow concurrent access, and
then rewriting the program in terms of these new variables. The next section presents the
procedure to solve this latter problem by analyzing concurrent accesses to elements of an

array variable for a class of memory access patterns.

6.3 Concurrent Access of Array Elements

In this section, the notion of distributing an array over several memory banks and the
requirements for concurrent memory access are formalized.

Definition: A distribution schema for an array A over M memory banks is a function
D:{Integers} — {0,1,2,... M — 1},

where D(i) = k means that array element A; is stored in memory bank %.
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is still a problem when multiple concurrent accesses are made to elements of the same array
variable. This situation is important in practice, because multiple accesses to the same array
variable are frequently present in the original code, or are introduced by code transformation
techniques like loop unrolling, loop quantization[61] or inter-iteration optimization[81, 30].
For example, assume that elements X[i] and X[i+1] of vector X are accessed concurrently.
In this case, it is necessary to partition the elements of X over several memory banks so that
references to concurrently accessed elements are made to distinct memory banks.

One example solution is to split vector X into two sub-vectors, X-odd and X-even. X-odd
1s composed of the odd-indexed elements of X, and X-even is composed of the even-indexed
elements of X. By storing X-odd in one memory bank, and X-even into another, X{i] and
X[i+1] always refer to data stored in different memory banks and can be accessed concur-
rently, thus doubling the effective memory bandwidth.

The above approach may be phrased as: rewrite all references to vector X in the original
program in terms of two new vectors, X-odd and X-even such that the transformed program
is equivalent to the original, but has no concurrent accesses to multiple elements of the same
array variable. Then, the graph coloring technique described before can be used to allocate
the new array variables of the transformed program into memory banks.

The problem of mapping data over the memory banks, then, reduces to one of determin-
ing how to partition the original program’s array variables to allow concurrent access, and
then rewriting the program in terms of these new variables. The next section presents the
procedure to solve this latter problem by analyzing concurrent accesses to elements of an

array variable for a class of memory access patterns.

6.3 Concurrent Access of Array Elements

In this section, the notion of distributing an array over several memory banks and the
requirements for concurrent memory access are formalized.

Definition: A distribution schema for an array A over M memory banks is a function
D:{Integers} — {0,1,2,...M — 1},

where D(i) = k means that array element A; is stored in memory bank £.
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In the definitions and proofs below, infinite-sized arrays are assumed to avoid the special
cases introduced by the fact that some elements do not exist when array sizes are limited.
This assumption makes the proofs less cumbersome. The general results derived in this
section apply to finite-size arrays as well.

Definition: A modulated skewed distribution with modulus K, denoted MSD(K,M), is a

distribution schema for M memory banks where
D(i) = |t + K|modM.

for K > 0 and M > 1. An MSD(K,M) organization is similar to the traditional memory
interleaving organization, but allocates contiguous blocks of K elements of the array into

each memory bank. This is illustrated in Figure 6.3.

Bank Bank Bank Bank

0 1 2 3
| A[0] _| L ARl _| L AB] ] L A9l _
Al L Al LA ] L A0
_ ARl | AB] ] | AIB] ] | AN] ]
_ A[12] | - A1) 4 - - - _
. A[13] 1 A[16] 4 -l (bs =
_ A[4] 4 - A[17] 4 W | I —

|
|

Figure 6.3: Modulated Skewed Distribution Example - MSD(3,4).

Definition: A parallel access sequence is a set of P functions of a variable i, (f;, fo, f9,
...fp) , where f;is the identity function, i.e. f;(i)=t, and fj(i);éfk(i), for all 5,k with 1 <
j <k <P, ie. for each i, all the fo(?) 1<a<P, are different. A parallel access sequence is
also denoted PAS(f1(7), f2(¢), f3(?), ..., Ip(1)). For example, PAS(i,i+3) means f;(1)=i and
f,(1)=i+3.

For each value of 4, a parallel access sequence describes a P-element subset of an array.
The elements in the subset are concurrently accessed from memory during the execution of

a loop in a program. Intuitively, 7 indicates the loop iteration count.



CHAPTER 6. MEMORY ORGANIZATION FOR CONCURRENT ACCESS 98

The P functions f,, 1 <a<P, in a PAS, called the access functions of the PAS, designate
the indices of the array elements as a function of ¢, that are referenced during iteration 7 of
the loop. In this study, the focus is on f, that are linear functions of i, namely of the form
B 1+ 8, with both 8 and § being integers, because these access functions occur frequently
in many applications[11].

Definition: A distribution schema D is wvalid for a parallel access sequence PAS if
D(fj(i))#D(fk(i)), for all 4,5,k wherei1 > 0 and 1 < j < k < P, i.e. for any value of 7 (loop
iteration counter), the P array elements designated by the access functions are all stored in
different memory banks.

A valid distribution schema ensures that the array elements referenced by the PAS during
each iteration of the loop may be accessed concurrently from memory. For example, suppose
that in the program there is a DO loop with i as the iteration counter, and that array
elements Afi] and A[i+3] are added in every iteration. Assume that the elements of array A
are organized into two memory banks in alternating groups of three consecutive elements,
so that the first group of three elements of the array is stored in Bank 0, the next three
elements are stored in Bank 1, the next three elements are again stored in Bank 0, and so
forth, as prescribed by MSD(3,2). It can be easily seen, by analogy with Figure 6.3 that, for
any element i, if element ¢ is stored in Bank 0, then element i+3 is stored.in Bank 1, and
conversely, if ¢is in Bank 1, then 7+3 is in Bank 0. Thus, with this MSD (3,2) mapping of
the array over the memory banks, elements ¢ and 1+3 can always be accessed concurrently

from memory.
Theorem 6.1 MSD(K,M) is valid for PAS(1,i+K), for any integers K > 0 and M > 1.

Proof: Consider D(i) and D(i4+K): from the definition of MSD(K,M), D(i)
= i+ K| mod M, and D(i+K) = (i + K) = K| mod M.

Let o = |i + K|. Then,

D(i) = @ mod M, and

D(i+K)= (o + 1) mod M

Thus, D(1)#D(i4+K) , and consequently, MSD(K,M) is valid for PAS (i,i+K).
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This theorem shows that a MSD organization of an array allows concurrent memory
access for a pair of accesses of the form PAS(1,i+K). However, this is not the only possible
organization of the array that allows concurrent access. Theorem 6.2, below, is a general-
ization of Theorem 6.1, and states the conditions under which it is still possible to make
concurrent access to elements ¢ and ¢+ K’if the array is organized as MSD(K,M), with K#£K".
This is important because an array may be referenced in several loops in the program, in
each loop the accesses are of the form (i,i+Kga) for different Ka, and it is necessary to
choose one organization for the array that is valid for all, possibly different, access patterns.
Note that different values of K3 may result, for example, from a two-dimensional matrix
being accessed by A[i,j]+A[i,j+1] in one loop (fetching consecutive elements by rows), and
by Ali,jJ+A[i+1,j] in another loop (fetching consecutive elements by columns). Assuming
that A is a 256%256 matrix stored in row-major order, the access to Ali,j] is a reference to
element (i*256+]) of A, while A[i,j+1] refers to element (i*256+j+1), and thus these two
accesses refer to elements that are 1 element apart. The access to A[i+1,j] refers to element
((i+1)*2564]) = (1*256+j+256), which is 256 elements apart from the element referenced
by AlLj].

Lemma 1: Given MSD(K,M) and an integer a, D(i) = D(i+aKM).

Proof: From the definition,
D(i+aKM) = |[{t+ KM} + K| mod M = [i + K + aM| mod M
= |i+ K |modM = D(i). e

Lemma 1 helps simplify the subsequent proofs because the allocation of ele-
ments over the memory banks is regular, exhibiting a pattern that repeats with
period KM. The next lemma is a special case of Theorem 6.2, i.e. for values of

K’ in the range [0 : KM], and will be used in the proof of Theorem 6.2.

Lemma 2: Given integers K,M>0 and 0<K’'<KM, MSD(K,M) is
valid for PAS(i,i+K’) iff K<K'<(M-1)K.

Proof: (<=) Let K<K’<(M-1)K, want to show MSD(K,M) is valid
for PAS(i,i+K’). Prove by contradiction.

Assume MSD(K,M) is not valid for PAS(i,i+K’).
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=> 31i such that D(i) = D(E+K’) or [i ~ K |modM = |(i + K') +
K|modM or |i + K |modM = |i+ K + K' + K |modM (1)

Case I: If K’ mod K =0

=> i+ K+ K+ K|modM = {|t + K| + |K' + K|}modM =
|¢ + K |modM + (K' <+ K)modM

(1) becomes => |i + K |modM = |i+ K|modM + (K' = K)modM
=> (K' + K)modM =0 => K' = 0orK' = KM = > Contradiction.

Case II: If K’ mod K # 0

=> i + K + K' + K|modM =

|t + K|modM + |K' + K |modM (Case a) OR [i + K |modM +
| K"+ K |modM + 1 (Case b)

Case a: (1) becomes => |5 = K |modM = [i + K|modM + | K’ =
K|modM => |K' + K|modM = 0 => K' < KorK' > KM =>
Contradiction.

Case b: (1) becomes => | + K |modM = |1 + K |modM + |K' +
K|modM+41=> |K'+K|modM+1=0=> |K'+-K|modM = M -1
=> K'> (M — 1)K => Contradiction.

(=>) Let 0<K’<K (Case I), or (M-1)K<K’<MK (Case II).

Case I: 0<K’<K Let i = 0 D(z) = |t + K |modM = 0, and

Di+K')=|(i+ K')+ K|modM =K'+ K |modM =0

Since 3 i such that D(i)=D(i+K’), MSD(K,M) is not valid for
PAS(i,i+K’).

Case II: (M-1)K<K’<MK Let i = K-1

D(i) = [(K — 1)+ K|modM =0, and D(i + K') = [(i + K') +
K|modM =|(K —1+ K') + K |modM

Since (M-1)K<K’<MXK, let K’=(M-1)K+d, where 1<d<K-1

=>D(E+K)=|(K-1+d)+~K+M—-1|modM = {|(K -1+
d)+K|+M—1}modM,sincel <d < K—-1=(1+M—1)modM =0

Since 3 i such that D(i)=D(i+K’), MSD(K,M) is not valid for
PAS(i,i+K’). Q.E.D.
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Figure 6.4 illustrates Lemma 2, showing the cases where D(i) would be equal

to D(i+K’). Theorem 6.2 is a consequence of this lemma, and of the regularity

in the allocation of array elements over the memory banks, as in Lemma 1.

Case (M-1)K < K'<« MK

[TTTT]
A

_i+K_.>

[HEEEE

Bank 0 1

2

3

LTTTTT

M-1

CaseK' < K

—-a— i

- i+K'

Figure 6.4: Values of K’ for which MSD(K,M) is not valid for PAS(i,i+K’).

Theorem 6.2 For any integers K, K’ >0 and M >1, MSD(K,M) is valid for

PAS(iyi+K’) iff K <K’ mod (KM) < (M-1)K.

Proof: Let i’ = ¢ mod KM, and K” = K’ mod KM
>From Lemma 1, D(i) = D(7’), and (2)
D(i + K’) = D(i mod KM + K’ mod KM) = D(i’ + K”) ()

>From Lemma 2,

D@)#D(’+K”) ff K < K” < (M-1)K. (4)
Substituting (2) and (3) in (4), we have
D(1)#D(i+K’) iff K <K’ mod (KM) <(M-1)K.

Q.E.D. s
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Frequently in real applications, a given array is referenced inside several dif-
ferent loops in the program. This introduces the important problem of finding a
distribution schema which is valid for several PAS of the form (i, i+K;), where
all K; are integers. Each of the loops in which the array is referenced imposes
a different PAS on the distribution schema. This problem can be formalized as
follows: given a set of h PAS of the form (i, i—[—KJ-), j=1,...,h find K and minimum
M, such that MSD(K,M) is valid for {PAS(i,i—{—Kj)}, for j=1,...,h.

Applying the conditions required by Theorem 6.2, the solution to this problem
reduces to finding two integers K,M >0, with M minimal, that satisfy the following

system of equations:

K< Ky mod KM < (M-1)xK
K< K9 mod KM < (M-1)xK
K< K3 mod KM < (M-1)xK

K< Ky mod KM < (M-1)xK

The above system admits a trivial solution (K,M) = (1,N), where N is the
number of elements in the array, which corresponds to the case in which every
array element is stored by itself in its own memory bank. This solution is only
practical when N is small. M is the number of memory banks, and is required
to be the smallest M such that K and M satisfy the above system of equations.
A simple technique to solve the system of equations is to search for solutions
starting from M=2, and searching for K starting at 1 up to the smallest Kj .
Since number of memory banks is related to the maximum number of concurrent

accesses being performed, this complete enumeration procedure is still practical.

6.4 Implementation and Application

Code generation to achieve concurrent memory accesses can be viewed as rewrit-

ing the code in terms of new array variables so that memory accesses are made
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to arrays located in different memory banks. A simple example of array access

is:

DO 10 I =0, N
10 . ..A[I]+ A[I+X]

for some constant K. Assuming array A is organized as MSD(K,M), the above

code is rewritten as:

DO 10 base=0, N/K, K

DO 20 ii= base, base+K-1
20 A_in_bank_1[ii] + A_in_bank_2[ii]

DO 21 ii= base, baset+K-1
21 A_in_bank_2[ii] + A_in_bank_3[ii]

DO 2K ii= base, base+K-1
2K A _in_bank _M[ii] + A_in_bank_1[ii+K]

10 CONTINUE

To allow concurrent memory accesses, it is necessary to recognize array ac-
cess sequences of the above form during compilation, and generate the code as
exemplified above. The above code sequence can be seen as a template for the
code to be generated, by varying the number of inner DO loops and the ranges
of the loop iteration counters. To recognize access sequences amenable to this
technique, it is sufficient to note that the array index expression is an induction
variable[2] of the loop. Interestingly, much of the information needed for memory

reference disambiguation is also useful to perform this kind of data allocation to
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enhance concurrent memory access. The technique is applicable whenever the
symbolic expressions for two memory references to array elements inside of a loop
differ by a constant K. Furthermore, the compiler may use the symbolic expres-
sion describing the target address of each memory reference to make decisions
about concurrent scheduling of memory operations. If the initial value of the
loop iteration counter is known at compile time, the generated code sequence is
similar to the one above. In the case where the index of the first memory access is
not known at compile time, the generated code would have to initiate execution
at one of the inner DO loops above, with the appropriate value for the variable
base. In the above example, if the loop should initiate execution at i= 2*K, this
implies that, in the generated code, execution should begin at the third inner
DO loop, with base = 0.

In the most general case, the compiler does not have any information about
the initial value of the loop counter. For example, it may be an input variable to
the program. In this case, it is necessary to generate a prolog sequence of code
that is executed before the loop, which correctly initializes base as a function
of the initial value of the loop counter, and then jumps to the appropriate inner
DO loop, with the inner loop counter ii properly initialized. In this case, extra
code must be executed before execution of the loop proper begins. However,
since each loop is to be executed many times, the benefits obtained by achieving
higher effective memory bandwidth easily offset the overhead of executing extra
prolog code. Furthermore, in horizontally microcoded and VLIW architectures
this prolog code can frequently be executed in parallel with the code that precedes
the loop. For the class of scientific programs, the compiler will likely have enough
information at compile time so that loop prolog code will not be necessary.

The examples shown below, in increasing order of complexity, can be han-
dled by small variations of the compilation techniques described above to allow
concurrent access to Afi] and Afi+K]:

Case 1:

do 10 i=1,N
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10 . A[i]+A[i+K] for MSD[K,M]
Case 2:
do 10 i=1,N
10 L ATi]+ATi+K] for MSD[K’,M]
Case 3:

do 10 i=1,N,STEP
10 ALY +A[i+K] for MSDI[K,M]

Case 4:

do 10 i=1,N,STEP
10 ..A[i]+A[i+K]  for MSD[K’,M]
6.5 Examples

In is section, the application of this method to a simple inner loop is illustrated.
Extension and application of this loop to an FFT example is illustrated in Chap-
ter 7. Assume the following FORTRAN loop:

DIMENSION A[256,256]

DO 10 I = 1, 256

DO 10 J = 1, 256
10 X + A[I,3] + A[I+1,J3] + A[T, J+1]
(1) (2) (3)

Assuming A is stored in row-major organization, the index of element A[l,J]
can be expressed as [*256+J. By making I’= I#256 + J, the above array refer-
ences (1), (2) and (3) become:

(1) Al1°]
(2) ALTI’ + 256]
(3) al1’ + 11
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A distribution schema for this array can be found by using the method de-

scribed earlier. The system of equations to be solved is:

K <1 mod K«M < (M-1)xK
K <255 mod K«M < (M-1)xK
K <256 mod K«M < (M-1)xK

It is easily seen that (K,M) = (1,6) is a solution by searching for solutions starting
from the minimum number of banks, M=3, because three concurrent accesses are
performed.

This example assumes that the matrix is organized in row-major order, so
element A[i,j] is indexed by I*256+J. Another possibility is to have the ar-
ray organized in column-major order. In that case, element A[i,j] would be
addressed as J*256+I. The choice of organization for the array influences the
number of memory banks that are required for concurrent access. For example,
for a 256%256 matrix A, an MSD distribution that allows concurrent access to
elements A[I,J] and A[l+1,]] requires three memory banks if the matrix is orga-
nized in row-major order, but only two memory banks if the array is organized
in column-major order. In general, the compiler must find the best organization
for each array by examining all PAS that reference that array, and choosing the
organization which will require the least number of memory banks. This prob-
lem is similar to and may use techniques from the choice of vector ‘shapes’ in
compilation for vector machines[57].

The application and extension of this technique to the innermost loop of the
FFT algorithm is now presented. The FFT algorithm is composed of two phases:
a bit-reversal transformation and a combining phase. The focus here is on the
combining phase of this algorithm. The overall structure of the FFT algorithm
is illustrated in Figure 6.5.

The VLIW code for the innermost loop is presented below. This code is gener-

ated during specification optimization by the retargetable optimizing microcode
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shuffle(}; /* perform bit-reversal transformation */
FOR i:=1, 2, 4, 8, ... , n/2{ /* combining phase*/
FOR j=0 to n-1 by 2*i{
compute W=f(i); -- Trigonometric Recurrence
FOR k:= 0 to i-1{
Z =v[k+j+i]*W -- Butterfly operation
vIk+3j] =vik+jl+Z
vik+j+il=vlk+j1-Z }}}

Figure 6.5: FFT Algorithm

compiler from a sequential description of the FFT innermost loop which contains
22 instructions. In this figure, each VLIW instruction starts with a numeric label

followed by the list of operations in the instruction.

3 FFT combining phase: Danielson-Lanczos section of FFT routine

3 Assumes that the Pre-leoop code initializes the fellowing registers:

: L1 as the address of v[E+J],

H L2 as the address of v[R+J+I],

[ W as exp(2% PI/I) 'twiddle factor'

i F_J_I as the address of v[R+J+I] (loop termination condition)

1: F1.r=BR(L1) ; F1.i=BI(L1) ; Load array elements v[K+J],v[RK+J+I]
F2.r=BR(L2) ; F2.i=BI(L2) ; from memory

2: Ti=Fi.r*W.r; T2=F1.r*W.i; Complex Multiply
T3=F1.i*W.r; T4=F1.i*W.i;

8: Z.r =T1 - T4; Z.i = T2 + T3 ; Butterfly operation

4: F2.r=F2,r+Z.r; F1.r=F2.r-Z.r; Store new v[K+J],v[K+J+I] back into memory
F2.i=F2.i+Z.i; F1.i=F2.i-Z.i; cci=(L1<F_J_I)

5: BR(L1)=Fi.r ; BR(L2)= F2.r;
BI(L1)=Fi.i ; BI(L2)= F2.i; Li=Li+1; L2=L2+1 ; IF ccl GOTO 1:

In the above VLIW code, Instruction 1 loads the array elements into Registers
L1 and L2; Instructions 2 and 3 perform the complex multiplication by the
twiddle factor, Instruction 4 performs the butterfly operation (2-point FFT),
and Instruction 5 stores the new values of the array elements.

Let 1=k+j. In the innermost loop of the FFT, the array elements referenced
in the butterfly operation are v[l] and v[l+i], for values of 1 which are powers of
two. Let B be the number of memory banks in the machine. It is easily seen that
the traditional techniques for memory interleaving cause bank collisions on the
memory reads in Instruction 2 and in the memory writes in Instruction 5 above,
whenever the value of i is a multiple of B. In this case, registers L1 and L2
contain the addresses of array elements v[k+j] and v[k+j+i], which are located
in the same memory bank because their addresses differ by i. Thus, even though

the above innermost loop has only five instructions, collision in memory access
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by the memory fetch operations in Instruction 1, and by the store operations
in Instruction 5, cause each loop iteration to take 7 cycles, assuming 1-cycle
memory accesses. This reduces the achievable performance for this loop down
to 71%. Furthermore, the degradation in performance is even larger in systems
with more realistic multi-cycle memory access times. Note that, if the memory
access time is similar to the time for the complex multiplication in Instruction 2,
the load of A[i+k] might be delayed to Instruction 2, thus avoiding the conflict
in memory access for the memory fetch operations. However, for longer memory

latency, and for the store operations in Instruction 5, the conflict persists.

For the FFT code, the value of n must be a power of two, and for ease of
hardware implementation the number of memory banks is also a power of two.
Because of this fact, the above memory access collisions will always happen in
real machines. Thus, the memory accesses in the butterfly operation will be
performed serially, even though the data dependencies allow the operations to

be done in parallel.

The MSD method can be used to solve this problem, by finding an MSD(K,M)
that allows concurrent access to PAS(i,i+K;) for all values of K; equal to 1, 2,
4, 8, ..., n/2, leading to an improvement of about 30% in the performance. In
this case, MSD(1,3) is a good organization. This is confirmed by verifying the
conditions of Theorem 6.2 for all expected values of K;. Alternatively, it suffices
to notice that MSD(1,3) stores element i in bank 7 mod 3. Element i+K, where
K is a power of two, is stored in bank (z + K) mod 3. Because K is a power of
two, K mod 8 is never zero, and thus elements ¢ and i+K are stored in distinct

memory banks.

Note that, for this FFT example, this straightforward application of the MSD
method is able to achieve memory bandwidth comparable to that of the work of
Lin and Ho [55], which was obtained after careful study of characteristics of the
FFT algorithm. They noticed that the indices of the elements involved in the
butterfly operation have different parity. By separating the vector in two memory

banks, the first containing those elements whose indices have even parity and the
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second with the elements whose indices have odd parity, the memory accesses can
be performed concurrently. For large FFTs, the bandwidth of memory access is
responsible for a large portion of the performance, and thus our method provides
considerable improvement, because the effective memory bandwidth is doubled

at the innermost loop of the FFT.

6.6 Extensions

If the target memory bank of each memory reference operation is not known at
compile time, concurrent memory access requires an expensive interconnection
structure to route the data from the referenced memory bank to the appropriate
functional unit. The capability to detect and handle access collisions to a single
memory bank is also necessary. Alternatively, the compiler may avoid scheduling
multiple memory accesses in case of doubt, thus sacrificing potential performance.
Many classes of loop exhibit access patterns such that it is possible to know the
memory bank of each memory reference. This is called bank-disambiguation
by [35]. To achieve bank disambiguation with the MSD method, [48] suggests
unrolling the loop. However, unrolling loops may not be a desirable solution due
to reasons such as increased code size. An alternative solution which avoids the
need for loop unrolling is now presented.

The key idea is to keep track of the memory banks referenced in each iter-
ation, and to enhance the switches connecting memory busses and register files
busses. This target memory bank number of each memory access is computed
concurrently during program execution. The enhanced switch takes the number
of the target memory bank as part of the switch control,

Figure 6.6 illustrates the FFT source code with bank control. Figure 6.7
illustrates the corresponding VLIW code. In Figure 6.7, [BR(L1,B0)=F1.r]
denotes: store register F1l.r into location L1, bank B0. The switches connecting
the register holding the target memory address are set up to perform this access
conditionally on a bank number supplied as a control argument. (see Figure

7.29). A register provides the switch with run-time computed bank number;



CHAPTER 6. MEMORY ORGANIZATION FOR CONCURRENT ACCESS 110

in this example, registers BO and B1l. Only the memory bank whose number
matches the bank number selection register is activated by the switch. In the
FFT example this requires the computation of the recurrences for (j+k)mod 3
and (j+k+i)mod 3 in the innermost loop. The operations to keep track of the
memory bank number are executed in parallel with the loop iteration.

The compilation algorithms required to generate this code are similar to the
algorithms to perform loop unrolling to achieve bank disambiguation. This can
be done automatically for those loops whose indices evolve via simple recurrences.
Furthermore, for loops where the initial values of the indices, which are the basis
for recurrence, are not known at compile time, a pre-loop may be added to
compute the initial memory banks dynamically, prior to the loop proper. This
is inspired by the pre-loop technique suggested in [35]. This computation adds a
small overhead which is executed only once before the loop, but provides much
enhanced memory bandwidth at low cost. Furthermore, the addition of such
pre-loop extends the applicability of the MSD technique to a much larger class

of loops.
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for(i=1,B1i=1; i<=(n-1); B1li = (Bli+i)mod 3,i=i+i){
for(j=0,B0j=0,B1j=B1i;

j<=(n-1); (j=j+2#%i) ,B0j=((BOj+2*i)mod 3),B1j=((B1j+(2*i))mod 3)){
for (k=0,B0=B0j ,B1k=B1j;

k<=(i-1);

k=k+1,B0=((BO+1) mod 3),B1=((Blk+1) mod 3)){

....BO[LO] is v[k+j], and
....B1[L1] is v[k+j+i]
. .butterfly operation ..

/* update bank number and array index */
/* this code is executed in parallel with loop control*/
/* control */
BO=BO+1;if(B0>2){B0=0;L1=L1+1}
B1=B1+1;if(B1>2){B1=0;L2=L2+1}

¥
}
Figure 6.6: FFT Algorithm With Code to Compute Memory Bank Number
$1: FO.r=BR(LO,BO) ; F0.i=BI(LO,BO) -- Load v[K+J],v[K+J+I]
F1.r=BR(L1,B1) ; F1.i=BI(L1,Bi) -- from memory
New_BO = BO + 1 ; New_Bl = Bl + 1 -- keep track of bank number
$2: T1=FO.r*W.r; T2=FO.r*W.i -- Complex Multiply
T3=FO0.i*W.r; T4=FO0.1x*W.1i;
New_LO = LO +1 ; -- prepare to increment
$3: Z.r = T1 - T4; Z.i = T2 + T3 -- Butterfly operation
cc3= New_BO > 2; cc4= New_Bl > 2; -- bank number wrap-around 7
New_L1 = L1 +1 -- prepare to increment

$4: F1.r=Fl.r+Z.r; FO.r=F1l.r-Z.r;
F1.i=F1.i+Z2.i; F0.i=F1.i-Z.i; cc1=(LOKF_J_I);
$5: BR(LO,BO)=FO.r ; BR(L1,B1)= Fi.r -- Store new v[K+J],v[K+J+I]
BI(L0O,B0)=F0.i ; BI(L1,Bi)= Fi1.i -- back into memory
if(cc3) BO New_BO else {BO 0; LO = New_LO;}
if(cc4) Bl = New_B1 else {B1 = 0; L1 = New_L1;7}
IF ccl GOTO $1:

1l
]
]

Figure 6.7: FFT Inner Loop Code With Memory Bank Control



Chapter 7

Example Applications of ASPD
Method

This chapter illustrates the ASPD Method by describing experimental applica-
tion on a number of selected examples. The benchmarks have been chosen to
illustrate characteristics of the ASPD method and to allow comparison with pre-
vious designs such as the White Dwarf project and some existing High-Level

Synthesis benchmarks.

7.1 Synthesis, Validation and Evaluation Pro-
cedure

This section describes the procedure to verify correctness and evaluate perfor-
mance of the example designs. The VLIW code has been valided by a simulator,
by comparison of the results of simulation of the serial NADDR program with the
results produced by a VLIW architecture simulator. The simulator, integrated
with the compiler code, works from the compiler’s data structures. Speedup is
given by the ratio of the cycle times required to simulate the serial execution to
the number of cycles for VLIW execution. The simulation is favorable for the se-
rial execution because it assumes that unconditional jumps in the serial NADDR
code can be executed in zero cycles. To check correctness of the simulation,
some of the examples in this chapter have been further validated by simulation

by two other VLIW simulators. These simulator are obtained from independent
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research projects at CMU. One is the simulator for the XIMD architecture[88],
an extension of the canonical VLIW. It is capable of simulating VLIW code that
does not require conditional execution of operations. The second simulator is
a result of a class project to use VLIW compilation to investigate fine-grained
parallelism and super-scalar architectures.

The results of Implementation Optimization are validated by checking for
resource contention. A simple AWK script is used to verify correctness of graph
coloring. A “C” simulator is constructed, by hand, for one small example. A
proposed validation approach is to change the VLIW program listing module
to output valid “C” source code that simulates VLIW execution. Each VLIW
instruction is associated with a labeled sequence of C code. The code contains
two declarations for each register in the VLIW program, corresponding to the
global and local values of the variable. As each VLIW operation is simulated,
it reads its arguments from the global set of variables, and stores its result in
the local copy. Before the simulated VLIW instruction jumps to next instruc-
tion, the local values are copied, in order, into the global values to preserve the
VLIW program semantics. This alternative is advantageous because 1t allows
simulation of large input programs at the system’s speed. Furthermore, the sys-
tem’s debugging system may be used to inspect the customized VLIW simulator
code. This approach has been explored preliminarily, by recognizing a subset of
NADDR operations. It remains to be implemented code to translate all known
NADDR instructions into C code. An interesting variant of this alternative is to
output code for a high-level simulation language such as Verilog. This language
allows creation of instances of library hardware modules, specification of their

connectivity and simulation of the resulting design.

7.2 - Detailed Example: MIN (Livermore Ker-
nel 24)

This section presents the ASP design for a simple program that finds the min-

imum of an array. This program is Livermore Kernel 24. The C source code
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and NADDR intermediate code for this example are illustrated in Figure 4.2 in
Chapter 4. Figure 7.1 illustrates the result of Specification Optimization which
achieves throughput of 1 cycle/iteration. Each VLIW instruction is printed with
one operation per line. The definition number corresponding to each operation
is presented in the same line after the operation code in square brackets. For

example, the opcode for definition 16, which is found in Instruction 1014a3a0, is
(ige $cci1[ 1] $u‘l3 ] $ul4 1 )I[16]

The number of the register file holding each argument is listed in square brackets.
The first argument $u’ is in register file 3, and the second argument, $u, is in
register file 4. The resulting value of $cci is written into register file 1. In case
the operation writes more than one destination, multiple register file values are
listed. The set of reaching definitions is listed after each instruction.

Figure 7.2 presents the result of applying ADJUST-GRAPH, Graph G+,
to this program. FEach node in the graph is labeled with the corresponding
variable name, the color assigned to the node, followed by a list of definition
numbers and the instruction where the defined value is used. For example, the
top node in Figure 7.2 illustrates definition 2 of variable $min that is used at
Instruction 101477d8. This is not a claw-free-perfect graph, because the subgraph
induced by the nodes that have a * symbol preceding the variable name in Figure
7.2 is a claw. The graph-coloring heuristic used 6 colors for vertex-coloring
of this graph, which is optimal because the graph contains a 6-clique. This
clique is composed of the 6 nodes at the center of the figure, identified by the +
symbol after the variable name. This example illustrates how condition codes are
handled in the same manner as other register values. Condition code are allocated
uniformly in the register file, and may be operated upon as any other data.
Alternatively, a realization technology may elect to store condition code values
into separate single-bit register banks. This is easily accomplished by enhancing
the ADJUST-GRAPH procedure to introduce interference edges in G+ between
vertices corresponding to condition codes and vertices corresponding to integer

or floating point register values. This causes allocation of condition code values
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101467bc: 1014acec:

(iconstant $0O[ 1 ] 0 )[o] (ivstore O $0[1 ] $min[6 ] )[20]

(iconstant $il 51 0 )[1] " (goto 1014af94)

(goto 10146¢d0) Reaching Defs:

Reaching Defs: { } {023567 8910 11 12
13 14 15 16 17 18 19 }
10146¢d0:

(ivlcad $min[ 6 ] 0 $i[5 1 )[2] 1014a£94:

(ivlead $ul 41 0 $il5 1 )HI[3] (igoto 10144170)

(iadd $il 51 $il5 1 4 )[4] Reaching Defs:

(goto 10147748) {0235678910 11 12
Reaching Defs: { 01 } 13 14 15 16 17 18 19 20 }
10147748:

(ige $oci[ 1] $uf24 ] $min[s ] )[5]

(ile $cc2[ 2 1 $i[5 1 10 )[6]

(ivload $u‘[ 3] 0 $i[5 1 )H[7]

(iadd $i[ 5] $il5 1 4 )[8]
(goto 1014a3a0)
Reaching Defs: { 0234 }

1014a3a0:
(if $cci[1 ] L15
(if $cc2[2 ] Lloop .
(iassign $ul 4 ] $u‘[3] )I[9]
(ige $cci[ 1] $u‘[3 1 $minf[6 ] )[10]
(ile $cc2[ 21 $i[5 ] 10 )[1i1]
(ivlead $u‘[ 3] 0 $i[5 ] )[12]
(iadd $i[ 5] $il5 1 4 )[13]
(goto 1014a3a0)
ELSE
(goto 1014acec))
ELSE
(iassign $min[ 6 ] $ul4 ] )[14]
(if $cc2[2 1 Lloop
(iassign $ul 4 ] $u‘[3 ] )[15]
(ige $cci[ 11 $u‘[3 ] $ula ] )[16]
(ile $cc2[ 2 1 $i[5 ] 10 )[17]
(ivlioad $u‘[ 3] 0 $i[5 ] )[18]
(iadd $i[ 51 $i[5 ] 4 )[19]
(goto 1014a3a0)
ELSE
(goto 1014acec)))
Reaching Defs: { 023567 89 10 11 12
13 14 15 16 17 18 19 }

Figure 7.1: min.c VLIW code with Reaching Definitions and Register File Allocation
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into banks separate from the register file banks. Consequently, condition code

banks can be realized as single-bit wide banks.

] +

6

[14],1014a3a0
21,101 4a3

[15],1014a3a0
{9],1014a320

[16],1014a320
[10],1014a3a0
5110142330

(=
2
[17),1014a320
[111,1014a320
0] ()

baT +
» 3
5 [18],1014a320
[12],101423:0
0] &a3af)
5

50
1 [19],1014a3a0
Liol1014acee [13],1014a320
21.1014a3a0

3 6
[14),101dacee
2], 101dacee

Figure 7.2: Example: min.c Interference Graph

Following register files allocation, operations are assigned to functional units.
The resulting design is illustrated in Figure 7.3. The list of operations assigned
to each functional unit is presented under it. It requires one memory bank, two
comparators, an adder, and two latches to perform COPY operations. Simulated
execution of this loop using as input the short vector composed of the 6 elements

{99,5,99,3,99,4} takes 8 cycles. The serial NADDR execution requires 24 cy-
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cles; there is a speedup of 3 over the serial NADDR, execution by the optimized
code. An speedup of 5.84 is obtained with simulated execution of the same loop
on a larger array with 100 randomly generated elements. Specification optimiza-
tion of this example takes 0.21 CPU seconds on a DECStation 5000. CPU time is
measured with the UNIX “time” command. With the added execution of register

files allocation and graph coloring routines, the total runtime is 0.39 seconds.

L] [N

S uFVIRIA SR AR

o 3919 $

- N W AR O O

addr
data

\'T/ \%/ \|>/ < < MEMORY

iassign u u' iassign min u

jadd i 1i ilecc2iN igecctlumin
ige cc1 u' min ivicad u' O
ige cc1 u'u jvioad min Qi

ivioad u 0Oi

Figure 7.3: Example: min.c - ASP Design

7.3 Detailed Example: Vector Scaling

This section presents the ASP design for a simple program to multiply all ele-
ments of an array by a constant. This simple design is chosen to illustrate the
memory allocation technique. The loop source code in C and the corresponding
NADDR code are illustrated in Figure 7.4.

Figure 7.5 presents the VLIW code that achieves throughput of 1 itera-
tion/cycle, for an speedup of 5 over the serial NADDR. code. This code requires
one multiplier, one adder, two latches to execute copy operations, and a memory

system that supports two concurrent accesses. In the loop steady state instruc-
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vhile (TRUE) (PROC_BEGIN x
{ (LABEL lup)
i++; (IADD $a 4 $a)
A[i]=A[i]*2; (IVLOAD $x O $a)
T (IMUL $x 2 $x)

(IVSTORE 0 $a $x)
(GOTO (LABEL lup))
(PROC_ERD x)

)

Figure 7.4: Vector Scaling Example: C Source Code and NADDR Code

101467b4:
(iconstant $i[ 4 ]
(goto 10146¢a0l)
Reaching Defs:
{3
10146¢ca0:
(iadd $i[ 4 ]
(goto 10146£48)
Reaching Defs:
{0 1}
10146£48:
(ivload $al 2 1]
(iadd $i‘[ 1 ]
(goto 101474b8)
Reaching Defs:

1 )[c]

4 $if4 1 )HI[1]

0 $if4 1 ) [2]
4 $ifa ] )I[3]

101474b8:
(imul $al 2 ]
(ivload $a‘[ 3 ]
(iadd $i‘‘[ 5]
(goto 10147770)
Reaching Defs:

2 $af2 1 )[4]
0 $i‘[1 1 DI[5]
4 $i'[1 ] )&l

{123 3}

10147770:
(ivstore 0 $i[4 ] $al2 1 )I[7]
(iassign $i[ 41 $i‘[1 ] )[8]
(iassign $i‘C 11 $i‘‘[5 1 )[9]

2 $a‘{3 ] )[10]
0 $i‘‘[51 )I[i1]
4 $i‘[5 1 HI[12]

(imul $al 2 ]

(ivload $a‘[ 3 ]
(iadd $i¢‘[ 5 ]
(goto 10147770)

¥ Reaching Defs:
{1345678910 11 12 3

Figure 7.5: Vector Scaling: VLIW Code With Register File Allocation

tion, two memory accesses are performed, a load and a store. An ASP design
for this loop is illustrated in Figure 7.6, assuming a memory system that supports
two concurrent memory accesses.

The byte addresses of the two memory references in the loop steady state
instruction always differ by 8. In this example, memory is byte addressable, with
an word size of 32 bits. Thus, the MSD technique is applicable to this loop.
Figure 7.7 illustrates the code after MSD is applied.

7.4 Synthesis Benchmark: Elliptic Filter

This filter is a benchmark from the 1988 High Level Synthesis Workshop. The
loop presents a large number of inter-iteration dependencies. The NADDR code
for the loop, composed of 34 operations, plus a jump, is illustrated in Figure
7.8. The inter-iteration optimized code requiring 4 adders and 2 multipliers, is
illustrated in Figures 7.9 and 7.10.

The VLIW code executes one iteration every 13 cycles, thus achieving an
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addr
data
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data
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MEMORY
jadd a" 1 a" imul x 2x' iassigna’ a iassign a" a'
jadda 1a imul x 2 x
iadda'1a ivstore0ax ivicad x'0a
jadda"1a' ivioad x Oa
ivioad x 0 a'
ivioad x 0a"

Figure 7.6: Vector Scaling Example - ASP Design

speedup of 2.61. The interference graph for this example, illustrated in Figure
7.11, is not claw-free perfect, and has been colored with 6 colors. This number of
colors is is optimal because the graph contains a 6-clique. In this example, allo-
cation of operations to operators is performed by a simple first-come first-served
heuristic. Figure 7.12 illustrates the result of implementation optimization. The
allocation of variable into register files is presented in Figure 7.13. Depending on
architecture realization choices, if ALUs with the capability of execution of ad-
dition and multiplication are available, this filter may be implemented by using
only 4 functional units.

The bus broadcast feature of the implementation architecture is exercised
in this example. In Instruction 10124e94 of Figure 7.9, operation (iadd $op8[
121 $op3[6 1 $op9[2 1 ) writes the resulting value of $8 in register files 1
and 2. Later in the program, Instruction 1012545¢ uses the value stored into
register file 2, as illustrated in Figure 7.10. (In that instruction, register file 1
is busy providing the value of $sv9). Instruction 10127718 uses the value of $8
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Vector Scale Loop pipelined cods,
with MSD(2,2) applied

inner loop unrolled

101467b4:
(iconstant $i[ 4 ]
(goto 10146¢ca0)

Reaching Defs:

{3

10146¢a0:
(iadd $if 4]
(goto 10146£48)

Reaching Defs:

{0 }

10146£48:
(ivload $al 2 1
(iadd $i‘[ 1]
(goto 101474b8)

Reaching Defs:

f£1 2

101474b8: load from bank 0
(imul $al 21 2 $al2 ] )[4]
(ivload $a‘[ 31 0 $i‘[1 1 )I[5]

h (iadd $i°‘[ 5] 4 $i‘[1 1 )[6]
(isub $i¢‘[ 5] 4 $i‘[1]1 )6l
(goto 10147770)

Reaching Defs:

{123 }

1 )[0]

4 $if4 1 H[1]

0 $i[4 ] )[2] 1load from bank ©
4 $if4 1 ) I[3]

after the preceding imnstr,
i¢¢ must have "0" instead of 2, so
it gets decremented, instead of incremented

/* STORE always use i */

10147770: 1load from bank 1, offset O, use i

(ivstore 0 $i[4 ] $al[2 ] )[7]
(iassign $il 4] $i‘[1 1 )[8]
(iassign $i‘[ 1 ] $i¢‘[5 1 )[9]

(imul $al 2 ] 2 $a‘[3 ] )I[10]

% (iviocad $a‘[ 3 ] 0 $i‘‘[5 1 )HI[11]
(ivload $2‘[ 3] 0 $if5 1 )[11] bank 1
(iadd $i‘‘[ 5 ] 4 $i¢¢[5 1 )HI[12]

(goto 1014777~Unrolll)

increment i

10147770-Unrolll: load from bank 1, use i
(ivstore O $i[4 1 $a[2 1 )[7]
(iassign $il 41 $i‘[1 1 )I[s]
(iassign $i‘[ 1 1 $i‘‘[5 1 )[9]
(imul $a[ 21 2 $a‘[3 ] )I[10]
% (ivload $a‘[ 3] 0 $i‘‘[6 1 )[11]
(ivload $a‘[ 3 1] 0 $i[5 ] )[11] bank 1
% (iedd $i°‘[ 51 4 $i¢¢[5 ] )[12]
(isub $i‘‘[ 51 4 $i‘‘[6 ] )H[12]
(goto 1014777--Unroll2)

decrement i, reverse banks

10147770-Unroll2: 1load from bank 0, offset 2, use i
(ivstore O $i[4 ] $al2 ] ) I[7]
(iassign $i[ 4 ] $i‘[1 1 )I[8]
(iassign $i‘[ 1] $i‘‘[5 1 )I[9]
(imul $al 2 ] 2 $a‘[3 ] )[10]
% (ivload $a‘f 3 ] 0 $i[5 1 )[11] bank 1
(ivload $a‘l 3 ] 2 $i[5 1 )[11] bank 1
(iadd $i“‘[ 51 4 $i‘‘[51 )[12]
(goto 10147770-Unroll3)

/* increment i */

10147770-Unroll3: load from bank O,offset 2, use i
(ivstore O $i[4 ] $alf2 1 )[7]
(iassign $il 41 $i‘[1 1 )I[8]
(iassign $i‘[ 1] $i‘‘[5 1 )[9]
(imul $af 2] 2 $a‘[3 ] )[10]
% (ivload $a‘[ 3] 0 $i[5 1 )([11] bank i
(ivload $a‘[ 31 2 $i[5 1 )[11] bank 1
Y% (iadd $i¢‘[ 51 4 $i‘‘{s 1 )[12]
(isub $i‘ ‘[ 5 ] 4 $i¢“[5 ] )[12] ; DECREMENT i‘‘
; so i gets decr later
(goto 10147770)

/* increment i, go back to loop */

Figure 7.7: Vector Scaling: VLIW Code With MSD(2,2) Data Allocation for Concurrent

Access
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(PROC_

BEGIR LOOP

(iconstant $dummy 3)
(LABEL LOOP)

(iadd
(iedd
(iadd
(iadd
(iadd
(imul
(imul
(iadd
(iadd
(iadd
(iadd
(iadd
(imul
(iedd
(imul
(iadd
(iadd
(iadd
(iadd
(iadd
(iadd
(imul
(iadd
(iadd
(imul
(iadd
(imul
(imul
(iadd
(iadd
(iadd
(iadd
(iadd
(iadd
(GOTO

$op3 $inp $sv2)
$op32 $sv33 $sv39)
$op12 $op3 $svi3)
$op20 $op12 $sv26)
$op25 $op20 $op32)
$op21 $op25 2)
$op24 $op25 2)
$op19 $opi2 $op21)
$0p27 $op24 $op32)
$opil $op1l2 $opl9)
$op22 $opl9 $op25)
$0p29 $op27 $op32)
$op9 $opil 2)
$sv26 $op22 $op27)
$op30 $op29 2)
$op8 $op3 $op9)
$op31 $op30 $sv39)
$op7 $op3 $op8)
$opi0 $op8 $opi9)
$op28 $op27 $op31)
$opdl $op31 $sv39)
$op6 $op7 2)

$opl5 $opl0 $svi8)
$op35 $sv38 $0op28)
$outp $opdl 2)
$op4 $inp $op6)
$opi6 $opi5 2)
$op36  $op35 2)
$sv39 $op31 $outp)
$sv2 $opd $op8)
$svi8 $opi6 $svi8)
$sv38 $sv38 $op36)
$svi3 $op15 $svis)
$sv33 $sv38 $op35)
(LABEL LOOP))

(PROC_ERD LOOP)

)

Figure 7.8: Example: Fifth Order Elliptic Filter - NADDR code
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stored in register file 1, and register file 2 is used to provide the value of $op4.
This illustrates the global view taken by the algorithm to make use of the bus
broadcast feature and minimize the overall number of required register files. The
CPU time for specification optimization of this example is 2.7 CPU seconds on a
DECStation 5000. With the added execution of register files allocation and graph
coloring routines the total runtime is 2.9 seconds. Here the incremental cost of
register files allocation is small. The reason is that this is a simple loops and
thus reaching definitions flow analysis, which is performed before graph coloring,
converges rapidly in one pass. Furthermore, the amnount ol parallelism in each
VLIW instruction is relatively small, and consequently the interference graph is
sparse.
10122158 1012372¢:
(iadd $o0p3[ 6 1 $inpl6] $sv2[ 1 )HI[1] (iadd $opi9[ 4 1 $opi12[2 1 $op21la 1 )[8]
(iadd $op32[ 1 1 ¢$sv33[] $sv3e[ 1 1 )[2] (iadd $op27[ 3 1 $op24[3 1 $op32[1 1 )[eo]
(goto 101227b8) (goto 10123d14)
Reaching Defs: { } Reaching Defs: {0 123456789 10
11 12 13 14 15 16 17 18 19 20 21
101227b8: 22 23 24 25 26 27 28 29 30 31 32
(iedd $opi2[ 2 ] $op3[6 ] $svi3[ ] )[3] 33 34 35 36 37
(goto 10122ad0)
Reaching Defs: { 01 2 } 10123d14:
(iedd $opiil 1 ] $opi2[2 ] $opio[4 ] ) [10]
10122ad0: (iedd $op22[ 2 ] $op19[4 1 $op25[5 1 )I[11]
(iadd $op20[ 2 ] $opi2[2 1 $sv26[1 ] )[4] (iedd $op29[ 4 ] $op27[3 ] $op32[1 1 )[12]
(goto 10122d£0) (goto 10124604)
Reaching Defs: {01 2345678910 Reaching Defs: {01 234567 89 10
11 12 13 14 15 16 17 18 19 20 21 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 } 33 34 35 36 37 }
10122d£0: 10124604:
(iadd $op25[ 5 1 $op20(2 1 ¢$op32[t 1 )[5] (imul $op9[ 2 1 $opiil1 ] 2 )[13]
(goto 101230£0) (iadd $sv26[ 1 1 $op22[2 ] $op27(3 1 )I[14]
Reaching Defs: { 0123456789 10 (imul $op30[ 3 1 $op29[4 ] 2 )[15]
11 12 13 14 15 16 17 18 19 20 21 (goto 10124694)
22 23 24 25 26 27 28 29 30 31 32 Reaching Defs: { 01234567 889 10
33 34 35 36 37 ) 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
101230£0: 33 34 35 36 37 }
(imul $op21[ 4 1 $op25[5 1 2 )[6]
(imul $op24[ 3 1 $op25[51 2 )[7] 10124694:
(goto 1012372¢) (iadd $op8[ 1 2 1 $op3[6 1 $opol2 1 )[18)]
Reaching Defs: { 0123456789 10 (iadd $op31[ 5] $op30[3 ] $sv39[1 ] )[17]

11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 ¥

(goto 1012545¢)
Reaching Defs: { 01234567 89 10
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 }

Figure 7.9: Example: Fifth Order Elliptic Filter VLIW code - Part 1
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1012545¢: **x Register File 2 provides $op8 **x

(iadd $op7[ 6 1 $op3[6 ] $op8[1 2 1 )[18]
(iadd $op10[ 4 1 $op8[1 2 1 $opiol4 ] )[19]
(iedd $op28[ 1 1 $op27[3 1 $op31[5 ] )[20]
(iadd $op4il 2 1 $op31[5 1 ¢sv39[t ] )[21]
(goto 10125£b0)
Reaching Defs: { 012345678910

11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 }

10125£b0:
(imul $ops[ 3 1 $op7l6 1 2 )([22]
(iadd $op15[ 2 1 $opi0[4 1 $svis[3 ] )[23]
(iadd $op35[ 4 1 $sv38[5 1 $op28[1 1 )[24]
(imul $outp[ 1 ] $opsai[2 ] 2 )[25]
(goto 10126ba8)
Reaching Defs: {01 2345678910
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 }

10126ba8:
(iadd $opa[ 2 1 $inp[6] $ops(3 1 )([28]
(imul $opi6[ 4 ] $opi1S[2 ] 2 )[27]
(imul $op36[ 6 ] $op35[a ] 2 )[28]
(iadd $sv39[ 1 ] $op31[5 ] $outpli 1 )[29]
(goto 10127718)
Reaching Defs: {0123 456788910
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 }

10127718: *%* Register File 1 provides $op8 **x*

(iadd $sv2[ 1 ] $op4a[2 ] $ops8li 2] )[30]
(iadd $svis{ 3 ] $opis6[4 ] $svigs[3 ] )[31]
(iadd $sv38[ 5 ] $sv38[5 ] $op36le ] )[32]
(goto 10127£70)
Reaching Defs: {0123 4567 89 10

11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 }

10127£70:
(iadd $svi3[ 2 1 $op15[2 ] $svis[3 ] )[33]
(iadd $op3[ 6 1 ¢$inpl[6] $sv2[1 1 )[34]
(iadd $sv33[ 3 ] $sv38[5 ] ¢$op35[4 ] )I[35]
(goto 10128510)
Reaching Defs: {0 123456789 10
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 ¥

10128510:
(iadd $op32[ 1 ] $sv33[3 ] $sv39[1 ] )[36]
(iadd $op1i2[ 2 ] $op3[6 ] $sviz[2 ] )[37]
(goto 10122ad0)
Reaching Defs: { 0 2346567 89 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 }

Figure 7.10: Example: Fifth Order Elliptic Filter VLIW code - Part 2

7.5 Synthesis Benchmark: GCD

This program, another benchmark from the 1988 High Level Synthesis Workshop,

is a simple loop that finds the gratest common divisor of two numbers. Figure

7.14 illustrates the C source code and the corresponding NADDR code for this

benchmark.

This example illustrates how the conditional-execution capabilities of the ar-

chitecture template are crucial to achieving high performance. Specification Op-

timization achieves steady-state throughput of 1 cycle/iteration in the innermost

loop, for a 5-fold speedup over the serial NADDR code (this assumes that un-

conditional jumps take zero cycles). On each loop iteration, the values of y-x

and x-y are concurrently computed, loop termination (condition code $cc0) is

verified, and condition codes for the comparison of the new values of x and y are

found.
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Figure 7.11: Example: Fifth Order Elliptic Filter - Interference Graph



CHAPTER 7. EXAMPLE APPLICATIONS OF ASPD METHOD 125

[2] 2]

- N W oo O

Figure 7.12: Example: Fifth Order Elliptic Filter - ASP Design

| Register File | Variables Allocated ”

sv26, op32, opll, sv39, op28, op8, outp, sv2
op20, opl2, op22, op9, op8, opdl, oplb, op4, svl3
op24, op27, op30, opb, sv18, sv33

op21, opl9, op29, opl0, op35, oplb

op25, op35, sv38, op3l

op3, op7, op36

Ol B W N =

Figure 7.13: Elliptic Filter ASP Design - Register File Allocation



CHAPTER 7. EXAMPLE APPLICATIONS OF ASPD METHOD 126

The execution of each loop iteration has a latency of two cycles. In the first
cycle, comparison of the current values of x and y is performed concurrently
with the computation of y-x and x-y. In the second cycle, the condition codes
assigned with the result of the comparisons determine the correct values of x
and y for use by future iterations. If conditional-execution is not available, each
iteration has a latency of three cycles to execute the comparison, the conditional
jump to an appropriate code sequence, and the assignment of a new value to the
appropriate register. Since each iteration requires the values of both x and y in
its first cycle, a two-cycle delay between consecutive iterations ensues. For this
example, the absence of conditional execution of operations reduces by one half

the achievable performance.

The result of ADJUST-GRAPH, illustrated in Figure 7.15, is a claw-free
graph, and is colored with the optimal number of colors, 6. Figure 7.16 illustrates
the result of Specification Optimization. This design requires 8 ALUs and 2
latches to perform COPY operations. It should be noticed that, depending on

the realization technology, the operations

(ieq $ccO[ 11 $3°[3 1 ¢$2[41 )
(ige $ccil 21 $3°[3 1 $2[41 )

may be assigned to the same ALU. The first operation subtracts $3¢ from $2,
and the second operation compares the same values for equality. This reduces
cost to 6 ALUs and 2 COPY wunits. Figure 7.17 illustrates the result of Imple-
mentation Optimization. The CPU time for specification optimization of this
example is 0.2 CPU seconds on a DECStation 5000. The added execution of reg-
ister files allocation and graph coloring barely alter the same total runtime, the
difference being close to the resolution of the workstation’s timing mechanism.
For comparison, the IBM synthesis system with path-based scheduling, which
also achieves a throughput of 1 cycle/iteration[18], has an execution time of 0.3

seconds on an IBM 3090/200 mainframe.
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/* (PROC_BEGIN main
* ged(x,y) ;  (ICONSTANT $0 0)
* (LABEL main)
* the result is the largest integer (LABEL LOOP)
* that divides evenly x and y (IEQ $cc0 $3 $2 )
* (IF $ccO (LABEL L7))
*/ (IGE $ccl $3 $2 )
(IF  $cci (LABEL L4))
int retval; (ISUB $2 $2 $3)
(G0TO0 (LABEL LOOP))
main() (LABEL L4)
{ (ISUB $3 $3 $2)
register int x,y; (G0TO (LABEL LOOP))
(LABEL L7)
while (x!=y)}{ (IVSTORE 0 $0 $3)
if(x < y) y=y-x; (160T0 $31)
else  x=x-y; (PROC_END main)
} )

retval = x;

¥

Figure 7.14: Example: Greatest Common Divisor - C source code and NADDR Code

7.6 Linear-Phase B-Spline Filter Example

This section presents the feasible design points for a simple linear-phase B-spline
filter[89] loop, based on repeated compilation with varying resource constraints.
This entire experiment requires 47.5 CPU seconds on a DECstation 3100. When
the compiler is allowed to use as many ALUs as needed, it finds the “optimal”
issue rate of one iteration per cycle by using 16 ALUs. Figure 7.18 shows the
iteration issue rates obtained by scaling down the number of functional units
available. The filter algorithm is illustrated in Figure 7.19. The design point
at 6 ALUs is chosen for implementation, and Figure 7.20 illustrates the VLIW
code obtained by using 6 ALUs. The steady state code of the loop is shown on
the right side of the figure. A throughput of one loop iteration every 3 cycles
is achieved, for an speedup of 5.3 over the serial NADDR execution. The graph
resulting from ADJUST-GRAPH is not claw-free, and the coloring heuristic uses
12 colors. Figure 7.21 illustrates the resulting filter design, and Figure 7.22

presents the allocation of variable into register files.

7.7 White Dwarf FEM Solver Example

Figure 7.23 illustrates the algorithm of the Finite-Element Matrix solver.
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[11],101db£38
[6],101db£38
0] dhf3s

3
[12],101db£38
[7],701db£38

2
[13),101dbf38
[8},101dbf38
5

31,101db

1

[14],101db£38

[91,101dbf38
41,101db638

|||||I|I|'t~ S
6
01101dd554
IIlIiIIII

51,101dd554

Figure 7.15: Example: Greatest Common Divisor - Interference Graph
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101db480: 101dc¢71c:
H (iconstant $0[ 1 ] 0 )I[1] (if $ccO[1 ] L17
(goto 101db71c) (goto 101ddd38)
Reaching Defs: ELSE
i 1} (if $cci[2 ] L14
101db71c: (iassign $3[ 6 1 $3¢[3 ] )[8]
(iconstant $3[ 6 ] 21 )[2] (ieq $ccOl 1 1 $3°[3 ] $2[2 1 )[9]
(goto 101db9£8) (ige $cci[ 2] $3¢[3 1 $2[4 1 )[10]
Reaching Defs: (isub $3‘[ 3 1 $3°[3 ] $2[4 1 )[11]
{1 } (isub $2°C 51 $2[4 1 $3¢[3 ] )HI[12]
101db9f8: (goto 101dc71c)
(iconstant $2[ 4 ] 27 )[3] ELSE
(goto 101dbfa8) (iassign $2[ 4 1 $2°[5 ] )[13]
Reaching Defs: (ieq $ccO[ 1 1 $3[6 1 $2°[5 1 )[14]
{12 %} (ige $cci[ 2 1. $3[6 1 $2°[5 1 )[15]
101dbfa8: (isub $3‘[ 31 $3[6 1 $2¢[5 1 )I[is6]
(ieq $ccol 1 1 $3[6 1 $20[241 )H[4] (isub $2¢0L 51 $2¢05 1 ¢$3[6 1 )HI[17]
(ige $cci[ 2 1 $3[6 1 ¢$2[4 ] )HI[5] (goto 101dc71c)))
(isub $3‘[ 3] $3{6 ] ¢$2[41 )[6] Reaching Defs:
(isub $2°C 5 ] $20[4 1 $3[6]1 )HI[7] {12345678910 11
(goto 101de71c) 12 13 14 15 16 17 }
Reaching Defs: 101ddd38:
{123 1} (ivstore O $0[1 ] $3[6 1 )[18]

(goto 101de00c)
Reaching Defs:
{12345678910 11
12 13 14 15 16 17 }
101de00c:
(igoto 101d8830)
Reaching Defs:
{12345678910 11
12 13 14 15 16 17 18 }

Figure 7.16: Example: Greatest Common Divisor - VLIW code and Register File Allocation

[ s3 | & & & o | b g
22 I I I I o & 5

| $2 I & & ? & Bl 4
ccl o Py 5

ccO Py ]

7] IV Y% FARAKiK
leqcc0 32 Igeccl 32 jsub3' 32 isub2'23 ieqcc032' igeccl 32 isub3'32 i.SUb 203 iassign 3 3'
ieqec032 Igecel 32 isub3'32 isub2'23
iassign 2 2'

Figure 7.17: Example: Greatest Common Divisor - ASP Design
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LPBFIR- Linear-Phase B-Spline Filter
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Figure 7.18: Linear-Phase B-Spline Filter Experiment

(PROC-BEGIN 1pbfir

(LABEL 1lup)

(IADD
(IADD
(IADD
(IADD
(IADD
(IMUL
(IMUL
(IMUL
(IMUL
(IMUL
(IMUL
(IADD
(IADD
(IADD
(IADD
(IADD

(GOTO (label

(PROG-END

$x0
$x1
$x2
$x3
$xa
$y0
$y1
$y2
$y3
$ya
$y5
$z1
$z2
$z3
$z4
$z5

$In-port

$ai
$a2
$a3
$ad
$mo
$mi
$m2
$m3
$ma
$mS
$y0
$z1
$z2
$z3
$z4
lup))

$a9)
$a8)
$a7)
$a6)
$x0)
$x1)
$x2)
$x3)
$x4)
$as5)
$y1)
$y2)
$y3)
$y4)
$y5)

1pbfir))

Figure 7.19: Linear-Phase B-Spline Filter Algorithm

$a10)
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10124£d4: 1012668c: **% STEADY-STATE LOOP BEGINS *x
(iadd $x0[ 10 ] $in_port[9 11 12 ] $ai0[5 7 11 ] )[18] (iadd $z4[ 8 1 $23[4 1 ¢$y4l6 ] )[48]
(iadd $x1[ 3] $aili2 ] $a9[8 91 )[19] (imul $y1f[ 11 ] $mi[8 ] $xi(2 1 )[49]
(iadd $x2[ 1 ] $=a2[2 5 101 $a8[3 7 ] )[20] (iadd $x1[ 2 ] $ail[i2 ] $a9[6 91 )[50]
(iadd $x3[ 2 ] $a3[4 91 $a7[8 1 )[21] (imul $y4( 6 1 $mal7 1 $xal[5 1 )[51]
(iadd $x4[ 5 ] $a4[2 11 ] $as6[1 10 ] )[22] (iadd $x4[ 5 ] $a4[2 11 ] $a8[1 10 ] )[52]
(imul $yS[ 4 ] $mS[10 12 ] $ab[1 2 1 )[28] (imdd $z2[ 11 $zi[1 1 $y2[8 1 )I[53]
(goto 10126bd0) (goto 10125604)
Reaching Defs: Reaching Defs:
{12345678910 11 {12345678910 11
12 13 14 15 16 17 } 12 13 14 15 16 17 23 28 34 36 38
10126bd0: 39 40 41 42 43 44 45 46 47 48 49
(imul $yol 7 1 ¢moO[6 1 $x0[10 1 )[24] 50 51 52 53 54 55 56 57 58 59 60
(imul $yi[ 11 ] $mi[8 ] $x1[3 ] )[25] 61 62 63 }
(imul $y2[ 2 1 ¢$m2[9 1 $x2[1 ] )[26] 10125004
(imul $y3[ 3 ] $m3[4 ] $x3[2 ] )[27] (iadd $z5[ 1 $z4[{8 1 ¢$y5[4 1 )H[54]
(imul $y4[ 6 1 $ma[7 1 $x4[5 ] )[28] (imul $y2[ 3 1 $m2[9 1 $x2[5 ] )I[55]
(iadd $x0[ 10 1 $in_port[9 11 12 ] $ai0[5 7 11 1 )[29] (iadd $x2[ 51 $a2[2 5 10 ] $a8[3 7 1 )I[56]
(goto 10127180) (imul $y5[ 41 $m5[10 12 1 $ab[1 2 ] )[57]
Reaching Defs: (iadd $z1[ 1 1 $yo[7 1 ¢$yi[11 ] )I[58]
{12345678910 11 (imul $yo[ 7 1 ¢$mol[6 1 $xo0[10 1 )[59]
12 13 14 15 16 17 18 19 20 21 22 (goto 101260dc)
23 Reaching Defs:
10127180: {12345678910 11
(iadd $z1[ 4 1 ¢$yo[7 1 #$yil11 ] )[30] 12 13 14 15 16 17 23 40 41 42 43
(iadd $x1[ 3 1 $a1[12 ] $ao[6 2 ] )[31] 44 45 46 47 48 49 50 51 52 53 54
(iadd $x2[ 1 ] $a2[2 5 10 ] $a8[3 7 ] )I[32] 55 56 57 58 59 60 61 62 63 1}
(iedd $x3[ 2] $a3[4 9] $a7l8 ] )[33] 101260dc:
(iadd $x4[ 5] $ad4f2 11 ] $a6[1 10 ] )[34] (iadd $z3[ 4 1 $z2[1 ] ¢$y3[3 1 )I[e0]
(imul $yo[ 7 1 $mol[6 ] $x0[10 ] )[35] (imul $y3[ 3 1 $m3[4 ] $x3[2 1 )[ei]
(goto 10126ea8) (iadd $x3[ 2] $a3[4 9] $avl8 1 )[62]
Reaching Defs: (iadd $x0[ 10 ] $in_port[9 11 12 1 $ai10[5 7 11 ])[63]
{12345678¢91011 (goto 1012668c)
12 13 14 15 16 17 19 20 21 22 23 Reaching Defs:
24 25 26 27 28 29 } {123456789 10 11
10126ea8: 12 13 14 15 16 17 42 43 44 47 48
(iadd $z2[ 1] $z1[4 1 ¢$y2[21 )I[386] 49 50 51 52 53 54 55 56 57 58 59
(iadd $x0[ 10 1 $in_port[9 11 12 ] $aio[5 7 11 1)[37] 60 61 62 63 }
(imul $yi[ 11 ] $mi[8 ] $xi[3 ] )[38]
(iadd $x1[ 2 1 $a1[12 ] $a9[6 9] )[39]
(imul $y2[ 31 $m2[9 1 $x2[1 1 )[40]
(iadd $x2[ 5 1 $a2[2 5 10 ] $as8[3 71 )I[4a1]
(goto 10127c£0)
Reaching Defs:
{123456789 10 11
12 13 14 15 16 17 23 25 26 27 28
29 30 31 32 33 34 35 }
10127¢£0:
(iadd $23[ 4] $z2[1 ] ¢$y3[3 ] )I[42]
(imul $y3[ 3 ] $m3[4 1 $x3[2 1 )I[43]
(iadd $x3[ 2 ] ¢$a3[4 9] $a7[8 ] )[44]
(iadd $z1[ 1 ] ¢$yo[7 1 $y1[11 1 )[45]
(imul $yo[ 7 1 ¢$mo[6 ] $x0[10 1 )[46]
(iadd $xO[ 10 ] $in_port[9 11 12 ] $a10[5 7 11 ])[47]
(goto 1012668¢)

Reaching Defs:
{1234567891011
12 13 14 15 16 17 23 27 28 30 33
34 35 36 37 38 39 40 41 }

Figure 7.20: Example: Linear-Phase B-Spline Filter VLIW code
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4
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==t P
A
iadd $z4 ... imul $y1... ladd $x1.. imul $y4... 1ddIx4..  iadd$z2..
jadd $z5... imul $y2... iadd $x2... imul $y5... !add $z1... imul $y0...
iadd $z3... imul $y3... iadd $x3... iadd $x0...

Figure 7.21: Example: Linear-Phase B-Spline Filter

| Register File | Variables Allocated H
z1, z2, ab

x1, a2, x3

y2, a8

z3, z5

x4, x2, al0
y4

mé, y0

z4, ml, a7
a9, m2, a3
ab, x0

in-port, yl, a4
al, mb
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Figure 7.22: Linear-Phase B-Spline Filter - Register File Allocation
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while
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<€) { convergence ?

BackSub(); /* perform Back Substitution */
theta = ThetComp(); /* get theta*/

SubBack(); /* second back substitution */
NewP(beta); /* get the new P vector */

delta = DeltaComp(); /* get delta*/

alpha = gamma/delta; /* compute alpha */
NewX(alpha); /* get the new Xvector */

RES(); /* compute Residual: new error vector */
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Figure 7.23: Finite Element Matrix Solver Computation

BackSub is one of the most complex procedures in the Finite-Element code. It
solves the equation R(;11) = €' * Ry, where R is a dense column vector of size
N and Cis an NxN lower triangular sparse matrix. Every diagonal element of
C is non-zero. Instead of computing the inverse matrix, the procedure solves the
system C' * K41y = R(y) where Ry is unknown. Because C is lower triangular,
C[N,0] is the only element in row N. Therefore, R()[N] = C[0, N] * Ry1)[N],
thus

R41)[N] = Ry [N] + C[0, N] (7.1)

The value of Ry1)[V — 1] is computed similarly. Because row N-1 has at most

two elements and thus
RN —1]=C[0,N — 1] « R(H_l)[N] +C[1,N —1] % R(H_l)[N - 1] (7.2)

The value of Ry,41)[N] is given by 7.1, and the equation 7.2 is solved for
Ri¢41)[V — 1]. The remaining values of R;41) are computed similarly.

The procedure starts at the top left of the matrix (row 0, column 0), using
the formula for k = 0 to N:
Rylk] — o Clk, 1] Riyy[]

Riern)[k] = Cl.k)

The inner loop of the procedure implements the dot product, and the outer
loop applies the formula for each row. The source code for the BackSubstitution

routine is presented in Appendix A.
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” ALUs [ Cond. Jumps ] Speedup small data set ‘ Speedup large data set ﬂ

1 1 1.00 1.00
2 1 1.13 1.27
3 2 1.57 1.83
4 1 1.98 2.27
5 | 2.33 2.72
6 2 2.46 3.21
7 2 2.58 3.30
8 2 2.78 3.48
12 2 3.08 4.32
14 2 3.08 4.32
16 2 3.08 4.32
17 2 3.08 5.63

Figure 7.24: Back Substitution experiment - simulation results

Figure 7.24 illustrates Specification Optimization of the FEM BackSubstitu-
tion routine. The experiments are run with a small data set, for ease of sim-
ulation, and a larger and more realistic data set. Both matrix data sets have
approximately the same distribution of sparseness typically found in electromag-
netic FEM problems. With 17 ALUs and more, the maximum rate of one itera-
tion per cycle is achieved. However, this rate is rarely exercised in simulation for
this example, given the short vector characteristics of this FEM problem. Due
to the short vector characteristics, the maximum speedup achieved in simulation
is 5.63. From 12 to 16 ALUs, the inner loop executes at the maximum rate of
two cycles per iteration. The maximum speedup achievable for this program is
13, because there are 12 operations and one conditional jump in the inner loop.

One of these operations, (ICONSTANT $8 19940),loads a constant value into
a register and is removed by optimization. The 1 cycle/iteration steady state
instruction for this loop requires 17 ALUs, because of extra COPY operations
introduced during pipelining. The steady state pipelining of 1 cycle/iteration
is achieved, for this program that uses sparse pointer-based data structures, by
using a compiler assertion to disable inter-iteration data dependency.

The VLIW program for the case of 1 cycle/iteration is presented in Appendix

A. Figure 7.25 presents the largest instruction for the inner loop. That instruc-
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tion, L1014c024, performs concurrently five COPY operations, two floating-point
operations ( fadd and fmul), four integer operations, and five loads from memory
as well as one conditional jump. This example assumes a memory system similar
to the White Dwarf’s, which is capable of providing concurrently all elements of
a record in the sparse matrix. As mentioned before, the COPY operations can be
avoided by using loop unrolling and the algorithm of Section 3.3.2, thus reduc-
ing the instruction cost. The hand-coded White Dwarf BackSubstitution routine
also achieves a maximum rate of one iteration per cycle. For comparison, the
hand-generated microcode inner loop is composed of four instructions, because
the loop is unrolled four times to avoid copy operations, and is optimized for the
case of short vectors. The widest microinstruction in the White Dwarf routine
performs concurrently two integer additions, one floating-point addition and one
floating-point multiplication, a memory access to read the column, row and ma-
trix entry elements of the sparse matrix, a memory read from the dense vector
R, a test for loop termination, a number of register-to-register transfers and one
conditional jump. This hand-generated microcode is comparable to the number
of resources required by the compiler-generated VLIW code. The CPU time for
specification optimization of this example is 1.5 CPU seconds on a DECStation
5000. With the added execution of register files allocation and graph coloring

routines the total runtime is 2.4 seconds.

7.8 RISC Instruction Set Processor Example

This section illustrates the inter-iteration effects of the specification optimization
techniques. In this example the application code given as input to the ASPD
system 1s a program to interpret an instruction set. The resulting ASP is the
design of an instruction set processor. The use of run-time disambiguation during
specification optimization allows the automated generation of a high-performance
pipelined processor with instruction prefetching. Furthermore, the resulting de-
sign is capable of achieving throughput of one instruction per cycle when data

dependencies allow.
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1014c024:
(fadd $£f6 $£6 $£4)
(fmul $£f4 $£f8 $£10)
(fassign $£8 $£8°)
(fassign $£8¢ $£8¢¢)
(fassign $£8°¢ $£8¢<¢)
(fvload $£f10 0 $2)
(if $cc0 L17
(iassign $4 $4¢)
(iassign $4° $4¢¢)
(iadd $2 $6 $2¢)
(ine $cc0 $8 $9)
(iash $2° $8¢ 2)
(ivlicad $8 4 $4°¢)
(ivioad $9 0 $3)
(ivload $8°¢ 0 $3)
(fvload $f8°‘¢ 0 $4°°)
(iadd $3 $3 12)
(iadd $4¢¢ $4¢¢ 12)
(goto 1014c024)
ELSE
(goto 1014c844))

Figure 7.25: BackSubstitution Example - Widest VLIW instruction

Run-time disambiguation is applicable if memory-reference disambiguation
mechanism[63] does not have enough information about memory accesses and
hence parallelization is prevented. The solution is to generate distinct versions
of the code, one assuming that memory references do not interfere, and another
assuming data dependency. These two versions of code are scheduled for con-
current execution. A check is added to determine at run-time which version is
correct. Run-time disambiguation is able to achieve significant speedup, and
alleviates memory access bottlenecks. Furthermore, the use of run-time dis-
ambiguation allows pipelining in cases where conservative assumption of data
dependency would entail serial execution. This is the key to achieving pipelined
implementations of instruction set processors with pre-fetching. Furthermore,
in situations where the compiler does not have enough information to decide on
memory-reference disambiguation it is frequently the case that no conflict occurs,
e.g. pointer-based data structures[32]. A drawback of run-time disambiguation
is the potentially large increase in code size. However, run-time disambiguation
allows pipelining to occur, and thus is able to extract parallelism, in situations
when more conventional approaches fail. Even though the implementation of
instruction-set processors is not the target application area of ASPD, this ex-

ample is included to illustrates the breadth of application of the ASPD method
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and the application of run-time disambiguation. Here, the pipelined code for the
RISC processor is initially generated by the VLIW compiler, manually enhanced

with the addition of run-time disambiguation.

Figure 7.26 is a behavioral description of the simple RISC processor which,
for the purpose of illustration, has only two kinds of instructions: ALU operation
and branch. After percolation scheduling is applied, the operations in the inner
loop, corresponding to RISC instruction fetch and execute cycle, are divided into
four microinstructions corresponding to the phases of: instruction fetch, decode,

execution, and write back results. This is illustrated in Figure 7.27.

By applying inter-iteration optimization, the result is a processor capable
of executing a new RISC instruction every two cycles (assuming fast 1-cycle
memory). Enhanced Software Pipelining is only able to start a new iteration,
i.e. a new RISC instruction, concurrently with the third phase of instruction
execution. This is because that there is a potential dependency between the
microinstruction for execution, and the microinstruction for instruction fetch, if

a branch instruction is being executed by the RISC processor.

By employing extended pipeline scheduling with run-time disambiguation,
a new iteration is started conditionally at every cycle, because there are paths
through the loop where the new value of the program counter is known. These
paths correspond to execution of RISC instructions other than branch, without
data dependency between consecutive instructions. In Figure 7.28, Instructions
1 to 4 represent the RISC instruction execution pipeline being filled on startup,
and Instruction 5 represents the steady-state of concurrently executing 4 RISC
instructions without data dependency. In Instruction 5, the results of RISC
instruction ¢ are being stored into the register file ( {RF[D]=DST} ); RISC in-
struction (i+1)is being executed ( (DST = ALU(OP,SRC1,SRC2)); the arguments
of RISC instruction (i+2) are being fetched from the register file (<SRC1=RF [S1] ;
SRC2=RF [52]>); RISC instruction (i+2) is being decoded ({ccd=0P’>1>}); and
RISC instruction (i+38) is being fetched from memory ({S1=Mem[PC].s1,

}). With this technique, a pipelined RISC processor is generated naturally from
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Simple RISC processor:
MEM[O. .memsize]: memory
IR: Instruction Register,
PC: Program Counter
RF[0..31]: Register File>

LOOP IR=MEM[PC];PC=PC+1;
IF IR.opcode.class=ALU_OP /* ALU op 7 */
THEN /% perform ALU operation */
RF[IR.dest]=ALU(IR.opcodse ,RF[IR.src1] ,RF[IR.src2])
ELSE /% JUMP instruction */
PC = M[PC];
ENDLOOP

Figure 7.26: Simple RISC Processor Specification

Li: IR=MEM[PC];PC=PC+1; /* Fetch */

L2: S1=RF[IR.src¢1]; S1=RF[IR.src2]; DECODE[IR.opcode(L3, L4)
/*Conditional jump to L3 or L4 */

L3: RF[IR.dst] = IR.opcode(S1, S2); GOTOD L1 /* execute ALU op */
L4: PC=MEM[PC]; GOTD Li

Figure 7.27: Intra-iteration Optimized RISC Specification: 4 cycles/instruction.

the the original behavioral description of a RISC processor. The resultant design
is capable of executing one RISC instruction per cycle when dependencies allow.
Furthermore, the code for handling pipeline hazards is generated automatically.
Additionally, this technique presents the interesting possibility of generating pro-
cessors capable of executing more than one instruction per cycle (superscalar).
This is done by unrolling the loop corresponding to the behavioral description of
the RISC instruction fetch and execute cycle prior to input to the ASPD system.
Care is required during the application of run-time disambiguation, to avoid large

increases in code size and schedules that are wasteful of resources.

7.9 FFT Processor Example

This section illustrates an ASP for the FFT algorithm presented in Chapter 6.
The VLIW code, with memory bank control, is illustrated in Figure 6.7. This
FFT example uses memory organization for concurrent access and enhanced

memory switches for memory bank control, as described in Section 6.6 of Chapter
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(1) Si=Mem[PC].si; S2=Mem[PCl.s2; D =Mem[PC].dqd;
0P=Mem[PC].0op; PC=PC+1;G0T0(2)

(2) ccd=(0P>0); SRC1 = RF[S1]; SRC2 = RF[S2];
Si=Mem[PC].s1; S2=Mem[PC].s2; D’=Mem[PC].d;
DP’=Mem[PC].op; PC’=PC; PC=PC+1; GOTO (3)

(3) 0P=0P’; D=D’; PC’’=PC’ ; PC’=PC;
if ced /% ALU op */

DST = ALU(OP,SRC1,SRC2);

ced=(0P’>1); SRCi = RF[S1i]; SRC2 = RF[S2];

ccl=81==D ; cc2=82==D;

S1=Mem[PC].s1; S2=Mem[PC].s2; D’’=Mem[PC].d;

OP=0P’ ; OP’=Mem[PC].op;

PC=PC+1; GODTO (4)
else{PC=Mem[PC] .Immed ; GODTO (1) }

(4)if !(cel v cc2)

RF[D]=DST ; OP=0P’; D=D’;
if ced /* ALU op */

DST = ALU(OP,SRCi,SRC2);

cecd=(0P’>1); SRCi = RF[S1];SRC2 = RF[S2];

ccl=S1==D ; ce¢2=852==D;

¢¢3=51==D’ ; cc4=84==D"’

Si=HMem[PC].s1 ; S2=Mem[PC].s2;

OP = 0P’ ; OP’=Mem[PC].op;

D=D’; D’=D'’; D’’=Mem[PC].d;

PC?’=PC’; PC’=PC; PC = PC + 1; GOTO (5)

else {PC=Mem[PC].Immed ; GOTO (1)}
else /* conflict */

PC = PC’?; GOTO (1)
(5)if '(cel v cc2 v cc3 v cc4d)
RF[D]=DST

if cecd /* ALU op */
DST = ALU(OP,SRCi,SRC2);
ccd=(0P’>1); SRC1 = RF[S1];SRC2 = RF[S2];
ccl1=81==D ; cc2=52==D;
¢c3=51==D’ ; cc4=5S4==D’’
S1=Mem[PC].s1; S2=Mem[PC].s2; D’’=Mem[PC].d;
0P=0P’; OP’=Mem[PC].op;
PC’?=PC’; PC’=PC; PC=PC+1; GOTOD (5)

else {PC=Mem[PC].Immed ; GOTO (1)}
else /# conflict */

PC = PC’?%; GOTO (1)

Figure 7.28: Optimized RISC Specification

: 1 cycle/RISC instr
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6. This code takes 5 cycles per iteration, whereas a RISC processor would require
22 cycles, therefore achieving a speedup of about 4.4 (bank control is not needed
for a serial RISC execution). This is the same speedup obtained by the VLIW
architectural template, i.e. direct implementation of the optimized specification
without implementation optimization. However, a canonical VLIW processor
capable of executing that same code would require 5 ALUs, a 15-ported global
register file and a 2-ported global memory system. On the other hand, the
design in Figure 7.29 is built out of single-ported register files and memories.
Furthermore, the interconnection between register files and functional units is
much more sparse than the full connectivity in the canonical VLIW processor.
It is expected that cycle time for the FFT ASP design in Figure 7.29 would be
shorter than the cycle time of a canonical VLIW processor capable of executing
the same code. Therefore, the FFT ASP achieves high performance as well as

efficient utilization of the hardware resources.
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Chapter 8

Summary, Conclusions and
Extensions

This chapter presents a summary of the thesis and describes key contributions

along with suggestions for further research.

8.1 Thesis Summary

The ASPD architecture synthesis method divides the task of designing an special-
purpose processor architecture into Specification Optimization and Implementa-
tion Optimization phases. Algorithms for the Specification Optimization and
Implementation Optimization phases and their implementation are presented in
this thesis. The use of advanced compilation techniques is a key to achieving
high-performance processors. Instruction scheduling is a prime determinant of
performance because it determines the number of clock cycles required for the
execution of the target application. Once a schedule is fixed, remaining opportu-
nities for performance enhancement are found in the hardware allocation phase
by reducing the clock cycle. Scheduling limited to basic blocks is not capable
of achieving high-performance, because there is not much opportunity for par-
allelism in basic blocks. Percolation Scheduling[62, 34] and Enhanced Pipeline
Scheduling[33] are characterized as general and scalable compilation techniques
that allow broad application and usefulness, and are employed in the ASPD

method. High-performance schedules are obtained via compilation and code par-

142
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allelization for an unconstrained architectural template. A VLIW architectural
template is chosen as the scalable target architecture for Specification Optimiza-
tion. This process of repeated compilation with gradual imposition of resource
constraints leads to the final optimized specification.

Further performance enhancement is obtained by tailoring the implemen-
tation organization to the execution requirements of a specific code schedule.
A scalable implementation template featuring multiple busses and distributed
single-port register files is presented. Allocation of data into multiple single-
ported register files is performed by using efficient graph-coloring algorithms. The
identification of special graph characteristics allow the use of efficient polynomial-
time coloring algorithms. Data allocation is performed to allow concurrent access
to register file data as required by the optimized program. For some classes of
programs, the optimal (minimum) number of register files is achieved. Imple-
mentation Optimization results in an sparsely interconnected structure which is
capable of executing the VLIW parallelized code at a lower hardware cost. Exam-
ple applications of the ASPD method illustrate the high performance obtained
with the use of advanced compilation techniques at very reasonable computa-

tional costs.

8.2 Key Contributions

The key contributions of this thesis are divided into the following categories:

o A New Method of Architecture Synthesis:

The ASPD method of architecture synthesis of high-performance application-
specific processors brings together the two research areas of compilation for
fine-grain parallelism and digital system synthesis. A clean framework for
synthesis is established with the division of the optimization task into be-

havioral and structural realms.

¢ New and Improved Compilation Techniques:
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A new algorithm to detect Induction Variables is described in Chapter 3.
It 1s applicable beyond the VLIW realm, as recent superscalar and super-
pipelined uniprocessors require powerful methods to exploit architectural

parallelism.

A new memory allocation algorithm to allow concurrent access to memory
variables is described in Chapter 6. The algorithm is useful in compilers
for VLIW architectures with multiple memory banks. Furthermore, this
algorithm is extensible to enhance the effectiveness of processors equipped

with direct-mapped caches.

An eflicient graph coloring algorithm for register file allocation is described
in Chapter 5. The algorithm may be extended to allocate data into multiple
register files in VLIW architectures which have register file access constraints

such as [46].

e Synthesis Tools Implementation:

The computation of the unifiable-ops attribute using bit sets is previously
unimplemented. An implementation which enhances algorithmic perfor-
mance is described in Chapter 3 along with extensions to handle register

renaming.

The Enhanced Software Pipelining algorithm has been extended to use the

unifiable-ops attribute, and the implementation is described in Chapters 3.

An advanced retargetable compiler for VLIW architectures has been imple-

mented. This i1s the first public-accessible VLIW compiler.

e Application of Architecture Synthesis Tools:

The architecture synthesis method and tools are applied to a number of ex-
amples. These examples confirm the feasibility of the architecture synthesis
method and show that performance speed-up in the range of 2.6 to 7.7 over

contemporary general-purpose RISC processors can be achieved.
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8.3 Future Work

In [47] standard compiler optimizations[2] are also integrated in the percolation
scheduling framework. The basic idea is to apply the standard optimizations as
operations are being moved by percolation scheduling. For example, the actual
opcode and arguments of an operation may be changed to reflect the optimiza-
tion during the motion of the operation from an instruction to another. This
approach is desirable since some of the standard high-level optimizations may
actually reduce the eventual parallelism in the final object code. Therefore, it is
beneficial to delay the application of optimization until the parallelization phase
of compilation. Furthermore, new opportunities for optimization are encountered
during the parallelization process which did not exist in the serial version of the
program.

In the present implementation, pipelining is only applied to inner loops. The
enhanced percolation scheduling technique is applicable to outer loops by consid-
ering (pipelined) inner loops as a single indivisible unit during parallelization[31].
However, this method does not benefit nested loops with short dependency vec-
tors. Loop Quantization[61]is capable of extracting more parallelism by unrolling
and compacting both the inner and outer loops. A possible extension is to ex-
tend the enhanced software pipelining algorithm to move operations across outer
loop back-edge. This achieves loop-unrolling effects and thus emulates the Loop
Quantization algorithm. This can be developed in an integrated framework for
the parallelization of nested loops.

The specification optimization examples of Chapter 7 assume single-cycle
latency execution of operations. Because data-dependency is a key controlling
factor in percolation scheduling, it frequently finds schedules in which operations
in consecutive instructions are data dependent. This is specifically important for
operations in the critical dependency path. Single-cycle operation latency is used
in the IBM VLIW prototype[31]. In the White Dwarf project, the small difference
in operator latencies for the integer and floating-point units was such that the use

of multiple cycle floating-point units would either unduly complicate the clocking
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mechanisms or unnecessarily increase floating point operator latency. Because
floating-point operations composed most of the critical dependency path, a single-
cycle operator latency was adopted. The integer ALU operations take also a
single pipeline stage in the recently announced MIPS R4000 RISC processor. A
possible ASPD extension for architecture realization with multicycle pipelined
operators is the notion of degree of concurrency[13], which combines multiplicity
of functional units and pipeline depths. Specification optimization is performed
with single-cycle latency operators and alternative realizations are searched in
actual implementation with an equivalent degree of concurrency.

An alternative implementation of software pipelining that uses perfect pipelining|6]
is planned. Perfect pipelining is guaranteed to find an optimal pipelined schedule
for a special class of loops that have no conditional jumps in the loop body. The
schedule is optimal in the sense that no transformation of the loop based on the
data dependencies can yield a shorter running time for that loop.

The implementation template does not constrain the layout of the realization
technology. Some of the algorithms in this thesis may be used to help hardware
implementation. For example, a printed-circuit board ASP realization may use
crossbar chips to cover the multiple-bus implementation architecture template.
The algorithms for operation allocation can be extended to perform this task.
Furthermore, a PLA-folding algorithm[40] may be used to allocate the register
files and operators of the implementation architecture in rows and columns, to
maximize sharing of rows and columns. The PLA-folded layout is provided as
an improved input to the placement and routing tools to help achieve a more

compact physical layout.
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FEM Program Source Code

A.1 BackSubstitution Routine

#define N 34

#define MSIZE 11
#define COL item->col
#define ROW item->row

#define SVAL item->sval

typedef struct {
float sval;
int row;
int col;

} matentry;

matentry s[N] = {

{ 2.0, 0, 0}, A 3.0, 1, 0},
{ -3.0, 2, o0} A 2.0, 2, 2},
{ 3.0, 3, 3}, A 2.0, 4, 2%},
{ 2.0, 4, 4}, { ~-3.0, 5, 0},
{ 2.0, 5, 5}, A 2.0, 6, 23},
{ -3.0, 8, 4¥, { 3.0, 6, 6},
{ 2.0, 7, 6, { -3.0, 7, T},

N e R

1},
i},
3},
3},
3},
B},
0},
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N T T S
"]
O o o o o

10,
10,

1},
8%},
7},
4%,
10}

{ 3.0, 8,
{ 2.0, 9;
{ 3.0, 9,
{ -3.0, 10,

};

matentry *rowstart [MSIZE] = { s+0, s+1,

float z[MSIZE]

50.0

float y[MSIZE]

0.0

main()
{
int
float

matentry

for (k

item

temp

};

};

k;
temp,

*item;

{ 12.

20.0, 44.0, 24.0,

2, A 2.0,
o}) { _3.0,
9F, { -3.0,
5}, { 2.0,
s+3, s+5,

s+10, s+13, s+17,

s+29 F;

0, 4.0, 9.0, 16.0, 45.0,

0; k < MSIZE; k++) {

rowstart [k] ;

0.0;

while (ROW !'= COL) {

temp += SVAL * y[COL];

10.0, 90.0,

10,
10,

s+7,

s+20,

7},
1},
0},
o},

s+25b,
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itemt++;
¥
y[cOL] = (z[COL] - temp) / SVAL;

A.2 VLIW code for BackSubstitution Routine



APPENDIX A. FEM PROGRAM SOURCE CODE

150

1014683¢:
(iconstant $0 0)
(iconstant $2 19140)
(iconstant $6 20740)
(iconstant $8‘¢ 19940)
(goto 1014e918)

10146918:
(iassign $5 $2)
(iadd $7 $2 796)
(ivload $4 O $2)
(fvload $£6 21540 $0)
(diadd $5° $2 4)
(goto 1014ba20)

101472a0:
(ivlead $4 O $5)
(fvload $£f6 21540 $0)
(iconstant $8°¢ 19940)
(iadd $5° $5 4)
(goto 1014ba20)

1014ba20:
(ivload $8 4 $4)
(ivload $9 8 $4)
(ivload $8°¢ 8 $4)
(iadd $3 $4 8)
(fvload $£f8 0 $4)
(iadd $4°¢ $4 12)
(fvload $£8¢°¢ O $4)
(ile $ccO $5° $7)
(goto 1014d930)

10144930:

(ieq $ccO $8 $9)
(diash $2 $8°¢ 2)
(ivload $8 0 $3)
(iadd $3 $3 12)
(ivload $8¢ 4 $4¢)
(fvload $£8°¢ 0 $4°)
(iadd $4¢°¢ $4° 12)
(iassign $4 $49)
(if $ccO L18

(goto 1014ebc8)
ELSE

(goto 10147548))

10147548:;

(if $cc0 L19
(iadd $3 $6 $2)
(iadd $2 $8°¢ $2)
(fassign $£8°¢ $£8°¢°)
(goto 101482£8)

ELSE
(iassign $4°‘ $4°‘¢)
(iash $2 $¢8 2)
(ivlcad $9 0 $3)
(ivload $8¢ 0 $3)
(iadd $3 $3 12)
(ivload $8¢¢ 4 $4¢)
(fvload $£8°¢ 0O $4¢)
(iadd $4¢¢ $4°¢ 12)
(iassign $8 $8°¢)
(goto 1014bc£8))

10146bc8:
(if $ccO L19

(iadd $3 $6 $2)
(iadd $2 $8¢¢ $2)

(fassign $£8¢ $£8°°¢)

(iassign $5 $5¢)
(goto 1014ee70)
ELSE

(iassign $4°¢ $4°°)
(iash $2 $8 2)
(ivlcad $9 © $3)
(ivlcad $8° 0 $3)
(iadd $3 $3 12)

(ivload $8°¢ 4 $4°°)
(fvload $£8¢¢ O $4°°¢)
(iadd $4¢¢ $4°¢ 12)

(iassign $8 $8°)
(goto 1014bcf8))

10148218:
(fvload $8 O $2)
(goto 1014b220)

10140670
(fvload $£8 0 $2)
(goto 101485c0)

10141220
(fsub $£f4 $£8 $£6)
(fassign $£8 $£8°)
(goto 1014dbd8)

101485¢0:
(fsub $£4 $£8 $£6)
(fassign $£8 $£8°)
(goto 1014£670)

1014dbd8:
(fdiv $£4 $£4 $£8)
(goto 1014d03c)

1014£670:
(fdiv $£4 $f4 $£8)
(goto 10148040)

1014d03c:
(fvstore O $3 $£4)
(goto 1014£d14)

10148040:
(fvstore O $3 $f4)
(goto 10147aa0)

1014bef8:

(iadd $2 $6 $2)

(ine $ccO $8 $9)
(iash $2° $8¢ 2)
(iassign $8 $8¢¢)
(ivload $9 0 $3)
(ivload $8¢ 0 $3)
(iadd $3 $3 12)
(ivload $8°¢ 4 $4¢)

(fvload $£8¢¢¢ 0 $4‘°)

(iadd $4°°¢ $4°¢ 12)
(goto 101488b0)

10148810:
(fvload $£10 0 $2)
(if $ccO L17
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(iassign $4 $4¢)
(iassign $4¢ $4°°)
(iadd $2 $6 $2°)
(ine $ccO $8 $9)
(iash $2¢ $8¢ 2)
(iassign $8 $8¢¢)
(ivload $9 0 $3)
(ivload $8¢ 0 $3)
(iadd $3 $3 12)
(iassign $4°¢ $4° ‘)
(ivload $8¢¢ 4 $4¢ )
(fvload $£8°¢‘¢ 0 $4°¢¢)
(iadd $4°¢¢°¢ $4¢¢* 12)
(goto 1014e3c0)

ELSE
(goto 1014d30c))

1014e3c0:

(fmul $£4 $£8 $£10)

(fassign $£8 $£8°)

(fassign $£8°¢ $£8¢¢)

(fassign $£8¢¢ $£8¢¢)

(fvload $£10 0 $2)

(if $ccO L17
(iassign $4 $49)
(iassign $4¢ $4°°)
(iadd $2 $6 $2°)
(ine $cc0O $8 $9)
(iash $2¢ ¢$8¢ 2)
(iassign $8 $8¢)
(ivlocad $9 0 $3)
(ivload $8°¢ 0 $3)
(fassign $£8° ¢ $£8¢ ¢ )
(iadd $3 $3 12)
(iassign $4¢¢ $4¢¢¢)
(goto 1014c024)

ELSE
(goto 1014c§44))

1014c024:

(fadd $£f6 $£f6 $£4)

(fmul $£4 $£8 $£10)

(fassign $£8 $£8°)

(fassign $£8¢ $£8¢¢)

(fassign $£8°¢ $£8¢¢)

(fvload $£10 0 $2)

(if $ccO L17
(iassign $4 $49)
(iassign $4¢ $4°°)
(iadd $2 $6 $2°¢)
(ine $ccO $8 $9)
(iash $2¢ $8° 2)
(ivload $8 4 $4¢¢)
(ivload $9 0 $3)
(ivload $8¢ 0 $3)
(fvload $£8°¢¢¢ 0 $4°°)
(iadd $3 $3 12)
(iadd $4°¢¢ $4¢¢ 12)
(goto 1014¢024)

ELSE
(goto 1014c844))

1014c844:
(fadd $£6 $£f6 $£4)
(goto 1014d30c)

10144d30c¢:

(fmul $f4 $£8 $£10)
(ivload $8 8 $4)
(iconstant $8¢ 19940)
(fvload $£8°¢ 0 $4)
(iadd $5 $5 4)

(goto 1014e670)

1014¢670:
(fadd $f6 $£6 $£4)
(iash $2 $8 2)
(iassign $8 $8°)
(ile $ccO $5 $7)
(goto 1014caec)

1014caec:
(iadd $3 $6 $2)
(iadd $2 $8 $2)
(if $ccO L18
(goto 1014de80)
ELSE
(goto 10147478))

10147d478:
(fvload $£8 0 $2)
(goto 10i4ace8)

1014de80:
(fvload $£8 0 $2)
(goto 1014£120)

1014ace8:
(£sub $f4 $£8 $£6)
(fassign $£8 $£8°¢)
(goto 1014b770)

1014£120:
(fsub $£4 $£8 $£6)
(fassign $£8 $£8°)
(goto 1014£3c8)

1014b770:
(fdiv $f4 $£f4 $£8)
(goto 1014e130)

1014£3¢8:
(fdiv $f4 $£4 $£8)
(goto 1014£940)

10146130:
(fvstore O $3 $f4)
(goto 1014£d14)

1014£940:
(fvstore O $3 $£4)
(goto 10147aa0)

1014£d14:
(igoto 101441£0)
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