SensoDat: Simulation-based Sensor Dataset of Self-driving Cars
Creators
Description
GitHub: https://github.com/christianbirchler-org/sensodat
Developing tools in the context of autonomous systems, such as self-driving cars (SDCs), is time-consuming and costly since researchers and practitioners rely on expensive computing hardware and simulation software. We propose SensoDat, a dataset of 32,580 executed simulation-based SDC test cases generated with state-of-the-art test generators for SDCs. The dataset consists of trajectory logs and a variety of sensor data from the SDCs (e.g., rpm, wheel speed, brake thermals, transmission, etc.) represented as a time series. In total, SensoDat provides data from 81 different simulated sensors. Future research in the domain of SDCs does not necessarily depend on executing expensive test cases when using SensoDat. Furthermore, with the high amount and variety of sensor data, we think SensoDat can contribute to research, particularly for AI development, regression testing techniques for simulation-based SDC testing, flakiness in simulation, etc.
Files
sensodat.zip
Files
(2.6 GB)
Name | Size | Download all |
---|---|---|
md5:abeb7e7d2abd57d3c34912e83344b81b
|
2.6 GB | Preview Download |
Additional details
Software
- Repository URL
- https://github.com/christianbirchler-org/sensodat