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Abstract— Health professionals can utilize biomechanical 

simulations of left ventricle to assess different possible situations 

and hypothetical scenarios. Understanding of the molecular 

mechanisms behind muscle contraction has resulted in the 

development of Huxley-like muscle models. Unlike Hill-type 

muscle models, Huxley-type muscle models can be used to 

simulate non-uniform and unstable contractions. However, 

Huxley models demand considerably more computational 

resources than Hill models, which limits their practical use in 

large-scale simulations. To address this, we have developed a 

data-driven and physics-informed surrogate models that mimic 

the Huxley muscle model, while requiring significantly less 

processing power. We collected data from various numerical 

simulations and trained deep neural networks to replace 

Huxley’s muscle model. Data-driven surrogate model was an 

order of magnitude faster than the original model, while being 

quite accurate. Our surrogate models were integrated into a 

finite element solver and used to simulate a complete cardiac 

cycle, which would be much harder to do with original Huxley’s 

model.  

 
Index Terms—finite element analysis, surrogate modeling, 

physics-informed neural networks, recurrent neural networks, 

Huxley’s muscle model  

I. INTRODUCTION 

The functionality of the left ventricle relies on factors such 

as ventricular shape, the passive mechanical properties of the 

myocardium, the arrangement of muscle fibers, and the force 

produced by the fibers. To understand muscle behavior, 

researchers typically use a continuum mechanics method to 

express active and passive stress components at each point in 

the myocardium as time-dependent functions of local strain. 

Biophysical processes are modeled at various spatial and 

temporal scales to analyze muscle performance through 

computational analysis. In multi-scale simulations, the finite 
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element method is utilized to model continuum muscle 

mechanics, while muscle material characteristics at the 

microscopic level are defined using Huxley's muscle 

contraction model [1]. During transient finite element 

simulations, Huxley's model is used to calculate stress and 

stiffness, based on muscle activation, stretch, and other 

material parameters and properties [1]. However, these finite 

element simulations can be time-consuming, particularly in 

the microscale calculations. To reduce computational 

requirements, the authors developed a computationally 

efficient surrogate model to replace the original Huxley 

muscle model. 

II. THE METHODS 

Huxley considered the dynamics of the filaments within 
muscle and the probability of establishing connections (cross-
bridges) of myosin heads to actin filaments inside sarcomeres 
[2]. The n(x,t) function describes the rate of connections 
between myosin heads and actin filaments, as a function of 
position of nearest available actin binding site relative to 
equilibrium position of myosin head x: 
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where f(x,a) and g(x) represent the attachment and 
detachment rates of cross-bridges respectively, v is the 
velocity of filaments sliding, positive in the direction of 
contraction, and a is muscle activation given as a function of 
time. The muscle activation can be derived from the calcium 
concentration function, which we prescribed in our numerical 
experiments.  The partial differential equation (1) can be 
solved using the method of characteristics with initial 
condition 
��, 0� = 0. Once the 
��, �� values are acquired we 
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can calculate generated force F within the muscle fiber and 
also stiffness K using the equations: 
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where k is the stiffness of cross-bridges. Stress and stress 
derivative can be calculated as: 

 ! = �
"#$%

&#$%
                                     (4) 

�"'

�(
= )*+�

"#$%

&#$%
                              (5) 

where �,-. is maximal force achieved during isometric 
conditions,  ,-. maximal stress achieved during isometric 
conditions, *+ �ℎ0 initial length of sarcomere and ) is stretch. 
Calculated stresses and stress derivatives can be further used 
at the macro-level during finite element analysis.  

To obtain the necessary data, the authors conducted 

numerous muscle contraction simulations on smaller 2D 

finite element models using different prescribed muscle 

activation functions, displacements and forces. The data 

collected from these simulations were used to develop 

surrogate models based on artificial neural networks. In our 

paper we present two different approaches based on (1) neural 

networks for time-series analysis and (2) physics-informed 

neural networks.  In our first, data-driven approach, the neural 

network takes inputs in the form of time series. This input 

time series includes activation at current and previous time 

steps, stretch at current and previous time steps, stress at 

previous time steps, and instantaneous stiffness at previous 

time steps. The model outputs muscle stress and 

instantaneous stiffness at the current time step of the 

simulation. Given that the inputs are time series, we opted for 

recurrent and convolutional networks, which are well-suited 

for this prediction task. We trained multiple deep neural 

networks in order to find one which achieves satisfactory 

precision and generalization.  

Our second approach is based on physics-informed neural 

networks (PINNs). PINNS are a novel class of machine 

learning models that can solve supervised learning problems 

based on the general nonlinear partial differential equations 

that describe physical principles [3]. PINNs are a powerful 

universal functions approximators and are able to incorporate 

physical laws as prior knowledge [3]. A residual network is 

added to a deep learning network, called a surrogate, to 

compute the residual value, which represents the difference 

between the computed solution and the true solution of the 

differential equations [4]. PINNs use automated 

differentiation to compute differential operators on graphs, 

and their basic formulation doesn't require labeled data, 

results from other simulations, or experimental data [4]. Only 

the residual function calculation is necessary for PINNs, but 

it is possible to train them with simulation or experimental 

data in a supervised manner. PINNs are a gridless technique 

that can use any point in the domain as input without 

requiring a mesh [4]. After training, the PINN network can 

predict the solutions on simulation grids with various 

resolutions and can be used for time-dependent problems 

without accounting for earlier time steps. PINN has been 

applied to solve equations such as the Burgers’ equation, the 

Navier–Stokes equation, and the Schrodinger equation [5]. In 

our study, we utilized PINN to solve Huxley’s muscle 

equation and obtain the distribution of attached myosin heads 

to the actin-binding sites. To implement PINN and 

incorporate the equation (1), we used SciANN [6], a high-

level artificial neural networks API, written in Python using 

Keras and TensorFlow backends. SciANN is designed to 

abstract neural network construction for scientific 

computations and solution and discovery of partial 

differential equations (PDE) using the physics-informed 

neural networks [6]. Our physics-informed neural network, 

receives current and previous stretch, muscle activation, time, 

and x, and based on these values predicts the n value from 

equation (1). During training the residual of Huxley’s muscle 

differential equation, residual of initial condition and error 

between true and predicted n values are minimized. Based on 

predicted n values, stresses and stress derivatives are 

calculated according to formulas (4) and (5). 

III. MAIN RESULTS 

One of the most successful neural networks for our 
prediction task was GRU neural network with 992,770 
weights. This neural network consists of 128 neurons in 1st, 
4th and 5th hidden layer and 256 neurons in 2nd and 3rd hidden 
layer. It was constructed using Keras and Tensorflow. 
Correlation coefficients between original and predicted 
values are shown in Table I. We showed average correlation 
coefficients obtained in numerical experiments used to train 
the neural network and in numerical experiments used to test 
the network.  

 
TABLE I 

CORRELATION COEFFICIENTS BETWEEN ORIGINAL AND PREDICTED VALUES 

OBTAINED WITH GRU 

 

GRU - Training 

 Correlation coefficient 

(stress) 

Correlation coefficient 

(stress derivative) 

Average 

value: 
0.99999918 0.9999918 

Standard 

deviation: 9.6×10-6 1.7×10-5 

GRU - Test 

 Correlation coefficient 

(stress) 

Correlation coefficient 

(stress derivative) 

Average 

value: 
0.99999998 0.99999984 

Standard 

deviation: 6×10-8 2.4×10-7 

 
Using the SciANN framework we constructed a physics-

informed neural network with 8 layers, each containing 20 
neurons with a hyperbolic tangent activation function. The 
network is trained by minimizing the difference between 
actual and predicted values and also by minimizing the 
residuals derived from equation (1) and its initial conditions. 
We used Adam optimizer with a learning rate of 5×10-5 and 
batch size of 16384, during 7000 epochs. We also used the 
neural tangent kernel (NTK) method to get the adaptive 
weights, balancing the difference between the number of 
points, used to minimize the residual of PDE, and the number 
of points used to minimize the residual of the initial condition. 
Correlation coefficients between original and predicted 
values are shown in Table II. We showed average correlation 
coefficients obtained in numerical experiments used to train 
the neural network and in numerical experiments used to test 
the network. 

 



 

 

 
 

TABLE II 
CORRELATION COEFFICIENTS BETWEEN ORIGINAL AND PREDICTED VALUES 

OBTAINED WITH PINN 

 

PINN - Training 

 Correlation coefficient 

(stress) 

Correlation coefficient 

(stress derivative) 

Average 

value: 
0.9837 0.9857 

Standard 

deviation: 0.0209 0.0117 

PINN - Test 

 Correlation coefficient 

(stress) 

Correlation coefficient 

(stress derivative) 

Average 

value: 
0.9283 0.9702 

Standard 

deviation: 
0.0421 0.0109 

 
One of the main goals of our work is to speed up the multi-

scale calculations. While it can take around 4500 [s] to 
execute finite element simulation with one simple finite 
element and original Huxley’s model, it only takes around 
110 [s] to execute the same simulation with GRU instead of 
Huxley’s model.  

 
Fig. 1. Left ventricle displacements at start of the diastole (t=0.1[s], 

t=0.3[s]), and at the start and middle of the systole (t=0.6[s], t=0.8[s]) 

 
We also simulated cardiac cycle of the left ventricle using 

our surrogate model at micro-level. Our model consists of 
both fluid and solid components, but we will only show the 
results obtained in solid since muscles are only present in the 
left ventricle wall. We start our simulation at the beginning of 
the diastole and prescribed inlet velocity of 100 [mm/s] at the 
mitral valve and zero velocity is prescribed at aortic valve. 
During the diastole left ventricle expands, then the muscles 
are activated via calcium concentration function, and under 
the influence of the muscle contraction the blood flows out of 
the ventricle. During systole velocity at mitral valve is zero, 
and aortic valve is opened. In Figure 1 we showed 
displacement fields, in solid wall of the model, at start of the 
diastole and at the start and middle of the systole. Since 
muscles are activated during systole, larger displacements 
can be seen at the bottom of the left ventricle, during this 
phase of the cardiac cycle. Similar results are achieved with 
PINN and GRU surrogates, so we only show results with 
GRU in Figure 1.  

IV. CONCLUSIONS 

In our work we presented surrogate muscle models which 
can replace original Huxley’s muscle model. Based on high 
correlation coefficients and achieved speed-up it can be 
concluded that our model can indeed be used in multi-scale 
simulations, which can potentially help the clinicians 
efficiently analyse left ventricle mechanical response. 
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