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Abstract: 
  
Biophysical muscle models based on sliding filament and cross-bridge theory are called 
Huxley-type muscle models. The method of characteristics is typically used to solve Huxley's 
muscle contraction equation, which describes the distribution of attached myosin heads to the 
actin-binding sites, called cross-bridges. Once this equation is solved, we can determine the 
generated force and the stiffness of the muscle fibers, which can then be used at the macro 
level during finite element analysis. In our paper, we present alternative approaches to finding 
an approximate solution of Huxley’s muscle contraction equation using neural networks. In 
one approach, we collect the data from simulations and train multilayer perceptron to predict 
probabilities of cross-bridge formation based on the available actin site positions, time, 
activation, current and previous stretch. In another approach, besides using the data, we also 
inform the neural network with Huxley’s equation, thus improving the generalization of the 
neural network’s predictions.  
 
Keywords: Huxley muscle model, physics-informed neural networks, numerical solving of 
partial differential equations, multi-scale modeling. 
 
1. Introduction  

Physics-informed neural networks (PINNs) are trained to handle supervised learning tasks 
while respecting any given physical principle described by general nonlinear partial 
differential equations[1]. These neural networks represent a brand-new family of data-
efficient approximators for universal functions that easily encode any underlying physical 
laws as prior knowledge [1]. With PINN, a key innovation is the addition of a residual 
network that encodes the governing physics equations, and uses the output from a deep 
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learning network, called a surrogate, to compute a residual value [2]. The neural network is 
trained to reduce the differential equation's residual along with residuals of initial and 
boundary conditions. PINNs use automated differentiation to compute differential operators 
on graphs. 

The fundamental PINN formulation does not require labeled data, results from other 
simulations, or experimental data. For PINNs, only the residual function calculation is 
necessary. It is also possible and sometimes required to provide simulation or experimental 
data for the network to be trained in a supervised way, particularly for inverse problems. The 
experimental or simulation data can also be used when boundary conditions or an Equation of 
State are missing to close a system of equations. After a PINN is trained, its inference can be 
used in scientific computing to replace conventional numerical solvers [2]. PINNs are a 
gridless technique because any point in the domain can be used as input without the need to 
define a mesh. Additionally, without having to be retrained, the trained PINN network can be 
used to predict the results on simulation grids with various resolutions [2]. Time-dependent 
issues can also benefit from the use of PINNs. Since time can be modeled as any other 
variable, it is possible to predict the output at a given moment without having to account for 
earlier time steps. For these reasons, unlike many conventional computational techniques, the 
computational cost does not scale with the number of grid points. PINN has been employed 
for predicting the solutions for the Burgers’ equation, the Navier–Stokes equation, and the 
Schrodinger equation [3]. In this study, we solved Huxley’s muscle equation, using PINN, to 
acquire the distribution of attached myosin heads to the actin-binding sites.  

2. Methods 
 
Huxley thought about the movements of the filaments within muscle and the likelihood of 
myosin heads connecting with actin filaments inside sarcomeres to form bridges (cross-
bridges). [4]. The 𝑛𝑛(𝑥𝑥, 𝑡𝑡) function describes the rate of connections between myosin heads 
and actin filaments, as a function of the position of the nearest available actin-binding site 
relative to the equilibrium position of myosin head x: 

 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

− 𝑣𝑣 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

= [1 − 𝑛𝑛(𝑥𝑥, 𝑡𝑡)]𝑓𝑓(𝑥𝑥,𝑎𝑎) − 𝑛𝑛(𝑥𝑥, 𝑡𝑡)𝑔𝑔(𝑥𝑥),∀𝑥𝑥 ∈ 𝛺𝛺             (1) 
where f(x,a) and g(x) represent the attachment and detachment rates of cross-bridges 
respectively, v is the velocity of filaments sliding, calculated using current and previous 
stretch, and a is muscle activation given as a function of time. The partial differential equation 
(1) can be solved using the method of characteristics with the initial condition n(x,0)=0. Once 
the 𝑛𝑛(𝑥𝑥, 𝑡𝑡) values are acquired we can calculate force F within the muscle fiber and stiffness 
K using the equations: 

𝐹𝐹(𝑡𝑡) = 𝑘𝑘 ∑ 𝑛𝑛(𝑥𝑥, 𝑡𝑡)𝑥𝑥 ∞
−∞ 𝑑𝑑𝑑𝑑   and      𝐾𝐾(𝑡𝑡) = 𝑘𝑘 ∑ 𝑛𝑛(𝑥𝑥, 𝑡𝑡) ∞

−∞ 𝑑𝑑𝑑𝑑               (2) 
where k is the stiffness of cross-bridges. Stress and stress derivative can be calculated as: 

𝜎𝜎𝑚𝑚 = 𝐹𝐹 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖

          and       𝜕𝜕𝜎𝜎𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝜆𝜆𝐿𝐿0𝐾𝐾
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖

 ,                              (3) 
where 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 is maximal force achieved during isometric conditions, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 maximal stress 
achieved during isometric conditions, 𝐿𝐿0 𝑡𝑡ℎ𝑒𝑒 initial length of the sarcomere and 𝜆𝜆 is stretch. 
Calculated stresses and stress derivatives can be further used at the macro-level during finite 
element analysis. We used SciANN to implement PINN and integrate equation (1). This is a 
high-level artificial neural network API written in Python with Keras and TensorFlow 
backends. SciANN is designed to abstract the construction of neural networks for scientific 
computing and the solving and discovery of partial differential equations (PDEs) using 
physics-informed neural networks. 
 
3. Results and discussion 

 
Using the SciANN framework we constructed a neural network with 8 layers, each containing 
20 neurons with a hyperbolic tangent activation function. The network is trained by 
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minimizing the difference between actual and predicted values and also by minimizing the 
residuals derived from equation (1) and its initial conditions. We used Adam optimizer with a 
learning rate of 5×10-5 and batch size of 16384, during 7000 epochs. We also used the neural 
tangent kernel (NTK) method to get the adaptive weights, balancing the difference between 
the number of points, used to minimize the residual of PDE, and the number of points used to 
minimize the residual of the initial condition. We also trained ordinary multilayer perceptron 
(MLP) with the same architecture as PINN and we used the same data, but without providing 
the specificity of Huxley’s muscle equation to the network.  

 
Neural 

network: PINN MLP 

Identification 
number of 
numerical 

experiment 

Correlation 
coefficient 

(stress) 

Correlation 
coefficient 

(stress 
derivative) 

Correlation 
coefficient 

(stress) 

Correlation 
coefficient 

(stress 
derivative) 

1 0.9929 0.9943 0.9852 0.9872 
2 0.9860 0.9860 0.7782 0.8925 
3 0.9972 0.9958 0.9902 0.9959 
4 0.9343 0.9584 0.1286 0.8354 
5 0.9817 0.9909 0.9964 0.9956 
6 0.9962 0.9893 0.0884 0.8561 
7 0.9978 0.9855 0.1559 0.7753 

Average 
value: 

0.9837 0.9857 0.5890 0.9054 

Standard 
deviation: 

0.0209 0.0117 0.4088 0.0823 

 

Table 1. Correlation coefficients between original values, obtained by the method of 
characteristics, and predicted values, obtained by neural networks. Shown numerical experiments were 

used to acquire the data and train the neural networks.   
 

Once the networks were trained, we integrated them into the finite element solver and 
used them at the micro-level instead of the method of characteristics. In Table 1, we show the 
correlation coefficients between original values, obtained in finite element simulations with 
the method of characteristics at the micro-level, and predicted values, obtained in simulations 
with the neural network at the micro-level. We presented acquired stresses and stress 
derivatives. These values were obtained in numerical experiments that were used to collect 
the data and train the neural networks. It can be seen that stresses and stress derivatives 
obtained with PINN are closer to the original values than the values obtained by MLP. In 
Table 2, numerical experiments that were not used in the training set are shown. It can be seen 
that PINN performed better in these experiments, which indicates that PINN generalizes 
better than the standard MLP.  
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Neural 

network: PINN MLP 

Identification 
number of 
numerical 

experiment 

Correlation 
coefficient 

(stress) 

Correlation 
coefficient 

(stress 
derivative) 

Correlation 
coefficient 

(stress) 

Correlation 
coefficient 

(stress 
derivative) 

8 0.8861 0.9592 0.6968 0.8795 
9 0.9704 0.9811 0.1854 0.7707 

Average 
value: 

0.9283 0.9702 0.4411 0.8251 

Standard 
deviation: 

0.0421 0.0109 0.2557 0.0544 

 

Table 2. Correlation coefficients between original values, obtained by the method of 
characteristics, and predicted values, obtained by neural networks. Shown numerical experiments were 

used to test the neural networks.     
4. Conclusions 
 
In our article, we presented alternative methods to find approximate solutions of Huxley's 
muscle contraction equation using neural networks. We collected data from simulations and 
trained multilayer perceptron to predict cross-bridge formation probabilities. In addition to 
using the data, we also informed the neural network by calculating the residual of the Huxley 
equation, which resulted in an improvement of the neural network's ability to generalize 
predictions. 
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