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Abstract: 

In this paper, the new concept of Fuzzy  -Exterior Sober Space (briefly, F𝜶-Ext Sober Space) is 

introduced. Two extension theorems for Fuzzy  -Ext Sober Space are studied using fuzzy quasi-

homeomorphism. In this connection, some equivalent statements for fuzzy  -Ext Sober Spaces are also 

established.  
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1. Introduction: 

In 1965, Zadeh [9] introduced the notion of fuzzy sets and fuzzy set operations. The concept of sobriety 

in topological spaces and its importance as a separation axiom became known through the book of 1982 by P. 

Johnstone. Soberity, a special separation property of topological spaces, plays an important role in studying 

continuous lattices and domains (cf. [4, 5, 6]). During the years 1986-1987, S. Rodabaugh extended the concept 

soberity to fuzzy topological spaces. 

In this paper, the new concept of Fuzzy  -Exterior Sober Space (briefly, F𝜶-Ext Sober Space) is 

introduced. Two extension theorems for Fuzzy α-Ext Sober Space are studied using fuzzy quasi-

homeomorphism. In this connection, some equivalent statements for fuzzy -Ext Sober Spaces are also 

established.  

2 Preliminaries: 

Definition 2.1 [7] Let X be a set and 𝜏 be a family of fuzzy subsets of X. Then τ is called fuzzy topology on X if 

satisfies the following conditions: 

(i) 0X, 1X∈𝜏 ;  
(ii) If λ, µ ∈𝜏 , then λ ∧ µ ∈𝜏 ;  
(iii) If λi∈𝜏 for each i ∈ I, then ∨λi∈𝜏.  

The ordered pair (X, 𝜏) is said to be a fuzzy topological space (in short, FTS). Moreover, the members of 𝜏 are 

said to be the fuzzy open sets and their complements are said to be the fuzzy closed sets.  

Definition 2.2 [7] A fuzzy set λ ∈ I
X
 in a fuzzy topological space (X, 𝜏) is said to be Fuzzy  -open if λ ≤ 

Fint(Fcl(Fint(λ))). 

Definition 2.3 [7] Let (X, 𝜏) be a FTS and λ ∈ I
X
. Then the fuzzy  -interior of λ is denoted by F𝜶- int(λ) and 

defined as F -int(λ) =  { β ∈  IX ∶  β ≤ λ, β is  F open}. 
Proposition 2.1 [1] Let f be a function from (X, 𝜏) to (Y, σ). Then f(f

−1
 )(λ) ≤ λ for any fuzzy set in λ in (Y, σ).  

Definition 2.4 [7] Let (X, 𝜏) be FTS and let µ ∈ I
X
. Then fuzzy Exterior of λ is FExt(λ) = Fint(1X −λ). 

Definition 2.5 [7] Let (X, 𝜏) be a FTS and λ ∈ I
X
 be any fuzzy set in (X, 𝜏). Then fuzzy -Exterior of λ is 

denoted by F𝜶-Ext and defined as F𝜶-Ext(λ) = F𝜶-int(1 − λ). 

Definition 2.6 [5]A subset C of X is irreducible if it is nonempty and for all closed subsets F, F0 of X, C ⊂ F ∪ 

F0 implies C ⊂ F or C ⊂ F0. The closure of a point is always an irreducible closed set.  

Definition 2.7 [6] A topological space X is called a sober space if every irreducible closed subset is the closure 

of some unique point in X.  

Definition 2.8 [7] Let (X1, 𝜏1) and (X2, 𝜏2) be any two fuzzy topological spaces and let f : (X1, 𝜏1) → (X2, 𝜏2). 

Then f is said to be  

(i) a fuzzy continuous function if for each fuzzy open set µ ∈𝐼𝑋2 ,f
−1

(µ) ∈𝐼𝑋1  is fuzzy open in (X1, 𝜏1).  

(ii) a fuzzy homeomorphism iff f is bijective and f and f
−1

 are fuzzy continuous.  

Definition 2.9 [8]A fuzzy point µp is quasi-coincient with the fuzzy set µA iff µp(p) + µA(p) > 1. 

Definition 2.10 [7] A fuzzy soft topological space (fE, 𝜏) is said to be fuzzy soft T0 space if for every of disjoint 

fuzzy soft points eh and eg, ∃ a fuzzy soft open set containing one but not the other.  

3 Fuzzy 𝜶-Ext Sober Spaces: 

Definition 3.1: Let (X, 𝜏) be fuzzy topological space (briefly, FTS). A fuzzy setµ ∈ I
X
 is called fuzzy 

irreducible if µ ≠ 0X and for all fuzzy closed sets 𝛾, 𝛿∈ I
X
 with µ ≤ (𝛾 ∨ 𝛿), it follows that either µ ≤ 𝛾 or µ ≤ 𝛿.  
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Remark 3.1: Let (X, 𝜏) be a fuzzy topological space. Any λ ∈ I
X
 is said to be fuzzy irreducible closed iff it is 

both fuzzy irreducible and fuzzy closed.  

Definition 3.2: Let (X, 𝜏) be a fuzzy topological space and let λ, µ ∈ I
X
 be such that µ ≤ λ. Then µ is said to be a 

fuzzy 𝜶-Exterior generic set of λ (briefly, F𝜶-Ext generic set) if Fcl(F𝜶-Ext(µ)) = λ.  

Definition 3.3: Let (X, 𝜏) be a FTS. Then (X, 𝜏) is said to be a fuzzy 𝜶-Ext Sober space (F𝜶-Ext Sober Space) 

if for every fuzzy irreducible closed set λ ∈ I
X
, there exists a unique F𝜶-Ext generic set µ ∈ I

X
 of λ such that λ ≥ 

µ.  

Proposition 3.1: 

Let (X, 𝜏) be a fuzzy 𝜶-Ext Sober space and (X, 𝜏∗) be a fuzzy topological space such that 𝜏⊆𝜏∗. If β ∈ 

I
X
 is a fuzzy irreducible closed set in (X, 𝜏∗), then β ≤ 𝐹𝑐𝑙𝜏 (F𝜶-Ext(𝛾)) for some 𝛾∈ I

X
 with 𝛾 ≤ 𝐹𝑐𝑙𝜏 (β) where 

𝐹𝑐𝑙𝜏 (β) refers the fuzzy closure of β with respect to 𝜏. 
Proof: 

Let β ∈ I
X
 be a fuzzy irreducible closed set in (X, 𝜏). Then clearly 𝐹𝑐𝑙𝜏 (β) is fuzzy irreducible closed. 

But as a contrary, assume that 𝐹𝑐𝑙𝜏 (β) is not a fuzzy irreducible closed set in (X, 𝜏). Then 𝐹𝑐𝑙𝜏 (β) = λ1∨ λ2 

where λ1, λ2∈ I
X
 are fuzzy closed sets in (X, 𝜏) with 𝐹𝑐𝑙𝜏 (β) ≮ λ1 and 𝐹𝑐𝑙𝜏 (β) ≮ λ2. Since β ∈ I

X
 is a fuzzy 

irreducible closed set in (X, 𝜏∗), for λ1, λ2∈𝜏
∗, β ≤ λ1∨λ2, implies that definitely β ≤ λ1 or β ≤ λ2. Thus, β ≤ (λ1∧ 

β) ∨ (λ2∧ β), with both λ1∧ β and λ2∧ β are fuzzy closed.  

From β ≤ (λ1∧ β) ∨ (λ2∧ β), β < (λ1∧ β) or β < (λ2∧ β). Also, it follows that β < λ1 or β < λ2 and so 

𝐹𝑐𝑙𝜏 (β) < λ1 or 𝐹𝑐𝑙𝜏 (β) < λ2 which is a contradiction. Therefore, 𝐹𝑐𝑙𝜏 (β) is a fuzzy irreducible closed set in(X, 

𝜏). Since (X, 𝜏) is a F𝛼-Ext Sober space, there existsF𝛼-Ext generic set 𝛾∈ I
X
 of 𝐹𝑐𝑙𝜏 (β) such that 𝛾 ≤ 𝐹𝑐𝑙𝜏 (β). 

Since 𝛾 is Fα-Ext generic set of 𝐹𝑐𝑙𝜏 (β), 𝐹𝑐𝑙𝜏 (β) = 𝐹𝑐𝑙𝜏 (F𝛼-Ext(𝛾)) for some 𝛾 ≤ 𝐹𝑐𝑙𝜏 (β). Thus β ≤ 𝐹𝑐𝑙𝜏 (F𝛼-

Ext(𝛾)).  

Definition 3.4: Let (X1, 𝜏1) and (X2, 𝜏2) be any two fuzzy topological spaces. Let f : (X1, 𝜏1) → (X2, 𝜏2) be a 

fuzzy continuous function. Then f is said to be a fuzzy quasi-homeomorphism if f is bijective and for each fuzzy 

open set λ ∈𝐼𝑋1 , there exists a unique fuzzy open set µ ∈𝐼𝑋2  in (X2, 𝜏2) such that λ = f
−1

(µ). 

Example 3.1: Let X1 = { a, b } = X2. Let λ ∈𝐼𝑋1  and 𝜶∈𝐼𝑋2  be defined as λ(a) = 0.6, λ(b) = 0.7, 𝜶(a) = 0.7 and 

𝜶(b) = 0.6. Then 𝜏1 = {0𝑋1
, 1𝑋1

, λ} and 𝜏2 = {0𝑋2
, 1𝑋2

, 𝜶}. Clearly, (X1, 𝜏1) and (X2, 𝜏2) are fuzzy topological 

spaces respectively. Let f : (X1, 𝜏1) → (X2, 𝜏2) be fuzzy continuous function defined by f(a) = b, f(b) = a. For 

each fuzzy open set λ = (0.6, 0.7) ∈𝐼𝑋1 , there exist µ = (0.7, 0.6) ∈𝐼𝑋2  such that f 
−1

(µ) = (0.6, 0.7) = λ. Then f is 

said to be fuzzy quasi-homeomorphism.  

Proposition 3.2: Let (X1, 𝜏1) and (X2, 𝜏2) be any two FTSs and let f : (X1, 𝜏1) → (X2, 𝜏2) be a fuzzy quasi-

homeomorphism. Then for any fuzzy set λ ∈𝐼𝑋1 , λ = f
 −1

(f(λ)).  

Proposition 3.3: 

Let (X1, 𝜏1) and (X2, 𝜏2) be any two FTSs and let f : (X1, 𝜏1)→ (X2, 𝜏2) be a fuzzy continuous function. 

If λ ∈𝐼𝑋2  is a fuzzy irreducible set in (X2, 𝜏2), then f
−1

(λ) is fuzzy irreducible in (X1, 𝜏1).  

Proof: 

Let λ ∈𝐼𝑋2 be a fuzzy irreducible set in (X2, 𝜏2). Let 𝜶, β ∈𝐼𝑋1  be fuzzy closed sets in (X1, 𝜏1). Suppose f 
−1

(λ) ≤ 𝜶∨ β. Then f(f
−1

(λ)) ≤ λ ≤ f(𝜶∨ β) which implies that λ ≤ f(𝜶∨ β) = f(𝜶) ∨ f(β). Since λ is fuzzy 

irreducible, λ ≤ f(𝜶) or λ ≤ f(β). Thus either f
−1

(λ) ≤ 𝜶 orf
−1

(λ) ≤ β. Thus f 
−1

(λ) is fuzzy irreducible in (X1, 𝜏1).  

Proposition 3.4: 

Let (X1, 𝜏1) and (X2, 𝜏2) be any two FTSs and let f : (X1, 𝜏1) → (X2, 𝜏2) be fuzzy quasi-

homeomorphism. If for any two fuzzy sets λ, µ ∈𝐼𝑋2 , f
−1

(λ) = f
−1

(µ), then λ = µ.  

Proposition 3.5: 

Let (X1, 𝜏1) and (X2, 𝜏2) be any two FTSs and let f : (X1, 𝜏1) → (X2, 𝜏2) be fuzzy quasi-

homeomorphism. Then the following properties hold:  

(i) if (X1, 𝜏1) is a fuzzy T0-space, then f is injective. 

(ii) if (X1, 𝜏1)is fuzzy 𝜶-Ext Sober space and (X2, 𝜏2) is a fuzzy T0-space, then f is a fuzzy 

homeomorphism.  

Proof: 

(i) Let 𝛼, β ∈𝐼𝑋1  be such that f(𝛼) = f(β). Suppose that 𝛼 ≠ β, then there exists a fuzzy open set σ ∈𝐼𝑋1  such that 

𝛼 ≤ σ and β≰ σ, since (X1, 𝜏1) is a fuzzy T0-space. Also since f is fuzzy quasi-homeomorphism, there exists a 

fuzzy open set λ ∈𝐼𝑋2  in (X2, 𝜏2) satisfying f
−1

(λ) = σ.  

Hence 𝛼 ≤ σ = f
−1

(λ) and β ≰σ = f
−1

(λ); 

Then f(𝛼) ≤ λ and also f(β)≰ λ 

Which is a contradiction, since f(𝜶) = f(β). Therefore 𝛼 = β. Hence f is injective.  

(ii) Let λ ∈𝐼𝑋2  be a fuzzy closed set in (X2, 𝜏2). If λ is fuzzy irreducible in (X2, 𝜏2), by Proposition 3.3, f
−1

(λ) is a 

fuzzy irreducible in (X1, 𝜏1). To prove f is surjective. Given that (X1, 𝜏1) be F𝛼-Ext sober space and let µ ∈𝐼𝑋2  

be fuzzy irreducible closed in(X2, 𝜏2). Since Fcl(F𝛼-Ext(µ)) is also fuzzy closed in (X2, 𝜏2), it is fuzzy 

irreducible. Then f
−1

(Fcl(F𝛼-Ext(µ))) is a fuzzy irreducible closed set of (X1, 𝜏1). Since (X1, 𝜏1) is fuzzy  -Ext 
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Sober space, by Proposition 3.1, there exists a F𝛼-Ext generic set σ ∈𝐼𝑋1  such that f
−1

(Fcl(F𝛼-Ext(µ))) ≤ Fcl(F𝛼-

Ext(σ)). And also σ is F𝛼-Ext generic set of f
−1

(Fcl(F𝛼-Ext(µ))) such that 

F 
−1

(Fcl(F𝛼-Ext(µ))) ≥ σ 

Fcl(F𝛼-Ext(µ)) ≥ f(σ) 

f(σ) ≤ Fcl(F𝛼-Ext(µ)). 

Let f
−1

(Fcl(F𝛼-Ext(f(σ)))) ≤ f
−1

(Fcl(F𝛼-Ext(Fcl(F𝛼-Ext(µ))))) ≤ f
−1

(Fcl(F𝛼-Ext(µ))). Therefore f
−1

(Fcl(F𝛼-

Ext(µ))) ≥ f
−1

(Fcl(F𝛼-Ext(f(σ)))).  

It is known that f
−1

(Fcl(F𝛼-Ext(µ))) ≤ Fcl(F𝛼-Ext(σ)) = Fcl(F𝛼-Ext(f
−1

f(σ))) = Fcl(f
−1

(F𝛼-Ext(f(σ))) ≤ 

f
−1

(Fcl(F𝛼-Ext(f(σ)))). Thusf
−1

(Fcl(F𝛼-Ext(µ))) ≤ f
−1

(Fcl(F𝛼-Ext(f(σ)))).  

Therefore f
−1

(Fcl(F𝛼-Ext(f(σ)))) = f
−1

(Fcl(F𝛼-Ext(µ))). Since f is fuzzy quasi-homeomorphism, by Proposition 

3.4, Fcl(F𝛼-Ext(f(σ))) = Fcl(F𝛼-Ext(µ)). Since (X2, 𝜏2) is a FT0-space, f(σ) = µ. Thus f is surjective map and so 

it is bijective. Since any bijective fuzzy quasi-homeomorphism is fuzzy homeomorphism, q is fuzzy 

homeomorphism.  

Definition 3.5: Let (X, 𝜏) be a FTS and let S(X) be the set of all fuzzy irreducible closed sets in (X, 𝜏). Let𝛼∈ I
X
 

be a fuzzy open set in (X, 𝜏). Then the collection   = {σ ∈ S(X) : 𝛼 q σ}. Then the collection   which is finer 

than the fuzzy topology 𝜏 on X is said to be a fuzzy  -structure on S(X). Then S(X) with fuzzy  -structure 

denoted by (S(X),  ) is said to be a fuzzy   structure space. A fuzzy  -structure on S(X) together with 0X is 

said to be a fuzzy 
~

-structure on S(X). Then (S(X), 
~

) is called a fuzzy 
~

-structure space. Each member of 
~

 

is said to be fuzzy 
~

-structure open set and the complement of each fuzzy 
~

-structure open set is said to be 

fuzzy 
~

-structure closed.  

Definition 3.6: Let (X, 𝜏) be a FTS and (S(X), 
~

) be a fuzzy 
~

-structure space and let ηX : (X, 𝜏) →                   

(S(X), 
~

). If λ ∈ I
X
 is a fuzzy set in (X, 𝜏) and ηX(λ) = Fcl(F𝛼-Ext(λ), then ηX is said to be a fuzzy quasi-

homeomorphism with respect to be fuzzy 
~

-structure space.  

Remark 3.2: Here (S(X), 
~

) is a fuzzy 𝛼-Ext Sober Space, by Definition 3.3.  

Proposition 3.6: 

If f : (X1, 𝜏1) → (X2, 𝜏2) and 
2X : (X2, 𝜏2) → (S(X2), 2

~
 ) are fuzzy quasi-homeomorphisms, then 

2X ◦ f is also a fuzzy quasi-homeomorphism.  

Proof: 

Let λ ∈𝐼𝑋1 , µ ∈𝐼𝑋2 , σ ∈ S(X2) be any three fuzzy open sets in (X1, 𝜏1),(X2, 𝜏2) and (S(X2), 2
~
 ) 

respectively. Since f is fuzzy quasi-homeomorphism, λ = f
−1

(µ). Also since
2X is fuzzy quasi-

homeomorphism, µ = 
1

2


X (σ). To prove 

2X ◦ f is fuzzy quasi-homeomorphism,  

(
2X ◦ f)

−1
(σ) = (f

−1
 ◦ 

1
2


X )(σ) = f

−1
(

2X
-1 

(σ))  = f
−1

(µ) = λ. 

Hence 
2X ◦ f is fuzzy quasi-homeomorphism. 

Definition 3.7: Let (S(X1), 1
~
 ) and (S(X2), 2

~
 ) be any two fuzzy 

~
 structure spaces. A function S(f) : (S(X1),

1
~
 ) → (S(X2), 2

~
 ) is said to be a fuzzy 

~
-structure continuous function if for each fuzzy 

~
-structure open 

set λ ∈ I
S(X2)

 , S(f)
−1

(λ) is fuzzy 
~

-structure open set in(S(X1), 1
~
 ).  

Definition 3.8: Let (S(X1), 1
~
 ), (S(X2), 2

~
 ) be any two fuzzy 

~
structure spaces and let S(f) :(S(X1), 1

~
 ) → 

(S(X2), 2
~
 ). Then S(f) is said to be fuzzy homeomorphism if S(f) is bijective and S(f) and S(f)

−1
 are fuzzy 

~
-

structure continuous functions.  

Proposition 3.7: 

Let (X1, 𝜏1) and (X2, 𝜏2) be any two FTSs and let (S(X1), 1
~
 ), (S(X2), 2

~
 ) be any two fuzzy 

~
-

structure spaces. Let f : (X1, 𝜏1) → (X2, 𝜏2) be a fuzzy continuous function and S(f) : (S(X1), 1
~
 ) → (S(X2), 2

~

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). Let 
1X : (X1, 𝜏1) → (S(X1), 1

~
 ) and 

2X : (X2, 𝜏2) → (S(X2), 2
~
 ) be any two fuzzy quasi-

homeomorphism. Then the following statements are equivalent:  

(i) f is a fuzzy onto quasi-homeomorphism,  

(ii) S(f) is a fuzzy homeomorphism.  

Proof:       
 

             (X1, 1 )                               (X2, 2 )               

 
  

1Xη
  

2
Xη

 

 

 

          (S(X1), 1
~

)                                 (S(X2), 2
~

) 

 

Figure 1 

(i) ⇒ (ii) Given 
1X , 

2X , f are fuzzy quasi-homeomorphisms, by Proposition 3.6, 
2X ◦f is fuzzy quasi-

homeomorphism and 
2X ◦ f : (X1, 𝜏1) → (S(X2), 2

~
 ). Since S(f) : (S(X1), 1

~
 ) → (S(X2), 2

~
 ) and S(f) ◦ 

1X : 

(X1, 𝜏1) → (S(X2), 2
~
 ), by Figure 1. Therefore  

2X ◦ f = S(f) ◦ 
1X . Since 

2X ◦ f is fuzzy quasi-homeomorphism, S(f) ◦ 
1X  is also fuzzy quasi-

homeomorphism. Hence S(f) is fuzzy quasi-homeomorphism. It is enough to prove that S(f) is bijective.  

To prove S(f) is onto: Let λ ∈𝐼𝑋2  and also let 
2X (λ) ∈ S(X2). Given that f is onto. Then there exists 

µ ∈𝐼𝑋1  such that λ = f(µ). Thus Fcl(F𝛼-Ext(λ)) = Fcl(F𝛼-Ext(f(µ))). Hence by Definition 3.6, 
2X (λ) = 

2X

(f(µ)). Since 
2X ◦ f = S(f) ◦ 

1X , 
2X (λ) = S(f)(

1X (µ)). Therefore S(f) is onto.  

To prove S(f) is one-to-one: Let 
1X (µ), 

1X (µ′) ∈ S(X1) be such that S(f)(
1X (µ)) = S(f)(

1X

(µ′)). Since 
2X ◦ f = S(f) ◦ 

1X , 
2X (f(µ)) = 

2X (f(µ′)). Hence Fcl(F𝛼-Ext(f(µ))) = Fcl(F𝛼-Ext(f(µ′))), 

by Definition 3.6. To proveFcl(F𝛼-Ext(µ)) = Fcl(F𝛼-Ext(µ′)). It is sufficient to show that Fcl(F𝛼-Ext(µ)) ≤ 

Fcl(F𝛼-Ext(µ′)). Let δ ∈𝐼𝑋1  be a fuzzy open set in (X1, 𝜏1) with µ ≤ δ and σ ∈𝐼𝑋2  be a fuzzy open set in (X2, 𝜏2). 

Since f : (X1, 𝜏1) → (X2, 𝜏2) is fuzzy quasi-homeomorphism, δ = f
−1

(σ). Since µ ≤ δ and δ = f
−1

(σ), µ ≤ f
−1

(σ). 

Then f(µ) ≤ σ. It follows that f(µ′) ≤ σ implies that µ′ ≤ f
−1

(σ). Thus µ′ ≤ δ, since δ = f
−1

(σ). Therefore S(f) is a 

bijective and fuzzy quasi-homeomorphism. Since bijective fuzzy quasi-homeomorphism is fuzzy 

homeomorphism, S(f) is fuzzy homeomorphism. 

(ii) ⇒ (i) Assume that S(f) is fuzzy homeomorphism and 
1X , 

2X are fuzzy quasi-homeomorphism. Since 

S(f) ◦
1X = 

2X ◦ f is commutative, by Proposition 3.6, f is fuzzy quasi-homeomorphism. It remains to show 

that f is onto. Let λ ∈𝐼𝑋2 . Since S(f) is onto, there exists µ ∈𝐼𝑋1  such that S(f)(
1X (µ)) =

2X (λ). Thus 
2X

(f(µ)) = 
2X (λ). Therefore Fcl(F𝛼-Ext(λ)) = Fcl(F𝛼-Ext(f(µ))). Therefore f is onto. Hence f is fuzzy onto 

quasi-homeomorphism.  

Proposition 3.8: [First Extension Theorem for F𝛼-Ext Sober space]  

Let (X1, 𝜏1), (X2, 𝜏2) and (X3, 𝜏3) be any three FTSs and let (S(X1), 1
~
 ), (S(X2), 2

~
 ) and (S(X3), 3

~
 ) 

be any three fuzzy 
~

structure spaces. Also let 
1X : (X1, 𝜏1) → (S(X1), 1

~
 ) and 

2X : (X2, 𝜏2) →(S(X2), 2
~
 ). 

Then the following statements are equivalent:  

(i) (X3, 𝜏3) is a F𝛼-Ext Sober space;  

(ii) for each fuzzy quasi-homeomorphism q : (X1, 𝜏1) → (X2, 𝜏2) and each fuzzy continuous function f : 

(X1, 𝜏1) → (X3, 𝜏3), there exists one and only one fuzzy continuous function F : (X2, 𝜏2) → (X3, 𝜏3) 

such that F ◦ q = f  

Proof: 

f 

S(f) 
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(i) ⇒ (ii) Assume that such F : (X2, 𝜏2) → (X3, 𝜏3) exists. Then F◦q = f which implies S(F)◦S(q) = S(f) 

where S(F) : (S(X2), 2
~
 ) → (S(X3), 3

~
 ) and S(q) : (S(X1), 1

~
 ) → (S(X2), 2

~
 ). Given that q is fuzzy quasi-

homeomorphism, by Proposition 3.7, S(q) is a fuzzy homeomorphism. Hence S(F) = S(f) ◦ (S(q))
−1

. Also 
3X ◦ 

F : (X2, 𝜏2) → (X2, 𝜏2) →(S(X3), 3
~
 ). Therefore 

3X ◦ F : (X2, 𝜏2) → (S(X3), 3
~
 ). Similarly S(F)◦

2X : (X2, 

𝜏2) → (S(X2), 2
~
 ) → (S(X3), 3

~
 ). Therefore S(F)◦

2X : (X2, 𝜏2) → (S(X3), 3
~
 ). By Figure 2, 

3X ◦ F = 

S(F) ◦ 
2X commutes. Consequently,  

F = (
3X )

−1
 ◦ S(F) ◦ 

2X = (
3X )

−1
 ◦ S(f) ◦ (S(q))

−1
◦ 

2X {∵ S(F) = S(f) ◦ (S(q))
−1

 } 

                (X2, 2 )                            (X3, 3 ) 

       

 

 

 

 

             (S(X2), 2
~

)                       (S(X3), 3
~

) 

Figure 2 

Hence to verify F : (X2, 𝜏2) → (X3, 𝜏3).  

F = (
3X )

−1
 ◦ S(f) ◦ (S(q))

−1
 ◦ 

2X : (X2, 𝜏2) → (S(X2), 2
~
 ) → (S(X1), 1

~
 ) → (S(X3), 3

~
 ) → (X3, 𝜏3) 

F = (
3X )

−1
 ◦ S(f) ◦ (S(q))

−1
 ◦ 

2X : (X2, 𝜏2) → (X3, 𝜏3) 

     (X3, 3 )                                          (X1, 1 )                                     (X2, 2 )                            

     

 

 

 

      (S(X3), 3
~

)                                (S(X1), 1
~

)                                (S(X2), 2
~

) 

Figure 3 

Also the diagram Figure 3 is commutative. Using F, we have to prove F ◦ q = f. Hence  

F ◦ q = (
3X )

−1
 ◦ S(f) ◦ (S(q))

−1
 ◦ 

2X = (
3X )

−1
 ◦ S(f) ◦ ((S(q))

−1
 ◦ S(q)) ◦ 

1X  

 = (
3X )

−1
 ◦ S(f) ◦ 

1X  = (
3X )

−1
 ◦ 

3X  ◦ f = f. 

(ii) ⇒ (i) There exists a fuzzy continuous function g : (S(X3), 3
~
 ) → (X3, 𝜏3) such that  

g ◦ 
3X = (X3, 𝜏3) → (S(X3), 3

~
 ) → (X3, 𝜏3) 

g ◦ 
3X = (X3, 𝜏3) → (X3, 𝜏3) = 𝐼𝑋3

 

where 𝐼𝑋3
 is the identity function in (X3, 𝜏3). Therefore, g ◦ 

3X  = 𝐼𝑋3
 is commutative, by Figure 4. Also Figure 

5 is commutative. Similarly,  

3X  ◦ g = (S(X3), 3
~
 ) → (X3, 𝜏3) → (S(X3), 3

~
 ) 

3X ◦ g = (S(X3), 3
~
 ) → (S(X3), 3

~
 ) = IS(X3) 

  (X3, 3 )                                   (S(X3), 3
~

)        (X3, 3 )                                   (S(X3), 3
~

)

  

    g 

 

 

             (X3, 3 )                                                            (S(X3), 3
~

)

 Figure 4:      Figure 5:  

F 

3X  2X

 

S(F) 

3X
 

𝐼𝑋3
 

3X  

3X ◦ g 
3X

 

f q 

3X

 
1X

 
2X
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where IS(X3) is the identity function in (S(X3), 3
~
 ). Hence 

3X ◦g = IS(X3) = g◦
3X , by (i) ⇒ (ii). Therefore, 

3X  is a fuzzy homeomorphism. Therefore (X3, 𝜏3) is a F𝛼-Ext Sober Space.  

Proposition 3.9: [Second Extension Theorem for F𝛼-Ext Sober space]  

Let (X1, 𝜏1),(X2, 𝜏2) and (X3, 𝜏3) be any three FTSs and let (S(X1), 1
~
 ),(S(X2), 2

~
 ) and (S(X3), 3

~
 ) be 

any three fuzzy 
~

 structure spaces. Letq : (X1, 𝜏1) → (X2, 𝜏2) be fuzzy continuous function. If for each F𝛼-Ext 

Sober Space (X3, 𝜏3) and each fuzzy continuous function f : (X1, 𝜏1) → (X3, 𝜏3), there exists one and only one 

fuzzy continuous function F : (X2, 𝜏2) → (X3, 𝜏3) such that F ◦ q = f. Then q is a fuzzy quasi-homeomorphism.  

Proof: 

To prove q is a fuzzy quasi-homeomorphism, by Proposition 3.7, it is enough to show that S(q) : 

(S(X1), 1
~
 ) → (S(X2), 2

~
 ) is a fuzzy homeomorphism.  

Let 
2X : (X2, 𝜏2) → (S(X2), 2

~
 ), 𝜂𝑋1

  : (X2, 𝜏2) → (S(X1), 1
~
 ) and g : (S(X2), 2

~
 ) → (S(X1), 1

~
 ) be 

such that the Figures 6 commutes. Hence  

  (X1, 1 )                                        (X2, 2 )                  (X2, 2 )                          (S(X2), 2
~

)

                    g 

 

 

           S(X1), 1
~

)                                                                 (S(X1), 1
~

)

 Figure 6 

g ◦ 
2X ◦ q : (X1, 𝜏1) → (X2, 𝜏2) → (S(X2), 2

~
 ) → (S(X1), 1

~
 ) 

g ◦ 
2X ◦ q : (X1, 𝜏1) → (S(X1), 1

~
 ) 

1X : (X1, 𝜏1) → (S(X1), 1
~
 ) 

∴  g ◦
2X ◦ q = 

1X  

On the other hand, the rectangle Figure 1 is commutative. Thus (g ◦ S(q)) ◦ 
1X  =g ◦ (S(q) ◦ 

1X ) = g 

◦(
2X ◦q) = 

1X . Hence (g ◦S(q))◦
1X  = 

1X . Thus g ◦S(q) = IS(X1) where IS(X1) is the identity function in 

(S(X1), 1
~
 ). Similarly  

(S(q) ◦ g) ◦ (
2X ◦ q) = S(q) ◦ (g ◦ 

2X  ◦ q)= S(q) ◦ 
1X  

             (S(q) ◦ g) ◦ (
2X  ◦ q) = 

2X ◦ q(∵  S(q) ◦
1X  = 

2X ◦ q) 

 ∴  S(q) ◦ g = IS(X2) 

Where IS(X2) is the identity function in (S(X2), 2
~
 ). To prove 

2X ◦q is fuzzy quasi-homeomorphism (i.e., 

Figure 7). Since 
2X is fuzzy quasi-homeomorphism, it is enough to show that q is fuzzy quasi-

homeomorphism.  

      (X1, 1 )                               (X2, 2 )                (X2, 2 )                      (S(X2), 2
~

)

  

 

 

                (S(X2), 2
~

)                                                   (S(X2), 2
~

)

 Figure 7 

(S(q) ◦ g) ◦ 
2X  : (X2, 𝜏2) → (S(X2), 2

~
 ) → (S(X1), 1

~
 ) 

(S(q) ◦ g) ◦ 
2X  : (X2, 𝜏2) → (S(X2), 2

~
 ) 

2X : (X2, 𝜏2) → (S(X2), 2
~
 ). 

q 

1X

 

𝜂𝑋1
  𝜂𝑋1

  2X

 

2X  

2X

 

q 

S(q)◦g 
2X ◦q 2X
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Therefore (S(q) ◦ g) ◦ 
2X  = 

2X  (By Figure 7). Since 
2X is fuzzy quasi-homeomorphism and it is known 

that S(q) ◦ g = IS(X2), S(q) is fuzzy homeomorphism. By Proposition 3.7, q is fuzzy quasi-homeomorphism.  
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