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Part I Operational and Statistical theory 

1. Introduction 
1.1 Document structure 
This document has three sections, plus references: 

• Part I discusses the operational and statistical theory underlying all aspects of output 
statistical disclosure control (OSDC). It is intended for those who want a deeper 
understanding of the concepts underlying practical and efficient OSDC. 

• Part II is the practical manual, intended to be a reference for users and output checkers. It 
lists the rules (or rules-of-thumb) to be followed for all possible outputs, organised by class. 
For each class of statistics, the manual presents a quick summary, an example, a discussion 
of the key risks, a rationale for any rules applied, and guidelines on how to evaluate the 
output if an exception is requested. A detailed statistical explanation of the risk assessment 
is not given, but other works are referenced for those interested. A separate chapter 
discusses graphs. 

• Part III provides FAQs on both statistics and outputs, plus some guidance for output 
checkers on how to respond to queries 

The expectation for the guide is that Parts II and III will be regularly updated as our understanding of 
SDC develops and as new FAQs arise; Part I should be fairly stable.  

1.2 Audience  
This manual is intended to comprehensively support researchers, output checkers, and data 
governance managers. 

• Researchers need only consider Part II, perhaps part I on safe statistics, perhaps the FAQs; 
however, they may find the rest of the manual enlightening 

• Output checkers should read the whole manual, and have Part II to hand when checking. 
Senior output checkers should be familiar with the whole manual, and follow up the 
references; in particular Ritchie and Welpton (2015) and Alves and Ritchie (2021). 

• Data governance managers may skip Part II but should study Parts I and III, and follow up 
the references for senior output checkers 

1.3 Output checking in context 
Output checking is one part of secure and efficient management for confidential data. The most 
widely-used framework for confidential research data governance is the Five Safes (Ritchie, 2017). 
This proposes five dimensions of ‘control’ or ‘risk’ that needs to be considered when planning 
research data management: 

• Projects – why is this project being done, who for, what happens at the end? 
• People – will those with access to data look after it, and do they need training? 
• Setting – will the physical/technical environment limit the chance of accidental or deliberate 

misuse? 
• Data – is the level of data appropriate for the project? 
• Outputs – is there any residual risk in publication? 



Whilst the first four are often thought about, outputs are usually the forgotten relations. Training (or 
even awareness that this is a problem) is currently limited to those using secure research 
environments, although this is likely to change in the future. 

The reason that it can be forgotten is because statistical research outputs are generally very low risk 
– good statistics are generally (although not always) aligned with negligible disclosure.  The converse 
is true: disclosure often is associated with poor statistics, and so SDC can be seen as supporting the 
researcher. 

SDC is therefore not the only protection applied to confidential data. There are usually other checks 
to make sure the researchers are competent and aware of their duty of confidentiality. Note that we 
assume any SDC problem arise from poor statistics or mistakes by the researcher; unlike the other 
four safes, output checking does not consider ‘bad hat’ actors. We do not allow for a researcher 
deliberately falsifying results to breach confidentiality because (a) it probably can’t be detected and 
(b) the ‘people’ dimension should be ensuring that only people who will work genuinely have access 
to the data.  

1.4 Basic OSDC terms 
These terms will be used throughout the guide. 

Threshold The minimum number of observations that a statistic should be based on. Can apply to all 
statistics, although generally not used for models. The purpose is to prevent disclosure 
from a statistic based on one or two observations. Typically set by the data owner. 3 is 
used in textbooks as it is the only value with a clear statistical justification. Most 
organisations now use a higher value (5 or 10) to (a) provide a margin of error and (b) to 
protect against differencing. This is an organisational preference. See Ritchie (2021) for a 
discussion 

(Residual) 
degrees of 
freedom 

Generally used as the equivalent threshold for models and test statistics. The purpose is 
to prevent an equation from masquerading as a model. Residual degrees of freedom is, 
broadly speaking, number of observations minus number of restrictions embodied in the 
test or modelled eg for a simple linear regression it is N-K, where K is the number of 
coefficients including the intercept; for a chi-square it would be N-the test degrees of 
freedom. Since Brandt et al (2010), 10 is widely used as the minimum. 

Dominance Relevant for magnitudes, but not for frequencies. Dominance checks are there to prevent 
disclosure where a statistic, although seemingly with many observations, in practice is 
largely determined by one or two values (for example, mean earnings in a small village 
where one resident is a Premiership footballer). A dominant observation means may be 
guessable to a reasonable degree of approximation. Dominance tests vary with the 
statistic. Dominance is hard to spot as there is no clue from the statistic; this makes it 
harder to check, but also harder for an attacker, who is required to have a very high level 
of knowledge. 
Note that Brandt et al (2010) and derived texts discuss ‘row dominance’, where much of 
the value of a table row or column is concentrated in a single cell. This is a statistical 
problem, but not a disclosure issue.  

Class disclosure This occurs when everyone in a defined set has a defined characteristic eg “all of the 
students surveyed had taken cannabis”; “no-one in the village earns over £45,000 per 
year”. If the characteristic (drug use, earnings) is informative about members, and if 
membership of the set can be reasonably determined (all students in the survey; 
everyone in the village) then this is a disclosure; but both of these are highly context-
sensitive.  

Structural or 
evidential zeros 

A class disclosure does not occur where we would expect that class characteristic to be 
true or false eg “none of the patients aged 80+ had a living parent”. Note: the literature 
usually only refers to structural zeros; see Appendix 3 for a more detailed discussion of 
why the distinction matters 



Differencing Differencing refers to the disclosure risk that may occur when two statistics are based on 
the same data but one has one or two additional observations. Potentially, the difference 
between the two statistics creates an implicit statistic about the additional observation. 
For example, mean earnings in a village of 16 people are £49,125; the researcher decides 
to omit the highest earner as an outlier and calculates a mean of £32,400 for the 
remaining 15. The difference shows that the person omitted earned £300,000. 

Model 
saturation 

Module saturation occurs when all possible combinations of variables are included as 
explanatory factors. This can lead to a table masquerading as a model. Only likely to be 
an issue with one or two binary variables eg with three binary variables there are eight 
possible combinations that must all be included in the model. Note that this is unrelated 
to saturation when it is used to indicate that adding more data makes no difference to 
results. 

Table 1 Terms used in the guide 

  



2. Risk assessment 
The risks in any output need to be assessed before the output is released. How this is done can have 
a large effect on the clearance process. What makes an output ‘disclosive’? There is no agreed 
measure. Statistical tools can generate models of re-identification risk, but generally these are 
meaningless as they are unable to model the outside information of a potential attacker (Hafner et 
al., 2016). 

There are two options: 

• To refuse to release outputs until there are demonstrably no meaningful risks 
• To release outputs unless there are demonstrably meaningful risks 

Although in theory these produce the same outcomes, in practice these two approaches (default-
closed and default-open, respectively) differ. Even if they give the same outcome, the default-closed 
approach is likely to be more time consuming, and to require more engagement with researchers.  

The negative statement “we can’t prove that the data could not be re-identified” is almost certainly 
true; equally, it is meaningless because there is an infinity of possibilities to be disproven. However 
many times a person shows why X does not lead to re-identification, then the argument changes to 
“well, how do we know that Y can’t lead to re-identification?” This is the ‘what if..?’ approach, and is 
often used by those unwilling to commit and hoping to have decisions taken out of their hands. 
Using the ‘what-if..?’ approach, it is easy to devise potential scenarios even if not plausible, and 
demand that that are all refuted before action can be taken. 

A better (and more practical) way to address this question is to  

(1) assume there is no re-identification risk 
(2) identify specific circumstances which could lead to a breach, and assess their plausibility 

We refer to this as ‘chain-of-events’ reasoning – what chain of events would plausibly lead to the 
outcome in question occurring, and is that chain of events likely or relevant? 

Consider the example in Figure 1, taken from the DRAGoN Output Checking Course.  

 

Figure 1 Example scatter plot, hourly wage versus age 
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We consider two risks: that the outlier for the 45-year-old (or any other group) is identifiable, and 
that the maximum wages at any age group could be informative. 

For the 45 year-old outlier, there are a large number of observations with the same characteristic. 
What specific scenarios would lead to the person being identified? Some ideas: 

a) the data comes from a known population and that the highest earner is known but the exact 
value is not known (eg all data from one company, the highest earner being CEO) 

b) other information in the report provides missing demographic data (“all the highest earners 
are lawyers”, “all the highest earners live in West London”) 

c) the highest earner told a friend that she took part in the survey, and suggests that the friend 
check it out to see if he can find her 

d) the individual self-identifies by seeking out the survey results 

Scenario (a) is possible but easily checked. Scenarios (b) and (c) are possible but seem highly unlikely 
in reality. Scenario (d) is more feasible, but given that no new information is created (the respondent 
knows already what she earns, which is why she is able to self-identify), is this a disclosure? Self-
identification can be problematic, but in general (and in much of data protection law) this is not a 
significant problem as it extremely difficult to show that it is not possible. In summary, the outlier 
does not appear to be breaching confidentiality.  

We could consider a case for the outlier for 19 year-olds – one of whom appears to be earning about 
£70 an hour, a very high value especially as this data is from 2002. Perhaps this is an actor, a 
footballer, an internet pioneer? The default-closed process requires us to exclude these possibilities. 
Taking a default-open approach, we acknowledge the existence of such scenarios as feasible – but 
recognise that there is very little likelihood of that individual being uncovered. 

Finally, we consider the maxima displayed. Technically, these are class disclosures as we know the 
maximum earnings for each age. But are these practical disclosures? The answer hinges on whether 
it seems likely that “no-one aged X earns more than Y” is informative. Even the 16 year olds have at 
least one person earning £20/hour, which translates into £36,000 pa – twice the mean adult wage in 
2002. For most other ages, the maximum observed wage is two or three times this. So the maxima 
tell us that “no-one in this sample earns millionaire-style wages, but people in each age group can 
earn a very good wage”. This does not seem informative. 

Hence, without further information coming to light, there seems no disclosure risk with this graph, 
and it can be released safely. 

However, even where there is no disclosure risk, there may be a reputational risk. A naïve reader of 
the graph could consider that the outliers are evidently disclosive and complain, in which case the 
data owner is on the back foot to respond. Note that the accuracy of the identification is not a 
concern. It is the belief that this is disclosive that causes the problems. Hence, risk assessment can 
consider whether an output is likely to give a misleading impression of disclosure. 

Consider this table, reporting on an (imaginary) vox pop taken on the streets of Cardiff 

 Views on independence 
 Pro Anti None 
Welsh speaker 14 4 9 
Non-Welsh speaker 1 12 6 

Table 2 Small numbers example for reputation risk 



Although there is little to identify participants, the single observation (Not Welsh speaker, pro-
independence) in a known area could be picked up as “That must be X that you talked to, then”. This 
is more likely to happen in tables, where the single values are obvious. Hence, this is one reason why 
small numbers are avoided even if non-disclosive. 

The discussion above focuses on perfect data. However, it should be clear that other factors need to 
be considered. Factors increasing disclosure risk include known population, sample, geographical 
area, or timing of the data collection. Factors reducing disclosure risk include low data precision, low 
data quality and missing values, particularly if this is noted in the output (“only 65 of the sample of 
75 provided usable data”). 

The default-open model is generally seen as good practice (Green, Ritchie, Tava et al., 2021); as well 
as being more consistent with the aim of output checking (get as much output released subject to 
addressing disclosure risks), it reflects that research outputs are very low risk to start with. 

  



3. Classification of statistics (a): ‘safe’ and ‘unsafe’ 
The concept of ‘safe statistics’ (Ritchie, 2007) a precursor to the statbarn taxonomy to be introduced 
in the next section. Some statistics, such as tables of frequencies, present a number of potential 
disclosure risks. Others, such as the coefficients of correlation from model estimates, have no 
effective risk. The concept of ‘safe’ versus ‘unsafe’ statistics helps to clarify this. 

An ‘unsafe’ statistic has meaningful disclosure risks, and so those risks need to be assessed before 
the output can be approved for public circulation. The specific instance of the statistic is assessed. 

A ‘safe’ statistic has no meaningful disclosure risk, and so can be published without further checks 
except administrative ones. The definition of a safe statistic is based on its mathematical form, not 
its statistical meaning, and so this is independent of whether the data used to generate it are 
sensitive or not; for a safe statistic, it is not important to know anything about the underlying data. 
Even if the administrative checks are not done, the statistic is very unlikely to produce a disclosive 
output and can be largely ignored in the output checking process. 

Note that in training (eg Safe Researcher Training), safe and unsafe statistics are usually referred to 
as ‘low review’ and ‘high review’ statistics, respectively. They may also be presented as if on a 
spectrum, rather than a binary classification, to show differing levels of risk in ‘unsafe statistics. 

3.1 Principles of ‘safe/unsafe’ classification 
The key principles can be stated 

• Statistics are generally assumed to be unsafe 
• A statistic can be classified as safe if there are demonstrably no disclosure risks, irrespective 

of the characteristics of the data 
• A safe statistic may require some checks as best practice, but omitting these does cause 

unreasonable risks in any genuine research environment 
• Unlikely combinations of variables generated specifically to show disclosiveness of safe 

statistics are not valid counter-arguments to the classification 

Note that these principles do not say that no checks are required; only that these are best practice. 
But the classification does not depend on these being carried out, as we would expect that there is 
no meaningful disclosure risk in genuine use.  

For example, the best-practice rules for regressions require checking (a) that the number of residual 
degrees of freedom exceed some threshold, and (b) that the regression is not fully saturated (ie all 
possible combinations of regressors included as explanatory variables). A genuine researcher would 
need to be both extraordinarily incompetent and energetic to achieve this. Even in the only plausible 
case, of simple linear regression on a single binary variable or two interacted binary variables, the 
researcher generates a table of means which could be disclosive is one category has only a single 
observation. Using a default-open approach to risk assessment, this is extended chain of events that 
lead to a non-trivial disclosure can be considered negligible. 

As a second example, consider the Herfindahl index. The best-practice rule requires checking that 
the root of the index is some distance away for the share of the largest value; as a safe statistic tests, 
this check does not require any knowledge or understanding of the data but is a mathematical test. 
As with all dominance measures, this can only be checked at the point of calculation, not from the 
statistic itself. What happens if the check is carried out at the root index does indeed approximate 
the share of the largest value (implying all the other observations have negligible share)? An intruder 
may suspect that the root index reflects the largest share, but with a degree of uncertainty. At best, 



the intruder can state with certainty the upper bound of the largest contributor’s share (ie root 
index). For this to be useful, the total value from which shares are calculated needs to be available, 
but this is not necessarily the case. We also need to think how the Herfindahl index is used. A 
common use is to estimate monopoly power in business statistics, where the expectation is that 
there are competitors; otherwise the estimation is trivial. Another example of use is to look at how 
the respondent distributes some activity or resource between alternatives (for example, as in Green, 
Ritchie Bradley and Parry, 2021). In this case, an individual value is of no interest, even at its 
minimum or maximum. Hence we assess the index as ‘safe’. 

As third example, weighted frequencies might appear to have very little risk, particularly if the 
weights are unknown. However, we assume that the weights may be available (this is very 
reasonable if the data uses standard weights supplied by the data owner, such as statistical offices 
do); moreover, we can envisage situations where the weights are the same across all cases, meaning 
the weighted statistic is a linear transformation of the unweighted one. While these may be unlikely 
cases, the fact that they exist and are not negligible implies they need to be checked; hence, 
weighted frequencies are classed as ‘unsafe’.  

3.2 Determining a safe/unsafe classification 
Ritchie (2014) proposed a process for considering whether a statistic should be classed as safe: 

1. Describe the ‘base’ (highest risk) form of the statistic – usually the simplest version; for 
example, a linear regression with no iterative components and no incidental parameters. 

2. Determine the inherent risk; this is done by developing table of ‘things to check’, creating a 
formal record of what determines riskiness (note: this exercise also feeds directly into the 
statbarn classification, later). Ritchie (2014) suggests considering 
• Low frequencies 
• Extreme values, outliers and censoring 
• Lack of variation in the data 
• If the data is categorical 
• Dominance if the data are cardinal 
• The impact of absolute versus relative values 
• The likely presence of other information which could lead to uncovering detail (for 

example, for odds ratios it is assumed that marginal  totals would be published in the 
paper, allowing the full 2x2 frequency table to be reconstructed from the odds ratio and 
some of the margins) 

3. Identify any differencing risk, including hierarchies 
4. Examine the statistic for other issues (for example, the root-index test for Herfindahl indices) 
5. Identify whether any corrective measure effectively nullify the risk 
6. Evaluate the risks, using the default-open approach; this should include 

a. likelihood of accidental production of risky versions of the stats 
b. the effort needed for deliberate attack eg brute force solution 
c. the incentives for deliberate attack 
d. the ease/reliability of corrective measures 

7. Classify, including any corrective measures 

While this process is clearly both subjective and inductive (it can’t prove non-disclosiveness), it 
provides a mechanism for thinking about the problem and collating the evidence. We have reviewed 
new statistics in this manual using this approach. 



The classification is based on the simplest form of the statistic: a top-N linear concentration ratio 
assuming that this is simply the sum of the largest N observations divided by the total, without any 
other adjustments; or a single-stage linear regression with no incidental parameters and all 
coefficient estimates being published. The assumption is that complexity reduces disclosure risk, but 
does not change its type: a complex unsafe statistic may be less unsafe but it still requires checking, 
while a safe statistic remains safe. 

Finally we note that the classification holds in general for the statistic. However, ongoing work by 
the statistics team at UWE shows that there is general disclosure problem in all statistics: where a 
statistic is based upon small numbers and constructed values with a known finite range (for 
example, Likert scales), the values that generated the statistic may be determined exactly if there is 
sufficient precision in the statistic (Derrick et al, 2022a). This appears to be the case for a very large 
number of statistics; however, the likelihood of this drops off very rapidly with either an increase in 
observations, or more values for the variables. As such, this provides strong evidence for the use of 
thresholds greater than the statistically valid minimum of 3, but not practically effect the 
safe/unsafe discussion.  

  



4. Classification of statistics (b): the statbarn model1 
4.1 The statbarn concept 
The statbarn model is a development of the safe/unsafe statistics idea. Analysts use a great range of 
statistical techniques. Devising statistical rules for all of these separately is not feasible. However, it 
is possible to combine statistics into groups based not on statistical relation but on common 
disclosure risks and solutions. For example: 

• means and totals are identical for practical disclosure purposes 
• a pie chart, a histogram or a scatter plot are all forms of frequency table 
• multinomial logit, ordered probit, and proportional hazards all have negligible disclosure risk 

because of the non-linear convolution of variables  

In some cases this requires additional assumptions. For example, the homogeneity between means 
and totals comes from the assumption that sample sizes are presented along with the means, a 
reasonable expectation. In a more complex case, an odds ratio by itself contains no disclosure risk 
but on the reasonable assumption that some of the marginal totals for control or treatment groups 
are presented along with the odds ratio, it is fair to assume the underlying 2x2 table can be 
reconstructed (Derrick et al., 2022b). 

The differences between statistics are also important: 

• means and frequencies share the risks of low numbers and potential for differencing 
• but means have the potential for dominance 
• survival tables are frequencies but generate an implicit secondary table 

So a grouping would put means, totals, frequency tables and survival tables into three different 
disclosure groups (Figure 2): 

 

Figure 2 Differences between statistical types 

Everything in the groups should have the same risks and solutions. For example, rounding or noise 
addition are valid solutions to disclosure concerns in both frequency and survival tables; but cell 
suppression is of limited value in survival tables because of a monotonic relationship between cells. 

The advantages of this approach are both statistical and operational: 

• Fewer rules/cases for researchers and output checkers to learn 
• More consistent treatment of outputs 

 
1 This section text is largely adapted from Derrick et al, (2023), but the content in this section differs in several 
important ways from that conference paper: max/min now have their own category, smoothed distributions 
were moved into regression models, and the guidance on survival tables has changed significantly. These 
differences, reflecting barely two months additional analysis, demonstrate how this is still a developing field.  



• Clearer distinctions between outputs 
• Easier to develop the theoretical basis for any guidance 
• Easier to update guidance when it changes (which it does) 
• Output checker (and researcher) training can focus on the risky classes rather than trying to 

cover all cases 

Checking statistics is now a case of ‘what category does it fall into?’ rather than ‘what rules are 
needed?’ Similarly, understanding the disclosure risk in a novel statistic becomes a question of 
classification. This is effectively defining a taxonomy of disclosure risk. Because classification, class 
and category is used in this field in many different ways, we refer to the groupings as ‘statistical 
barns’ or ‘statbarns’2.  

The real value of this comes from finding that, in terms of disclosure characteristics, the minimum 
number of statbarns is fairly small. To a researcher, estimation of a hazard model bears little 
analytical relation to a quantile regression; but they pose the same disclosure risks: that is, no 
meaningful risk in any reasonable use, and so the only test needed is to make sure that this a 
genuine research use. In the case of estimated models, the tests are always  

• Are there sufficient residual degrees of freedom (ie is this a model not an equation)? 
• Is the model saturated; that is, the explanatory factors are all categorical and all fully 

interacted (ie is this a multi-way table masquerading as an estimate)? 

And just like that, a large and essential part of research output is consigned to the disclosure risk box 
‘nothing to see here’. 

Finally, this enables automatic output checking. The SACRO coders only need to know the statbarn 
code and then can draw all the information they require from a finite set of outputs. Ironically, it was 
the development of ACRO, a proof-of-concept for automated output checking developed for 
Eurostat and the precursor to SACRO (Green et al, 2021) that prompted the formalisation. Whilst the 
UWE team had been considering an improved taxonomy, efficient coding required that ACRO 
translated multiple Stata tabulation commands into a single command, providing a concrete 
example of the value of classification. 

4.2 Constructing the statbarns 
Each of the statbarns is designed to house statistics with 

1. The same functional form 
2. The same conceptual disclosure risk 
3. The same conceptual SDC responses, even if in some cases these are not useful in practice 

(for example, cell suppression in survival tables) 

Condition (1) may not be obvious, especially for derived values such as ratios. The key is to consider 
whether a statistic could be transformed into another, using the statistic itself and other reasonably 
available information. Hence, means and totals are equated in the group ‘linear aggregations’ 
because of the likely availability of the sample size. Simple ratios (such as linear top-N concentration 
ratios) are classed as linear aggregations, because (a) it is not unreasonable to suppose that the 
totals from which the shares are derived is presented along with shares, and (b) the shares 
themselves might be informative (eg ‘75% of the market controlled by the two largest firms’). 

 
2 The concept behind this is of the farmer rounding up her animals into different groups: cows in the cowshed, 
chickens in the henhouse, goats in the trees and so on. 



Other cases are not so clear. There is an argument for saying that, because the simpler statistical 
tests can be restructured as regression models with dummy variables, statistical tests and 
regressions should be lumped together. We have not explored this in detail, and we suspect that the 
saturation argument may be a difference between the two, and so we have kept those separate for 
the moment. 

As with safe statistics, the assessment of functional form is based on the simplest version. A chain-
linked index may have negligible disclosure risk but at the moment it is classified as ‘index number’, 
which puts it with ‘frequencies’. These are areas where they may be future scope for efficiency gains 
by defining additional statbarns. The issue is likely to be whether a new class can be defined with 
sufficient clarity that the gains from more efficient rules are not outweighed by the extra time 
needed to assess which statbarn the output is in. 

Because of condition (2), statbarns as a whole are classified as ‘safe’ or ‘unsafe’ statistics. There 
cannot be a mix, as this would imply differing disclosure risks. Condition (2) also helps to distinguish 
similar cases. For example, in the early stages of development, maxima and minima were included 
with ‘position’ statistics (median, percentiles, inter-quartile range etc). However, max and min 
present a class disclosure risk, as membership of the class is simply defined as membership of the 
sample; this is not the case for median, where membership of the class defined by the median 
requires knowledge of the data subject’s ranking. 

Finally, condition (3) provides some extra perspective for helping output checkers. For example, 
suppression is the only meaningful response to max and min: if an extreme value is informative, it 
seems unlikely that rounding or noise addition would meaningfully and effectively reduce that 
information content. For all of the statbarns classified as ‘safe’, there is generally no mitigation, as a 
disclosure risk from these implies a catastrophically poor piece of statistical analysis. The only 
exception to this is for regression, where a saturated regression can be re-assessed as a table (this is 
one reason why we may continue to distinguish between hypothesis tests and regression).  

4.3 Current position 
As it stands (October 2023), the SACRO models contains fourteen statbarns: 

 Barn Example Class Status 
1 Frequencies Frequency tables Unsafe Very well understood 
2 Statistical hypothesis tests t-stats, p-stats, f-stats Safe Provisional 
3 Correlation coefficients Regression coefficients Safe Confirmed 
4 Position Median, quartiles Unsafe Provisional 
5 End points Maximum, minimum Unsafe Very well understood 
6 Shape s.d., skewness, kurtosis Safe Provisional 
7 Linear aggregations Means, totals Unsafe Very well understood 
8 Mode Mode Safe Provisional 
9 Non-linear concentration ratios Herfindahl index Safe Provisional 
10 Calculated ratios Odds & risk ratios Unsafe Confirmed 
11 Survival tables Hazard/survival tables Unsafe Provisional 
12 Gini coefficient Gini coefficient Safe Provisional 
13 Linked/multi-level tables Nested categorical data ? Unknown 
14 Clusters Cluster analysis ? Unknown 

Table 3 Statistical barns as at October 2023 



It is clear that some of these statbarns cover a very large number of cases (‘correlation coefficients’ 
covers linear and non-linear regression, ANOVA, ANCOVA, pairwise correlation etc). In contrast, the 
disclosure risks of the mode are unlike any other statistic, and so it merits its own class. This shows 
the importance of identifying exactly what are the disclosure characteristics of a particular statistic.  

The act of creating the list is itself a useful exercise, forcing one to consider what are the meaningful 
differences. For example, mean and median are often grouped together in OSDC guidelines, but they 
have quite different characteristics.  

This list is likely to undergo change over time. Even in the development process, the list changed as 
more statistics were deemed to be of the same type, and others demanded a new type. The process 
of identifying risks and defining OSDC guidelines for each class is crucial, as this is usually the point at 
which it becomes clear whether a new type is needed or not. It may also be the case that trying to 
identify a minimal set is counter-productive. Initially maxima/minima were treated as special cases 
of percentiles; but in terms of communication of risk to researchers and output checkers, it was 
thought sensible to separate them. Finally, we have created some categories where, at the moment, 
we don’t have enough information to be comfortable that they fit an existing category. Category 13 
“linked/multiple tables” is an example – it seems like these should be covered by frequency tables, 
but we suspect there are nuances which need to be explored, and so creating it as a separate 
category show the need for more understanding. Similarly, we suspect that the decision trees used 
by operational researchers (but not the ones used by machine learners) may need a class of their 
own. 

The coverage of OSDC theory is decidedly patchy. The ‘status’ column has four values: 

• Very well understood: disclosure issues, things to be checked and protection mechanisms 
have been comprehensively studied and there is a large literature and a consensus 

• Confirmed: these have not been so well studied (conclusions rest on one or two papers) but 
we are confident that the conclusions and guidance are robust, well-founded and 
comprehensive 

• Provisional: the analysis is new (or radically different) in this project; we have confidence in 
our conclusions but this is based on extrapolation from other types, and from our own 
understanding; there is substantial further work to be done (for example, on the impact of 
extreme values on a statistic) before the classification can be confirmed; the appendices to 
this document outline current thinking 

• Unknown: while we may have idea o the likely characteristics, basic analysis has not been 
carried out; these are therefore ‘unsafe’ 

At present, the focus is to get the ‘provisional’ status raised to ‘confirmed’. 

The list above is provisional and was devised by the SACRO team based at the UWE. SACRO’s 
network of output checkers was consulted as to whether this was a sensible approach in general; the 
response was positive and expected: earlier evidence-gathering sessions had already indicated a 
desire for simplification of the current OSDC landscape. The initial categories seemed both sensible 
and comprehensive, although these are likely to be modified as they develop in practice.  

Of more concern to the output checkers was how they (and researchers) would easily check the 
guidelines for statistics. This is achieved by a look-up table, linking statistics to the appropriate 
statbarn, from which the corresponding checks, problems and solutions could be found. As the list is 
organised by disclosure characteristics, rather than use, this makes it harder for a new output 
checker (or a researcher) to discover the statbarn a statistic is in. We have created a second lookup 



table to facilitate this. The lookup table also has ‘use type’ – descriptive statistic, estimation, non-
parametric modelling, discriminant analysis and so on. This reflects the way statistics are grouped 
together by researchers, and the way that statistics courses are taught.  Table 3 summarises. 

Statbarn  Descriptive 
statistics 

Factors & 
discriminants 

Hypothesis 
testing 

Non-
parametric 
statistics 

Regression, 
estimation, 
modelling 

Total 

Calc. ratios  1  2  3 

Clusters    1  1 

Correlation     32 32 

End points 3     3 

Frequencies 7     7 

Gini coefficient    1  1 

Survival tables 1   1  2 

Linear agg. 3    1 4 

Multi-level tables 1     1 

Mode 1     1 

Position 3     3 

Seq. analyses    1  1 

Shape 3  1   4 

Hypothesis tests  3 42   45 

Grand Total 22 4 43 6 33 110 
Table 4 Statistical barns by use type 

This will be created as a searchable file, but the output tools being developed by the SACRO project 
(Smith et al., 2023) intend to incorporate this in the user front end. Researchers and output checkers 
should be able to click on a link to see more information about the output, drawn from the statbarn 
classification. In the initial project this will only include basic data such as that shown above, but in 
future it may be useful to expand the information on each classification.  

4.4 Graphical outputs 
Graphs do not present new issues. In theory, every graph can be represented as a table in some way, 
and so the above rules could be applied. To take an obvious example, a pie chart or a histogram are 
clearly just one-way tabulations, whereas a waterfall graph is a two-way table. As a counter 
example, a kernel density estimate could be represented as a mathematical form, but in practice is 
almost always show graphically. In practice, we need separate rules because (a) the quantity of 
information differs, and (b) precision is likely to be lower in a graph. 

Consider the Kaplan-Meier graph, which is simply a survival table re-presented, usually in 
proportional form (percentage of initial cohort continuing). Survival tables are classed as ‘unsafe but 
very low risk’ because, even in the case of a unit being identified, the personal information content 
in the survival table is negligible. Griffiths et al. (2019) suggest that the underlying survival table 
should be supplied along with the graph, but this can cause more problems: 

  



  
Figure 3 Example survival graphs 

In the left-hand graph, the source table would have 15 steps and be checkable by a human. But that 
table would have precise numbers easily readable, whereas getting the exact figures from the graph 
depends on the way that the image was produced (and even then, some laborious analysis). In the 
right-hand diagram, identifying individual data points from the image has become harder whereas a 
survival table with 100 rows in it is much more likely to present a disclosure risk, as well as being 
harder to review.  

The above graphs are presented as numbers. Formally Kaplan-Meier graphs should show the survival 
rate rather than numbers (ie 0%-100%). In theory this makes graphs slightly less disclosive than the 
survival table: tables reflect exact numbers, whereas the number of decimal points determines the 
accuracy of the graph points.  

  



5. Operationalising SDC 
5.1 Principles- vs rules-based OSDC3 
All output checking starts from basic rules of what is and is not acceptable. How these rules are 
applied is the difference between the two approaches to managing output-checking for 
conformance to regulation: ‘rules-based’ and ‘principles-based’.  

Under a rules-based approach (RBOSDC), a rule is a hard limit; no exceptions are allowed. Setting the 
rule is problematic as the rule is trying to balance both confidentiality and utility. Too restrictive a 
rule prevents the publication of useful but non-disclosive findings; too loose a rule allows many 
useful results to be published but increases the risk that disclosive results leak out. 

Under the principles-based approach (PBOSDC), the rule becomes a ‘rule-of-thumb’: it guides 
decisions but is not always followed, and can be adjusted as necessary. The researcher can argue 
that the rule can be ignored if, and only if: 

• the output is non-disclosive, and 
• the detail in the output is important to the researcher, and 
• this request for an exception is a rare occurrence for the researcher 

The first condition is obvious. The second condition ensures that the output-checker and researcher 
only spend time negotiating over an output when the result matters to the researcher. This is 
appealing to researchers as it puts them in charge of deciding when something is ‘important’, rather 
than the output checker. The third condition ensures that researchers do not abuse the system. 
Note that the terms “important” and “rare” are not specified – this is an area for the researcher and 
output-checker to negotiate. As a result, training the researcher to understand the concept is 
necessary (see ONS, 2019, for example training).  

PBOSDC is two-way: the output-checker can also argue that the rule-of-thumb is inappropriate in a 
specific case because it does not protect confidentiality. For example, the output-checker may argue 
that a higher threshold is needed because the data are particularly sensitive and the patients are 
easily identified. Some organisations (for example, National Records for Scotland) operate a two-tier 
system with a lower ‘regular’ threshold and a higher threshold for outputs based on more sensitive 
data. 

PBOSDC systems can have stricter rules than RBOSDC: an overly restrictive rule-of-thumb does not 
limit research as the researchers always have the opportunity to argue for an exception. Hence, the 
threshold can be set high as it only has to address the confidentiality problem; the utility problem is 
dealt with by the exception mechanism.  

Because rules-based is very limiting in research environments, most organisations claiming to be 
rules-based operate a ‘rules-based but sometimes…’ system allowing for ad hoc relaxation of rules. 
This can generate the worst of both worlds: inefficiency and uncertainty. However, PBOSDC has 
been around long enough now for it to become familiar. Most organisations seem to be moving 
towards PBOSDC in practice, if not in formally. 

5.2 Output checking as a customer process 
Alves and Ritchie (2019) argue that output checking is primarily an operational process, not a 
statistical one; that is, the effectiveness of the process is determined by understanding how inputs 

 
3 This sub-section is largely adapted from Alves and Ritchie (2021) 



and outputs (in this case, statistical requests) flow through the system, rather than seeing the 
assessment itself as the aim of the process. Using models of customer segmentation from operations 
research, they reduce output checking to three different scenarios: the runner, the repeater, and the 
stranger (Table 1) 

Type Meaning Output checker skills Examples 
Runner 
90% of 
requests 

Exactly the same service 
each time 

None if output is comprehensible. 
Can be done automatically 

Safe statistics 
Unsafe statistics 
that meet rules 

Repeater 
9% of 
requests 

Similar services but 
needing some human 
intervention 

Some understanding of statistics and 
willingness to make subjective 
judgments 

Exception 
requests for 
unsafe statistics  

Stranger 
1% of 
requests 

Novel services needing 
to be evaluated 

Ability to assess statistics and define 
new rules (a statistic should never be 
a stranger twice) 

New types of 
statistics 

Table 5 Segmentation of output types and the role of process 

This perspective highlights 

• The SDC rules may have a statistical foundation but the application of those rules is primarily 
an operational decision (for example, choosing what to manage as an exception and how) 

• Output checkers’ skills can vary, depending on what they check, and may involve little or no 
skill (as for automatic checking) or extensive statistical knowledge 

• Safe and unsafe statistics align directly with this model 

As the FAQs (Part III) demonstrate, an effective and efficient output checking process requires 
attentive to procedural detail. Accordingly, in this guide we will consider operational issues when 
considering output checking. 

5.3 Active Researcher Management 
The co-operation of the researchers makes a big difference for the efficiency and security of output 
checking processes. The researcher is best placed to identify what outputs are important, carry out 
the initial assessment of disclosure risk, and make the appropriate corrections. The ease with which 
researcher outputs can be reviewed by output checkers depends on how well the researcher 
presents them. If the researcher has not produced high-quality outputs which must be rejected, or 
wants to ask for an exception under PBOSDC, the effectiveness of the conversations between the 
output checker and the researcher will be influenced by the attitudes of both parties to each other.  

Desai and Ritchie (2009) referred to good practice in this area as ‘active researcher management’. 
They noted that researchers are generally well disposed towards support staff, but are likely to be 
focused on their own goal (the production of research), and interference with or limitations on that 
goal may become a source of resentment. Similarly, user support officers who are overly prescriptive 
can create barriers to good working conditions. 

This does not mean that support officers should not reject bad outputs or address inappropriate 
behaviours. It does mean that support officers need to recognise that effective communication relies 
on appreciating the goals, constraints and interests of researchers, on sharing information usefully, 
and on actively managing the understanding and expectations of the researchers. The role of output 
checker becomes less guardian and more pedagogue and facilitator. 

Desai and Ritchie (2009) argue that active researcher management “…goes beyond setting up 
contracts and making sure researchers know their legal responsibilities. It requires making 



researchers partners in secure effective access – and making sure that they understand this” (Desai 
and Ritchie, 2009, p10 – emphasis added). In this guide, active researcher management is assumed. 

  



Part II Guide to statistics 

6. Review of statistical disclosure control solutions  
This section provides a short summary of SDC solutions. For a more detailed review and discussions, 
see Green and Ritchie (2021). 

The examples here are presented as tables, as these are where concerns are mostly likely to occur 
and the impact of alternative control methods can be seen. They are applicable to outputs in the 
following ‘unsafe’ statbarns: 

• Frequencies 
• Linear aggregates 
• Position 
• End points 
• Calculated ratios 
• Survival tables 

Not all measures may be applicable in all cases – see the detailed discussion in Part 2 for relevance. 

In the examples below, 10 is used as the threshold for disclosure. 

6.1 Limiting source data combinations 
Definition: Only permitting specific tabulations of variables which allow each cell to have sufficient 
observations to prevent disclosure risk. This often involves collapsing or merging categories to 
increase observation counts. 

Example of table without output limiting: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 8 £39, 632 29 
Vocational 
School 

18 £40,793 4 £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Same example with output limiting the classes to ‘university’ and ‘other’: 
Higher Education 
type 

Male 
alumni 

Male average 
salary 

Female 
Alumni 

Female average 
salary 

Total 
Alumni 

University 212 £40,989 104 £40,473 316 
Other 39 £40,557 12 £39,937 51 
Total 251 £40,773 116 £40,205 367 

 

Table 6 Example of output limiting 

This is a limit on what can be produced, rather than a check on what is produced. It is often used for 
Census data, or other cases where a fixed set of tables is to be produced. For research data, it is 
generally better to enforce such rules through limiting the set of variables available to the 
researcher, rather than relying on the researcher to check and enforce rules. 

Pros 

• Easy to demonstrate non-disclosiveness with a small number of variables and categories.  
• Can be managed automatically table delivery systems 

Cons 



• Difficult to prove non-disclosiveness via differencing which increases with the number of 
potential categories and values. 

• Does not allow for additional table combinations. 
• Limited usefulness in research on underrepresented groups 
• Where researchers have access to the microdata, very hard to ensure that researchers have 

used only the approved combinations 

6.2 Hiding data 
6.2.1 Cell suppression, with adjustment of totals 
Definition: Removing cells which fall below threshold, usually replacing with blanks or some other 
non-informative filler. It requires additional suppression or recalculation of totals to prevent 
disclosure by subtraction. ‘Suppression’ is often used as a synonym for cell suppression, although 
formally this should be avoided as it could also refer to whole-table suppression. 

Example table before cell suppression: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 8 £39,632 29 
Vocational 
School 

18 £40,793 4 £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Example table after cell suppression (totals omitted): 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 <10 £39,632 - 
Vocational 
School 

18 £40,793 <10 £40,241 - 

Total 251 £40,701 - £40,115 - 
 

Table 7 Example of cell suppression (totals omitted) 

The row and column totals must be adjusted (or omitted) so that true values cannot be discerned by 
differencing. In the above example, the totals have been omitted. Row totals of (104, 355) and 
column totals of (21, 18, 355) would also be acceptable. 

It is generally considered good practice to remove cells associated with the suppressed cells. For 
example, the mean average salaries associated with the suppressed cells present little disclosure 
risk, but they are based on low numbers and are at risk of differencing. Of course, if the minimum-
threshold rule was applied to all cells in the table irrespective of the statistic being presented, this 
would eliminate those cells too. 

Pros  

• Cannot be unpicked 
• Non-structural zeros can be handled in the same way as different undesirable values 
• Easy to automate primary suppression 
• Suppression is obvious to reader 

Cons 

• Information loss due to suppression 
• Does not protect against disclosure by differencing 
• Researchers may forget to adjust totals 



6.2.2 Cell suppression, with secondary suppression 
Definition: Removing cells which fall below threshold, along with other cells above the threshold to 
protect the hidden cells. 

Example table before cell suppression: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 8 £39,632 29 
Vocational 
School 

18 £40,793 4 £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Example table after cell suppression (with secondary suppression): 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College - £40,320 - £39,632 29 
Vocational 
School 

 £40,793 - £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Table 8 Cell suppression, with secondary suppression 

This maintains marginal totals, although at the cost of missing data in specific cells. This is popular in 
official statistics, where consistency in totals across tables is valued, tables are generated in the 
same way from the same source, the set of tables is limited and predictable, and the organisations 
have the processes in place to ensure this is done effectively. We do not generally recommend this 
for research use, as only the first of the four conditions is likely to hold. Moreover, researchers are 
generally antagonistic to the removal of non-disclosive data. 

Pros  

• Cannot be unpicked 
• Accurate totals are retained 
• Non-structural zeros can be handled in the same way as different undesirable values 
• Easy to automate primary suppression 
• Suppression is obvious to reader 

Cons 

• High level of information loss due to secondary suppression as number of primary 
suppressions increases 

• Secondary suppression removes values that are not in themselves a disclosure risk 
• Does not protect against disclosure by differencing 
• Researchers may struggle to do this effectively in large tables 

6.3 Changing data 
6.3.1 Noise addition – Simple 
Definition: Tables are adjusted by adding a small amount of random noise so that the true value in 
the cell is uncertain. 



Example table before noise addition: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 8 £39,632 29 
Vocational 
School 

18 £40,793 4 £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Same example after noise addition: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 215 £40,974 107 £40,473 322 
College 19 £40,331 8 £39,632 27 
Vocational 
School 

17 £40,798 6 £40,241 23 

Total 251 £40,699 121 £40,115 372 
 

Table 9 Simple noise addition 

Noise can be additive (x->x+y where y is a random value -n to +n), scaled (x->x+my, where m grows 
as x increases) or multiplicative (x->xy). 

The values associated with the cells may need to be adjusted as well. In the above example, these 
are means. Therefore, they could be left untouched, or separately have noise added. If the figures 
were totals, then changing the number of observations could change the interpretations of the 
totals considerably, and so some adjustment would seem essential. 

Because noise addition is not obvious by looking at the table, it must be clearly highlighted in the 
methodological notes to the table. Some values will be unaffected by the noise, as occasionally 
adding zero noise should be one of the permissible outcomes for a random noise allocation process. 

Pros 

• Simple and easy to implement in automated table-production systems 
• High degree of practical protection 
• Less vulnerable to differencing than cell suppression when the table is generated statically 

(eg presented in a paper) 
• Little impact on large values 

Cons 

• Small values are disproportionately affected if additive noise is used 
• Larger cells can be significantly altered if noise is scaled to cell value, or multiplicative noise 

is applied 
• Non-additivity of tables (ie different totals for the ‘same’ categories) 
• The level of association between variables is affected 
• Variance of cell counts is increased 
• Viewers may mistakenly assume these are genuine values 
• If the table is generated dynamically, repeated requests for the same table generate a 

differencing risk 

6.3.2 Noise addition – Cell-key adjustment 
Definition: Noise addition method that adds noise consistently across tables. A noise parameter is 
randomly assigned to every individual microdata record. When records are combined in cells, a 



deterministic function is applied to the combined noise values so that the same combination of cells 
always generate the same noise. 

Pros and cons are the same as simple noise addition with the following additions/alterations: 

Pros 

• No risk from repeated requests of dynamic tables or differencing 
• Particularly useful if the same information is being presented in different ways 
• Can be applied automatically 

Cons 

• More complicated to understand, and to implement 
• Sparse tables complicate specification of noise look up. 

6.3.3 Noise addition – Differential Privacy 
Definition: Method of noise addition that works to prevent disclosure by considering what values 
could have been in the dataset, not what actually were, and then adding noise. The "noise"-the 
random value that is added - ensures that no single person's inclusion or exclusion from the 
database can significantly affect the results of queries. 

DP is easily automated and appears to provide a guarantee of security, so it is often used in the 
private sector (Google and Apple both use it). As a result, it has a higher profile than other methods. 

Pros and cons are the same as simple noise addition with the following additions/alterations: 

Pros 

• For a single query, creates a mathematical guarantee of the probability of privacy to a level 
of probability set by the data holder 

Cons 

• Absurd results can be generated when distributions are highly skewed, or when rare events 
are being described 

• Privacy guarantee only holds for single queries – multiple queries can create a disclosure risk 
• Level of acceptable risk is subjective and may be set at a level that risks data exposure – it is 

not clear that the ‘privacy budget’ is well understood by users 

6.3.4 Rounding – Conventional 
Definition: Adjusting the values in all cells in a table to a specified base so as to create uncertainty 
about the real value for any cell.  



Example table before rounding: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 8 £39, 632 29 
Vocational 
School 

18 £40,793 4 £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Same table after rounding: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 210 £40,989 100 £40,473 310 
College 20 £40,320 10 £39, 632 30 
Vocational 
School 

20 £40,793 10 £40,241 30 

Total 250 £40,701 120 £40,115 370 
 

Table 10 Simple rounding 

The larger the base rounding value, the more protection is provided, although more accuracy is lost. 
For additional protection, rounding can be carried out to multiples of the rounding value eg 

• Round to nearest 5 in 80% of cases 
• Round to nearest 10 in 15% of cases 
• Round to nearest 15 in 5% of cases 

Again, there is a question of whether the values associated with the rounded cells should also be 
adjusted and/or rounded. 

Pros 

• Effective for protecting frequency tables, especially when one data set calls for many tables 
• Protects small frequencies and zero values as it becomes difficult to identify genuine zeros 
• Easy to implement 
• Less vulnerable to differencing than cell suppression – it still exists, but requires work 

Cons 

• Totals and cells rounded separately may not add up, making unpicking feasible 
• Increasing perturbation as base value increases – cells can be significantly altered by the 

rounding process and aggregation compounds these rounding differences 
• Potentially risk of unpicking if there are many genuine zeros 
• Inconsistencies in data may be visible to the reader and compromise researcher credibility. 
• The level of association between variables is affected by rounding, and the variance of the 

cell counts is increased 
• Small values are disproportionately affected, particularly if the base value is large 

6.3.5 Rounding – Random 
Definition: Rounding each cell to one of the two nearest base values in a random manner. Each cell 
value is rounded independently and has a greater probability of being rounded to the nearest 
multiple of the rounding base. 

Pros and cons are the same as conventional rounding with the following additions/alterations: 

Pros 



• Random rounding is harder to unpick due to uncertainty around whether data was rounded 
up or down 

Cons 

• Increased loss of data accuracy 

6.3.6 Rounding – Controlled rounding 
Definition: Rounding using linear programming techniques to round cell values up or down by small 
amounts. 

Pros and cons are the same as conventional rounding with the following additions/alterations: 

Pros 

• Additivity is maintained in the rounded table, making the table more realistic and harder to 
unpick. 

Cons 

• Computationally complex process that is not possible in some software. 

6.4 Table redesign 
Definition: Changing the categories used to display data.  

Example of table: 
Higher 
Education type 

Male alumni Male average 
salary 

Female Alumni Female average 
salary 

Total Alumni 

University 212 £40,989 104 £40,473 316 
College 21 £40,320 8 £39, 632 29 
Vocational 
School 

18 £40,793 4 £40,241 22 

Total 251 £40,701 116 £40,115 367 
 

Same example with ‘college’ and ‘vocational’ categories merged: 
Higher Education 
type 

Male 
alumni 

Male average 
salary 

Female 
Alumni 

Female average 
salary 

Total 
Alumni 

University 212 £40,989 104 £40,473 316 
Other 39 £40,557 12 £39,937 51 
Total 251 £40,773 116 £40,205 367 

 

Table 11 Table redesign 

Note that this example is identical to Table 3, output limits. The difference is that the decision on 
which groups to control is now under the control of the researcher, rather than being specified as a 
function of the data. Researcher training (eg ONS, 2019) advises the researcher to consider this in 
preference to suppression or perturbation. The reason is that suppression and perturbation relate to 
a particular table; redesign of categories forces the researcher to consider the structure of her data 
more broadly: in the above example, by reflecting on whether combining the two small categories 
makes sense. This increases the likelihood of the same changes being applied across multiple tables, 
reducing differencing risk. 

Pros 

• Retains accurate information  
• Encourages the researcher to reflect systematically on categorical structures  
• Clear to the user / reader 
• Relationships between cells are not broken 



• Most often used as a first choice for researchers 

Cons 

• Requires subject knowledge to apply 
• Cannot easily be automated 
• Loss of precision 
• Relationships between cells may be weakened 

6.5 Data transformations 
When the data is transformed, disclosure risk is decreased. Whether this reduces risk sufficiently 
depends on the transformation. In general, linear transformations make a small difference to 
disclosure risk, whereas non-linear ones make a much larger one. 

Consider these three scatter plots of hourly wage versus age: 

 
(a) Original plot 

 
(b) Converted to relative to median 

 
(c) Converted to natural logarithms 

 

Figure 4 Alternative transformations of a scatter plot 

The (linear) transformation from absolute to relative wages makes little meaningful difference to the 
disclosure risk, especially if the base value – in this case, the median hourly wage – is published. In 
contrast the log graph compresses large values and stretches the gap between small values; large 
outliers are less noticeable, and the axis no longer shows easily-interpretable values. 

Whether this formally reduces risk depends on the display medium. If these were .SVG files with the 
point values encoded in the data, then in theory neither transformation makes any difference 
because both can be converted back to the original value – in fact the median transformation is safer 
as it requires more work on the part of an attacker. In practical terms however, the log 
transformation is more likely to dissuade any de-transformation attempt. 

6.6 Reducing precision 
The argument in the previous section, that formally the transformation makes no difference, 
depends upon the data points being measurable with a large degree of precision. If however 
calculations are done and only reported to a few decimal places, with those shortened values being 



graphed, then the data is protected after the transformation. Reducing precision is a valid way to 
reduce risk in certain cases. 

Consider the following table which show proportions with varying degrees of precision: 
 

N Proportion 
  

Implied counts 
 

  
0 dp 1 dp 2 dp 

    

English 8200 80% 80.4% 80.39% 
 

8160 8201 8200 

Scottish 1100 11% 10.8% 10.78% 
 

1122 1102 1100 

Welsh  600 6% 5.9% 5.88% 
 

612 602 600 

N. Irish 300 3% 2.9% 2.94% 
 

306 296 300 

With a large base value, 2 decimal places are necessary for the proportions to reflect actual 
numbers. As the number of observations shrinks, so does the number of decimal places: with 10% of 
the observations, one decimal place exactly reproduces the source numbers; with 400 observations 
instead of 10,000, just the simple percentage is enough to identify the counts.  

In the case of the graphs displayed above, reducing precision and then graphing the results would 
have had much more impact on the log values, which are much smaller and more closely spaced 
than the relative wage values.  

So, reducing precision is a valid disclosure control tool, but the context needs to be considered. 

  



7. Guide to classified outputs 
7.1 How to read this section 
Each statistic can be assigned to a statistical barn based on typology and structure. This section 
details all of the ‘statistical barns’ (‘statbarns’, the classes of statistics) identified and analysed o far. 
The table below summarises how this section should be used. 

• Researchers wanting to prepare an output for clearance should read parts 1-6 
• Researchers wanting an exception to the rules should read part 7 to see if an exception is 

likely to be requested, and what information an output checker will need 
• Human output checkers should read section 8 for background 
• Automatic output checkers are based on the guidance in section 5 only 

1 Summary This is a very brief reference for those familiar with the statbarn. 
2 Description of 

statbarn 
Examples of the statbarn. For a more detailed list, see the 
spreadsheet in the project web page, which also provides a detailed 
list of types and the barns into which they fall 

3 Risk factors The elements that create problems for this statbarn. 
4 Classification Classification as safe or unsafe; within the latter, classified as low-

high risk, depending on whether this is a realistic risk or not. 
5 Criteria for rules-

based approval 
Rules to be applied for automatic approval. Note that there can be 
different rules for machine-based approval. 

6 Remedial action List of remedial actions to correct problems that either will have been 
applied, or what should be suggested to researcher to apply. 

7 Issues to consider if 
an exception is 
requested 

The factors that should be taken into account if an exception is 
requested under a principles-based regime. This only considers how 
to assess disclosiveness. We assume that the other factors (such as 
importance, rarity of the request) have already been considered. We 
take the perspective outlined in Part 1 on how to assess disclosure: 
assume that the output is non-disclosive, consider the circumstances 
which could make it disclosive, and assess their reasonableness. 

8 Underlying 
theory/discussion 

Further detail (how well are the risks understood, stability of thinking 
etc), plus references. This section is not necessary for researchers. 

 
7.2 Frequencies 
7.2.1 Summary 

Examples of type Frequency tables, histograms, shares 
Safe or unsafe? Unsafe 
Risk level High 
Risk elements Low numbers 

Differencing 
Complementarity 
Class disclosure 
Undisclosed linked units 
Categories 

Checks to be made Thresholds, categories 
Appropriate responses Suppression, rounding, noise addition 
Covered in automatic tools SACRO (threshold and statbarns) 

tArgus 
sdcTable 



Modelling Very well understood 
Key text(s) Hundepool et al. (2010) 

Griffiths et al. (2019) 
Most SDC textbooks and guides 

 
7.2.2 Description of statbarn 
This statbarn covers frequencies i.e. counts of things, either in tables (most common), in certain 
graphs such as histograms or bar charts, or single as in a description of the number of survey 
participants. 

Examples: 

 
 

(a) Frequency table 
 

(b) Histogram 

“ The 25-29 year-old 
sample consisted of 36 

men but only 7 women” 
 

“There were no 
examples of males aged 

61-65 presenting” 
 

(c) Text description 
Table 12 Examples of frequencies being displayed 

The frequencies can also be represented as percentages. It is important to  treat these as equivalent 
to the underlying numbers, as we assume that the totals are available somewhere else in the 
research publication. 

7.2.3 Risk factors 
Low numbers Single observations may allow an individual to be identified or have values 

attributed to her/him 
Two observations may allow one of the individuals to make inferences 
about the other 
Three observations is deemed safe on the assumption of no collusion 
Most organisations require a threshold higher than three to provide extra 
confidence 
If an evidential zero (ie something you would normally expect to be zero) 
is not zero, this should be investigated; similarly for evidential 100% 

Differencing Two tables, with N and N+1 respondents, generate an implicit table where 
the characteristics of the extra respondent are exposed 

Complementarity Binary categories have a complement which may not be included in the 
table eg a cell ‘83% white’ generates an implicit cell ‘17% non-white’; this 
is a special case of differencing 

Zero or full cells 
(class disclosure) 

Cells with no entry in a category, or all the entries for a category, may lead 
to class disclosure. In Table 1a above, it is sufficient to know that an 
employee is 16 or 17 to know that they are paid at or above the minimum 
wage; it does not matter that there are 2,624 individuals with this 
characteristic. 
An evidential or structural zero or 100% (ie something you would expect) 
can be ignored. In Table 1a above, the data are from 2002, when there 
was no minimum wage for 16-17 year-olds; we therefore expect these 
cells to be zero.  



Multiple units A cell may appear to contain multiple units, but they may all be under the 
control of one survey respondent and so should be treated as one 
observation. Examples: four GP surgeries all part of the same Clinical 
Commissioning Group; five Census respondents identified as part of the 
same family  

Category choice The category choice may itself reveal information. For example, if a 
histogram for male wages goes from £4.50 to £10, but the corresponding 
histogram for females goes £4.00 to £10, this implies only females are in 
the category £4-£4.50 

 

7.2.4 Classification 
This is an unsafe statistic. Within unsafe statistics, it is high risk. 

7.2.5 Criteria for rules-based approval 
For manual checking: 

a. Apply threshold set by your organisation (note that this may vary by dataset) 
b. Check for structural zeros or full cells 
c. Check that the underlying unit is genuinely independent (for example, that the seven people 

in the group are not members of the same family, or all the references are to students  at 
one school) 

d. Check that the categories are comprehensive and apply to all data – in particular, check for 
complements 

For automatic output checking: 

a. Apply threshold set by your organisation 
b. Check for zeros or full cells 
c. Check, as far as possible, that the categories are comprehensive and apply to all data 

7.2.6 Remedial action 
All of the remedial actions suggested in Part 2 Section 6 are appropriate. Cell suppression and table 
redesign are most common. Note that totals must be adjusted if suppression, noise addition or 
rounding are used (or that secondary suppression or controlled rounding is applied). 

7.2.7 Issues to consider if an exception is requested 
Factors required to make the output potentially specifically identifying individuals, or potentially 
creating a class disclosure 

• The categories used on the table can be reasonably matched up with ‘public’ characteristics 
of an individual (ie things such as height or holiday destination, not private as such e.g. 
appointment time or salary) 

• Either 
o Inclusion in the dataset is known or reasonably assumed, and  
o The categories relate to very few people in the dataset 
o Example: population is all taxpayers in Wales; category is submarine engineers 

• Or 
o The combination of categories is so unusual as to identify individuals in the 

population  
o Example: senior ranks in the clergy, by gender 



• Or (for class disclosure) 
o Inclusion in the dataset is known or reasonably assumed, and 
o Individuals can be unambiguously put into one class 

It is also worth considering whether the above could apply to a differenced table: 

• Is there a reasonable possibility of differencing to uncover an individual or group? 

If you are confident there is no reasonable risk of identification (real or perceived), approve the 
exception.  

If the identification can be reasonably made, consider  

• Is the identification provided by this output likely to be linkable to other outputs to reveal 
the characteristics of the identified individual 

• Is the revealed information new (it is not structural eg “Bob is in the dataset, as he is an 
employee working in Bristol and the dataset is tax data from every male working in Bristol”)? 

• Is the revealed information sensitive (ie even if this is not technically sharing unknown 
information, this is a revelation of information that it would be unethical to highlight)? 

If the identification can reasonably be made and this reveals something informative about the 
person, do not release; otherwise consider granting the exception. Remember to consider that 
membership of the dataset itself may be an issue; for example, “Wilberforce is in the dataset; this is 
a survey of swingers; therefore Wilberforce is a swinger”. 

You may also want to consider whether the release of the output, even if non-disclosive, generates a 
perception of identification. Just one observation in a cell may lead to false positives, which could 
have reputational risks for the organisation. 

7.2.8 Underlying theory/discussion 
SDC of frequency tables has been discussed for decades. The theory is simple, the problems are 
obvious and there is no real debate about the topic. Any SDC textbook will cover disclosure control 
of frequency tables in extensive detail, and say much the same thing as any other, which is 
summarised above.  

The choice of a threshold is arbitrary; a background to threshold choice can be read in Ritchie 
(2022). From a theoretical perspective a threshold of 3 is the minimum to protect against statistical 
disclosure; in practice we see a variety of different thresholds being applied. The threshold applied 
reflects the organisation’s risk preferences, and may vary across datasets as well. The threshold can 
have a signalling function: choosing a higher threshold (such as a minimum of 100 observations in 
each cell) for some datasets indicates that these datasets are to be more ‘protected’, even if the 
practical effect on risk exposure is negligible. 

The only debate is whether differencing risk is a genuine problem in real research environments. It 
clearly is a theoretical risk but there is very little evidence to support or refute this. In official 
statistics environments there is some evidence (see Smith et al. 2012). However, this arises because 
official statistics are, by design, meant to be consistent alternative cuts of the same underlying data. 
In contrast, researchers are likely to cut and re-present the data in multiple ways without clear 
explanation; there is ample of the non-reproducibility of research results, even from a known 
dataset. As a result, it is likely that differencing in a research environment, is likely to be a problem 
only within a project and not across projects. 



With no definitive evidence one way or the other, controlled environments prefer to reduce the 
likelihood of differencing being a problem by increasing the threshold above the statistical minimum 
of three so that likelihood of differencing is reduced (while the differencing between tables with 3 
and 4 observations and 23 and 24 observations is still one, a gap of exactly one is less likely when the 
minimum number of observations  is higher). As thresholds are usually set above this level anyway, 
this is a case of killing two birds with one stone. 

The exception to this is where the differencing arises because of complementarity generating an 
implicit table T → 1-T. Humans and computers do this very differently. Humans are better at 
identifying where complementarity is an issue, computers are comprehensive but inefficient. 
Consider two tables and what each sees: 

N=500 
Source table 

 
Human checks… 

 
Computer checks… 

English 73% 
 

Not English 27% 
 

Not English 27% 
 

English 73% 
Scottish 12% 
Welsh 7% 
N. Irish 4% 
Other 4% 

 

 
Not necessary 

Not English 27% 
Not Scottish 88% 
Not Welsh 93% 
Not N. Irish 96% 
Not Other 96% 

 

Table 13 Humans versus computers assessing complementarity 

A human recognises that all the options are covered in the second case. The computer just 
recognises a series of binary variables and calculates the complements, unaware that this is 
unnecessary. However, unless the dataset is very large, the time penalty is likely to be negligible. 

7.3 Statistical hypothesis tests (SHTs) 
7.3.1 Summary 

Examples of type T-test, chi-square, R2, standard errors 
Safe or unsafe? Safe 
Risk level n/a 
Risk elements Insufficient degrees of freedom 
Checks to be made Residual (not model) degrees of freedom 
Appropriate responses n/a 
Covered in automatic tools SACRO 
Modelling This document 
Key text(s) None – see below 

 
7.3.2 Description of statbarn 
This covers all the statistical hypothesis tests ie that test “Is X greater than/equal to/less 
than/different to Y”. This includes tests generated as part of a wider complex output (R2, F test, z-
scores generated during a regression run), standalone tests (“is the mean of this group the same as 
the mean of that group?”, or structural tests (“is the distribution of animal-related deaths the same 
across all social classes?”). 

Examples: 



 
(a) Tests generated by regression model 

 
 

 
 

 
 
 

 
(b) Standalone test 

Table 14 Examples of statistical hypothesis tests (shaded boxes) 

In the above examples, the SHTs are found in the red boxes. 

Note that degrees of freedom may be misleading: for standalone tests, the  model degrees of 
freedom may be the only ones reported – 3 in the case of the Hausman chi-square. The important 
number is the residual degrees of freedom: N- model restrictions imposed. For most practical 
purposes, the number of residual degrees of freedom approximates to N. 

7.3.3 Risk factors 
Low residual degrees 
of freedom 

Common parametric tests (t-test, higher order ANOVAs) are equivalent to 
regressions and we include this for completeness. 

 

7.3.4 Classification 
This is a safe statistic. 

7.3.5 Criteria for rules-based approval 
For manual and automatic checking: 

a. Check minimum degrees of freedom and approve 

7.3.6 Remedial action 
Not relevant 

7.3.7 Issues to consider if an exception is requested 
Not relevant 

7.3.8 Underlying theory/discussion 
Some SHTs can be rewritten as regression models by appropriate use of dummy variables, and so 
these could be considered as part of this category. However, SHTs have lower risk. 

All SHTs are some variant on sum((x-f(y))2)/z, where z and y may be functions of x or constants. This 
convolution prevents extraction of information by direct inspection or differencing. In addition, the 
SHT is a single number encapsulating all of the model information. We can therefore assume that, if 
the test can be carried out, the test statistic is safe.  

Potentially one could consider very small numbers eg one could run a non-trivial t-test on just three 
observations, and if the original values were limited (eg integers in the range 0-10), and the test 
statistic was reported at sufficient decimal points, then possibly the original values could be 
recovered. But this is such an extreme case we can ignore. In any case, doing a dof check to most 
threshold (5 or 10) stops this. Hence even the most wilfully incompetent researcher is not going to 
release information through a chi-square, say. 



We will be reviewing this provisional classification in 2024. 

7.4 Coefficients of association 
7.4.1 Summary 

Examples of type Estimated coefficients, models, AN(C)OVA, correlation tables 
Safe or unsafe? Safe 
Risk level n/a 
Risk elements Insufficient degrees of freedom 

Saturation in category-only models 
Checks to be made Degrees of freedom, saturation 
Appropriate responses n/a  
Covered in automatic tools SACRO 
Modelling Well understood 
Key text(s) Ritchie (2019) 

 
7.4.2 Description of statbarn 
This statbarn covers coefficients derived from estimating statistical models. It includes linear and 
non-linear estimation, ANOVA, ANCOVA, and pairwise correlation coefficients. 

Examples: 

 
Table 15 Examples of coefficients of association (highlighted) 

7.4.3 Risk factors 
Low degrees 
of freedom 

If the model is estimated with K parameters and N observations, and N is only 
slightly larger than K, then the correlation approximates to an equation; full 
knowledge of the explanatory variables would allow one to exactly specify the 
dependent variable. 

Saturated 
model 

If the model is completely specified in categorical variables, with all possible 
interactions as explanatory variables, the regression should be viewed as a multi-
dimensional table showing the mean of the dependent variable in the cells. A 
special case of this is regression on a single binary variable as the only explanatory 
variable. 

 

7.4.4 Classification 
This is a safe statistic. 

7.4.5 Criteria for rules-based approval 
For manual checking: 



b. Check that the residual degrees of freedom (number of observations less number of 
variables and any other restrictions – in the above example, 803 ‘residual df’) exceed your 
organisational threshold value 

c. Check that the model is not saturated ie not all variables are categorical and fully interacted 
see discussion -below  

d. If the model is saturated, it can be assessed as a multi-dimensional table; however, this is 
now a magnitude table and should be assessed as such (in particular, you now need to ask 
for counts in each category as these can’t normally be determined from regression output) 

e. Reject if a regression with a single binary explanatory variable (should have been submitted 
as a table) 

For automatic output checking: 

a. Check that the residual degrees of freedom (calculated by model) exceed minimum 
b. Reject if a regression with a single binary explanatory variable 

7.4.6 Remedial action 
None. If the model fails the degrees of freedom check, it is not a model. If it fails the saturation 
check, it should be described and assessed as a magnitude table. 

7.4.7 Issues to consider if an exception is requested 
There are no meaningful exceptions. 

7.4.8 Underlying theory/discussion 
This is comprehensively covered in Ritchie (2019). Earlier versions of the paper provide slightly 
different perspectives on it, but perceptions have also changed since the earliest paper on this 
(Ritchie, 2006); the recommendation therein, repeated in Brandt et al (2010), to hide one of the 
coefficients, is no longer considered necessary. 

The principle is straightforward. Coefficients of association are the result of convoluted calculations 
where everything depends on everything else. This is too complex to be unpicked, and cannot be 
differenced because of the interdependencies. 

Theoretically, an estimate could be constructed to reveal a value, but this requires a set of highly 
implausible actions and extreme data conditions, and so can be ignored. It is also possible that a 
researcher could choose to deliberately engineer the estimate to release a specific value. This makes 
no sense in an RDC environment, where all data is visible to the researcher. It makes marginally 
more sense in a remote job server, where the researcher cannot see the base data, but all RJSs 
monitor and record all code, and it would be clear that the code has been manipulated as there is no 
legitimate reason for the necessary transformations. Therefore, deliberate manipulation of results 
can be ruled out.  

Even in the worst cases – of the model failing the checks but this not being noticed – the downside is 
limited. 

In the case of insufficient degrees of freedom, consider N=K+1 ie no degrees of freedom at all once 
the model process is taken into account. This is an exact equation. However, this does not directly 
reveal values; it only does this if someone has access to the explanatory variables, in which case the 
dependent variable for those observations can be perfectly predicted. This is bad, but we are still not 
saying that the coefficients themselves are directly revealing. 



In the case of a saturated model not being noticed, the coefficients, in the appropriate 
combinations, reveal the mean value of the dependent variable for the relevant combination of 
characteristics. For example, this example is taking from Run 1 of the Output Checking Course exam: 

 

Table 16 Example of a saturated regression (model 2) 

In this example, the researcher runs three wage regressions with explanatory variables: 

• Model 1: male, white dummies 
• Model 2: male, white dummies; interaction between dummies 
• Model 3: male, white dummies; interaction between dummies ; scale variables 

Model 2 is the fully saturated model. It effectively reproduces the table showing average wages for 
four groups: 

 Male Not male 
White 8.1382 11.1347 
Not white 8.2358 11.1154 

Table 17 implied table underlying the saturated regression 

This is a magnitude table and so has the standard problems of magnitude tables described above – 
low numbers and dominance (but not class disclosure). Again, the coefficients themselves are not 
necessarily revealing but might be in certain circumstances. Note that in the exam, the vast majority 
of candidates failed to notice the saturation.  

What happens if the model is genuine, but there is a single non-zero observation for one variable 
(for example, the ‘other’ option in a set of categories)? In this case, the error on that observation 
would be zero, and the dependent variable could be predicted exactly – if, and only if, all the 
explanatory variables were known. Given that this also requires the unique observation to be 
known, this is a very high information requirement, and can be reasonably ignored. 

It should be re-iterated that even being close to the limit on degrees of freedom or complete 
saturation would require the researcher to be carrying out some spectacularly bad statistics. Even 
allowing for the less competent researcher, the likelihood of either limiting case occurring in a 
genuine research environment is too small to be worth considering. 

Finally, these results above only hold for the most simple models. Anything that requires, for 
example, two-step estimation (as in robust estimation) or incidental parameters (as in longitudinal 
or clustering models) is completely non-disclosive. Hence, there is no need to consider more 
complex models. 



7.5 Position 
7.5.1 Summary 

Examples of type Median, percentiles, maxima, minima 
Safe or unsafe? Unsafe 
Risk level Low 
Risk elements Class disclosure 
Checks to be made Threshold counts 
Appropriate responses Suppression 
Covered in automatic tools SACRO 
Modelling Reasonably well understood 
Key text(s) This document 

Brandt et al (2010) 
Griffiths et al. (2019) 

 
7.5.2 Description of statbarn 
Considering ordering all the observations for a particular variable from smallest to largest. This 
statbarn considers what can be known from highlighting a particular point on the scale. 

Examples: 

 Females Males 

Min 7.60 7.60 

Bottom 10% 7.60 7.60 

Median 8.22 9.79 

Top 10%  36.83 35.58 

Max 53.30 59.93 

Number of obs 80 132 

 
(a) Distribution table 

 
(b) Box plot with whiskers 

Table 18 Examples of position variables (highlighted in distribution table) 

7.5.3 Risk factors 
Class 
disclosure 

A percentile value may reveal something about the individuals in that group. In 
table (a) above, every male in the bottom half of the distribution earns below 
£9.79 

7.5.4 Classification 
This is an unsafe statistic. Within unsafe statistics, it is low risk. 

7.5.5 Criteria for rules-based approval 
For manual checking: 

a. do the numbers for that group (and complementary groups) meet the threshold?   
i. Do not use the number of observations  at the class boundary 

In example (a) above, for males there are 13 people in the top and bottom deciles, but for females 
only 8 people in the top and bottom 10%. On a threshold of ten, the male figures would be approved 
but the female figures would fail. The median is fine for both. 

For automatic output checking: 

d. Carry out threshold check on percentiles identified, including complements 



7.5.6 Remedial action 
Suppression, rounding and noise addition are appropriate.  

7.5.7 Issues to consider if an exception is requested 
Factors required to make the output potentially disclosive 

• The percentile boundary (including min/max at 0%/100%) being displayed is informative 
about the people in that group, or 

• There is an informative class disclosure because upper and lower bounds of a group are the 
same 

and 

• Membership of the group is reasonably known (is there other information that definitely 
puts an individual at that point of the distribution?) 

Unless both of these hold, grant the exception. 

7.5.8 Underlying theory/discussion 
In general, locating someone on a distribution is not easy. Percentile boundaries themselves do not 
in general say what happens within those boundaries, and so only contain limited information. 
Therefore, we would generally consider these low risk and unlikely to be disclosive.  

There is sometimes confusion between thresholds within a class and thresholds at the class 
boundary. The first of these is correct. Suppose the median wage in a dataset is £11.90 per hour, and 
the threshold is 5 people. It does not matter if five or fewer people earn exactly £11.90 per hour; 
what matters is that there are least five earning at or below £11.90, and at least five people earning 
at or above £11.90. It does not matter whether there are less than five people at the median.  

7.6 Extreme values 
7.6.1 Summary 

Examples of type Maxima, minima 
Safe or unsafe? Unsafe 
Risk level High 
Risk elements Small numbers at the value 

Class disclosure 
Checks to be made Threshold counts 

Class disclosure 
Appropriate responses Suppression, rounding, noise 
Covered in automatic tools SACRO 
Modelling Very well understood 
Key text(s) This document 

Brandt et al (2010) 
Griffiths et al. (2019) 
Most SDC guides 

 
7.6.2 Description of statbarn 
This statbarn considers what can be known from presenting the largest or smallest value of a 
variable. Examples: 



 Females Males 

Min 7.60 7.60 

Bottom 10% 7.60 7.60 

Median 8.22 9.79 

Top 10%  36.83 35.58 

Max 53.30 59.93 

Number of obs 80 132 

Note: minimum wage in 2018 is £7.60 for adults 

 
(a) Distribution table 

“Wages rates varied 
from £7.60 to £59.93 

per hour” 
 
 

(b) Text description 
Table 19 Examples of max/min (Highlighted in distribution table) 

7.6.3 Risk factors 
Identification at 
extreme points 

Maxima or minima may refer to a single individual. In example (a) above, 
the maximum hourly wages are likely to refer to specific individuals 

Class disclosure If membership of the dataset is known, extreme values reveal something 
about members. In the above example, every male in the dataset earns 
£59.93 per hour or less.  

7.6.4 Classification 
This is an unsafe statistic. Within unsafe statistics, it is high risk. 

7.6.5 Criteria for rules-based approval 
For manual checking, the recommended approach is: 

a. Is the maximum or minimum informative or structural (for example, 0% or 100% when the 
value is a proportion)? 

b. If informative 
i. does it meet the threshold at the max min? and 

ii. is the value informative about all members in the dataset? 

In example (a) above, the maxima are informative (telling you something about people) and so 
should be checked but the minima are structural (describing the feasible structure of the dataset – 
the minimum possible wage) and can be ignored. The maxima for males and females are likely to 
represent a single person and so will not meet the threshold. However, see the ‘Underlying 
discussion’ below; there are operational reasons why banning max/min unless an exception is 
requested may be preferred.  

For automatic output checking: 

a. Block and only allow as an exception (but see discussion below) 

Note that an alternative (more user-friendly but theoretically more risky) is to carry out a threshold 
check, which will automatically block unique maxima/minima, and may identify structural zeros. 
Again, see below for operational reasons. 

7.6.6 Remedial action 
Suppression is appropriate. Rounding and noise addition are possible but unlikely to be successful. If 
an end point is enough of an outlier to be informative, blurring its value is not going to have much 
effect. 

7.6.7 Issues to consider if an exception is requested 
Factors required to make the output potentially disclosive 



• The min/max is informative about people at the extreme who can be reasonably identified, 
or 

• The max/min is informative and membership of the group is reasonably known 

Unless one of these holds, grant the exception. 

An informative extreme value is one where it would not reasonably be expected. In the above 
example, the lowest wage at the legal minimum is not informative. The maximum wage (translating 
to about £120,000 per year) may be informative about teachers, but not informative about senior 
lawyers. An uninformative value could be a limited one eg study was terminated after 20 weeks so 
records are right-censored. 

7.6.8 Underlying theory/discussion 
Maxima and minima are class disclosures as they relate to everyone in the dataset. Membership of 
the dataset is sufficient to show that these values are associated with individuals; hence in the past 
the default behaviour is to block them. 

However, humans can take a reasonable judgement about whether the extreme value is 
informative, and so for manual checking, blocking all max/min unless an exception is requested may 
be over-protective. However, the no max/min rule unless an exception is requested can be simpler 
to explain.  

For automatic checking, the computer does not know whether a max/min is structural or not. 
Blocking all max/min unless an exception is requested is therefore a clear solution.  

However, it is also possible for an automatic checker to ascertain the number of records at the 
min/max. If the number of records exceeds the relevant frequency threshold, then (a) this no longer 
refers to an individual and (b) this is evidence, albeit not conclusive, that the min/max is structural. 
Of course, this does not deal with the class disclosure issue if membership of the dataset can be 
inferred. Organisations may want to consider which approach is preferred.  

Note that in the longer term it may be possible to infer other automatic rules eg if all values are non-
negative, than this may indicates a minimum of zero is structural. 

7.7 Shape 
7.7.1 Summary 

Examples of type Standard deviation, skewness, kurtosis 
Safe or unsafe? Safe 
Risk level n/a 
Risk elements Residual degrees of freedom, differencing 
Checks to be made Degrees of freedom 
Appropriate responses No mitigation 
Covered in automatic tools No 
Modelling None 
Key text(s) Appendix to this document 

 
7.7.2 Description of statbarn 
This covers standard deviation, skewness and kurtosis, and higher orders if anyone really wants 
them. 

Examples: 



Weekly wage for those working in public or private sector, all adults, Jan 2004  

 N Mean Std. deviation Skewness Kurtosis 

does not apply 15,241 -9 0 . . 

no answer 138 135.5517 179.003 1.583294 6.118772 

private 35,923 222.4125 292.5825 3.364227 40.06159 

public 13,761 288.4439 252.4099 1.16707 5.715295 
Table 20 Example of shape variables (highlighted) 

7.7.3 Risk factors 
Low degrees of 
freedom 

If the statistic is estimated with N observations (N<=5), then the correlation 
approximates to an equation; the underlying variable values could be 
determined 

No variation in 
SD 

If the standard deviation  is zero, this implies the underlying variable has no 
variation 

Differencing If the statistic is rerun with one additional observation, the additional 
observation can be identified without access to the mean, given sufficient 
degrees of freedom 

 

7.7.4 Classification 
This is a safe statistic. 

7.7.5 Criteria for rules-based approval 
For manual and automatic checking: 

a. Reject if statistic is standard deviation and is exactly zero 
b. Otherwise, approve if N> degrees-of-freedom threshold 

Note that formally we should be checking if N-K is above the degree-of-freedom threshold (where 
K=1, 2 or 3 for SD, skewness kurtosis respectively). N>d.o.f. threshold is a reasonable approximation 
and much simpler.  

7.7.6 Remedial action 
There is no meaningful mitigation if there are insufficient observations. 

7.7.7 Issues to consider if an exception is requested 
Not relevant 

7.7.8 Underlying theory/discussion 
Shape statistics involve the sums of deviations raised to powers of two or more. These cannot be 
directly unpicked. However, because these are univariate, there is a potential differencing risk. Two 
SDs, that differ in a single observation could lead to the disclosure of that observation, simply by 
knowing the two SDs and one of the means (not both). For this risk to materialise, the researcher has 
to publish the two SDs and one mean with  one observation difference, at sufficient decimal places 
to allow the value to be uncovered exactly (remembering that the new observation would change 
both the mean and the variation around it). This is possible, but not sufficiently likely to exercise 
concern in practical environments. See Appendix 2 for a discussion. 

The only concern is whether the statistic is zero. In the case of the standard deviation, this would 
imply that the variable being studied only has one value 𝑥! = 𝑥	$∀𝑖, effectively a class disclosure. It 
might not be important but we ban it. If the user wants to report no variation, they can report 
directly rather than using derived variables. 



 

7.8 Linear aggregates (means and totals)  
7.8.1 Summary 

Examples of type Means, totals, simple indexes, linear concentration ratios 
Safe or unsafe? Unsafe 
Risk level High 
Risk elements Low numbers 

Differencing 
Dominance 

Checks to be made Thresholds, dominance 
Appropriate responses Suppression, rounding, noise addition 
Covered in automatic tools SACRO (threshold and dominance) 

tArgus 
sdcTable 

Modelling Very well understood 
Key text(s) Hundepool et al (2010) 

Griffiths et al. (2019) 
Any SDC text 

7.8.2 Description of statbarn 
This statbarn covers sums, totals, simple indexes, linear concentration ratios (ie sums of the shares 
in a total – see “non-linear concentration ratios” below for an example) and other linear 
aggregations. These may come in tables (most common), in certain graphs such as bar charts, or 
single as in a description of survey characteristics. 

Examples: 

 Female Male 

All employees 

N 150 150 

Wage £15.72 £16.92 

Public sector 

N 69 64 

Wage £17.61 £15.21 

 
 

(a) Magnitude table 
 

(b) Bar chart 

“ Mean time to treatment 
was 17.3 days” 

 
“In total, 679 ambulance 
dispatches were made in 

the survey period” 
 

(c) Text description 
Table 21 Examples of mean and totals being displayed (highlighted in (a) and (c)) 

7.8.3 Risk factors 
Low 
numbers 

Single observations may allow an individual to have values attributed to her/him 
Two observations may allow one of the individuals to make inferences about the 
other 

Differencing Two tables, with N and N+1 respondents, generate an implicit table where the 
values for the extra respondent are exposed (directly for totals, with some maths 
when means are displayed) 

Dominance The data may be so distorted by one or two outliers such that the values for those 
individuals may be estimated with a reasonable degree of accuracy by someone 
looking at the statistic; the wages of a Premiership footballer living in a small 
village  may be guessable to some accuracy by looking at the average village wage,  



7.8.4 Classification 
This is an unsafe statistic. Within unsafe statistics, it is medium risk. 

7.8.5 Criteria for rules-based approval 
For manual and automatic checking: 

a. Apply threshold set by your organisation (note that this may vary by dataset) 
b. Check P-ratio and N-K dominance rules if possible 

In manual output checking, it may not be possible unless the researcher produces the necessary 
figures. In that case, the output checker needs to use their own judgement as to whether dominance 
is likely. To assess this consider: 

• Are there few observations? 
• Are there some observations which are several orders of magnitude greater than others? 

If the answer to either of these is ‘no’, dominance is not likely to be an issue. For the rationale 
behind this, see the discussion below. 

The dominance rules are as follows. In both cases, assume the variable of interest is ordered such 
that x[1]>x[2]>…x[N], and that there are N observations in the data. The parameters p%, k% and T 
will be set by the data owner. 

Rule Definition How to calculate it Rationale 
P-
ratio 

Pass if 
(∑ 𝑥[𝑖]!"#$% )

𝑥[1]
> 𝑝% 

Sum the smallest 
values x[3]…x[N] 
Divide by the 
largest value x[1] 
If this is greater 
than p% there is no 
dominance on this 
rule  

The purpose is to prevent the supplier of the 
second largest value, x[2], combining that 
information and a reasonable guess about the size 
of x[3]..x[N] to estimate the value of the largest 
unit x[1] to less than p% 

N-K Pass if  
(∑ 𝑥[𝑖]!"&$' )
(∑ 𝑥[𝑖]!"&$% )
< 𝑘% 

Add up the T 
largest values 
Divide by the total 
If this is less than 
k%, there is no 
dominance on this 
rule 

The aim is to ensure that the largest T 
observations do not effectively count for the 
whole of the statistic, so that we should treat it as 
just relating to that observation.  
 
Note that the conventional name for this is the N-
K rule even this makes for a confusing 
nomenclature. WE have used T in the example to 
represent the top T observations. 

 

Consider this example with 20 data points, ordered from largest to smallest. 

£2,301 £624 £171 £49 £16 £7 £5 £4 £4 £4 £4 £4 £4 £4 £4 £4 £4 £4 £4 £4 
 

If p% = 10%, k% = 90 and T = 2, then the p-ratio is 12.9% and the N-K ratio is 90.1%. Therefore this 
set of observations would pass the p-ratio test but fail the N-K ratio test. 

7.8.6 Remedial action 
All of the remedial actions suggested in Part 2 Section 6 are appropriate.  



7.8.7 Issues to consider if exception is requested 
Factors required to make the output potentially disclosive 

• There is a reasonable possibility that a contributor could be identified (see criterion for this 
under ‘frequencies’) 

• If there is no dominance (the exception is requested for low numbers): 
o There is a reasonable likelihood of differencing from similar statistics being 

produced 
• If there is dominance: 

o It is likely that the dominant observations would be known, and 
o The information revealed is useful and novel 

7.8.8 Underlying theory/discussion 
As for frequencies, SDC of magnitude tables is a well-trodden path. Any SDC textbook will cover 
much the same material as is summarised above.  

While dominance exercises the theoreticians, it rarely has a practical effect. It is not at all obvious 
even to the output checker when there is dominance in the data. Moreover, the conditions for it 
require extreme values (orders of magnitude greater than most observations).  

The p-ratio is a high bar; even the highly skewed example given above passes this test. The p-ratio 
also requires that the second largest contributor has a very good idea of the value of observations 
x[3]..x[N], as well as its place in the pecking order, both of which are difficult assumptions to justify 
normally. If the second-largest unit is very small, it can be confident of the values of the units 
x[3]..x[N] as its own value acts as a cap, but not of its own position – is it really second-largest? If it is 
clearly the second-largest, it is largely to find it hard to gauge the values of the other smaller units. 

The N-K rule is easier to fail, particularly in business where a couple of units might dominate a 
market. For example, turnover in the UK oil industry may fail the N-K rule because BP and Shell are 
much larger than any competitors. On the other hand, dominance does not mean that a value is 
identified, only that an approximation to it is deemed ‘close enough’. It is likely that BP and Shell 
know far more about each other’s operations than can be usefully inferred from a simple statistic. 

In manual output checking, it may not be able to check for dominance without the necessary figures 
being provided by the researcher who has the necessary data to calculate them. In these cases, the 
output checker’s knowledge of the data is invaluable. Without doing a formal check, an output 
checker can be confident that dominance will not be a problem unless we have all three of 

• The data cover a small geographical area, a small industrial sector or some other sector 
where membership of the group is easily established 

• The largest couple of entries are each as large as the rest of the observations put together 
• The largest entries are easily identifiable (famous person in a small village, one dominant 

business) 

In general, though, output checkers should not be spending much time on dominance checks 
without good reason.  

7.9 Mode 
7.9.1 Summary 

Examples of type Mode 
Variations None 



Safe or unsafe? Safe (assuming not all same value) 
Risk level Low 
Risk elements All values same 
Checks to be made All values same 
Appropriate responses None 
Covered in automatic tools SACRO [TBD} 
Modelling Well understood 
Key text(s) This document 

 
7.9.2 Description of statbarn 
This statbarn covers the mode i.e. something reported as the most common value. 

Examples: 

“Modal height is 178cm” “The most common eye colour is brown” 
Table 22 Examples of mode 

7.9.3 Risk factors 
Values the 
same 

All observations having the same value means that the mode is effectively a 
class disclosure 

7.9.4 Classification 
This is a safe statistic, as long as not all values are the same. 

7.9.5 Criteria for rules-based approval 
For manual checking: 

a. Check mode is not only value – use any evidence that other values exist (eg mean, median or 
percentiles are different), or check with user 

For automatic output checking: 

a. Order observations by size x[1]>x[2]…>x[N] 
b. Check x[1] ≠ x[N] 

7.9.6 Remedial action 
There are no remedial actions. If there is only one value for all observations, this counts as a class 
disclosure. 

7.9.7 Issues to consider if exception is requested 
Factors required to make the output potentially disclosive (note that this implies we have already 
discovered that all observations share the mode) 

• The modal value is surprising and interesting 

If this is not the case, grant the exemption. 

7.9.8 Underlying theory/discussion 
Brandt et al (2010) and subsequent references argue that the mode is safe because, by definition, it 
is the most common value; therefore 

• If everyone observation has a unique value, the mode is a random pick amongst these; it has 
no value other than the confirm the existence of at least one occurrence of that value 
(“modal weekly wage is £272.37”) 



• If several observations share the mode, there is no information how many observations that 
represents 

Only if all observations share the same value does it become a class disclosure. If there are missing 
values, then this condition is not met and the mode is safe. 

More recently the question of differencing was raised. Suppose that the following situation occurs: 

• In a dataset, 50 individuals have green eyes and 50 have blue eyes. An additional 
observation is included, with blue eyes. 

Initially, both green and blue are valid modal values; it is not determined. In the second case, the 
mode is blue. If the mode was initially reported as green, reporting the revised mode would reveal 
that the additional observed person has blue eyes (if the initial report of the mode was blue, then 
the additional observation is uninformative about the extra individual). 

While this is a possibility, it requires several factors to come together: 

• Two potential modes A and B, each equally likely 
• A single additional observation with one of the potential modes, A 
• Reporting of the mode twice, with the initial mode being reported as B 

Other alternatives can be constructed, around definite changing to indefinite mode, and taking away 
rather than adding one observation. These cases are not impossible, but they seem highly unlikely in 
genuine research cases. To deal with this would require an additional rule to check whether there is 
a difference of one or zero observations between the reported mode and the next best candidate 
for the mode. This is not a function implemented in statistical programmes. Even if a single case was 
revealed, the nature of the mode, as the most common value, also suggests it is the least interesting 
value. Overall, we conclude that the carrying out additional checks on the mode (beyond all values 
being the same) is not easily doable, and is not likely to generate an appreciable risk reduction. 

7.10 Non-linear concentration ratios 
7.10.1 Summary 

Examples of type Herfindahl-Hirchsmann index, diversity index 
Safe or unsafe? Safe 
Risk level n/a 
Risk elements Dominance of largest value 
Checks to be made N, index value 
Appropriate responses None 
Covered in automatic tools SACRO? 
Modelling None 
Key text(s) Appendix to this document 

 
7.10.2 Description of statbarn 
This statbarn covers non-linear concentration ratios, where the ratio is not just a simple sum of the 
shares. Simple concentration ratios, such as ‘market share of the top 5 firms”, are covered in linear 
aggregates. 

Example: 

Values 62 45 17 12 3 2 2 1 1 



Shares 42.76% 31.03% 11.72% 8.28% 2.07% 1.38% 1.38% 0.69% 0.69% 

Squared shares 18.28% 9.63% 1.37% 0.68% 0.04% 0.02% 0.02% 0.00% 0.00% 

Simple concentration ratio (sum of top 3): 85.52%     Herfindahl index (sum of squared shares): 30.06% 
Table 23 Example of linear and non-linear concentration ratio (highlighted) 

A ratio such as the top-3 ratio above is a linear combination, and is treated the same as any other 
total. The Herfindahl index is non-linear in its value (ie a change in a source variable value does not 
always lead to the same proportional change in the statistic).  

7.10.3 Risk factors 
Dominance If the largest value is close to 100%, then the square root of the index approximates 

to it 
 

7.10.4 Classification 
This is a safe statistic but with a specific criterion attached. 

7.10.5 Criteria for rules-based approval 
For manual and automatic checking: 

a. Check N>2 
b. Check H< some threshold value (eg 0.81), which reflects a minimum level of uncertainty 

about the share of the largest value 

7.10.6 Remedial action 
No mitigation 

7.10.7 Issues to consider if an exception is requested 
Even H is greater than the threshold value, the researcher can make the case that the values are 
uninformative. For example, in Green et al (2019), a Herfindahl index is used to assess the 
dependence on four funding sources of 150 different charities. The index in this case was safe as 
there was no indication which of the funding sources dominated for any charity, or which charity any 
figure related to. 

7.10.8 Underlying theory/discussion 
Generally safe statistics do not require the enforcement of rules; they are understood to have 
negligible risk in all plausible research uses. However, Ritchie (2007) does note that if simple 
unambiguous rules can be applied easily and consistently to confirm there is negligible risk 
irrespective of data, then these can be classified as safe. This is the case here. N>2 ensures no 
collaboration, and the same values can be given by different combinations of variables; in a worst 
case of 3, normalised to a total of 100: 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

obs 1 45 58 80 81 92 92 

obs 2 45 22 20 12 8 4 

obs 3 10 20 0 7 0 4 

H 0.42 0.42 0.68 0.68 0.85 0.85 

√𝐻Overestimation of x1 -43% -12% -3% -1% 0% 0% 
Table 24 Herfindahl index 

The index is no reliable guide to any values other than the largest even in this simplest case. 



The largest value is an issue. The accuracy of the root of H as an approximation to the largest value 
approaches 100% as the largest share approaches 100%. Once the largest share gets above 90%, this 
is largely independent of the value of any other observations. Hence, it makes sense to check that 
the largest value is sufficiently different from the root of H; or alternatively that the largest does not 
exceed, say 90% (almost equivalently, that H does not exceed 0.81). These are checks which need to 
be made but once confirmed they are sufficient to guarantee non-disclosure. 

Why does this count as a ‘safe’ statistic? Because, given the checks, we can be confident there is no 
disclosure. It is possible that the root of the index reflects the largest value but unless the largest 
share is very large, other distributions will give the same result. Moreover, this is a ratio, and so 
without the total it is of limited disclosure risk. Finally, we note that there is no meaningful 
differencing risk, as an additional observation changes the total and so all the shares as well. 

Hence we note that the disclosure risk is uniquely located in either (a) just 2 observations, so a risk 
of one unit finding out about the other, and we ensure that N>3; or (b) a threshold for an acceptable 
value – which will also cover the case of N=1 as H=1 in this case. 

7.11 Odds ratios, risk ratios and other proportionate risks 
7.11.1 Summary 

Examples of type Calculated odds ratio, risk ratio 
NB NOT estimated risks from eg proportional hazards models 

Safe or unsafe? Unsafe 
Risk level Low 
Risk elements Marginal totals published elsewhere 
Checks to be made Frequency checks on source table 
Appropriate responses Rounding 
Covered in automatic tools No 
Modelling Minimal 
Key text(s) Derrick et al (2022b) 

Appendix in this document 
 
7.11.2 Description of statbarn 
The odds and relative risk ratios reflect the likelihood of a particular outcome between treatment 
and control groups. 

Examples: 

Contingency table 
 Diseased Healthy  

 
Smoker 82 231 313 

 
Non-smoker 7 625 632 

 
 89 856 945 

Odds ratio 31.69    

Relative risk 23.65    
Table 25 Odds and relative risk ratios (highlighted) 

7.11.3 Risk factors 
Marginal totals 
published elsewhere 

The ratios themselves pose no disclosure risk. However, it is likely that 
the ratios combined with other information could expose frequencies 

 



7.11.4 Classification 
This is an unsafe statistic, but low risk. 

7.11.5 Criteria for rules-based approval 
For manual and automatic checking: 

a. Require the underlying contingency table to be produced; check as for any frequency table 

7.11.6 Remedial action 
Rounding the ratios may be sufficient, especially if there are many observations. 

7.11.7 Issues to consider if an exception is requested 
As for frequency tables. 

7.11.8 Underlying theory/discussion 
The ratios themselves are not disclosive, and nor can differencing expose them. However, we make 
the  assumption that some of the frequencies, or some marginal totals (row or column totals in the 
contingency tables above) are published in the paper. When combined with the ratio, all the values 
in the table can be reconstructed in a wide variety of cases (Derrick et al. 2022, provide examples). 
Hence, approve the contingency table, not derived statistics.  

These are low risk because one would not normally construct these ratios when there are very very 
few cases, so thresholds in real datasets are likely to be comfortably met. Even if the output checker 
forgot to check the contingency table, the exposure risk is limited.  

7.12 Hazard and survival tables 
7.12.1 Summary 

Examples of type Tables of survival/death rates, Kaplan-Meier graphs 
Safe or unsafe? Unsafe 
Risk level Low risk 
Risk elements Total number of observations; absolute dates; differencing; 

categories 
Checks to be made Dates and number of observations 
Appropriate responses Combining dates right censoring 
Covered in automatic 
tools 

Not yet 

Modelling Some in older guides, but no longer valid 
Key text(s) Appendix to this document 

 
7.12.2 Description of statbarn 
Tables of survival rates and/or death/exit rates from a starting position. Kaplan-Meier is a 
normalised graph derived from these. 

Examples: 



Day Surviving Deaths Survival rate Death rate Hazard rate 
0 2300 (original population)   
1 2286 14 99% 1% 1% 
2 2131 155 93% 7% 7% 
3 1930 201 84% 16% 9% 
4 1565 365 68% 32% 19% 
5 1532 33 67% 33% 2% 
6 1322 210 57% 43% 14% 
7 1287 35 56% 44% 3% 
8 1255 32 55% 45% 2% 
9 1023 232 44% 56% 18% 

10 854 169 37% 63% 17% 
11 834 20 36% 64% 2% 
12 690 144 30% 70% 17% 
13 591 99 26% 74% 14% 
14 564 27 25% 75% 5% 
15 512 52 22% 78% 9% 

 

 
 
 
 
 

Table 26 Survival table and graph 

7.12.3 Risk factors 
Number of 
observations 

The table shows Ns individuals with the same characteristics. By the end of 
the period, Ne individuals survive. For consistency with frequency tables, Ne 
should meet the frequency threshold 

Absolute dates If exit dates are absolute (Jan 1st, Jan 2nd etc) these pose an identifying risk 
and should not be associated with individual exits 

Differencing If the full dataset shows a single exit at a single time, multiple cuts of the 
dataset allow the characteristics of that person to be identified 

Class disclosure 
(maximum times) 

Extremely long exit times (outliers) may disclose individuals 

 

7.12.4 Classification 
This is a unsafe statistic, but it is low risk 

7.12.5 Criteria for rules-based approval 
For manual checking: 

a. Confirm Ne meets usually frequency threshold T 
b. Confirm exit dates are relative, not absolute 
c. Confirm high values are not informative, or the data is right-censored (eg study finishes at an 

exit time to six weeks with some patients still in treatment) 
d. If repeated versions of the table are presented with different subsets, confirm there are no 

single exits at point in time in the complete dataset 

For automatic output checking: 

a. Approve if no dates with single exit, and  
b. Right censoring  ie Ne>1 

7.12.6 Remedial action 
For absolute dates, convert to relative dates. 

If absolute dates reveal single observations, combine dates. Avoid suppression if possible as it is 
difficult to get right (figures in survival tables can be calculated in multiple ways).  

For outliers, use right-censoring to ensure that Ne>1. 



7.12.7 Issues to consider if an exception is requested 
The condition Ne >T can be ignored if Ns >T is greater than the threshold. This is for consistency with 
frequency tables to ensure this isn’t a way to get out numbers below the threshold. 

If absolute dates are used and there is a single observation at an exit point, approve if it is unlikely 
that the individual would be identifiable (including self-identification). If there are no single 
observations, absolute dates are fine. 

Right-censoring is not necessary if all participants leave the study by an uninformative time (eg if 
median treatment time is 3 weeks and mean is 4 weeks, a last exit at eight weeks does not seem 
exceptional). 

7.12.8 Underlying theory/discussion 
Previous opinions on this have drawn analogies with frequency tables, and have therefore sought to 
block single exits in time periods. This ignores that everyone in the survival table has the same 
characteristics except exit date. Therefore it is the table as a whole that needs the frequency check. 
The table rows (exit dates) contain no identifying information, and so a single observation does not 
uniquely identify any member of the data being tabulated. Even to self-identify, a participant would 
have to be sure of both entry and exit dates; this differs from frequency tables where we assume 
that the participants’ category values (age, gender etc) are simple and reliably known.   

This does change in a small way if we have absolute dates – in that case, there is a slightly higher risk 
of confirming one’s membership in the dataset, although again this does not contain any new 
information about members. To prevent the perception of disclosure, we do not allow absolute exit 
dates unless and exception is requested; but as this is a very limited risk we should normally allow 
this exception. 

There is the potential for outliers. Right-censoring resolves this. Again, because individuals are not 
distinguished within the table except by exit date, any right censoring which has at least two people 
at the censor point adds sufficient uncertainty to mask any specific case. 

Finally, consider someone producing multiple cuts of the data to identify characteristics. The full 
data shows one person left on day 7. Tabulation by gender reveals this person is male; tabulation by 
age group shows this person is not in the 25-34 age group; tabulation by ethnicity show this person 
is in the Chinese category; and so on. In this way it is possible to build up the characteristics of the 
single person who exit on day 7. 

To do this requires that there is a unique observation on the superset of information. If the full 
table showed 2 people leaving on day 7, none of the subsets reveal unambiguous information. If the 
new tabulation is not a subset, it does not reveal information. A tabulation by gender shows one 
male leaving on day seven; a tabulation by male and ethnicity shows one Chinese man leaving that 
day; but this could be read directly for the second table. Moreover, the second table shows that one 
Chinese man left on day seven, but other Chinese man left on other days, so the person is not 
identified. And if the second table was not a subset (ethnicity, but not gender) then it cannot reveal 
the gender of the single person leaving on day seven.  

This differencing holds true for other frequency tables; why do we need to consider it here? Simply 
because, in frequency tables we do not generally allow single observations in categories as they are 
uniquely identified as the only example of that combination of category. In survival tables, we allow 
single observations as the observable categories must have enough indistinguishable people in them 
to allow the table to be generated. But that does raise the (very small) possibility of this kind of 



differencing. If you are faced with many different cuts of the data, it is valid to challenge these are a 
potential disclosure risk; but the risk only arises from subsetting the data, hence we only need to 
confirm that there are no single observations in the broadest classification. 

7.13 Linked or multi-level tables 

 
  

7.14 Cluster analysis 

 

7.15 Gini coefficients 
7.15.1 Summary 

Examples of type Gini coefficient 
Safe or unsafe? Safe 
Risk level n/a 
Risk elements 2 observations 
Checks to be made N>2, coefficient <100% 
Appropriate responses None 
Covered in automatic tools Not yet 
Modelling None 
Key text(s) This document 

 
7.15.2 Description of statbarn 
Examples: 

 

Gini coefficient = 55% 

Table 27 Lorenz curve and associated Gini coefficient 

7.15.3 Risk factors 
Two observations In this case, relative values can be calculated from the ratio 
Coefficient=1 Either just one observation, or all observations have the same value 

7.15.4 Classification 
This is a safe statistic. 

7.15.5 Criteria for rules-based approval 
For manual and automatic checking: 

To be done. Low priority 

To be done. Low priority 



a. Allow if N>2, and 
b. The coefficient is less than 100% 

If N=2 then you can work out the size of each share. Beyond that, not doable. If N=1, obviously the 
coefficient is 1. If N>1 but the coefficient is 1 (100%), all values are the same. 

7.15.6 Remedial action 
n/a 

7.15.7 Issues to consider if an exception is requested 
n/a 

7.15.8 Underlying theory/discussion 
The Gini coefficient is a measure of inequality from 0 (perfect equality) to 1 (perfect inequality). The 
discrete formula is (according to Wikipedia) 

𝐺 =
2∑ 𝑖𝑥!!

𝑛∑ 𝑥!!
−
𝑛 + 1
𝑛

 

This is potential identifiable if you have n=2 and one of the values, but otherwise, there seems little 
to worry about. It can’t be differenced, because a new observation would alter the ranking, unless 
the new observation was larger than any other in the dataset (not entirely silly, as you might want to 
see the effect of adding a very rich person to a mix, for example in teaching). But even then I think 
you would need to do a lot of manipulation with uncertain results. 

 

 

8. Graphical outputs 
 

 

 

All graphs can be associated with one of the statbarns. It might be that some graph types require a 
new statbarn (for example Q-Q probability plots), but for now we assume we can fit all into the 
existing taxonomy. Currently we have allocated the following: 

Fairly confident this is correct. Will check calculations later 

The section will be developed further after consultation with user groups.  



Graph type Statbarn Classification 

Alluvial flow Frequencies Unsafe 

AUC/specificity curves Not classified yet Unsafe 

Bar graph Linear aggregations Unsafe 

Box plot Position Unsafe 

Cluster analysis (dendrogram) Clusters Unsafe 

Density plot Correlation coefficients Safe 

Heat map Frequencies Unsafe 

Histogram Frequencies Unsafe 

Kaplan-Meier Hazard/survival tables Unsafe 

Kernel density plot Correlation coefficients Safe 

Line graphs Frequencies Unsafe 

Lorenz curve Gini coefficient Safe 

Mean plots Linear aggregations Unsafe 

Pie chart Frequencies Unsafe 

Q-Q probability plots Not classified yet Unsafe 

Scatter graph Frequencies Unsafe 

Scatter plots Frequencies Unsafe 

Smoothed Histogram Frequencies Unsafe 

Waterfall chart Frequencies Unsafe 
Table 28 Graphs and statbarns 

In theory, the same rules apply to graphs as to their numeric equivalents. However, there are some 
differences in the assessments of graphical output: 

• some graphs are ‘exceptions’ by their nature eg scatter plots are effectively sparse two-way 
tables with a lot of counts of one 

• graphs may be more or less precise than their tabular equivalents; for example, low 
resolution graphs may have less detail from tables; but SVG graphics files contain the exact 
values to be displayed, which is probably more detailed than would normally be presented 
in a table (and there are tools on the web to extract data even from transformed images 
such as those in PDFs) 

• extracting values from a graphic image requires more effort than reading them from a table 
• graphs typically present much more information than a table, and so the volume of 

information can provide protection 
• outliers may be more easy to see on a graph than in a table 

Overall, it is likely that graphical output present less of a risk than tabular outputs, due to effort 
required to extract data. However, this is a consideration when considering an exception for a graph: 
initially the standard statbarn rules should be applied (eg does a pie chat have the minimum number 
of observations for each segment?).  

 

 

  



Part III Support, advice and references 

9. Output checking processes: the Decision Tree of Doom 
The DRAGoN output checkers training course uses the ‘Decision Tree of Doom’ to help provide 
output checkers through the process. The full decision tree is 

 

Figure 5 The Decision Tree of Doom 

We take each part in sections. 

9.1 Do you know what you are looking at? 
Consider this path: 

 

Figure 6 DToD: rejection for lack of information 



This is straightforward. If the researcher has not provided enough information to assess the output 
for disclosure risk, reject it – ideally also explaining to the researcher what the problem is, so that 
the researcher can learn. 

If the researcher seems to have provided enough information but the output checker does not 
recognise, the question becomes: is this something I should be expected to know about? Checkers 
are unlikely to be familiar with all types of output, but 

• colleagues may have relevant knowledge 
• handbooks may be able to help 
• if this looks like something unexpected, researchers are generally very ready to talk about 

their research 

So the path leads to acquiring more information: 

 

Figure 7 The DToD: gaps in output checker knowledge 

9.2 Does it meet rules? 
Once the output checker has ascertained what she is looking at, the next stage is to assess it against 
rules or rules-of-thumb: 

 

Figure 8 The DToD: meeting rules 

If the rules are met, the output should be released. If the rules are not met, then the next tage 
depends on the output checking regime. If rules-based (for example, in an automatic system with no 
exceptions), then the output is rejected. If however this is a principles-based system and an 
exception is begin requested, the output checker needs to being evaluating the output. 

9.3 Is it important? 
The next stage is to determine whether the output checker should be spending time on this: 



 

Figure 9 The DToD: ascertaining importance 

The researcher should be able to give a reason why this exception is important (for example, 
requested by a journal). The output checker can assess that reason and judge whether it is a valid 
reason for looking at this in detail. If not (“I didn’t have time to tidy up my outputs”), reject. 

It is important that this question is asked before the next one, about disclosure. Output checkers 
have limited resources. The reason why the importance question is asked first is to determine 
whether the output checker should be spending time on assessing disclosure risk when other tasks 
are likely to be waiting. 

9.4 Is it potentially disclosive? 
Once the importance of the output has been agreed, the assessment of disclosure risk starts. Ideally: 

 

Figure 10 The DToD: Assessing disclosure risk 

If there is no disclosure risk, release. 

9.5 Are there special factors needing a policy decision? 
There may be cases where unusual factors may indicate that there is a non-trivial disclosure risk. For 
example: 

• a class disclosure leads to a significant policy outcome which should be published (“none of 
the children on Free School Meals had access to their own computer”) 

• the introduction of a new classification for medical cases causes differencing problems with 
outputs using the old classification; should the researcher be required to use the old 
classification, or should the new classification be used and the differencing risk accepted as 
part of the development of knowledge? 

If there are none of these issues, the output can be rejected. However, there should be a clear line 
of seniority allowing the output checker to raise complex or unclear problems with others able to 
take a policy decision: 



 

Figure 11 The DToD: unusual circumstances 

 

In training, output checkers have generally found this helpful in structuring their analysis. The DToD 
can also usefully be shared with researchers to illustrate the thought processes of output checkers, 
and the importance of making sure that outputs are clearly described and intelligible. 

  



10. Frequently asked questions about output checking 
10.1 FAQs for researchers 
To be done… have services got these already? 

10.2 FAQs for output checkers 
These FAQS are there to help output checkers deal with researcher queries. Researchers may also 
find the answer they are looking for here. This section is taken from Ritchie and Welpton (2015), 
which has a more detailed discussion for each item. 

10.2.1 Researcher queries on disclosure risk 
Yes, there’s a lot of output, but it’s all safe… 

ð It is the researcher’s responsibility to justify every release that they request. If we checked 
everything that a researcher produced, then we wouldn’t be able to operate the service. 
Everybody needs to work efficiently. In addition, we shouldn’t be releasing outputs if you 
don’t require them because this potentially increases the risk of secondary disclosure. 

This isn’t disclosive, why can’t I have it? 

ð It is the researcher’s responsibility to justify every release that they request. If we checked 
everything that a researcher produced, then we wouldn’t be able to operate the service. 
Everybody needs to work efficiently. In addition, we shouldn’t be releasing outputs if you 
don’t require them because this potentially increases the risk of secondary disclosure. 

Why is the amount of output important? 

ð We don’t have infinite resources. The more we check the results of person A, the longer 
person B has to wait for his or her results. Why should B be disadvantaged by A’s lack of 
consideration? Are you happy to wait while we sort through someone else’s messy output? 
We make sure that everyone keeps their output down so that we can give a better service to 
all, rather than the good researchers being penalised by the lazy ones. 

ð Help us by providing only the output you require to have released. Everybody will receive 
their outputs back faster; we can continue to provide access as we can prove we are 
protecting the confidentiality of the data. 

Why do results have to be checked? 

ð If you’ve made a mistake in your output and disclose some confidential fact, you’re in deep 
trouble – and so are we, as we gave you access. So, we both lose. I agree that your output is 
pretty likely to be safe, but checking it gives the extra ring of confidence – and we do know 
cases where it has helped us avoid producing results we shouldn’t have.  This process has 
allowed us to provide the service for so many years now and reassures data owners who are 
generally risk-averse about providing access to their data in the first place. 

Will low cell counts actually lead to disclosure [of personal information]? 

ð Probably not (although you need to be aware that certain things with extreme distributions 
such as rare illness or company data might be visible), but we don’t have the time or 
resource to check every option; and it is not possible to prove non-disclosure in any case. 
However, assuming that low cell counts might be disclosive encourages us to build in a 



margin of error, so that we block many simple tabs and only check in detail when it’s 
important. Just don’t assume that every low cell count is also a breach. 

10.2.2 Researcher queries on operational matters 
When will I get my results back? 

ð As soon as they are checked – which means, the better they are the faster they are likely to 
be returned. We are allowed to prioritise to do easy checks first, that is to say, results that 
are clearly explained and straightforward to assess. Messy results take more effort. 

What makes you the expert on my output? 

ð I’m not claiming to be; my concern is to understand what is being realised. We’re clearly 
talking at loggerheads here; perhaps you can explain again? Can you provide an easy-to-
understand methodology? This will help me to understand how you have produced your 
results. If I don’t understand, I can’t release it, because I’m taking on the risk. 

I don’t agree with your decision – who do I complain to? 

ð (Response assumes you’ve already got some feedback from peers, and also that this is 
something other than just disagreeing about risk) 

ð A: If you think you’ve been unfairly treated, I’m happy for you to talk to my supervisor. 
ð B: If you think there’s some evidence, I’ve not taken account of, I’m happy to pass your 

query on to my peers inside/outside the organisation 

My client is pressurising me to get results out quicker – how do I respond? 

ð It’s important that you raised this. If they won’t listen to you, we’re happy to intercede and 
explain the circumstances under which access to data is granted. You should inform us 
immediately if you are put under such pressure. We have solutions in place to enable the 
supervisor to see results; but undue pressure may encourage risky behaviour that can lead 
to catastrophic consequences. 

10.2.3 Other operational considerations 
I trust this researcher – should I be more lenient with them? 

ð No. If they are producing good output, you don’t need to be lenient. If they are not 
producing good output, you need to educate them, and then not be lenient with them. 
Treating researchers differently stores up problems for yourself – what if you get challenged 
on it? 

I don’t trust this researcher – what do I do? 

ð If they are producing bad output, educate them. If you don’t trust them to produce genuine 
output, or use the facility properly, report to the RDC Manager. SDC isn’t designed to cover 
bad faith research. 

What should I do if the researchers are wasting my time with frivolous requests? 

ð Educate, penalise by lowering priority – if nothing works, report to the facility manager for 
further action. PBOSDC can’t run if people don’t play by the operating rules (ironically) 

What if the researcher refuses to accept my decision? 



ð If they are unhappy about the process, refer upwards. If they are unhappy about the use of 
evidence, refer sideways. If they are unhappy about your judgement, turn it into a question 
of evidence and refer sideways again. Remain open to the possibility of error, and make sure 
the researcher knows that you are considering his/her complaint in an uncertain world. This 
gives you room to manoeuvre if it turns out you have made a poor call. 

I don’t understand what I’m being shown – what do I do? 

ð Ask the researcher or ask a peer/supervisor. There is no shame in not knowing, but there is 
enormous reputational risk from pretending to know something you don’t. 

How much should I rely on what has been released before? 

ð Unless previous releases are acknowledged as precedents, or used as examples of training 
guides, very little. 

Should I check what has been released before? 

ð In general no but do if you suspect there are multiple releases of near-identical outputs. 

Can I come to an arrangement with the researchers to clear their output more effectively? 

ð This is encouraged, as it demonstrates your awareness of researcher needs. For example, 
one researcher needed to produce a lot of tabular output. We agreed that we would (a) 
double the threshold limit from 10 to 20 units, but then (2) validate the program rather than 
all the individual outputs. This worked for both of us. Be careful though about setting 
precedents for operations. 

An alternative scenario occurred where a researcher required a large tabular output, but to 
reduce the risk of secondary disclosure, he was provided with ‘two chances’ to get his 
output right: no more would be released. 

I’m not comfortable checking some types of output –what should I do? 

ð In the short term, talk to the researcher; if that still doesn’t help, bring in an expert 
colleague. In the long term, learn about these outputs. What you shouldn’t do is refuse them 
because you don’t understand them (refusing them because the researcher refuses to 
explain is okay!). 

In general, you should raise these issues with the RDC Manager. The chances are another 
output checker doesn’t understand these outputs either. Then, the RDC Manager is aware 
and can provide appropriate training. 

I don’t understand the data – what should I do? 

ð If we are talking about unsafe statistics, this is more important. Take advice from both the 
researcher (emphasise how they help you) and colleagues. You must be comfortable with 
the contents before release. 

Do I have to give a reason why I refused something? 

• Yes absolutely, and for two reasons. First, it is simply polite and good customer service to 
provide a reason. Imagine you visited a restaurant and asked for the steak that others are 
having, only to have the waiter tell you that you can’t have it and walking away.  



Secondly, by providing a reason, you have given the researcher the opportunity to amend 
their output, and also to learn from the experience. Education is an on-going process, and 
having made a mistake the first time, and understanding what the mistake is, they hopefully 
will not make the same mistake a second time.  

I’ve released something I shouldn’t have – what do I do? 

• We all make mistakes. The best outcome is that you and everybody else understand this and 
learns from the mistake. In the worst case, it may become an ‘information security event’ 
but we strive to ‘continuously improve.’  In most cases, you should contact the researcher, 
explaining what the problem is, and consider how to prevent further release – which may 
not be possible. You should accept responsibility but may also need to point out to the 
researcher that inappropriate releases risk everyone’s access, so it’s in their interest to help 
address the problem. 

I’ve refused something I shouldn’t have – what do I do? 

• Release it and apologise. Say that you’ve reconsidered the output and in light of this, you are 
happy to release it. You mustn’t think anybody will think poorly of you for this:  researchers 
and staff should work together and be sympathetic that we don’t all get everything right all 
the time. Treat it as a learning experience, as you would expect of them if they submit an 
output that really can’t be released. 

What if my staff member makes a mistake? 

• As a facility manager, you are responsible for your team undertaking output checking. The 
first thing is to assess the extent of the mistake:  has this in your view, led to an ‘information 
security event’? If so, you’ll need to take appropriate action, in the form of a ‘Corrective 
Action Plan’ (which details what happened, why it happened, what you can implement to 
prevent it from happening again and with a time frame).  

Whether or not this is a disclosive release, you should consider the following: 

o Is this a one-off mistake by one person (then educate) 
o Has this occurred more than once by the same person (then it’s a potential line 

management issue) 
o Has this occurred by more than one person (then something systematic is going on 

which needs to be resolved as a team) 

What if my colleague makes a mistake? 

• Hopefully, this can be discussed between yourself and the colleague, but if you are 
uncomfortable, then you should speak to the RDC Manager. They should undertake a 
monthly ‘quality assurance’:  reviewing a selection of outputs released in the previous 
month. They may decide to focus on the outputs released by a particular member of staff if 
concerns have been raised. 

What if the researcher presents a case for release, I don’t understand? 

• This is simple:  just ask them. You’ll need to understand: 
o What the results show:  can the researcher provide you with a sentence interpreting 

the statistics, e.g., ‘this shows that x and a positive effect on y.’ 



o How the results were calculated:  the methodology used.  
• Normally, researchers are very pleased to explain this to you.  Researchers who aren’t keen 

should be viewed suspiciously:  why aren’t they happy to explain, are they hiding 
something? 

How should I prioritise when I have multiple outputs to check? 

ð Option 1 is first-come-first served, which is fair and equitable, but doesn’t reward those who 
produce good output. We would suggest you prioritise as follows: 

o (1) good and quick  
o (2) good and slow  
o (3) poor and quick  
o (4) poor and slow  
o (5) chancers and idiots.  

ð Make sure you explain the order to researchers, otherwise you don’t see the benefit. 

 

 

  



11. Other guides and manuals 
These are guidelines already out there which provide specific advice for output checking (both 
output checkers and researchers).  

11.1 Introductory guidance for OSDC 
These are introductory pieces on SDC, suitable for someone with no knowledge and needing a short 
introduction. 

Title Ensuring the confidentiality of statistical outputs from the ADRN 
Authors Lowthian, Phillip; Ritchie, Felix  
Date 2017 
Description Narrative introduction to very basic OSDC 
Coverage • What is SDC?  

• What is output based SDC?  
• Actual vs potential disclosure  
• Principles based OSDC  
• How much risk is there in research outputs?  
• Making PBOSDC work in the ADRN  
• Working with researchers  
• Researcher training  
• Ensuring confidentiality and flexibility  

Citation Lowthian, P., Ritchie, F., Mackay, E., & Elliot, M. (2017). Ensuring the confidentiality 
of statistical outputs from the ADRN 

Link Ensuring the confidentiality of statistical outputs from the ADRN 
 

Title Safe Researcher Training slide deck 
Authors Green, Elizabeth; Ritchie, Felix; Office for National Statistics; SRT Expert Group 
Date 2019 (web version) 
Description Slide deck for training researchers, with extensive notes 
Coverage • What is SDC?  

• Small counts  
• Class disclosure  
• Structural zeros  
• Cell suppression  
• Rounding  
• Output redesign  
• Dominance  
• Ranks, Maxima, Minima  
• Differencing  
• SDC and statistical quality 
• High vs Low review statistics 

Citation ONS (2019). Safe Researcher Training (v0.13 updated 2022). September. 
Link saferesearchertraining.org/SRT_slides.html  

 

Title Eurostat: Statistical Disclosure Control (Memobust Handbook) 
Authors Willenborg, L; de Wolf, P-P; Eurostat 
Date 2014 
Description Short overview on OSDC, designed for producers of official statistics  
Coverage • Tables vs microdata. 

https://uwe-repository.worktribe.com/output/888435/ensuring-the-confidentiality-of-statistical-outputsfrom-the-adrn
http://www.saferesearchertraining.org/SRT_slides.html


• Tabular data. 
• Probability of disclosure versus information loss. 
• User needs and SDC. 
• Data access. 
• Design issues. 
• Software tools. 
• Decision tree of methods [not complete?]. 

Citation Willenborg, L. and de Wolf, P.P. (2014) Statistical Disclosure Control – Main Module. 
Netherlands: Memobust. 

Link https://ec.europa.eu/eurostat/cros/system/files/Statistical Disclosure Control-01-T-
Main Module v1.0.pdf 

 

11.2 General guides to OSDC for researchers 
The guides listed here have been developed to support researchers using confidential microdata. 
Note that secure facility staff in the SACRO network identified the SDAP manual as the most helpful, 
hence why it is listed first. Others are in alphabetical order. 

Title SDAP Handbook on Statistical Disclosure Control for Outputs 
Authors Griffiths, Emily; Greci, Carlotta; Kortrotsios, Yannis; Parker, Simon; Scott, James; 

Welpton, Richard; Wolters, Arne; Woods, Christine.  
Date 2019 
Description General-purpose guide for researchers and output checkers covering a rang of 

outputs and practical guidance 
Coverage • Statistical risk  

• What is SDC?  
• Risk assessment  
• Statistical risk: Principles and rules  
• Introduction to SDC  
• Descriptive statistics  
• Percentiles  
• Histograms  
• Box plots  
• Correlation coefficients  
• Factor analysis  
• Indices  
• Scatter plots  
• Symmetry plots  
• Decision trees and exclusion criteria  
• Survival analysis; Kaplan-Meier curve  
• Spatial analysis (maps)  
• Gini coefficients  
• Concentration ratios  
• Regressions  
• Residuals  
• Margin plots  
• Test statistics  
• Implementing SDC as an organisation  
• Managing analysts 
• Managing expectations 



Citation Welpton, Richard (2019). SDC Handbook. figshare. Book. 
https://doi.org/10.6084/m9.figshare.9958520.v1 [check] 

Link SDC Handbook – Secure Data Access Professionals (SDAP) (securedatagroup.org)  
 

Title ABS Data Confidentiality Guide 
Authors Australian Bureau of Statistics 
Date 2021 
Description General purpose guide for researchers 
Coverage • Safely releasing valuable data. 

• Confidentiality (Obligation to maintain confidentiality). 
• Legal obligations. 
• Contextual approaches. 
• Re-identification. 
• Administrative data. 
• Integrated data sets. 
• Big Data analytics. 
• Reidentification in aggregate data and microdata. 
• Five Safes. 
• Tables and disclosure risks: Frequency tables, Magnitude tables. 
• How to identify at risk cells. 
• Frequency rule. 
• Cell dominance rule. 
• P% rule.  
• Tabular data. 
• Suppression. 
• Data modification. 
• Hierarchical data. 
• Treating microdata. 
• Assessing disclosure risks. 
• ABS microdata 

Citation Australian Bureau of Statistics. (2021, November 8). Use of ABS microdata and 
impact on research quality. ABS. 

Link https://www.abs.gov.au/about/data-services/data-confidentiality-guide 
 

Title CENEX SDC Handbook 
Authors Anco Hundepool, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing, Rainer Lenz, 

Jane Naylor, Giovanni Seri, Peter-Paul De Wolf 
Date 2010 
Description Eurostat-commissioned guide to all aspects of input and output SDC, intended to 

reflect the then state of knowledge. Incorporates Brandt et al (2010) on outputs. 
Note the team produced a similar version book form (Wiley). 

Coverage • Regulations: (Ethical codes, Laws). 
• Microdata: (Roadmap to microdata release, Risk assessment, Microdata 

protection methods, Information loss in microdata protection, Software). 
• Magnitude tabular data: (Disclosure control concepts, the τ-ARGUS 

implementation of cell-suppression, concepts of secondary cell suppression 
algorithms in τ-ARGUS, Controlled tabular adjustments). 

https://doi.org/10.6084/m9.figshare.9958520.v1
https://securedatagroup.org/guides-and-resources/sdc-handbook/
https://www.abs.gov.au/about/data-services/data-confidentiality-guide


• Frequency tables: (Disclosure risks, Methods, Rounding, Information loss, 
Software). 

• Remote access. 
Citation Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Nayor, J., 

Nordholt, E.S., Seri, G., De Wolf, P.P. (2010) Handbook on Statistical Disclosure 
Control. V 1.2. Netherlands: EuroStat. 

Link https://ec.europa.eu/eurostat/cros/system/files/SDC_Handbook.pdf 
 

Title DwB: Guidelines for the checking of output based on microdata research 
Authors Steven Bond, Maurice Brandt, and Peter-Paul de Wolf  
Date 2012 
Description General guide, very closely based on Brandt et al (2010) 
Coverage • Principles-based model. 

• Rule-of-thumb model. 
• Descriptive statistics (Frequency table, Magnitude tables, Maxima, Minima, 

Percentiles, Modes, Means, Indices, Rations, Indicators, Concentration 
ratios, higher moments of distributions, graphs). 

• Correlation and regression analysis (linear, non-linear, estimation, residuals, 
summary and test statistics, correspondence analysis). 

• Organisational/procedural aspects. 
• Legal basis. 
• Access requests. 
• Responsibility for quality. 
• Guide for number/speed of checkers. 

Researcher training 
Citation Bond, S., Brandt, M. and de Wolf, P.P. (2012) Guidelines for the checking of output 

based on microdata research. Luxembourg: Eurostat & DwB 
Link https://ec.europa.eu/Eurostat/cros/content/recommendations-protection-census-

data_en 
 

Title Eurostat: How to use microdata properly 
Authors Ritchie, Felix; Eurostat 
Date 2021 
Description Self-study material about OSDC and handling confidential microdata 
Coverage • Perceptions about research use of data. 

• Restrictions on data access: (intruder model and human model). 
• Ways of providing data access. 
• A framework for data access. 
• When things go wrong. 
• Five safes. 
• Protection of tables. 
• Class disclosure. 
• Protection of graphs. 
• Safe and Unsafe statistics. 
• Dealing with unsafe statistics. 
• Software support. 

Citation EuroStat (2021) How to use microdata properly. Luxembourg: EuroStat. 
Link https://biblioguias.cepal.org/eurostat/studymaterial 

https://ec.europa.eu/eurostat/cros/system/files/SDC_Handbook.pdf
https://ec.europa.eu/eurostat/cros/content/recommendations-protection-census-data_en
https://ec.europa.eu/eurostat/cros/content/recommendations-protection-census-data_en
https://biblioguias.cepal.org/eurostat/studymaterial


 

Title ONS: Researcher output clearance guidance 
Authors Flavell J.; Lock A.; Greenwood C.; Office for National Statistics (UK) 
Date 2022 
Description Guide for researchers using the Secure Research Service, but focusing more on 

process than outputs 
Coverage • What is an output? 

• How is an output cleared? 
• Levels of clearance 
• What doesn’t need to be cleared 
• Incidents and breaches 
• Process Diagrams 

Citation ONS (2019) SRS Researcher output clearance guidance. Office for National Statistics.  
Link https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/ 

requestingstatistics/secureresearchservice/ 
gettingyourresearchoutputsapproved/researcheroutputguidancev2.6.pdf  

 

Title ONS: SRS Output checking guidance document 
Authors Office for National Statistics (UK) 
Date 2022 
Description Guide for output checkers in the Secure Research Service 
Coverage •     Clearance types  

•     General output guidance  
•     ‘Safe ‘ and ‘Unsafe’ outputs  
•     Default SDC ‘rules of thumb’  
•     File types  
•     Frequency tables  
•     Other tables 
•     Low counts   
•     Zeros  
•     Suppression  
•     Rounding  
•     Reformatting  
•     Class disclosure  
•     Structural zeros  
•     Secondary disclosure  
•     Dominance  
•     Statistics  
•     Mean  
•     Percentages  
•     Weighted counts  
•     Mode, minimum and maximum  
•     Medians, quartiles, deciles and percentiles  
•     Ratios  
•     Odds ratios  
•     Graphs (Line, bar, scatter, histograms, boxplot, violin plot)  
•     Regressions and modelling  
•     Coefficients, Margin plots and test statistics  

https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/%20requestingstatistics/secureresearchservice/%20gettingyourresearchoutputsapproved/researcheroutputguidancev2.6.pdf
https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/%20requestingstatistics/secureresearchservice/%20gettingyourresearchoutputsapproved/researcheroutputguidancev2.6.pdf
https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/%20requestingstatistics/secureresearchservice/%20gettingyourresearchoutputsapproved/researcheroutputguidancev2.6.pdf


•     Residuals  
•     Maps and spatial analysis  
•     Geographics  
•     Code files 

Citation ONS (2019) SRS Output checking guidance. Office for National Statistics.  
Link https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/ 

requestingstatistics/secureresearchservice/ 
gettingyourresearchoutputsapproved/srsoutputcheckingguidance.pdf  

 

 

 

11.3 OSDC guidance produced for official statistics 
These guides were produced to support the production of official statistics. As such, they contain 
relevant information and a different perspective; however, researchers should be aware that these 
are designed for large organisations with formal approval processes, using correction methods (eg 
secondary suppression) which are no recommended for researchers. 

Title GSS: Guidance for tables produced from administrative sources 
Authors Government Statistical Service (UK) 
Date 2014 
Description Introduction to tabular data protection from administrative data 
Coverage • Key steps. 

• Guidance on administrative tables. 
• Implementation and evaluation of tabular data from administrative services. 
• Responsibilities.  
• Determining user requirements. 
• Understanding key characteristics of data and required outputs. 
• Circumstances where disclosure is likely and how to manage this. 
• Disclosure risk and breach of statistical obligations. 
• Selecting SDC rules and methods. 

Citation GSS (2014) GSS/GSR Disclosure Control Guidance for Tables Produced from 
Administrative Sources. UK: Government Statistical Service 

Link https://gss.civilservice.gov.uk/wp-content/uploads/2018/03/Guidance-for-tables-
produced-from-administrative-sources-4.pdf 

 
Title GSS: Guidance for tables produced from surveys 
Authors Government Statistical Service (UK) 
Date 2014 
Description Introduction to tabular data protection 
Coverage • Key steps 

• Guidance on tabular data from surveys 
• Implementation and Evaluation 
• Responsibilities 
• Relevant legislation 
• GSS policy 
• Statements made to respondents. 
• Trust of respondents 

https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/%20requestingstatistics/secureresearchservice/%20gettingyourresearchoutputsapproved/srsoutputcheckingguidance.pdf
https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/%20requestingstatistics/secureresearchservice/%20gettingyourresearchoutputsapproved/srsoutputcheckingguidance.pdf
https://www.ons.gov.uk/file?uri=/aboutus/whatwedo/statistics/%20requestingstatistics/secureresearchservice/%20gettingyourresearchoutputsapproved/srsoutputcheckingguidance.pdf
https://gss.civilservice.gov.uk/wp-content/uploads/2018/03/Guidance-for-tables-produced-from-administrative-sources-4.pdf
https://gss.civilservice.gov.uk/wp-content/uploads/2018/03/Guidance-for-tables-produced-from-administrative-sources-4.pdf


• Guidance for tables produced from social surveys. 
• Determining user requirements 
• Understanding key characteristics of data, and required outputs 
• Circumstances where disclosure is likely and how to manage this 
• Disclosure risk and breach of statistical obligations 
• Selecting SDC rules and methods 
• Implementation issues and concerns 

Citation GSS (2014) GSS/GSR Disclosure Control Guidance for Tables Produced from Surveys. 
UK: Government Statistical Service. 

Link https://gss.civilservice.gov.uk/wp-content/uploads/2018/03/Guidance-for-tables-
produced-from-surveys-4.pdf 

 

11.4 General guides to process 
These are general comments on the process of setting up and managing OSDC processes. 

Title Eurostat: How to be a safe researcher 
Authors Eurostat 
Date No date 
Description Guide from Eurostat on managing access to research data 
Coverage • About Eurostat and microdata access. 

• ECLAC Status. 
• ECLAC roles and responsibilities. 
• Who can and can’t access data. 
• Confidentiality agreement. 
• Breach of confidentiality. 
• Requesting access to microdata. 
• Using and managing microdata. 
• Eurostat datasets. 

Citation Eurostat (n.d.) How to be a safe researcher. Luxembourg: Eurostat. 
Link https://biblioguias.cepal.org/Eurostat/documents 

 

Title OCHA: Statistical Disclosure Control Guidance 
Authors United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 
Date 2019 
Description Sohrt discussion of input versus output SDC and its role in project design 
Coverage • Humanitarian microdata 

• Re-identification and disclosure risk: (Identity disclosure, Attribute 
disclosure, Inferential disclosure) 

• Statistical Disclosure Control: (Risk assessment, Application of SDC methods, 
Reassessing risk and quantifying information loss) 

• Application of SDC in humanitarian data management 
Citation OCHA. (2019). Statistical Disclosure Control Guidance. Retrieved from 

https://centre.humdata.org/wp-content/uploads/2019/07/guidance_note_sdc.pdf 
Link https://centre.humdata.org/wp-content/uploads/2019/07/guidance_note_sdc.pdf 

 

  

https://gss.civilservice.gov.uk/wp-content/uploads/2018/03/Guidance-for-tables-produced-from-surveys-4.pdf
https://gss.civilservice.gov.uk/wp-content/uploads/2018/03/Guidance-for-tables-produced-from-surveys-4.pdf
https://biblioguias.cepal.org/eurostat/documents
https://centre.humdata.org/wp-content/uploads/2019/07/guidance_note_sdc.pdf
https://centre.humdata.org/wp-content/uploads/2019/07/guidance_note_sdc.pdf
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Part IV Technical appendices 

Appendix 1 Note on survival tables 
12.1 Summary 
The current guidance for survival tables and Kaplan-Meier (KM) graphs is that researchers should 
demonstrate that each step in the table contains at least the threshold number of observations. 

This paper argues that the actual disclosure risk in the table and or graph is negligible. While 
retaining the classification as ‘unsafe’, because a notional differencing risk exists, within the unsafe 
outputs it is classified as ‘very low risk’. Both manual and automatic output checking guidelines 
should focus on the total and residual number of observations, and on outliers. 

The summary table to be included in the DRAGoN manual is: 

Examples of type Survival tables, Kaplan-Meier graphs 
Safe or unsafe? Unsafe 
Risk level Very low 
Risk elements Class disclosure 

Extreme survival cases 
Checks to be made Initial and final thresholds, extreme survival values 
Appropriate responses Suppression (via right-censoring) 
Covered in automatic tools SACRO [tbd] 
Modelling Limited 
Key text(s) [This paper] 

 

12.2 Tabular outputs 
Survival tables (where ‘survival’ does not just mean life outcomes, but other events that persist and 
then stop) are different from other frequencies tables because there is an implicit relationship 
between cells. 

Date Survivors 
01.03.20 1,369 
08.03.30 1,298 
15.03.20 1,281 
22.03.20 1,225 
29.03 20 1,216 
05.04.20 1,199 

…  
 

Implicit death rate 
--> 

 

Date Deaths 
01.03.20  
08.03.30 71 
15.03.20 17 
22.03.20 56 
29.03 20 9 
05.04.20 17 

…  
 

Table 29 Implied columns in survival data 

The same information could be expressed as survival days, or as rates from an original population, or 
rates from survivors to date. Deaths could also be expressed as a proportion of the original 
population  

Day Surviving Deaths Survival rate Death rate Hazard rate 
0 2300 (original population)  
1 2286 14 99% 1% 1% 
2 2131 155 93% 7% 7% 
3 1930 201 84% 16% 9% 



4 1565 365 68% 32% 19% 
5 1532 33 67% 33% 2% 
6 1322 210 57% 43% 14% 
7 1287 35 56% 44% 3% 
8 1255 32 55% 45% 2% 
9 1023 232 44% 56% 18% 

10 854 169 37% 63% 17% 
11 834 20 36% 64% 2% 
12 690 144 30% 70% 17% 
13 591 99 26% 74% 14% 
14 564 27 25% 75% 5% 
15 512 52 22% 78% 9% 

Table 30 Alternative restatements of the survival table 

If the original population is known, any of these columns can be created from any of the others 
(assuming there are sufficient decimal points on the rates). 

For survival tables the row categories (in tables 1 and 2) are derived from the data rather than 
having any external validity (eg compared to the usual table categories, such education levels). This 
means that the row categories themselves are uninformative (with the exception of outliers – see 
below). Consider the table above. It states that there were 2300 in the original population. These 
individuals have the same characteristics – that is why they are in the same table. If the variable of 
interest was survival time, the table indicates that 20 people exited the study on day 11, but there is 
nothing to distinguish these individuals from those who exited on other days.  

As an alternative, consider what a single exit represents in, say, a table showing survival rates of 
males aged 55-59. The table confirms that there was an exit on that date was for a male aged 55-59; 
but these also exist for every other non-zero date. It is of course possible to confirm identification: if 
an individual was known to have exited on day X, and there is only one exit on that day, that it might 
reasonably be assumed to relate to that individual – if the individual is known to be in the dataset 
(which might be the case in population level datasets).4 

However, in the case of outliers included in the tables, the categories are likely to be informative and 
only holding a single value. Suppose the above table continues… 

Day Surviving Deaths Survival rate Death rate Hazard rate 
0 2300 (original population)  
: : : : : : 
: : : : : : 

87 4 1 0% 100% 20% 
92 3 1 0% 100% 25% 
94 2 1 0% 100% 33% 

112 1 1 0% 100% 50% 

 
4 It depends what we're classing as a risk here - is it (as is commonly used in training) that ANYONE identifying 
ANYTHING is a problem (so if I can pick out that I myself am in the dataset, this is an issue)? Or that is anyone 
ELSE could pick me out AND learn something about me, this is what we're concerned with? We generally  
assume the latter - the former essentially leads down a rabbit hole of nothing every being published. However, 
identifying that you are the one person being treated on a day does provide a form of class disclosure about 
others.. 



206 0 1 0% 100% 100% 
Table 31 Extreme values 

In this case, knowing that an individual stayed in the study for much longer than others but not 
knowing exactly how long, this could potentially reveal information about the exact length of stay.  

Differencing is a theoretical concern. Imagine a researcher producing multiple tabulations by gender, 
age, ethnicity, work status, treatment and pre-diagnosed condition, plus a tabulation of the entire 
dataset. If there were a date on which just one individual exited the study, then it would be possible 
to identify the characteristics of the individual who exited on that date (eg “male, age 55-59, not 
white, in employment, liver failure, no pre-conditions”). Note that this requires the survival table for 
the study population also to be published (or failing that, all possible combinations to be shown), 
and for that to show just one individual at that exit point. Otherwise, it is not possible to identify a 
single-exit in one tabulation with a single-exit in another.  

Class disclosure is a potential consideration: “all the patients recovered within 60 days”. As is usual 
with class disclosure, this is entirely context-dependent. If there are no survivors at period end, then 
membership of the study group is potentially informative that the respondent exited the study, 
although there is no clue when other than the last survival time. 

Right-censoring (ie having some individuals still in the study) cannot increase disclosure risk. It is 
more likely to reduce it as it adds uncertainty about exact survival times and removes extreme 
outliers. 

12.3 Risk assessment 
Survival tables should be classified as ‘unsafe’ because there are the three problems of low numbers, 
class disclosure and outliers.  However, survival tables are a very low risk output for several reasons 

• Only one piece of information is presented (the rows) and this determines the category label 
• All individuals on the graph share the same characteristic apart from exit date 
• The outcome is the identifying variable: if respondent X passes away on 10th June 2023 and 

there is only one death on that day, this identifies respondent X; but there is no independent 
information which allows one to say “this is respondent X and I have identified that he/she 
passed away on 10th June” (in other words, identification risk but no attribution risk) 

• Moreover, the time units are likely to be relative to first identification (eg number of days 
since infection); hence respondents are likely to have different starting times (so ‘day 6’ will 
mean different absolute dates for different patients) 

• The starting population is likely to be large, even if the number dropping out at each period 
is small; otherwise the steps are of very limited statistical value 

• If one knew an individual’s exit date, and that they were in the dataset, and they were the 
only exit on that date, then one could associate the characteristics of that group with the 
individual; but this is quite a high bar 

This also assumes 100% confidence in the accuracy of the exit date. This is unlikely to be warranted 
for frequent exit dates (eg days) where administrative errors are likely to come into play. Less 
frequent exit dates may be more accurate but may also have more exits. If exit dates are relative to 



recruitment date rather than absolute then identifying an individual requires 100% confidence in 
identifying the recruitment date as well the exit date5.  

There are two meaningful risks: extreme outliers and class disclosure. 

Extreme outliers should be easily identifiable. Moreover, even if left in, they are less likely to be very 
informative than outliers in other statistics, as there is no independent information in the table 
which could be used or extracted to find out about the respondent. Again, the fact that everyone in 
the table has the same characteristics limits the risk. For an outlier to be informative, an intruder 
would have to be confident that the outlier is the person of interest (by knowing for example, a 
rough value to exit date). Right-censoring removes the extreme outliers. 

Class disclosure could occur either because no-one exits before a certain date, or exits after a certain 
date, and that date is informative. An ‘informative’ date would need to be one the last exit date is 
unexpectedly early. Again, if there is right-censoring there is no class disclosure (ie just as for other 
statistics where the range of values is trimmed).  

To illustrate the low risk, consider what factors, other than outliers and class disclosure, would make 
a survival table problematic for subject X: 

• Exit date (relative or absolute) for X is known with certainty 
• Exit date is unique to X 
• X has been confirmed as part of the tabulated population 

In this case the characteristics of the table can be ascribed to X. However, this is a high bar, even 
with a known population. Moreover, it is far more likely that one would know the characteristics of X 
with certainty and not the exit date, rather than the other way round.  

In short, while survival tables should be considered ‘unsafe’ in that they do need to be checked, they 
should be seen as very low risk: they contain almost no new information, and the main disclosure 
risk comes from class disclosure and outliers, which are easily identified. 

It may be possible to define rules for what is an ‘informative’ end date or outlier.  A well-populated 
table up to the end point/outlier is perhaps an indication that there are no disclosure risks. This 
requires some empirical study. 

12.4 Checking survival tables 
12.4.1 Manual checks 
The manual output checker should confirm that  

• Relative dates rather than absolute dates are used 
• The initial population exceeds the usual threshold applied to frequency tables (note: this is 

for consistency with frequency tables, as this is effectively a cell count) 
• If right-censored, the final population exceeds the usual threshold 
• If not right-censored 

o the final exit date is not informative (is it unexpected/unreasonable?) 

 
5 All data are of course subject to error. The difference between survival tables and others is that the 
respondent does not supply the exit date, but that it is observed by the data administrator, providing a n 
additional opportunity for error beyond the usual factors of recall error or mistake. 



o there are no extreme outliers which could be reasonably associated with individuals 
(is there a very substantial gap such that one might guess the individual being 
targeted is ‘in that region’?) 

The first two rules provide consistency with regular frequency table rules. In practice, we would 
generally expect the first to be passed easily; and the second is very uninformative.  

12.5 Automatic checks 
For an automatic checking program, the requirements for approval are  

• The initial population exceeds the usual threshold applied to frequency tables 
• The table is right-censored with the final population exceeds the usual threshold 

If not right-censored, then this needs to be marked as ‘fail’ in a rules-based model, or ‘for review’ in 
a principles-based framework. Alternatively, the program could force right-censoring at the usual 
threshold. 

12.6 Graphical outputs – the Kaplan-Meier curve 
Survival analyses are typically shown as a Kaplan-Meier cure, which is a re-presentation of the 
tabular data. Consider the following, which is an extended version of the above table: 

 

Figure 12 Kaplan-Meier example 

In theory the gaps between survival points can be read off the graph. SDAP(2018) advises that the 
survival table should be requested for release as well. That may work in this case but consider the 
full graph:  



 

Figure 13 Kaplan-Meier example – full data 

With 100 data points, this will take a long time to review. Unfortunately, a graph like Figure 2 is 
more likely to be requested than Figure 1. It’s also worth considering what the release of the table 
means. The graph can be unpicked, yes; but with some effort. The table is easy to analyse for low 
numbers. So releasing the table as well as the graph increases practical risk, even if it does not 
increase theoretical risk. 

However, if we start from the conjecture that the table is low risk to start with, and the graph is a 
less readable version of the table, we would recommend that in most cases it is not necessary to see 
the full survival table. Instead, ask the researcher to confirm 

1. Starting observations 
2. Final observations 

KM graphs are more commonly presented as percentages, not numbers as shown above. This adds 
an additional element of protection. The disclosiveness of the graph is reduced, as the data points 
no longer just rely upon pixel resolution but also the number of decimal points used for the 
calculation. 

12.7 Regression analyses 
There are a number of regression models associated with hazard and survival data, including the Cox 
proportion and partial hazards models. The analysis of this has still to be done, but we expect to 
class them with other linear and non-linear estimates model as ‘safe’ with the same restrictions. 

1) Check residual degrees of freedom exceed threshold 
2) Check model is not fully saturated  
3) Block estimation on a single dummy explanatory variable 

The first two are very rare in general, designed to ensure this is a genuine regression, and can be 
ignored without compromising output security. Case (3) is a special case of (2), and the only one 
likely to occur in practice, and it is easy to check for manual and automatic checkers.  



Appendix 2 Development notes on selected statistics 
Statistical hypothesis tests 
We note that the simpler tests can all be recast as regression models. Therefore for now, we apply 
the regression rules and impose a DoF restriction (where this is ‘residual degrees of freedom’ ie 
number of observations less restrictions). See however ‘binary regressions’ below. 

Assessment 
Manual and automatic: 

• Check minimum degrees of freedom 

Position: percentiles 
Analysis 
Position is reporting a value for the xth percentile of the distribution eg median is the 50th percentile. 
Effectively that means telling you something about the observations on either side of that value. 
Hence, to be consistent with magnitude tables one should have at least the minimum threshold on 
either side of the projected value: 

The xth percen_le is allowed if, for N observa_ons and a threshold of T,  

min(x, 1-x)*N>=T 

For example: 

N Threshold Allowed? 
  10% 50% 99% 
10000 20 Yes Yes Yes 
500 10 Yes Yes No 
40 5 No Yes No 

Table 32 Percentile rules 

Where inter-percentile ranges are being used, we could require that the two percentile values are 
presented separately. This is purely to simplify checking – gap between two percentiles should be 
less disclosive than the values at a specific percentile. However, this leads into the problem that you 
could calculate individual values eg on 100 observations you quote the 10% and 11% boundaries ie 
one observation.  

On the other hand, checking that the range meets the threshold is also not enough eg for 100 
observations, the 1%-99% range would provide information about the gap between lowest and 
highest values. 

So the formal rule should be: 

For the set of percen_les x1, x2..xk, N observa_ons and a threshold of T, the xith 
percen_le and xi-xj interquar_le range is allowed if, for all i and j,  

min(xi, 1-xi)*N>=T AND (xi-xj)*N >=T 

For example, continuing the above case and just checking the inter-percentile ranges: 



N Threshold Allowed? 
  10%-90% 25%-75% 1%-99% 
10000 20 (1000-9000) 

Yes 
(2500-7500) 

Yes 
(100-9900) 

Yes 
500 10 (50-450) 

Yes 
(125-375) 

Yes 
(5-495) 

Yes 
40 5 (4-36) 

Yes 
(10-30) 

Yes 
(1-39) 

Yes 
Table 33 Inter-percentile range 

As can be seen, it is quite difficult for the difference measure to fail the threshold. 

Riskiness 
While technically an unsafe statistic, it is low risk. The disclosure relies upon being able to identify 
where in the ranking an observation is – difficult to do without have the ranking already. 

In addition, the reported percentile may not exist in the dataset. Some packages will calculate an 
intermediate value eg for the values 

Position 1 2 3 4 5 6 7 8 
Value 0 1 12 13 16 19 23 42 

Table 34 Defining the median 

The median value could either be presented as 13, 16, or 14.5 (13+16/2). This provides extra 
protection. 

There is a class disclosure issue if the percentile value is common to the class eg if everyone in the 
bottom 10% earns the minimum wage. However, because ranking determines your inclusion in that 
class, we should be less concerned than we are with class disclosure normally ie the lowest-paid 10% 
earning the minimum wage is less informative than all school-leavers with no qualifications earnings 
the minimum wage. If the research paper showed that there was exact agreement between these 
two the issue would be that all the school leavers are in the bottom 10%, not that the bottom 10% 
earns the minimum wage (see example in the SRT on class disclosure). 

Assessment 
Manual: 

• Check thresholds on both sides (n%, 1-n%) 
• Check difference thresholds in inter-percentile ranges 
• Simple check – is 1% x N > threshold? If so, everything else should be fine 

Automatic: 

• Check thresholds on both sides (n%, 1-n%); assume inter-percentiles will be counted from 
these and these will exceed threshold (OSDC assume people are not deliberately trying to 
cheat) 

Extreme values: maxima and minima 
Analysis 
Technically, we could consider max and min as part of the ‘position’ spectrum, just dead end. They 
would always fail the threshold rule (n% or 1-n% < threshold) unless there were multiple people at 
the threshold, in which case it may not matter. 

This seems like neatness for the sake of it, and it ignores that max/min provide a clear class 
disclosure. Again, technically, a position is a class disclosure (if you know someone is in the bottom 



half of the distribution, then the median tells you the max value); but you still need to know 
something about ranks. The point about max/min is that you only need to know someone is in the 
dataset for the disclosure to appear. 

Max and min are also more likely to be structural, as they reflect the range of the data, not an 
intermediate point. So we continue to treat max/min as a separate class. 

Riskiness 
These are unsafe and relatively high risk – if disclosive. However, assessing for disclosure should be a 
straightforward assessment of whether the extreme value is of concern (either no meaningful, or 
structural, such as a max percentage being 100%). The problem for SACRO is that this is not easily 
automatable. 

Assessment 
Manual: 

• Allow if not informative about individuals 
• Factors to consider: potential for many individuals to have the same value; whether a 

genuine extreme value; whether genuinely structural   

Automatic: 

• Block and only allow as exception 

The researcher should be able to answer the manual queries relatively easily. 

Shape: standard deviation, skewness, kurtosis 
Analysis 
Shape statistics seem similar to correlations, in that they involve summed squared (cubed, fourth 
power) deviations which cannot be directly unpicked. However, because these are univariate, there 
is a potential differencing risk. Consider this, extracted from ‘Little White Lies’ (Derrick et al, 2022) 

 

From this it is possible to derive (using the fact that �̅�*+& = (𝑛�̅�*+& + 𝑥*+&) (𝑛 + 1)⁄ ) that  

𝑥*+& = 1 ±:�̅�*, −
(𝑛 + 1)
𝑛

(𝑛𝑠*+&, − (𝑛 − 1)𝑠*,) 

Probably. Anyway, the point is that in theory you only need the two SDs and one of the means to 
identify the additional observation, as opposed to having both means. Presumably there is also 

if a new sample point 𝑥*+&  is introduced into a sample, then the new sample variance based on 

n+1 observations with 𝑛 degrees of freedom, say  𝑠*+&,  , is given by  

𝑛𝑠*+&, =	 (𝑛 − 1)𝑠*, +	(𝑥*+& −	�̅�*+&)(𝑥*+& −	�̅�*) 

where 𝑠*, is the sample variance for the original 𝑛 observations based on (𝑛 − 1) degrees of 
freedom,  �̅�* is the sample mean based on 𝑛 observations and �̅�*+& is the sample mean based 
on 𝑛 + 1	observations. 



potential in skewness and kurtosis statistics to generate a differencing as you have an extra equation 
now to consider – it might be you don’t need one of the means, for example. 

Riskiness 
So, there clearly is potential risk here. How meaningful is it?  

It is possible to conceive of a case where a researcher checks for variance, finds another observation 
and redoes it, and then reports both variances along with one of the means (if both means are 
reported, the differencing comes from them and the variances are irrelevant). This seems an unlikely 
occurrence; if it did happen, a disclosure would then require someone to realise that this is the case, 
calculate the additional value, and associate it with any characteristics of the additional observation 
which would allow for identification. Moreover, researchers are generally warned about this in 
training. Hence, we treat this as not meaningful. 

On this basis the SD (and hence variance, skewness and kurtosis) can be classified as safe. 

Assessment 
Manual and automatic: 

• Check residual degrees of freedom 

Non-linear concentration ratios 
Analysis 
A Herfindahl index is a measure of concentration used in economic analysis. It is calculated as the 
sum of squared shares (where xi is the value and T=total): 

𝐻 ==>
𝑥!
𝑇
@
,

 

The value varies between full concentration at 1 (x1=T, x2..xT=0) and even distribution (x1=x2..=xN) at 
1/N. There is no differencing risk, but there is a potential dominance risk. If x2..xN are all close to zero 
then √𝐻 ≈ 𝑥&/𝑇; similarly if there are two very large observations, and the rest are zero. These are 
stronger than for a simple dominance check on a total, because the squaring exacerbates the 
dominance. 

Because of the squaring I haven’t been able to come up with simple rule for dominance yet, other 
than the obvious “check root of H is not equal to the largest observation”, which is the current 
guidance. 

Riskiness 
I would retain this as a safe statistic, as the dominance check (“check √𝐻 is not close to the largest 
share”) is easy to carry out, and once that has been confirmed there is no meaningful risk 
irrespective of the data. In discussing ‘safe statistics’, we also assume the statistic is likely to be safe 
even if the checks are not carried out, which seems reasonable in this case: dominance problems are 
not obvious to the reader, and require additional assumptions about any attacker. Moreover, 
indexes where H approximates to 1 are of limited research interest. 

Assessment 
Manual: 

• Check number of observations 
• If feasible, check whether largest share is within h% of the index 



Automatic: 

• Check whether largest share is within h% of the root of the index 

where h% is determined by the data owner. Note that this is not he same percentage usedin the 
standard N,K and P rules. 

Gini Coefficient 
Analysis 
The Gini coefficient is a measure of inequality from 0 (perfect equality) to 1 (perfect inequality). The 
discrete formula is (according to Wikipedia) 

𝐺 =
2∑ 𝑖𝑥!!

𝑛∑ 𝑥!!
−
𝑛 + 1
𝑛

 

This is potential identifiable if you have n=2 and one of the values, but otherwise, there seems little 
to worry about. It can’t be differenced, because a new observation would alter the ranking, unless 
the new observation was larger than any other in the dataset (not entirely silly, as you might want to 
see the effect of adding a very rich person to a mix, for example in teaching). But even then I think 
you would need to do a lot of manipulation (will try calculations later). 

Riskiness 
This goes firmly in the safe box, at least for now. 

Assessment 
Manual and automatic 

• Is n>2? 

Smoothed distributions/modelled functions 
These kernel density estimates for plots. These come out of models. We therefore roll them into 
regressions and drop as a category. 

Small numbers 
Many (perhaps all) of the statistics can be problematic if there is both a very small number of 
observations and a limited range of possible values for the source data. Derrick et al (2022) 
demonstrated this in the case of Likert scales. It is possible to conceive even of something like the 
observations underlying a regression being discoverable if there were only a few observations, one 
or two explanatory variables, all the variables could only have a few values, and the regression 
statistics were published with sufficient decimal places. 

It's also clear that these are exceptional cases which we would not expect in genuine research 
output (with the exception perhaps of Likert scales in small studies), and they do require both 
awareness and incentive for someone to try to unpick this. Hence we do not think these are 
meaningful concerns. 

However, this potentially provides a useful way to think about why thresholds above 2 might be a 
good idea. So we will be working on this (simulations) but not directly feeding into SACRO in the 
short term. 



Dominance 
We don’t formally consider dominance in the more complex statistics (SHTs, regressions, shape). It 
seems that this is a theoretical possibility but some basic analysis in Ritchie (2014) and by, I think, 
Statistics New Zealand suggests you really need such an unlikely dataset that we can safely discount 
it occurring in genuine published outputs.  



Appendix 3 Class disclosure, and evidential and structural zeros 
A zero in a table can lead to class disclosure. Consider the following (adapted from ONS, 2019): 

Highest education 
level 

Income quartile  
Q1 Q2 Q3 Q4 Total 

University 2 4 27 34 67 
College 15 28 76 51 170 
School 13 16 22 0 51 
None 8 12 0 0 20 

Table 35 Example of class disclosure through an informative zero 

The zeros are informative: they indicate that no-one with just school qualifications is in the highest 
earnings quartile, and that no-one who left school without qualifications earns above the median 
income. These are class disclosures: knowing that someone is a member of the class allows new 
information to be determined about them. 

Not all zeros are informative. Structural zeros by construction must be zero. For example (taken from 
the DRAGoN output checking course), the table shows numbers of young people in the UK Labour 
Force Survey earning above and below the National Minimum Wage: 

Age last 
birthday 

Paid 
below 
NMW 

Paid at 
or above 
NMW 

Total 

16 0 1366 1366 
17 0 1258 1258 
18 114 990 1104 
19 63 1003 1066 
 177 4617 4794 

Table 36 Example of no class disclosure due to structural zeros 

This example is taken from 2002, when there was no minimum wage for those aged under 18. 
Therefore, the zeros are not informative, but structural: they are zero because of the definition of 
the categories. If a non-zero value is found in a structural zero, this indicates an error in the data. 

The SDC literature generally only distinguishes between structural and non-structural zeros. 
However, we identify a third category, that of evidential zero. This is a cell which is not zero by 
definition, but we would expect it to be empty. Two examples: 

 Highest qualification 
Age None School College University 
16-17 12 84 0 0 
18-20 8 33 62 0 
21-25 9 18 21 37 
26-30 14 21 17 42 

(a) All evidential zeros 

Cancer Males Females Total 
Bowel 321 423 743 
Breast 0 109 109 
Lung 51 23 74 
Skin 18 9 27 
Cervical 0 43 43 

(b) Evidential and structural zeros 
Table 37 No class disclosure due to evidential zeros 

The green boxes in both tables are evidential zeros. It is possible that a 16 year-old could have a 
degree, and males have a very low but nonzero likelihood of breast cancer; but in both cases we 
would not be surprised to see these categories empty. On the contrary, a positive value in these cells 
would be highly disclosive eg a ‘child genius’ who gets her degree at Oxford aged 13, widely reported 
in the press.  

The red box in table (b) is a structural zero. This shows that it is possible to have both types of zero in 
the same table.  



Appendix 4 Full statbarn listing 
This is an overview of the statbarns as currently defined. 

Statbarn Description Risk Things to look for Mitigation strategies 

Frequencies This class covers frequencies ie counts of 
things, either in tables (most common), in 
certain graphs such as histograms or bar 
charts, or single as in a description of the 
number of survey participants. This also 
includes frequencies expressed as a 
proportion of some total 

Unsafe 
(High risk) 

Many issues need to be considered to accurately assess the risk 
of any individual table. For example, is the data itself disclosive? 
Could units making up the data or subsets be identified? Is the 
rank ordering of contributors known? Or, what is the sample 
choice/weighting/cell units? Low counts (typically counts below 
ten are considered at risk of being disclosive), Differencing 
between released tables of a dataset, Class disclosure. Level of 
geographic disaggregation. Detail of industrial/Occupational 
classification. Global context. 

Suppression can be used to remove cells 
that fall below a threshold. Rounding 
can obscure the true value of a cell to 
protect against differencing.  Noise 
addition can also be used to protect a 
table.  

Statistical 
hypothesis tests 

Statistical tests are used to make 
inferences and observe differences in data. 
These involve a wide range of tests 
including t-tests, p-values, F-tests, or 
confidence intervals. 

Safe Residual degrees of freedom (broadly, number of observations 
less number of restrictions implied by the tests) 

 N/A - No meaningful mitigation 

Correlation 
coefficients 

Correlation coefficients are statistical 
measures that quantify the relationship 
between two or more variables. This 
includes measures such as regression 
estimates, as well as single statistics such 
as Pearson's r, Spearmans's rank 
correlation coefficient (ρ) and Kendall's 
rank correlation coefficient (τ). 

Safe Theoretical risks include saturation (all values of all variables 
fully interacted), or no residual degrees of freedom ie an 
equation rather than a regression. Only the latter is meaningful, 
and only when carrying out a regression with one or two binary 
variables. If this case holds, the 'regression' should be treated 
as a one-way or two-way table of means. 

 N/A - No meaningful mitigation 



Position Position refers to a statistic that provides 
information on a central or typical value in 
a dataset. These include data points such 
as median, percentiles, or inter-quartile 
range 

Unsafe 
(Low risk) 

Percentiles should be treated as special cases of magnitude 
tables, each percentile band should be treated as a tabular cell 
with population determined by position in the rank. To decide if 
this value is disclosive, the size of the cell and range of the band 
must be considered. Low counts and class disclosure are the 
main issues with this type of statistic. Understanding whther 
the position of an observation in the ranking is crucial to 
determining whether there is any disclosure risk or not. 

Rounding or noise addition can be used 
to obscure the underlying values to 
make a positions statistic safe for 
release. Suppression can also be used in 
some cases. Removal of outliers can be 
helpful in preventing percentile values 
for being skewed in a way that may 
make data vulnerable.  

Shape Shape outputs refer to measures that 
describe or show the characteristics of 
data distributions. They provide 
information on elements such as 
symmetry, peaks and tail behaviour. These 
comprise standard deviation, skewness, 
and kurtosis. 

Safe Low degrees of freedom can prove an issue for disclosure in 
shape outputs. 

 N/A - No meaningful mitigation 

Linear 
aggregations 

This class covers sums, means, ratios etc.  
These are stats that provide a snapshot of 
the data's characteristics that don't relate 
to any one data point and instead are 
calculated with many or all of the points in 
a data set. This class also includes linear 
concentration ratios (eg share of the top N 
observations). 

Unsafe 
(Medium 
risk) 

Low counts can be an issue with linear aggregations. 
Differencing can in some cases be applied to linear 
aggregations to expose underlying data.  Dominance can also 
impact these statistics and can cause issues for data protection.  

For each value to be released, the 
largest contributor included in the 
synthesis cannot exceed a proportion of 
the total (proportion set by data owner). 
Depending on the nature of the risk, the 
statistic could benefit from suppression, 
rounding, noise addition and/or outlier 
removal. 

Mode The value or values that occur most 
frequently in a dataset. It represents the 
peak or highest point on a distribution's 
histogram. 

Safe If all units have the same value then this would count as a class 
disclosure and should be assessed as such 

N/A 



End points Minimum and maximum values for a 
variable 

Unsafe 
(High risk) 

The threshold rule may be broken by maxima and minima 
referring to a single data point (more likely to happen with a 
maximum on a variable of unrestricted range). They can also 
risk class disclosure as they provide information on every value 
in the dataset. Structural maxima and minima (eg a percentage 
ranging from 0% to 100%) are less likely to be problematic.  

Suppression is most likely to be the only 
solution. If a maximum or minimum is 
far enough out to be problematic, it is 
unlikely that rounding or noise addition 
can make a significant difference. 
However, capping values can be very 
effective. 

Non-linear 
concentration 

ratios 

Non-linear concentration ratios are 
statistical measures used to assess degree 
of concentration or dispersion. The most 
common of these are the Herfindahl–
Hirschman index.  

Safe There is a dominance issue if the distribution comprises one 
large value and every other value negligible. This is unlikely to 
be meaningful in practice  

N/A - No meaningful mitigation 

Calculated ratios Calculated ratios refer to measures 
investigating relationship, comparison or 
relative magnitude between variables. 
These can includes odds ratios, risk ratios, 
or hazard ratios. 

Unsafe 
(Low risk) 

While the ratios themselves are safe, the likelihood of 
publication as some marginal totals (for example, numbers in 
treatment and control groups) means that the underlying 
contingency tables can be recreated. The underlying tables 
need to be published 

Rounding may be the most appropriate 
for small numbers, or reducing precision 
for many observations. 

Hazard/survival 
tables 

These are tables used to analyse and 
model survival or failure times in event-
based data and business data. Commonly 
seen in epidemiology, actuarial science and 
clinical research among others. These can 
also underpin visualisations such as 
Kaplan-Meier. 

Unsafe 
(Low risk) 

Generally very low risk, but be careful when using absolute 
dates or when extreme outliers are presented 

Convert absolute dates to relative dates; 
right-censor extreme observations 

Linked/multi-
level tables 

Multilevel and linked tables are used to 
summarize and analyze the relationship 
between multiple categorical variables. 
These often analyse nested categorical 
data in formats such as two or three way 
contingency tables or hierarchical 
contingency tables. 

Unsafe 
(High risk) 

Unknown. Unknown. 



Clusters Cluster analysis is a statistical technique 
used to classify or group similar objects or 
individuals based on their characteristics or 
attributes. It aims to identify patterns, 
similarities, or relationships within a 
dataset by grouping data points into 
clusters. 

Unsafe 
(High risk) 

Unknown. Unknown. 

Gini coefficient The Gini coefficient is used to summarise 
inequality within a population. The Lorenz 
curve is its graphical counterpart.  

Safe Only problematic if trying to calculate from a population of 
two… 

N/A - No meaningful mitigation 

 


