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Basic information on the model options



PISCES-std vs. PISCES-QUOTA

ln_p4z = .true.     

PISCES-std (24/25 tracers)



PISCES-std vs. PISCES-QUOTA

ln_p5z = .true.
PISCES-QUOTA (39/40 tracers)



PISCES-simple vs. PISCES-STD

ln_p2z = .true.
PISCES-Simple (9 tracers)



PISCES-Sediment

Can be used online/offline/standalone



Code structure - Main



Code structure - SMS



Modeling platforms



Parameterizing marine biogeochemistry
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S(P)=PP
P(P)=Gp+Mp

(1) Phyto

S(Z)=Gp+Gd
P(Z)=Mz+E

(2) Zoo

S(D)=Mz+Mp
P(D)=Gd+S+R

(3) Detritus

 S(N)=R+E
 P(N)=PP

(4) Nutrients

S(P)+S(Z)+S(D)+S(N)- P(P)-P(Z)-P(D)-P(N)= 0

Conservation:

dynamics
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Photosynthesis, growth rate

Photosynthesis: Process by which autrophic organism use solar energy to produce organic 

matter
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• The ratio between the different chemical elements is called the Redfield ratio

• The amount of organic matter produced by the photosynthesis is called Gross Primary 

Production

Photosynthesis

Growth rate

Growth refers to the increase in biomass (in C units generally) 

μ=P
B Chl

C
−r Where r is the respiration rate

From the growth rate, net primary production can be defined as the accumulation of organic 

matter



Growth rate: General background

Growth rate is a function of the environmental and biogeochemical conditions and of the 

species

It can be expressed as follows:

μ=gf (T ) g ( E ) L ( N )

temperature
Light

Nutrients

The specific growth rate varies with species. In 

general, it tends to decrease with size.

size



Growth rate: Temperature

Growth rate increases with temperature until a critical level

A relationship for the enveloppe has been proposed for the first time by Eppley (1972) :

f (T )=1 . 066
T

Growth rate increases by 1.9 times every 10°C (Q10).

Since, several alternative expressions have been proposed, but Eppley's relationship 

remains the most commonly used one.



Growth rate: Light

Growth rate increases with light until a maximum value at which it saturates or even decreases 

 initial slope
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 maximum growth rate
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I
k
 is extremely variable between species. For instance, in cyanobacteria, synechococcus 

spp have a high I
k 
 whereas some prochlorococcus spp have very low I

k
. 

I
k
 strongly varies with the average received light (photoacclimation)



Growth rate: Monod model (1942)

Monod model = growth rate is a function of the external concentration of nutrients

μ=μmax

N
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K
N
 : half-saturation constant

K
N
 increases with size because the S/V ratio decreases. Furthermore, as a result of 

acclimation processes, K
N
 decreases with the nutrient concentration



Measured & works best under relatively steady nutrients (or slow 

change)

Growth stops when nutrients fall to 0

Limitation of the Monod model

Assumes constant stoichiometry

No luxury uptake of transiently elevated nutrients

Can be difficult to estimate K
N
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Growth rate: Droop model (1968) 

growth =μ¥ 1-
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Droop model = growth rate is a function of the internal pool of nutrients (quota)

The internal pool (quota) is a function of the external concentrations of N

V=Vmax
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Generally works better, more physiologically grounded, more general



Currently, there is no clear consensus on the law which drives growth rate with 

multiple nutrients. 2 different laws are generally used:

Growth rate: multi-nutrients

The multiplicative law:
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The law of the minimum or Liebig's law (1840) :

Many other laws do exist but they are not commonly used.



Light in the ocean

Light decreases with depth as (Loi de Beer): I ( z ) =I (0 ) e−kz

In pure water, the attenuation length is 37m. for a chlorophyll concentation of 

0.2 mg Chla/m3, its value is about 20m.

Blue light penetrates much deeper than red light which remains trapped in the 

top 10 to 20m of the ocean.



Solar radiation
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Light in the ocean



Predation by zooplankton
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 Holling Type I
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Predation on several preys

Very complex to properly model!

Mitra et al., 2006
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Mortality in models

 Mortality in models does not necessarily represent senescence. It may 

model :

 senescence

 viral attacks

 aggregation/sinking

 predation by unresolved higher trophic levels

 Numerous formulations exist but the two most common expressions are:



Representing particles in models



Representing particles in models: POC

∂ D

∂ t
=−λD−

∂ vD

∂ z

Remineralization

Sinking

 If bacterial degradation and sinking are the only active processes

 Specific cases :

 If v and λ are constant : 

 If λ is constant and v = Az

F=vD=F (~z ) e
− λ

v
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F=vD=F (~z ) ( z
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A
where



Observed fluxes vs. modeled fluxes

Fluxes seem to be well approximated by a power law function



But far from being that simple

From Marsay et al. (2015)
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Non-linear equations

A simple set of 4 equations
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phytoplancton

zooplancton

détritus

- lab experiments, species dependant, equilibrium state

- large variability: non constant

- agregate many processeses

- inverse methods (data assimilation)

- empirical estimation

Difficult estimation

Parameters needed to constrain the model



Evaluation of a model

Observations

Experiments in controled
 environments



Tuning the models

We learn a lot on the model dynamics/behavior

10,  20, 100x, ...

 Can be very painful

 The more complex the model is, the more di�cult it is



Op mizing the parameters : Assimila on

Varia onal assimila on

Example: Simultaneous assimila on at 5 1-D sta ons: Chla, NO3, POC et Si

Kane et al., 2011

45 op mized parameters



Op mizing parameters

Kane et al., 2011

Can be di�cult (not the universal cure) !

● Are sta ons representa ve of the system?

● What should be done with non assimilated variables?

● Some parameters may not be well constrained by available data



Models Intercomparison Projects (MIPs)

Since, many projects have been organized:

● Carbon cycle (ocean models only) : OCMIP-2, OCMIP-3, OMIP

● Iron cycle : FeMIP

● Carbon cycle (Earth System Models) : CMIP, C4MIP

● Marine ecosystems : FISHMIP

Motivation of these exercises

● Evaluate and intercompare the participating models
● Identify the converging and diverging behaviors and stimulate the model 

developments

● Estimate the uncertainties, for instance in projections

Ocean biogeochemistry: 1st exercise started in 1995

● 4 participating groups : IPSL, GFDL, MPIM, Hadley
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