
GROMACS	GitLab	and	
Version	Control	

Sebas6an	Wingbermühle	
How	to	code	for	GROMACS	(day	1)	

Tonight	

Up	for	dinner,	chaHng	and	some	games?	
	
Ugglan	
Närkesgatan	6	(Södermalm)	
T-bana:	walk	from	Medborgarplatsen	
7	pm	

Agenda	

1.  Set	up	and	manage	your	local	git	
2.  Prepare	for	uploading	a	change	
3.  Upload	an	MR	
4.  Our	review	system	
5.  GROMACS	on	GitLab	–	an	overview	

Set	up	and	manage	your	local	git		

•  A[er	cloning,	you	have	one	branch	main	

•  However,	at	least	one	release	branch	is	ac6vely	
maintained	(now	release-2023).	To	add	it:	
git	fetch	origin	
git	checkout	-b	’release-2023'	'origin/release-2023’	

•  GitLab	iden6fies	you	by	your	mail	address.	Set	
it	in	your	config	file	you	edit	by	typing:	
git	config	--global	--edit	

Set	up	and	manage	your	local	git		

•  Keep	your	git	up-to-date:	
git	checkout	main	
git	pull	origin	main	
git	checkout	release-2023	
git	pull	origin	release-2023	

•  These	commands	can	be	stored	in	a	script	you	
run	daily	or	once	a	week	

	

Set	up	and	manage	your	local	git		

•  For	every	change,	create	a	new	branch	with	a	
meaningful	name	(will	be	visible	on	GitLab):	
git	checkout	-b	<name_of_new_branch>		
	

•  Helpful	git	commands	while	coding:	
git	diff,	git	grep,	…	

•  Once	done,	create	a	commit:	
git	add	.	
git	commit	-m	“<6tle_of_MR>”	

	

Prepare	for	uploading	a	change	

•  Make	sure	your	branch	is	compa6ble	with	the	
current	state	of	the	repository:	
git	checkout	<my_branch>	
git	pull	--rebase	origin	main	

•  If	your	local	git	is	up-to-date,	you	can	use:	
git	checkout	<my_branch>	
git	rebase	main	

•  Reuse	recorded	resolu6on	for	merge	conflicts:	
git	config	--global	rerere.enabled	true	

Prepare	for	uploading	a	change	

•  Test	compile	your	branch	locally	(the	most	
relevant	setup):	
cmake	<branch>	-DGMX_DOUBLE=?\	
																															-DGMX_MPI=?\	
																															-DGMX_GPU=?\	
																															-DREGRESSIONTEST_DOWNLOAD=ON\	
																															-DCMAKE_BUILD_TYPE=Debug	
make	-j	<processes>	#	build	code	
(make	-j	<processes>	webpage	#	only	if	docs	changed)	
make	-j	<processes>	tests	
make	check	#	pass	this	before	uploading!	

Prepare	for	uploading	a	change	

•  We	use	automa6c	code	formaHng	by	clang:	
git	checkout	<my_branch>	
#	diff-index	to	preview,	update-workdir	to	format	
bash	admin/clang-format.sh	update-workdir	
bash	admin/clang-6dy.sh	-B=<build_dir>	update-workdir	

•  Make	sure	the	copyright	is	up-to-date:	
bash	admin/copyright.sh	--copyright=full	update-workdir	

•  If	you	change	the	docs:	
docs/doxygen/includesorter.py	-S	.	-B	<build_dir>	

Upload	an	MR	

•  Push	your	branch	to	our	online	repository	(origin,	
some6mes	remote	in	GitLab	docs)	
git	push	origin	<name_of_local_branch>	

•  When	logging	in	to	GitLab,	you’ll	be	asked	to	
create	a	merge	request	(MR)	

Meaningful	6tle	(Gitlab	suggests	your	commit	message)	

Documenta6on	for	the	future:	concise	and	intelligible	

Upload	an	MR	

Upload	an	MR	

•  A[er	pressing	“Create	merge	request”,	you’ll	
be	re-directed	to	the	overview	page	of	your	
new	MR	

Upload	an	MR	

•  A[er	pressing	“Create	merge	request”,	you’ll	
be	re-directed	to	the	overview	page	of	your	
new	MR	

•  You	can	inspect	the	contents	of	your	MR	
•  The	commits	

Upload	an	MR	

Please	squash	commits	to	not	pollute	the	history!	

Upload	an	MR	

•  A[er	pressing	“Create	merge	request”,	you’ll	
be	re-directed	to	the	overview	page	of	your	
new	MR	

•  You	can	inspect	the	contents	of	your	MR	
•  The	commits	
•  The	modified	files	(“glorified	diff”)	

Upload	an	MR	

•  A[er	pressing	“Create	merge	request”,	you’ll	
be	re-directed	to	the	overview	page	of	your	
new	MR	

•  You	can	inspect	the	contents	of	your	MR	
•  The	commits	
•  The	modified	files	(“glorified	diff”)	

•  A	pipeline	will	start	whenever	you	modify	the	
MR.	It	has	to	pass	before	you	can	merge	the	
MR.	There	are	also	post-merge	pipelines.	

Upload	an	MR	

If	you	already	know	that	you	will	soon	modify	the	
MR,	please	cancel	this	pipeline	to	save	resources!	

Our	review	system	

•  Goals:	
•  Can	the	MR	be	understood?	
•  Is	the	MR	scien6fically	correct?	
•  Does	it	conform	to	our	coding	standards?	
•  Is	the	implementa6on	efficient?	

•  2	approvals	(1	from	each	group)	needed	

Our	review	system	

•  Review	is	needed	to	ensure	code	quality,	but	it	
is	nearly	always	the	boyleneck	when	trying	to	
get	code	in!	

•  Be	an	ac6ve	reviewer	and	build	trust	to	get	
approval	permissions!	

•  Trade	reviews	(with	both	core	developers	as	
well	as	other	workshop	par6cipants)!	

•  Engage	in	design	discussions	early!	

Our	review	system	

GROMACS	on	GitLab	–	an	overview	

•  We	squash	commits	to	keep	our	history	clean	

GROMACS	on	GitLab	–	an	overview	

•  We	delete	source	branches	a[er	merging	to	
save	space	

GROMACS	on	GitLab	–	an	overview	

•  Every	MR	is	a	branch	of	the	GROMACS	
repository	on	GitLab	

•  The	official	GROMACS	versions	are	stored	in	
protected	branches:	main	(the	next	major	
release)	and	release-*	

•  We	frequently	merge	from	the	oldest	release	
up	to	main	to	make	sure	bug	fixes	are	
propagated		
•  Always	fix	bugs	in	the	first	maintained	release	they	

were	found	in	

GROMACS	on	GitLab	–	an	overview	

•  We	document	the	contents	of	a	release	with	
the	help	of	tags	and	GitLab	releases	

GROMACS	on	GitLab	–	an	overview	

GROMACS	on	GitLab	–	an	overview	

•  We	document	our	plans	in	issues	linked	to	
milestones	

•  The	milestones	are	the	actual	deadlines	
enforced	during	our	release	cycle!	

•  If	you	want	the	Stockholm	team	to	be	aware	of	
a	larger	code	contribu6on,	write	an	issue	and	
link	it	to	the	correct	milestone!	

Exercise	

Change	the	name	of	the	func6on	
check_atom_names	to	checkAtomNames	
everywhere	in	the	GROMACS	source	code!	

