
GROMACS structures & 
interfaces
Dr Mark Abraham, Intel

Given at KTH, Sept 7, 2023



Outline

• Workflows when using GROMACS

• Repository structure

• Relevant structures in mdrun

• Internal interfaces in GROMACS

• Other tidbits

• Hands-on exercises



Workflows when using 
GROMACS
Software exists to be used - so usage should determine structure

We’ll look at several usage patterns within GROMACS to demonstrate why 
several kinds of structures exist



grompp
• The GROMacs Pre-

Processor

• Pronounced “grompp” or 
“grom-p-p”

• Combines various inputs 
to make an input for gmx
mdrun

• That input is self-
contained and works the 
same on any computer



mdrun
• Runs MD simulations

• Incorporates different 
engines for doing MD, 
EM, TPI, rerun, MIMIC



The trajectory
analysis 
framework 
(TAF)

• Analysis 
tools are 
being ported 
to it

• Framework 
gets 
extended to 
meet new 
use cases



trjconv – how not to structure

• Docs online

• Code here

• This needs to become a composable toolkit with
• Input adapters

• Filters for frames

• Operations to do on frames

• Output adapters

Plus standalone tools for niche functionality.
Work in progress!

https://manual.gromacs.org/2023.2/onlinehelp/gmx-trjconv.html
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/tools/trjconv.cpp?ref_type=heads#L310


Repository structure
What content is found where?

How do I find things?



Documentation

• /docs includes a lot of high level ReStructured Text 
documentation, which is built nightly and appears here 
https://manual.gromacs.org/nightly/

• Let’s go see!

• Source files, class declarations, and function declarations have 
Doxygen.

• This builds nightly and is found at 
https://manual.gromacs.org/nightly/doxygen/html-
full/index.xhtml Much is not yet documented 

• New code must have Doxygen!

https://gitlab.com/gromacs/gromacs/-/tree/release-2023/docs?ref_type=heads
https://manual.gromacs.org/nightly/
https://manual.gromacs.org/nightly/doxygen/html-full/index.xhtml
https://manual.gromacs.org/nightly/doxygen/html-full/index.xhtml


Data files

• /share/top has useful static content:
• Force field definitions

• Topology building blocks

• Water boxes

• Descriptions for fixing broken structures

• Tables of standard functional forms

https://gitlab.com/gromacs/gromacs/-/tree/release-2023/share/top?ref_type=heads


Build system

• GROMACS uses CMake (https://cmake.org/)

• Most folders have a CMakeLists.txt file

• Lots of complicated detection of issues and work-arounds so 
users don’t need to know weird things to get GROMACS 
installed

• Top-level /cmake folder has some reusable content

• CMake became a totally different language since we started 
using it more than a decade ago, so we’re gradually 
modernizing it 

https://cmake.org/
https://gitlab.com/gromacs/gromacs/-/tree/release-2023/cmake?ref_type=heads


The code

• Source files - small groups of related code, e.g. the 
implementation of a class

• Header files - visible interfaces to code in source files, OR 
performance-sensitive code that needs to be inlined by the 
compiler

• Modules – medium-sized groups of related code e.g. simd, 
gmxpreprocess, topology, listed_forces, found two levels under 
/src, typically with a group of tests. Here’s a (scary) dependency 
map.

• Libraries - large groups of related code, e.g. libgromacs, 
libgmxapi, libnb

https://gitlab.com/gromacs/gromacs/-/tree/release-2023/src?ref_type=heads
https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/page_modulegraph.xhtml
https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/page_modulegraph.xhtml


Things found in the code

• Struct - lacks an invariant (typically only public data) and 
generally no methods e.g. t_forcerec

• Class - has an invariant (ie. typically private data) and methods 
e.g. PaddedVector

• (Free) functions - frequently found (C heritage) sometimes 
should be a method on a class that hasn’t grown yet (if so, often 
first parameter has the type of the class to which it should 
belong) e.g. wallcycle

https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/mdtypes/forcerec.h?ref_type=heads#L130
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/math/include/gromacs/math/paddedvector.h?ref_type=heads#L211
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/timing/wallcycle.cpp?ref_type=heads#L340


Tests

• Several test scopes
• Unit tests

• Integration tests

• End-to-end tests

• Several kinds of test data
• Correctness test

• Comparison tests

• Regression tests

• Two frameworks
• Based on GoogleTest: found in tests subdirectory of each module

• Based on perl script in separate repo: https://gitlab.com/gromacs/gromacs-
regressiontests – avoid this at all costs

https://gitlab.com/gromacs/gromacs-regressiontests
https://gitlab.com/gromacs/gromacs-regressiontests


Relevant structures in mdrun
What data types will I keep seeing?

Where should new things go?



MD parameter input (.mdp)

• Lots of software uses key-value pairs as input

• Historically GROMACS used t_inputrec to 
contain the values parsed from the .mdp file

• Then every module includes that header (yuck)

• Much better to have each module take care of 
declaring its own key-value pairs

• Transition is underway, currently the key-value 
tree (KVT) is owned by t_inputrec. See applied 
electric field module example.

https://gitlab.com/gromacs/gromacs/-/blob/release-2023/api/legacy/include/gromacs/mdtypes/inputrec.h?ref_type=heads
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/applied_forces/electricfield.cpp?ref_type=heads
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/applied_forces/electricfield.cpp?ref_type=heads


Communication

• mdrun distributes the work to multiple independent workers

• Some form of MPI library starts the workers (called “ranks”)

• The workers stay in a tight collaboration sending messages

• The “communication record” t_commrec helps with that

https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/mdtypes/commrec.h?ref_type=heads#L70


Domain decomposition

• Pivotal concept behind multi-rank GROMACS

• Each MPI rank maps to a single domain

• A domain is a compact grouping of particles

• Two phases:
• (Re-)partitioning every 100-200 steps where the 

domain is made compact again, which triggers 
rebuilding of short-ranged neighbourlists

• Halo exchange for x and f every step

• Struct gmx_domdec_t

https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/domdec/domdec_struct.h#L162


Molecular topology (mtop)

• Very similar structure to [system] in .top file

• Declaration of gmx_mtop_t

• Like [system], there’s plenty of smaller structures that might 
be reused within the same molecular topology

• To loop over the whole thing to e.g. find all atoms, use the
looping functionality

https://gitlab.com/gromacs/gromacs/-/blob/release-2023/api/legacy/include/gromacs/mdtypes/inputrec.h?ref_type=heads
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/topology/include/gromacs/topology/mtop_atomloops.h#L127


Other important data structures in mdrun

• Ftype – different kinds of function types

• Options – allows configuring e.g. command-line tools to receive 
parameters

• t_state – contains all data with the thermodynamic state, plus a 
bit of algorithmic state that lets GROMACS propagate MD (and 
*not* forces or energies)



Internal interfaces in 
GROMACS
How do I add new functionality?

Where do I change existing functionality?



Software interfaces

• Interface is the surface available for use

• Implementation are the details below that which make it work

• If you can get your job done using only the interface, your 
software is less coupled, so easier to use and maintain

• Example: Google Docs has an API, so with it you could write 
code to search all your docs for a phrase

• GROMACS has several Application Programming Interfaces 
(APIs)

• Lower down there are several interfaces that provide a way for
new functionality to be incorporated in a modular way



TAF interface

• High-level docs TAF

• Workflow for analysis tools

• Many examples in the framework

https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/page_analysisframework.xhtml
https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/group__module__trajectoryanalysis.xhtml
https://gitlab.com/gromacs/gromacs/-/tree/release-2023/src/gromacs/trajectoryanalysis/modules?ref_type=heads


IMdpOptions

• Allows modules to receive parameters via the .mdp file passed
to gmx grompp

• High-level docs via mdmodules

• Doxygen IMdpOptions

• Example QMMM

https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/page_mdmodules.xhtml
https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/classgmx_1_1IMdpOptionProvider.xhtml
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/applied_forces/qmmm/qmmmoptions.h?ref_type=heads#L71


IForceProvider

• Allows modules to compute forces from given inputs

• Don’t need to know how domain decomposition is done, etc.

• Docs IForceProvider

• Source IForceProvider

• Example restraint module

https://manual.gromacs.org/documentation/2018/doxygen/html-full/classgmx_1_1IForceProvider.xhtml
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/mdtypes/iforceprovider.h?ref_type=heads#L164
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/restraint/restraintmdmodule.cpp?ref_type=heads#L65


ISimulator interface

• Used for implementing a different tool like mdrun, minimize, TPI, 
rereun

• The ISimulator interface

• Example rerun

https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/mdrun/isimulator.h?ref_type=heads#L90
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/mdrun/rerun.cpp?ref_type=heads#L168


ObservablesReducer

• Every MD step must be prepared to accumulate values taken 
from every domain, e.g. the local electrostatic energy has to be 
added 

• But those values come from many modules, and most only
need the work done occasionally

• To slow if every module would call global communication itself

• Need to aggregate, but efficiently and maintainably

• High-level docs ObservablesReducer

• Source ObservablesReducer

https://manual.gromacs.org/documentation/2023.2/doxygen/html-full/observablesreducer_8h.xhtml
https://gitlab.com/gromacs/gromacs/-/blob/release-2023/src/gromacs/mdtypes/observablesreducer.h?ref_type=heads


Tidbits

• High-level docs in *.md files /src/docs/doxygen

• Mdp file has user-defined variables that give you a cheap way
to get started implementing your module

• To find something in the code e.g.
git grep –i mdpoptions

https://manual.gromacs.org/documentation/current/user-guide/mdp-options.html#user-defined-thingies


Hands-on exercises

• Make a new tool in the analysis framework that runs but does 
nothing!

• Use userint1 .mdp field to pass a value into mdrun which it 
writes to stdout


	Slide 1: GROMACS structures & interfaces
	Slide 2: Outline
	Slide 3: Workflows when using GROMACS
	Slide 4: grompp
	Slide 5: mdrun
	Slide 6: The trajectory analysis framework (TAF)
	Slide 7: trjconv – how not to structure
	Slide 8: Repository structure
	Slide 9: Documentation
	Slide 10: Data files
	Slide 11: Build system
	Slide 12: The code
	Slide 13: Things found in the code
	Slide 14: Tests
	Slide 15: Relevant structures in mdrun
	Slide 16: MD parameter input (.mdp)
	Slide 17: Communication
	Slide 18: Domain decomposition
	Slide 19: Molecular topology (mtop)
	Slide 20: Other important data structures in mdrun
	Slide 21: Internal interfaces in GROMACS
	Slide 22: Software interfaces
	Slide 23: TAF interface
	Slide 24: IMdpOptions
	Slide 25: IForceProvider
	Slide 26: ISimulator interface
	Slide 27: ObservablesReducer
	Slide 28: Tidbits
	Slide 29: Hands-on exercises

