FAST. FLEXIBLE. FREE.

GROMACS

Everything around coding

Berk Hess (KTH)

A historical overview

A short history of GROMACS development to illustrate professionalisation
of code development

Communication
Strategy

APls

Challenges

GROMACS In 1995

| joined the GROMACS team in Groningen (NL) in 1995

| shared a room with the three other main developers: short lines

At that time GROMACS was one of the first scientific codes using C
We used version control: CVS (Concurrent Versions System)

We tested the code on several different platforms

No code review

Already then we had a very good user manual, but no development docs

“Management” easy In early times

e Basically no management at all:
 Every PhD-student had their own project and goals
 No overall goals at all, Herman Berendsen left everyone free

 No coding standards (at some point someone rewrote a tool in C++
which resulted in obfuscating everything)

o Still code was generally of good quality

* Relatively good testing led to reliable output

Growing development team

 Over the years we attracted external contributors, e.qg. Erik Lindahl, likely because
GROMACS was fully open source

 Other MD codes had communities mainly consisting of scientific collaboration
and former PhD-students of the code owner

 For several years | have been the gatekeeper of GROMACS:
e judging if we want certain functionality at all
e judging the reliability of the output of the code
e judging the code quality

* This became too much as more developers joined and my career progressed

Management of scientific codes

 Management of scientific codes is often bad:

* NO clear goals
e NO common standards

 new members often need to figure out everything by themselves or a
PhD-student needs to explain everything

e scientific codes tend to grow with features needed for every project:
this quickly leads to an unmaintainable mess of code

Solutions for managing scientific codes

e Sell the code to a company = slow death

e Only allow new code when THE Pl approves = slow death
 Embrace the community

* this requires the right tools to make a (distributed) community work

Tools: automate everything that can be automated

 Code formatting: clang-format

* Automated unit/module testing: google-test framework
 Regression testing: an old perl script

o Static analyser to check code logic, memory/address sanitizers

» All this is checked/tested automatically for every change uploaded to GitLab

 Missing: automated validation testing (at scale)

Coding style

* (Correct code can be written and organised in very many different ways

* \We have style guides at:
https://manual.gromacs.org/current/dev-manual/style.html

o Style is not checked automatically, but hasn’t caused much issues

https://manual.gromacs.org/current/dev-manual/style.html

Code organisation

 More complex features require more complex code
 Often many classes are needed
 How the the classes be organised?
 How should the classes interact?
e Often existing code is affected. Should that be refactored?

* Design discussions are needed here

Code reorganisation

« GROMACS is a combination of messy legacy C code and newer, better
organised C++ code

* In particular the main MD-loop has become too unwieldy
 \WWhen to ask someone contributing new code to refactor existing code”?
 \Who should design this refactoring?

* Authors of existing code are often no longer active in the project

Communication channels

GitLab

The GROMACS/BioExcel developer forum:
https:.//gromacs.bioexcel.eu/c/gromacs-developers/

The bi-weekly GROMACS Zoom call, announced on the developer forum,
topics are requested by the participants

Slack

https://gromacs.bioexcel.eu/c/gromacs-developers/

Communication is important!

Communication channels for technical discussions
But probably even more important: personal interaction

* An external developer said that his changes went through much easiest
after he had visited Stockholm

* On the other hand, we have had large remote contributions (Mark
Abraham, Roland Schulz, ...)

Training of use of GROMACS

* Tutorials are the things most new user do

« GROMACS tutorials on many topics available from many groups world
wide

 The past few years: coordinated effort within BioExcel for basic tutorials
and new more advanced features

« GROMACS workshops, beginner or on specific topics requested by the
organisers; nowadays often coordinated and/or sponsored by BioExcel

Training of coding of GROMACS

 \WWe have had a few developer meetings

 Now the first workshop on learning to code in GROMACS

Direction of GROMACS?

ldeal strategy

 Long term goals guiding overall development directions
 Medium term goals, e.g. for next yearly release

e Sets short term goals for features to get into the release

* This might actual work in a company (with sufficient resources)

(Lack of) strategy In science

Scientists might have long plans, but no (stable) funding for them
Medium term funding is distributed over many projects

People doing the actual work on those projects come and go

If science is involved, progress can vary a lot and is not guaranteed

If it software engineering it is difficult to fund it

= hard to plan and even harder to execute plans

GROMACS strategy

* Separate releases from feature planning

 Timed, yearly releases: what Is ready goes in

* Try to generate synergies between tasks in different projects

Current GROMACS funding

BiokExcel-3: code maintenance, user-driven support, training

Several other EU projects: task focussed, but often produce code
National grants: some contain algorithm development

Some universities outside Sweden have people working on GROMACS
NVIDIA: 2-3 people working at NVIDIA

Intel: 1 person at Intel, 1 person at KTH

AMD: soon one person at AMD

Wishes vs what we can achieve

* In academia we always like to achieve many more things that we can achieve
* |n addition things can turn out to be more difficult and issues can arise
« GROMACS has quite some resources, but we are always “understaffed”
* In addition it is very difficult to find suitable candidates for positions
 \We can make little promises on allocating resources to external projects

* \We need dedicate some (review) resources to contributions from hardware
vendors

GROMACS external contributions

 SIMD non-bonded kernel (Erik Lindahl)

 PME (Erik Lindahl)

« PME MPMD parallelisation (Carsten Kutzner, Gottingen)
* Parallel improvements (Roland Schultz, USA)

e Selection and analysis framework (Teemu Murtola,
Finland)

 Enforced Rotation (Carsten Kutzner, Gottingen)

 Computational Electrophysiology (Carsten Kutzner,
Gottingen)

 Advanced alchemical features (Michael Shirts, USA)

Modular integrator (Pascal Merz, Michael Shirts, USA)

QM-MM interfaces (Gerrit Groenhof, Finland)

CUDA acceleration & parallelisation (NVIDIA)

OpenCL GPU code, targeting AMD (contractor of AMD)
SYCL for Intel and AMD GPUs (Intel)

Python API (Erik Irrgang, funded by grants of Peter
Kasson, USA)

Constant-pH code, not in yet (Gerrit Groenhof, Berk
Hess)

Many analysis tools (many contributors)

Code is a liability!

GROMACS is about 750 000 of (non-external) code
We read somewhere that one needs one person to support 75000 lines

 So we would need 10 people only for code maintenance!

In academia, people contributing code often disappear after a few years
We want features and performance, not code!

This is why full unit + module + regression test coverage is important

Code quality standards

* Nearly all quality aspects that can be checked automatically are checked
automatically

* QOur coding guidelines limit the number of C++ features allowed

» But there are still many, in particular organisational, aspects of the code
that can be handled in different, better or worse, ways

» \We strive for high code quality

 But we should not have not too high requirements, especially for new
contributors

APls: solution to everything!?

User facing API(s)

 For users it can be very beneficial to have access to a Python API for
setting up simulation workflows

 No more bash scripts needed

* |If done well, can be much more efficient by keeping things in memory

For developers: lower level APls

An API;
» Clearly separates responsibilities
o Standardises interactions of modules with the rest of the engine
* Should not be changed, can be extended
* No more porting of external features to newer GROMACS versions
* No issues internally when the engine is refactored

* External contributions can more easily be managed externally

APIls can separate responsibilities

* |nstead of you asking: where do | need to put functionality in GROMACS?
* Does the API support the needs of my functionality?
 Maybe the APl needs to be extended

* Functionality can be in (external) modules and maintained separately from
main GROMACS

* No increasing burden on the main GROMACS team (apart from API
support)

Challenges with APls

 \Where to start?
* We currently do not have an APl expert
 Old GROMACS code often needs to be refactored to enable a simple API

* Currently we can not return to high up in mdrun, modify something and
continue the run

* In general: we need to make sure that the engine does not have
memory of the old state of the system/parameters after they get
changed through the API

Accelerating effects of APIs

* With some basic API(s) present:
 Users & developers can play around

e New needs become clear

* Needs will be more specific (as opposed to asking where in the
GROMACS codebase do | need to hack in my change)

* You can contribute to extending the API

GROMACS specific challenges

« GROMACS has (tens of) thousands of users world wide

 Impossible to keep track of

 \We use polls to get an idea of their needs, useful, but limited in
coverage and depth

« GROMACS probably has hundreds of developers world wide
e We know a few and interact more or less with then

 Most we likely don’t know about and we don’t know their needs

