
Everything around coding
Berk Hess (KTH)

A historical overview

• A short history of GROMACS development to illustrate professionalisation
of code development

• Communication

• Strategy

• APIs

• Challenges

GROMACS in 1995
• I joined the GROMACS team in Groningen (NL) in 1995

• I shared a room with the three other main developers: short lines

• At that time GROMACS was one of the first scientific codes using C

• We used version control: CVS (Concurrent Versions System)

• We tested the code on several different platforms

• No code review

• Already then we had a very good user manual, but no development docs

“Management” easy in early times

• Basically no management at all:

• Every PhD-student had their own project and goals

• No overall goals at all, Herman Berendsen left everyone free

• No coding standards (at some point someone rewrote a tool in C++
which resulted in obfuscating everything)

• Still code was generally of good quality

• Relatively good testing led to reliable output

Growing development team
• Over the years we attracted external contributors, e.g. Erik Lindahl, likely because

GROMACS was fully open source

• Other MD codes had communities mainly consisting of scientific collaboration
and former PhD-students of the code owner

• For several years I have been the gatekeeper of GROMACS:

• judging if we want certain functionality at all

• judging the reliability of the output of the code

• judging the code quality

• This became too much as more developers joined and my career progressed

Management of scientific codes
• Management of scientific codes is often bad:

• no clear goals

• no common standards

• new members often need to figure out everything by themselves or a
PhD-student needs to explain everything

• scientific codes tend to grow with features needed for every project:
this quickly leads to an unmaintainable mess of code

Solutions for managing scientific codes

• Sell the code to a company ⇨ slow death

• Only allow new code when THE PI approves ⇨ slow death

• Embrace the community

• this requires the right tools to make a (distributed) community work

Tools: automate everything that can be automated

• Code formatting: clang-format

• Automated unit/module testing: google-test framework

• Regression testing: an old perl script

• Static analyser to check code logic, memory/address sanitizers

• All this is checked/tested automatically for every change uploaded to GitLab 

• Missing: automated validation testing (at scale)

Coding style

• Correct code can be written and organised in very many different ways

• We have style guides at: 
https://manual.gromacs.org/current/dev-manual/style.html

• Style is not checked automatically, but hasn’t caused much issues

https://manual.gromacs.org/current/dev-manual/style.html

Code organisation
• More complex features require more complex code

• Often many classes are needed

• How the the classes be organised?

• How should the classes interact?

• Often existing code is affected. Should that be refactored?

• Design discussions are needed here

Code reorganisation

• GROMACS is a combination of messy legacy C code and newer, better
organised C++ code

• In particular the main MD-loop has become too unwieldy

• When to ask someone contributing new code to refactor existing code?

• Who should design this refactoring?

• Authors of existing code are often no longer active in the project

Communication channels

• GitLab

• The GROMACS/BioExcel developer forum: 
https://gromacs.bioexcel.eu/c/gromacs-developers/

• The bi-weekly GROMACS Zoom call, announced on the developer forum,
topics are requested by the participants

• Slack

https://gromacs.bioexcel.eu/c/gromacs-developers/

Communication is important!

• Communication channels for technical discussions

• But probably even more important: personal interaction

• An external developer said that his changes went through much easiest
after he had visited Stockholm

• On the other hand, we have had large remote contributions (Mark
Abraham, Roland Schulz, …)

Training of use of GROMACS

• Tutorials are the things most new user do

• GROMACS tutorials on many topics available from many groups world
wide

• The past few years: coordinated effort within BioExcel for basic tutorials
and new more advanced features

• GROMACS workshops, beginner or on specific topics requested by the
organisers; nowadays often coordinated and/or sponsored by BioExcel

Training of coding of GROMACS

• We have had a few developer meetings

• Now the first workshop on learning to code in GROMACS

Direction of GROMACS?

Ideal strategy

• Long term goals guiding overall development directions

• Medium term goals, e.g. for next yearly release

• Sets short term goals for features to get into the release 

• This might actual work in a company (with sufficient resources)

(Lack of) strategy in science
• Scientists might have long plans, but no (stable) funding for them

• Medium term funding is distributed over many projects

• People doing the actual work on those projects come and go

• If science is involved, progress can vary a lot and is not guaranteed

• If it software engineering it is difficult to fund it

⇨ hard to plan and even harder to execute plans

GROMACS strategy

• Separate releases from feature planning

• Timed, yearly releases: what is ready goes in 

• Try to generate synergies between tasks in different projects

Current GROMACS funding
• BioExcel-3: code maintenance, user-driven support, training

• Several other EU projects: task focussed, but often produce code

• National grants: some contain algorithm development

• Some universities outside Sweden have people working on GROMACS

• NVIDIA: 2-3 people working at NVIDIA

• Intel: 1 person at Intel, 1 person at KTH

• AMD: soon one person at AMD

Wishes vs what we can achieve
• In academia we always like to achieve many more things that we can achieve

• In addition things can turn out to be more difficult and issues can arise

• GROMACS has quite some resources, but we are always “understaffed”

• In addition it is very difficult to find suitable candidates for positions

• We can make little promises on allocating resources to external projects

• We need dedicate some (review) resources to contributions from hardware
vendors

GROMACS external contributions
• SIMD non-bonded kernel (Erik Lindahl)

• PME (Erik Lindahl)

• PME MPMD parallelisation (Carsten Kutzner, Göttingen)

• Parallel improvements (Roland Schultz, USA)

• Selection and analysis framework (Teemu Murtola,
Finland)

• Enforced Rotation (Carsten Kutzner, Göttingen)

• Computational Electrophysiology (Carsten Kutzner,
Göttingen)

• Advanced alchemical features (Michael Shirts, USA)

• Modular integrator (Pascal Merz, Michael Shirts, USA)

• QM-MM interfaces (Gerrit Groenhof, Finland)

• CUDA acceleration & parallelisation (NVIDIA)

• OpenCL GPU code, targeting AMD (contractor of AMD)

• SYCL for Intel and AMD GPUs (Intel)

• Python API (Erik Irrgang, funded by grants of Peter
Kasson, USA)

• Constant-pH code, not in yet (Gerrit Groenhof, Berk
Hess)

• Many analysis tools (many contributors)

• …

Code is a liability!
• GROMACS is about 750 000 of (non-external) code

• We read somewhere that one needs one person to support 75000 lines

• So we would need 10 people only for code maintenance! 

• In academia, people contributing code often disappear after a few years

• We want features and performance, not code!

• This is why full unit + module + regression test coverage is important

Code quality standards
• Nearly all quality aspects that can be checked automatically are checked

automatically

• Our coding guidelines limit the number of C++ features allowed

• But there are still many, in particular organisational, aspects of the code
that can be handled in different, better or worse, ways

• We strive for high code quality

• But we should not have not too high requirements, especially for new
contributors

APIs: solution to everything!?

User facing API(s)

• For users it can be very beneficial to have access to a Python API for
setting up simulation workflows

• No more bash scripts needed

• If done well, can be much more efficient by keeping things in memory

For developers: lower level APIs
An API:

• Clearly separates responsibilities

• Standardises interactions of modules with the rest of the engine

• Should not be changed, can be extended

• No more porting of external features to newer GROMACS versions

• No issues internally when the engine is refactored

• External contributions can more easily be managed externally

APIs can separate responsibilities

• Instead of you asking: where do I need to put functionality in GROMACS?

• Does the API support the needs of my functionality?

• Maybe the API needs to be extended

• Functionality can be in (external) modules and maintained separately from
main GROMACS

• No increasing burden on the main GROMACS team (apart from API
support)

Challenges with APIs
• Where to start?

• We currently do not have an API expert

• Old GROMACS code often needs to be refactored to enable a simple API

• Currently we can not return to high up in mdrun, modify something and
continue the run

• In general: we need to make sure that the engine does not have
memory of the old state of the system/parameters after they get
changed through the API

Accelerating effects of APIs

• With some basic API(s) present:

• Users & developers can play around

• New needs become clear

• Needs will be more specific (as opposed to asking where in the
GROMACS codebase do I need to hack in my change)

• You can contribute to extending the API

GROMACS specific challenges
• GROMACS has (tens of) thousands of users world wide

• Impossible to keep track of

• We use polls to get an idea of their needs, useful, but limited in
coverage and depth

• GROMACS probably has hundreds of developers world wide

• We know a few and interact more or less with then

• Most we likely don’t know about and we don’t know their needs

