$\begin{array}{c} {\rm Erratum \ to:}\\ {\rm Optimal \ Repairs \ in \ the \ Description \ Logic \ } {\cal EL}\\ {\rm Revisited} \end{array}$

Franz Baader^{1,2} 0, Patrick Koopmann¹ 0, and Francesco Kriegel¹ 0

¹ Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany firstname.lastname@tu-dresden.de

² Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Germany

In the conference paper [1] and its extended version [2], we gave a brief recap of the definition of optimal repairs in Section 3 and presented on Page 13 of [1] and Page 18 of [2] the following condition on repair types:

(RT3[1,2]) If C is an atom in \mathcal{K} and $E \sqsubseteq F$ is a CI in \mathcal{T} with $\mathcal{B} \models E(u)^1$ and $F \sqsubseteq^{\emptyset} C$, then there is an atom D in \mathcal{K} such that $E \sqsubseteq^{\emptyset} D$.

This version differs from the one given in the original article [3] and its extended version [4]:

(RT3[3,4]) If C is an atom in \mathcal{K} and $E \in \mathsf{Sub}(\mathcal{R},\mathcal{T})$ with $\mathcal{B} \models E(u)$ and $E \sqsubseteq^{\mathcal{T}} C$, then there is an atom D in \mathcal{K} such that $E \sqsubseteq^{\emptyset} D$.

Unfortunately, this condition contained a typo w.r.t. the required subsumption relationship, and it is therefore insufficient to prove the results stated in [1,3].

Counterexample. Consider the TBox { $C \sqsubseteq \exists r. D, D \sqsubseteq E$ }, the input qABox $\exists \emptyset. \{C(a)\}$, and the repair request { $(\exists r. E)(a)$ }. With respect to (RT3[1, 2]), the set { $\exists r. E$ } is already a repair type for *a* since neither *C* nor $\exists r. D$ are mandatorily included by this condition. A problem arises if we now construct the canonical "repair" induced by the repair seed S with $S_a := \{\exists r. E\}$. Note that, for the given input, the saturation is the qABox $\exists \{x\}.\mathcal{B}$ with $\mathcal{B} = \{C(a), r(a, x), D(x), E(x)\}$. Then, in the "repair" induced by S, the unique *r*-successor of *a* is the copy of *x* that is annotated with the repair type {D, E}. With respect to the empty TBox, the individual name *a* is thus no instance of $\exists r. D$ or $\exists r. E$, but is still an instance of *C*. Inference with the input TBox then restores the unwanted consequence ($\exists r. E$)(*a*).

The correct formulation of the above condition must thus use subsumption w.r.t. \mathcal{T} in place of subsumption w.r.t. the empty TBox, i.e., $F \sqsubseteq^{\emptyset} C$ in (RT3[1,2]) must be replaced with $F \sqsubseteq^{\mathcal{T}} C$:

(RT3) If C is an atom in \mathcal{K} and $E \sqsubseteq F$ is a CI in \mathcal{T} with $\mathcal{B} \models E(u)$ and $F \sqsubseteq^{\mathcal{T}} C$, then there is an atom D in \mathcal{K} such that $E \sqsubseteq^{\emptyset} D$.

¹ Recall that $\exists Y.\mathcal{B}$ is the saturation of the input qABox $\exists X.\mathcal{A}$ w.r.t. \mathcal{T} .

This version of Condition (RT3) is stronger than (RT3[1,2]), but weaker than the original version (RT3[3,4]). Due to the latter fact, it enables more efficient computation of the optimized repairs, which are equivalent to the canonical repairs (see Section 5 in [3,4]). The reason is that all minimal repair types covering a given set of concept descriptions can be computed more efficiently, since fewer steps are necessary to close a set under the implication in (RT3), and thus these repair types are smaller in size.

For the strongest condition (RT3[3, 4]), we have proved in [3, 4] that the canonical repairs induced by repair seed are indeed repairs, and that they cover all repairs in the sense that every repair is entailed by a canonical repair. We have just seen that, for the weakest condition (RT3[1,2]), the canonical "repairs" need not be repairs w.r.t. the TBox. To show that the modified condition (RT3) introduced above suffices to obtain the results shown in [3,4], we will re-prove all the auxiliary results in [3] and its extended version [4] that rely on this condition, namely Lemmas XI, XII, and XIII.

Lemma XI. If \mathcal{K} is a repair pre-type for u and no atom in \mathcal{K} subsumes C w.r.t. \mathcal{T} , then there is a repair type for u that covers \mathcal{K} and that does not contain an atom subsuming C w.r.t. \mathcal{T} .

Proof. If \mathcal{K} satisfies Condition (RT3), then it is a repair type and we are done. Otherwise, there is a CI $E \sqsubseteq F$ in \mathcal{T} with $\mathcal{B} \models E(u)$ and there is an atom D in \mathcal{K} with $F \sqsubseteq^{\mathcal{T}} D$, but no atom in \mathcal{K} subsumes E w.r.t. \emptyset . Since no atom in \mathcal{K} subsumes C w.r.t. \mathcal{T} , we have $C \not\sqsubseteq^{\mathcal{T}} D$. It follows that $C \not\sqsubseteq^{\mathcal{T}} E$ and so there is $G \in \mathsf{Conj}(E)$ with $C \not\sqsubseteq^{\mathcal{T}} G$. We then replace \mathcal{K} with $\mathsf{Max}(\mathcal{K} \cup \{G\})$. Obviously, the new \mathcal{K} covers the old \mathcal{K} . After finitely many iterations the Condition (RT3) must be fulfilled, and then we have reached the desired repair type.

Lemma XII. Consider a repair seed S and an \mathcal{EL} concept description C.

- 1. If the matrix of $\operatorname{rep}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A},\mathcal{S})$ entails $C(\langle\!\langle u, \mathcal{K} \rangle\!\rangle)$, then the matrix of $\operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ entails C(u) and no atom in \mathcal{K} subsumes C w.r.t. \emptyset .
- 2. If the matrix of $\mathsf{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ entails C(u) and no atom in \mathcal{K} subsumes Cw.r.t. \mathcal{T} , then the matrix of $\mathsf{rep}_{\mathsf{Ql}}^{\mathcal{T}}(\exists X.\mathcal{A},\mathcal{S})$ entails $C(\langle\!\langle u,\mathcal{K} \rangle\!\rangle)$.

Proof. The first statement above is still the same as the only-if direction in the original Lemma XII and thus the same proof still works. We proceed with the second statement, by induction on C. Denote by \mathcal{B} the matrix of $\mathsf{rep}_{\mathsf{QL}}^{\mathcal{T}}(\exists X. \mathcal{A}, \mathcal{S})$. Let the matrix of $\mathsf{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X. \mathcal{A})$ entail C(u) and assume that \mathcal{K} does not contain an atom subsuming C.

- The case where $C = \top$ is trivial.
- Assume that C = A for a concept name A. Since no atom in \mathcal{K} subsumes A w.r.t. \mathcal{T} , we infer that $A \notin \mathcal{K}$ and so it follows from the very definition of \mathcal{B} that the concept assertion $A(\langle u, \mathcal{K} \rangle)$ is contained in \mathcal{B} , i.e., $\mathcal{B} \models A(\langle u, \mathcal{K} \rangle)$.

- Let $C = C_1 \sqcap \cdots \sqcap C_n$ be a conjunction of atoms C_1, \ldots, C_n where $n \ge 2$. The preconditions immediately imply that, for each index *i*, the matrix of $\operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ entails $C_i(u)$ and \mathcal{K} does not contain an atom subsuming C_i w.r.t. \mathcal{T} (otherwise there would be an atom subsuming C since $C \sqsubseteq^{\emptyset} C_i$). The induction hypothesis yields that $\mathcal{B} \models C_i(\langle\!\langle u, \mathcal{K} \rangle\!\rangle)$ for each *i*, and thus it follows that $\mathcal{B} \models C(\langle\!\langle u, \mathcal{K} \rangle\!\rangle)$.
- Consider the last case where $C = \exists r. D$ is an existential restriction. According to Lemma II, it follows from the preconditions that there exists some object v such that the matrix of $\operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ contains r(u,v) and entails D(v). Since $\exists r. D$ is not subsumed by an atom in \mathcal{K} w.r.t. \mathcal{T} , it follows that $D \not\subseteq^{\mathcal{T}} E$ for each $\exists r. E \in \mathcal{K}$. Thus for each $\exists r. E \in \mathcal{K}$, there is some atom $F_E \in \operatorname{Conj}(E)$ such that $D \not\subseteq^{\mathcal{T}} F_E$. According to Lemma XI there exists a repair type \mathcal{L} for v that covers the repair pre-type $\operatorname{Max}_{\sqsubseteq^{\emptyset}}(\{F_E \mid \exists r. E \in \mathcal{K} \text{ and the matrix of } \operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ entails E(v)}) and that does not contain an atom subsuming D w.r.t. \mathcal{T} . Applying the induction hypothesis then yields that $\mathcal{B} \models D(\langle\!\!\langle v, \mathcal{L} \rangle\!\!\rangle)$. By the very construction of \mathcal{L} , it follows that the matrix \mathcal{B} contains the role assertion $r(\langle\!\!\langle u, \mathcal{K} \rangle\!\!\rangle, \langle\!\!\langle v, \mathcal{L} \rangle\!\!\rangle)$. Thus, we conclude that $\mathcal{B} \models C(\langle\!\!\langle u, \mathcal{K} \rangle\!\!\rangle)$.

Lemma XIII. For each repair seed S, the canonical repair induced by S equals its saturation, i.e., $\operatorname{rep}_{OL}^{\mathcal{T}}(\exists X. \mathcal{A}, S) = \operatorname{sat}_{OL}^{\mathcal{T}}(\operatorname{rep}_{OL}^{\mathcal{T}}(\exists X. \mathcal{A}, S))$.

Proof. Since, for both query languages IQ and CQ, the \sqsubseteq -rule employed for constructing the saturations is the same, the following argumentation applies to both choices. We show that the \sqsubseteq -rule is not applicable to $\operatorname{rep}_{QL}^{\mathcal{T}}(\exists X.\mathcal{A},\mathcal{S})$. It is trivial that none of the other two rules is applicable, since the matrix \mathcal{B} can never contain a concept assertion involving a complex concept description.

Consider an object $\langle\!\!\langle u, \mathcal{K} \rangle\!\!\rangle$ of $\operatorname{rep}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A}, \mathcal{S})$ and a concept inclusion $C \sqsubseteq D$ in \mathcal{T} . Further assume that the matrix of $\operatorname{rep}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A}, \mathcal{S})$ entails $C(\langle\!\!\langle u, \mathcal{K} \rangle\!\!\rangle)$. Lemma XII implies that the matrix of $\operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ entails C(u) and no atom in \mathcal{K} subsumes C w.r.t. \emptyset . Since the \sqsubseteq -rule is not applicable to $\operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$, it follows that the matrix of $\operatorname{sat}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A})$ entails D(u). Since \mathcal{K} satisfies Condition (RT3), no atom in \mathcal{K} subsumes D w.r.t. \mathcal{T} . A further application of Lemma XII yields that the matrix of $\operatorname{rep}_{\mathsf{QL}}^{\mathcal{T}}(\exists X.\mathcal{A},\mathcal{S})$ entails $D(\langle\!\!\langle u, \mathcal{K} \rangle\!\!\rangle)$. \Box

An implementation that employs this more efficient version of Condition (RT3) is available from https://github.com/francesco-kriegel/ interactive-optimal-repairs.

References

 Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic *EL* revisited. In: Proceedings of the 18th European Conference on Logics in Artificial Intelligence (JELIA 2023), September 20–22, 2023, Dresden, Germany. Lecture Notes in Computer Science, vol. 14281, pp. 11–34. Springer (2023), https: //doi.org/10.1007/978-3-031-43619-2_2

- Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic *EL* revisited (extended version). LTCS-Report 23-03, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2023), https://doi.org/10.25368/2023.121
- Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static *EL* TBoxes. In: Platzer, A., Sutcliffe, G. (eds.) Automated Deduction CADE 28 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12699, pp. 309–326. Springer (2021), https://doi.org/10. 1007/978-3-030-79876-5_18
- Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static *EL* TBoxes (extended version). LTCS-Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2021), https://doi.org/ 10.25368/2022.64