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ABSTRACT

Deep learning systems have become popular for tackling
a variety of music information retrieval tasks. However,
these systems often require large amounts of labeled data
for supervised training, which can be very costly to ob-
tain. To alleviate this problem, recent papers on learn-
ing music audio representations employ alternative train-
ing strategies that utilize unannotated data. In this paper,
we introduce a novel cross-version approach to audio rep-
resentation learning that can be used with music datasets
containing several versions (performances) of a musical
work. Our method exploits the correspondences that ex-
ist between two versions of the same musical section. We
evaluate our proposed cross-version approach qualitatively
and quantitatively on complex orchestral music recordings
and show that it can better capture aspects of instrumenta-
tion compared to techniques that do not use cross-version
information.

1. INTRODUCTION

Deep learning (DL) has become a common tool for ap-
proaching diverse tasks in music information retrieval
(MIR). These approaches usually follow a supervised
learning scheme, where a neural network is trained on the
annotations of some dataset. For many MIR tasks, how-
ever, such annotations are costly to obtain. Recent work
has investigated alternatives that require little or no anno-
tations and enable training on large, unannotated datasets.

For certain music genres, there are datasets that contain
several versions (i. e., recorded performances) of a musical
work. For example, the same classical symphony or con-
certo can be performed by different orchestras, and sev-
eral commercial recordings are often available. On such
datasets, automatic music synchronization techniques can
be used to find alignments between different versions of a
work, requiring minimal annotation effort [1, 2].

In this paper, we introduce a conceptually novel ap-
proach to audio representation learning that exploits cross-
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Figure 1: Visualization of our cross-version approach to
representation learning for orchestral music. An anchor
(blue) excerpt is selected from a music recording. The pos-
itive (green) and negative (red) excerpts are chosen from a
different version of the same musical piece. For this, an
alignment between versions is needed (gray arrows).

version datasets, thus requiring only alignments between
versions and no further human annotations. Our approach
aims at learning embeddings of audio excerpts such that
musically corresponding excerpts in different versions are
mapped to close points in the embedding space (Figure 1).

There are several musical aspects that stay roughly con-
stant across most versions, e. g., pitches, harmonies or
rhythm. For orchestral music, aspects of instrumentation
(i. e., active instruments or instrument families) are an-
other such property. Instrumentation represents a challeng-
ing MIR scenario given the complexity of instrument tax-
onomies and the difficulty of annotating instrument activ-
ity in orchestral music. In our experiments on a dataset of
complex orchestral music, we show qualitatively and quan-
titatively that—by utilizing the correspondences between
different versions of a musical section—our proposed rep-
resentation learning technique is better at capturing aspects
of instrumentation and instrument texture compared to ap-
proaches that do not exploit cross-version information.
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The remainder of the paper is structured as follows:
Section 2 covers related work on music audio representa-
tion learning, cross-version analysis, and instrumentation
in orchestral music. In Section 3, we introduce our pro-
posed approach. In Section 4, we describe our experimen-
tal setup, including datasets, our model architecture, and
baselines. Section 5 contains qualitative and quantitative
results and Section 6 concludes the paper with a discus-
sion of possible future work.

2. RELATED WORK

Several recent contributions have explored so-called self-
supervised strategies for learning representations from
unannotated music recordings. Often, in these studies, ex-
cerpts from a music recording that are in close proximity
are considered as positive pairs (i. e., should be mapped to
similar representations) whereas excerpts that are further
apart (or from other recordings) are negative pairs (i. e.,
should be mapped to dissimilar representations). This idea
is also illustrated in Figure 2. McCallum [3] originally
considered this with the aim of learning features for music
structure analysis. Wang et al. [4] had a similar use case but
used a supervised learning approach. Several authors em-
ployed such a strategy for learning more general purpose
representations [5–10], often applying additional augmen-
tations. Apart from using temporal proximity, other pa-
pers on music representation learning exploit audio-visual
or audio-text correspondences [11, 12], use classical fea-
tures as training targets [13], exploit metadata [14], or in-
vestigate music generation models [15].

The approach proposed in this paper is conceptually dif-
ferent since we utilize cross-version datasets, rather than
relying on temporal proximity alone. Such datasets contain
several recorded versions of a musical work, which may
vary in aspects related to musical interpretation, recording
conditions, and timbral characteristics of the instruments
used. These datasets have been exploited for expressive
performance rendering [16] or improved harmonic analy-
sis [17]. Cross-version datasets also allow for investigat-
ing model biases and overfitting effects in MIR models
through different dataset splits [18]. To our knowledge,
the only other work utilizing cross-version information for
embedding learning is by Zalkow et al. [19], whose aim
was to compress chromagram excerpts for efficient music
retrieval. In contrast, we propose to learn representations
based on spectrogram-like input features and investigate
them for capturing instrument texture.

In the wider machine learning literature, representations
are often learned by masking a part of an input and predict-
ing the masked content [20, 21]. Other strategies utilize
multi-modal datasets, e. g., containing text–image [22] or
audio–text pairs [23].

Orchestral music has been explored in the context of
source separation [24] or melody extraction [25]. The
authors in [26] considered instrument family recognition
for classical, monotimbral recordings using a supervised
learning approach. Other recent papers on instrument ac-
tivity detection in music recordings [27–29] have also con-

Figure 2: When forming triplets of audio excerpts, the an-
chor and positive/negative excerpts are chosen according
to a maximum/minimum distance τp/τn.

sidered DL-based, supervised learning approaches, but not
within orchestral scenarios.

3. CROSS-VERSION APPROACH TO AUDIO

REPRESENTATION LEARNING

In this section, we formalize our proposed cross-version
approach to representation learning. The key idea is to
utilize correspondences between different versions (i. e.,
recorded performances played by different orchestras) of
the same musical work. We aim to learn embeddings of
audio excerpts such that the same musical section in dif-
ferent versions is represented by neighboring points in the
embedding space and audio excerpts for unrelated musi-
cal sections are mapped to distant points in the embedding
space. To this end, inspired by [19], we sample triplets
of audio excerpts as in Figure 1, and apply a triplet loss
for learning. Musical characteristics that stay roughly con-
stant across different versions of an orchestral work in-
clude pitches and harmonies, as well as instrumentation. In
later sections, we will analyze to what extent our approach
captures pitches or aspects of instrumentation.
Single-Version Approach (SV). We begin by formalizing
a common approach to music representation learning that
only utilizes temporal proximity inside a single version,
see also Section 2 and Figure 2. Let W be a set of musi-
cal works and let Vw be the set of available versions for a
work w ∈ W . We first randomly select a work w ∈ W
and some version of this work v ∈ Vw. Let T denote the
length of v in seconds. We choose an anchor excerpt by
uniformly sampling an anchor position a ∈ [0, T ] and ex-
tracting the excerpt xa of v that is centered around a. To
obtain the positive and negative excerpts, we choose a po-
sition p ∈ [0, T ] for the positive excerpt xp of v such that
|a − p| ≤ τp. Thus, the positive excerpt is in temporal
proximity of the anchor excerpt—up to a threshold of τp

seconds—and is likely to correspond to a musically similar
section. In the same way, we choose a position n ∈ [0, T ]
for the negative excerpt xn of v such that |a − n| ≥ τn.
The negative excerpt is therefore a certain minimum dis-
tance of τn seconds away from the anchor position, likely
corresponding to a musically dissimilar section. 1

1 Due to repetitions and other structural similarities, there may in fact
be some musically related sections that are far apart temporally. In the
majority of cases, however, the assumption underlying positive and neg-
ative sampling will hold [3].
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Embedding Learning. We obtain embeddings by pass-
ing these excerpts through a neural network (described in
Section 4.2), i. e.:

Y = (ya,yp,yn) = (f(xa), f(xp), f(xn)) , (1)

where f is a neural network that embeds an audio excerpt
x into an embedding vector y. Using this triplet, we can
apply a standard triplet loss [30] such as:

L(Y) = max
(

0, ∥ya − yp∥22 − ∥ya − yn∥22 + α
)

, (2)

where α ∈ R≥0 describes the desired minimum margin be-
tween the distance of embeddings for anchor and positive
versus the distance of embeddings for anchor and negative.
Cross-Version Approach (CV). For our proposed cross-
version approach, we sample triplets in a different fash-
ion. Since we utilize multiple versions per work, we now
require |Vw| ≥ 2. To form a triplet of excerpts, we ran-
domly select some version v1 ∈ Vw of a work w ∈ W . We
then sample an anchor position a1 ∈ [0, T1], where T1 is
the length of v1 in seconds, and extract the corresponding
excerpt xa of v1. To obtain the positive and negative ex-
cerpts, we randomly select another version v2 ∈ Vw \{v1}
of w. As before, let T2 denote the length of v2 in seconds.
We can find the position a2 ∈ [0, T2] in v2 corresponding
to the same musical position as the anchor a1 in v1 using
music alignment techniques. With this, we choose a posi-
tion p ∈ [0, T2] for the positive excerpt xp of v2 such that
|a2 − p| ≤ τp. Thus, the positive excerpt corresponds to
the same musical section as the anchor, up to some toler-
ance of τp seconds (in addition to alignment inaccuracies).
Similarly, we sample n ∈ [0, T2] (with |a2 − n| ≥ τn) and
extract xn. Note that only xa is an excerpt of the first ver-
sion v1, whereas both xp and xn are excerpts of the second
version v2. As before, we construct a triplet Y using these
excerpts and apply a standard triplet loss.

4. EXPERIMENTAL SETUP

4.1 Dataset and Splits

To show the potential of our representation learning tech-
nique, we construct a cross-version dataset of commercial
symphonic and opera music recordings, illustrated in Ta-
ble 1. Our dataset contains an act from an opera (the first
act from Richard Wagner’s “Die Walküre”) as well as or-
chestral pieces by Beethoven, Dvorak and Tschaikowsky.
Counting each movement as an individual work, the
dataset contains eleven different works in total. We choose
the first movement of the Beethoven Symphony, the fourth
movement of the Dvorak Symphony and the third move-
ment of the Tschaikowsky Concerto for testing. Since we
do not have multiple opera acts that could be split into
train and test, we choose an excerpt of the Wagner opera
act (measures 697 to 955, corresponding to around twelve
minutes), omit this excerpt during training, and use it for
testing. We further ensure that the train and test set contain
different versions. By splitting our dataset in this fashion,

Composer Work
Versions

Num. Avg. Duration

Wagner Die Walküre, Act 1 8 1 h
Beethoven Symph. 3, Mvmts. 1–4 6 45 min
Dvorak Symph. 9, Mvmts. 1, 2, 4 6 40 min
Tschaikowsky Violin Concerto, Mvmts. 1–3 6 35 min

Total duration 20 h

Table 1: Our cross-version dataset containing several com-
mercial recordings of different orchestral and opera com-
positions.

we aim to avoid overfitting to specific musical composi-
tions or recording conditions (the latter is also referred to
as “album effect” [31]).

For the cross-version approach CV, we obtain an
alignment between versions of the same work using
state-of-the-art music synchronization techniques involv-
ing chroma onset features and multi-scale alignment [2].
For some experiments, we also require pitch-class and
instrument activity annotations for our dataset. To this
end, we manually encoded a score representation of “Die
Walküre” and obtained further scores from the Mutopia
project. 2 Again, we use music synchronization techniques
to align score to audio and create the annotations.

4.2 Model

We implement all representation learning approaches us-
ing a convolutional neural network that takes a harmonic
CQT representation (HCQT, [32]) of an audio excerpt as
input and outputs a corresponding embedding vector. The
HCQT input consists of 201 frames (at a frame rate of
43 Hz, i. e., roughly 4.7 seconds), three bins per semitone
from C1 to B7 (leading to 252 bins), and five harmonics
(with frequency multiples of [0.5, 1, 2, 3, 4]).

The model architecture is adapted from [33] and re-
ceives an HCQT input patch, processes it through several
convolution and max-pooling layers, and outputs a single
ℓ2-normalized vector (length 128) per input. We take this
output as the embedding vector for the center frame of the
input patch. In total, the architecture has roughly 1.5 mil-
lion learnable parameters. We train our network for 200
epochs (with 16 000 triples randomly sampled per epoch)
using the Adam optimizer with a learning rate of 0.002. In
the interest of reproducibility, we release code and trained
models for our approach. 3

In line with previous studies on audio representation
learning [5–7], we apply a number of augmentations to ex-
cerpts during training, including time scaling, pitch shift-
ing, random masking, adding noise and applying random
equalization. For all experiments, we set τp = 0.2 s. With
this, the maximal distance between anchor and positive
excerpt is in the same order of magnitude as the typical
alignment inaccuracy between versions. We further set

2 https://www.mutopiaproject.org/
3 https://www.audiolabs-erlangen.de/resources/

MIR/2023-ISMIR-CrossVersionLearning
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Figure 3: Self-similarity matrices constructed from instrument annotations (RefI) and pitch-class annotations (RefH), or
obtained with a supervised learning system (Sup), the proposed cross-version approach (CV), and a baseline that does not
incorporate cross-version information (SV). The lower row shows the sections highlighted in red from above.

τn = 10.0 s and α = 1.0. We found that results are stable
for a broad range of settings of these parameters.

4.3 Baselines

To investigate the musical properties captured by the rep-
resentation learning approaches CV and SV, we compare
them to several optimistic baselines: First, we extract tradi-
tional music audio features. We use mel-frequency cepstral
coefficients (MFCC), which are known to capture aspects
of instrumentation [34], and Chroma features, which con-
tain the dominant pitch-classes in the recording. Here, our
goal is not to outperform MFCC or Chroma, but to com-
pare them to our learned representations. If our learning
approaches capture instrumentation, we expect them to be-
have similar to MFCCs. Likewise, in case they contain
pitch-class information, we expect them to perform like
Chroma features.

Second, we consider a supervised learning approach
Sup where we train a model on instrument activity anno-
tations and use its hidden representations as features. For
this, we utilize the same model architecture as for CV and
SV and only add a final dense layer with a number of out-
puts equal to the number of instruments to detect. Rather
than using the triplet loss from Section 3, we train this ap-
proach by applying a sigmoid activation and binary cross-
entropy loss. Note that in contrast to CV and SV, the Sup
approach requires instrument activity annotations for the
recordings in the training set.

5. RESULTS

5.1 Feature Analysis using Self-Similarity

In order to visualize and compare the representations
learned by different techniques, we employ self-similarity

matrices. Such matrices are commonly used for mu-
sic structure analysis and allow for visualizing struc-
tures based on repetition and homogeneity in feature se-
quences [1]. Here, we use them to analyze our learned
representations without the need for additional fine-tuning.
This also allows us to directly compare approaches trained
with a fixed instrument vocabulary (Sup) to others that are
not informed about instruments. We provide an alternative
evaluation in Section 5.4.

Given a sequence X = (x1, . . . , xN ) of (learned) rep-
resentations of N audio frames, we construct the corre-
sponding self-similarity matrix S ∈ R

N×N as follows.
We first normalize all representations with respect to the
ℓ2-norm, yielding X̃ = (x̃1, . . . , x̃N ). We then compute
S(n,m) := ⟨x̃n, x̃m⟩ for n,m ∈ [1 : N ]. Thus, S con-
tains the cosine similarities between elements of X , and
all its entries lie in the interval [−1, 1]. By definition, all
entries on the diagonal of S are equal to 1. In addition, re-
peated subsequences appear as path-like structures and ho-
mogeneous segments appear as block-like structures, see
also [1].

We compare the self-similarity matrices obtained from
learned representations to matrices created using reference
annotations. First, we represent an instrument activity an-
notation as a sequence of multi-hot binary vectors (indi-
cating the presence of instruments in different frames). By
normalizing and computing the dot product as before, we
obtain a matrix corresponding to instrument texture, where
blocks indicate segments with similar instrumentation. We
will refer to this matrix using the shorthand RefI. For ex-
ample, the start of the middle measure in Figure 1 would
be encoded as a vector (1, 1, 1)⊤, i. e., all instruments are
active, and the end of that measure would be encoded as
(1, 1, 0)

⊤, i. e., only horn and soprano are active. After
normalization, the dot product of these vectors is 0.82,
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indicating similar instrumentation. Analogously, we con-
struct another matrix RefH from a sequence of pitch-class
annotations. This matrix captures regions with similar har-
monies and pitches.

5.2 Qualitative Results

Figure 3 shows several self-similarity matrices obtained
through reference annotations or by different representa-
tion learning approaches. The excerpt shown in the upper
row is the test excerpt from “Die Walküre” (similar results
are obtained on other inputs). The lower row shows mag-
nified sections from above. Darker color indicates higher
similarity.

In the RefI matrix, arising from instrument annota-
tions as explained in Section 5.1, one can observe many
block and checkerboard-like structures. For example,
from seconds 460 to 560, different combinations of wood-
wind instruments are playing together, creating block and
checkerboard-like patterns (highlighted in blue). White ar-
eas indicate S(n,m) = 0, i. e., no common instruments
are playing. The matrix RefH, on the other hand, indicates
harmonic similarities which are mostly distinct from the
instrument similarities in RefI.

For the Sup system, many of the patterns in RefI are
replicated, albeit with less detail. This is expected, since
this system has been trained on the same kind of anno-
tations that have been used to create RefI. Interestingly,
many of the patterns present in the RefI and Supmatrices
also appear for the proposed approach CV, which has not
been trained using instrument annotations. In particular,
the checkerboard pattern starting at second 460 is captured
by CV, as well as many block structures.

There are fewer similarities between CV and RefH, in-
dicating that the CV representations are more likely to
capture instrumentation rather than pitch-class content.
This behavior is encouraged by our augmentation strat-
egy, where we randomly pitch-shift the anchor, positive
and negative excerpts.

The matrix obtained through the SV approach is blurry
and, unlike the results for CV, fails to capture many of the
checkerboard-like patterns present in RefI. The example
suggests that exploiting cross-version information during
training is important for capturing aspects of instrumenta-
tion in learned representations.

5.3 Quantitative Results

In order to quantify the correlation between our learned
representations and instrument texture, we now apply a
procedure for detecting the boundaries of block-like struc-
tures in self-similarity matrices. We then compare block
boundaries estimated on RefI with boundaries from all
other matrices. Such procedures are often used in the con-
text of music structure analysis [1, 35].

To detect block boundaries, we first correlate a self-
similarity matrix with a checkerboard kernel along the
main diagonal, as proposed in [35]. From this, we ob-
tain a novelty curve. We then apply a peak picking proce-
dure using local thresholding on this novelty curve, yield-
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Figure 4: Results for different representation learning ap-
proaches when comparing estimated structure boundaries
to boundaries from RefI.
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Figure 5: Results for comparing with RefH.

ing sparse positions of detected block structures. We do
this for all approaches and reference matrices. We finally
compare—with a tolerance of up to three seconds—the
detected boundaries for all approaches to those of RefI,
yielding a boundary F-measure. By adjusting the size of
the checkerboard kernel in this procedure, we can iden-
tify changes of instrument texture on short or larger time
scales. For more details on the boundary detection, peak
picking, and evaluation procedure, we refer to [1].

Figure 4 shows the results of our quantitative evalua-
tion for different sizes of the checkerboard kernel. The F-
measures given are averaged over all recordings in the test
dataset. We observe that the supervised approach is best at
capturing instrument texture (as encoded by RefI) com-
pared to all others, with the highest F-measure of 0.77 for
a kernel of eight seconds. CV and MFCC perform roughly
on par. This is surprising, since CV is trained without any
instrument annotations, while MFCC is known to capture
instrumentation. Results for SV deteriorate with larger ker-
nel sizes, dropping to as low as 0.28 F-measure for a kernel
of 48 seconds. The proposed approach CV is better at cap-
turing instrument texture than the alternative SV that does
not utilize cross-version information.

To examine whether our representations capture infor-
mation related with harmonies and pitches played, we per-
form the same evaluation procedure with boundaries from
RefH (see Figure 5). We obtain low F-measures for both
CV and SV (dropping below 0.4 for kernel sizes above
20 seconds for both approaches). In particular, while we
observe an advantage of CV over SV for capturing in-
strumentation, there is no such advantage with regard to
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Scenario
Micro Avg. Macro Avg.

AP AUC F1 S F1 S

MFCC 0.777 0.780 0.600 0.890 0.450 0.847
SV 0.708 0.735 0.590 0.871 0.407 0.820
CV 0.753 0.795 0.657 0.872 0.514 0.835
Sup 0.838 0.881 0.772 0.894 0.714 0.874

Table 2: Results for different representation learning ap-
proaches when performing instrument classification.

pitch-classes. Additionally, standard Chroma features are
clearly superior at capturing the structures in RefH. We
conclude that the representations learned by our proposed
approach CV indeed contain information about instrument
texture rather than pitch-classes and harmonies.

5.4 Feature Analysis Using Classification

To gain further insights into the information captured by
our learned representations, we also perform an indirect
evaluation as typically done in representation learning.
Previous studies often rely on training small classifiers
on top of learned representations to investigate their use-
fulness for different downstream tasks [5, 15]. In this
section, we complement our self-similarity-based analysis
with such a classification-based evaluation strategy.

To this end, we pass individual representation vectors
through a small network of dense layers with 128, 64, and
32 hidden units followed by leaky ReLU activations, re-
spectively. The final layer produces outputs for every in-
strument annotated in our dataset, followed by a sigmoid
activation. For each representation learning technique, we
train and evaluate such a network using the dataset split
as described in Section 4.1. Concretely, we minimize the
mean binary cross-entropy loss over all instrument classes
on the training set, using stochastic gradient descent with
a learning rate of 10−4 for 10 epochs. We finally evalu-
ate the classification results on the test set using standard
metrics, including ranking-based average precision (AP),
mean area under the ROC curves (AUC), F-measure (F1),
and specificity (S). For F1 and S, we threshold the pre-
dicted probabilities at 0.5 and compute both micro and
macro averages of the evaluation scores, where the macro
average is not affected by imbalance among instrument
classes.

The results of this experiment are shown in Table 2.
We observe similar trends as in our self-similarity-based
evaluation. As expected, the supervised baseline again
yields best results. Our proposed cross-version approach
CV clearly outperforms the traditional SV across all metrics
(e. g., AP = 0.753 as opposed to 0.708 for SV). Further-
more, CV even improves upon the optimistic MFCC base-
line in terms of AUC and F-measure (e. g., micro F1 =
0.657 instead of 0.600 for MFCC). Finally, SV performs
worse than MFCC. Overall, the representations learned by
our proposed approach CV are more effective for instru-
ment classification compared to the standard SV approach
that does not utilize cross-version information.

Scenario
Micro Avg. Macro Avg.

AP AUC F1 S F1 S

Chroma 0.802 0.854 0.591 0.964 0.586 0.963
SV 0.427 0.568 0.001 1.000 0.001 1.000
CV 0.430 0.584 0.021 0.994 0.018 0.994
Sup 0.457 0.612 0.137 0.959 0.122 0.958

Table 3: Results for pitch-class classification using the
learned representations.

We repeat this experiment using pitch-classes as the
classification targets instead of instruments. Table 3 shows
the results of the modified experiment, which are inline
with our conclusions from previous sections. Standard
Chroma features strongly outperform all learned repre-
sentations on this task. We conclude that our proposed
approach captures instrumentation rather than pitches.

6. CONCLUSION

In this paper, we described a novel audio representation
learning approach for cross-version music data and investi-
gated its application to orchestral music. Our approach uti-
lizes the correspondences between different versions of the
same musical work. We showed qualitatively and quantita-
tively that the representations learned by our approach cap-
ture aspects of instrumentation. We outperform a standard
training strategy that relies on temporal proximity alone.

Our approach can be applied to any kind of cross-
version music dataset where alignments between versions
can be obtained using standard music synchronization
techniques. Future work may apply our approach to other
musical scenarios and larger datasets, explore more com-
plex feature extraction networks, investigate alternatives to
our triplet loss formulation, or apply the learned represen-
tations in the context of different downstream tasks (such
as structure analysis). One may also study the impact of
design choices such as τp and τn, the pitch shifting aug-
mentation, or the number of versions used for training.
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