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ABSTRACT

In this work, we address music representation learning us-

ing convolution-free transformers. We build on top of ex-

isting spectrogram-based audio transformers such as AST

and train our models on a supervised task using patchout

training similar to PaSST. In contrast to previous works, we

study how specific design decisions affect downstream mu-

sic tagging tasks instead of focusing on the training task.

We assess the impact of initializing the models with dif-

ferent pre-trained weights, using various input audio seg-

ment lengths, using learned representations from differ-

ent blocks and tokens of the transformer for downstream

tasks, and applying patchout at inference to speed up fea-

ture extraction. We find that 1) initializing the model

from ImageNet or AudioSet weights and using longer in-

put segments are beneficial both for the training and down-

stream tasks, 2) the best representations for the consid-

ered downstream tasks are located in the middle blocks of

the transformer, and 3) using patchout at inference allows

faster processing than our convolutional baselines while

maintaining superior performance. The resulting models,

MAEST, 1 are publicly available and obtain the best per-

formance among open models in music tagging tasks.

1. INTRODUCTION

The goal of representation learning is to develop features

that are suitable for a variety of tasks, rather than being spe-

cific to the training objective. In the context of audio, these

features are sometimes referred to as embeddings, and they

typically have a much lower dimensionality than the origi-

nal signals, making them easier to store and process. When

the embeddings are well-suited to a downstream task, it is

often possible to achieve good performance using shallow

models that require few resources to train and run. Ad-

ditionally, using a single embedding model to feed sev-

eral shallow classifiers or regressors is more efficient than

1 Music Audio Efficient Spectrogram Transformer. Code for training:
https://github.com/palonso/MAEST. This model is part of
Essentia models: https://essentia.upf.edu/models.html
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having individual end-to-end models, and it simplifies ad-

dressing new related tasks with minimal additional effort.

As a result, embedding models are valuable for a diverse

range of applications, from quick prototyping without re-

quiring detailed knowledge of audio processing to large-

scale processing of industrial audio databases.

The universal success of transformers in text [1], vi-

sion [2], and audio [3] tasks motivate further research using

this architecture for music representation learning. How-

ever, most state-of-the-art (SOTA) models are based on

convolutional neural networks (CNNs) [4–7]. We hypoth-

esize that transformers are not ruling this domain yet be-

cause they require large amounts of data and computa-

tional power to overcome their convolutional counterparts,

while such resources are not always available. To address

these challenges, we propose leveraging a large collection

of 3.3 M tracks annotated with public-domain metadata

from Discogs and using techniques to train transformers

efficiently. Specifically, we focus on PaSST [8], a method

that has demonstrated remarkable performance in the Au-

dioSet [9] benchmark. This method uses patchout, a tech-

nique consisting of discarding parts of the input to regu-

larize the training process, while also allows reducing the

GPU memory and computations required for training. In

this work, we investigate the effectiveness of this technique

for music representation learning, considering the impact

of specific design aspects.

We focus on the impact of using different combinations

of tokens from different blocks of the transformer as em-

beddings, starting the training from different pre-trained

weights from publicly available models, using different in-

put segment lengths, and using patchout at inference time

to speed up the embedding extraction. Our experiments

show that the best performance is obtained by extracting

embeddings from the middle of the transformer and ini-

tializing it with weights pre-trained on other audio tasks.

Contrary to previous studies based on CNNs, our trans-

formers benefit from long input segments both in training

and different downstream scenarios. Finally, we show that,

on certain patchout conditions, our transformers are able

to double the inference speed of an EfficientNet-B0 base-

line while producing embeddings that obtain better perfor-

mance on downstream tasks. Moreover, this approach has

the advantage of being entirely configurable at inference

time, allowing the throughput/performance tradeoff to be

adapted to the task at hand.

The remainder of this paper is structured as follows: In
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Section 2 we present existing works related to this study.

The experimental setup is presented in Section 3, and the

proposed experiments and results are in Section 4. Finally,

we conclude in Section 5.

2. BACKGROUND

In this section, we review the literature on music repre-

sentation learning to motivate the selection of our training

task and discuss existing audio and music transformers and

justify our architecture and training approach. Finally, we

introduce existing works on music representation learning

with transformers.

2.1 Music representation learning

Some authors have pursued general-purpose representa-

tion models to address simultaneously speech, audio event,

and music tasks, which led to the proposal of challenges

such as HEAR [10] and benchmarks such as HARES [11].

However, for now, there is no evidence that a single train-

ing paradigm can yield excellent performance in all the au-

dio domains at the same time. Alternatively, audio repre-

sentations can be optimized to a single domain leveraging

specific data, which tends to produce better performance.

In this sense, music-specific representation models are typ-

ically evaluated in music description in terms of genre,

mood, era, rhythmic properties or arousal and valence es-

timation, where the annotations are generally on the track

level. Additionally, music representation models can be

evaluated in more objective tasks such as tempo or key es-

timation, although, specific models using domain knowl-

edge tend to be better suited for these tasks [12].

Music tagging is a multi-label classification task using a

vocabulary that can combine multiple music notions (e.g.,

genre, moods, eras). Some of the most successful music

representation learning approaches are based on music tag-

ging [5, 13–15]. Other directions include training models

on editorial metadata [4,6,16–20], multi-modal correspon-

dence [21], co-listening statistics [4], contrastive super-

vised [7,22–24] and self-supervised [11,25–28] objectives,

music generative models [29], playlist co-occurrences [20,

24], text [7, 30], or combinations of them [4, 19, 24, 29].

While self-supervised approaches have been narrowing the

gap with their supervised counterparts, the SOTA models

use music tagging [4,5], or supervised contrastive learning

in a single-domain [6] or cross-domain [7] settings. Since

the scope of this work is to assess the benefits of transform-

ers, we fix our training task to music tagging for its sim-

plicity, popularity, and empirically shown effectiveness.

2.2 Transformers in audio classification tasks

Transformers have become a popular choice for audio

tasks due to their superior performance compared to their

convolutional counterparts when sufficient data is avail-

able. Lately, AudioSet, with almost 2 M audio event ex-

cerpts, has become a popular benchmark led by trans-

former models. A popular approach consists of applying

attention over small overlapping patches (e.g., 16 × 16)

Model Init. GPUs Time mAP

AST [3] ViT - - 45.9
PaSST [8] DeiT 2 RTX 2080ti 24 h 47.6
MaskSpec [31] FS 64 Tesla V100 36 h 47.3
Beats [32] FS 16 - 48.7

Table 1. Comparison transformers from the literature in

terms of initialization weights, number of GPUs used for

training, training time, and mAP obtained in AudioSet.

from the spectrogram using a classification objective. The

sequence of spectrogram patches is linearly projected to

a 1-D space where a trainable positional encoding signal

is added. A trainable classification token is appended to

the sequence of projections, and after a number of Trans-

former blocks it is used to solve the classification task us-

ing a linear classifier. This idea was first introduced in the

image domain by ViT [2] and adapted to audio spectro-

grams in AST [3]. PaSST extends this approach by intro-

ducing patchout, a technique consisting of discarding ran-

dom patches from the input spectrogram at training time

(see Figure 1) [8]. This technique has two benefits. First,

by discarding input patches, the training sequence length is

significantly reduced, which increases the training speed.

Second, it acts as a regularization technique that improves

the robustness of the transformer. Additionally, patchout

can be combined with other training methods. MaskSpec is

a self-supervised pre-training method based on an encoder-

decoder architecture where the decoder has to reconstruct

the spectrogram from a partial spectrogram altered with

patchout [31]. Beats is a transformer trained with a super-

vised objective and patchout where the labels come from

a codebook of randomly initialized vectors that is itera-

tively optimized [32]. While these techniques prevent the

transformers from depending on initializing from weights

of pre-trained models, such systems are significantly more

resource-demanding. Table 1 compares the mentioned au-

dio transformers in terms of GPUs used for training, train-

ing duration, and mean Average Precision (mAP) on Au-

dioSet. Remarkably, PaSST achieves an excellent trade-

off between mAP and needed resources. Since we aim to

use transformer models that can be trained with a com-

putational budget equivalent to SOTA CNNs (i.e., using

consumer-grade GPUs), we focus on the standard patchout

training with a supervised objective.

2.3 Music representation learning with transformers

Some works already combined music representation learn-

ing and pure-attention-based transformers. S3T com-

bines MoCo’s momentum-based self-supervised con-

trastive learning with the Swin Transformer [33] architec-

ture to learn music representations for classification [28].

MuLan is an audio representation model trained with

cross-domain contrastive learning that aligns the latent rep-

resentations of associated audio and text pairs. The au-

thors experiment both with a ResNet50 and an AST archi-

tecture, with the former obtaining better performance in

downstream music tagging tasks [7].
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Figure 1. Illustration of our system at the training and downstream evaluation stages where x is the input spectrogram, k0

is the sequence of tokens after the patchout, y is the target labels, and BCE is the binary cross-entropy loss. Trainable and

frozen blocks are colored green and blue respectively.

The limited list of studies combining transformers and

music representation learning motivates further research.

We propose addressing this by using a simple supervised

objective and patchout.

3. EXPERIMENTAL SETUP

We train our models using an in-house dataset with 3.3 M

tracks mapped to the Discogs’ public metadata dump. 2

The training task consists of a multi-label classification

of the top 400 music styles from Discogs’ taxonomy. We

compare different training configurations in several down-

stream tasks by training Multi-Layer Perceptrons (MLP)

on representations extracted from the transformers.

3.1 Dataset and pre-processing

Our dataset is derived from a pool of 4 M audio tracks

mapped to the release information from the Discogs web-

site’s public dump. 3 All release metadata, which can in-

clude music style tags following a pre-defined taxonomy,

is submitted by the community of platform users. Master

releases group different versions of the same release such

as special editions, or remasters. We obtain our training la-

bels, y, at the master release level by first aggregating the

style tags of all the associated releases and then discard-

ing master releases with more than five style tags or with-

out any style label among the 400 most frequent among

our pool of tracks. We keep tracks longer than 20 sec-

onds. Since the style annotations are done at the master re-

lease level, the resulting track annotations are expected to

be noisy. We generate validation and testing subsets with

approximately 40,000 tracks and a training set with 3.3 M

tracks, ensuring that every artist appears on a single split.

This pre-processing is similar to our previous work [6], and

additional details and statistics about the resulting dataset

can be found in the repository accompanying this publi-

cation. For now on, we refer to this internal dataset as

Discogs20.

From every track, we sample 30 seconds from the cen-

ter of the track and downmix it to a mono channel at 16

kHz. We extract 96-bands mel-spectrograms, x, using 32

2 https://www.discogs.com/data/
3 In Discogs, releases include albums, EPs, compilations, etc.

ms windows and a hop size of 16 ms compressed with the

expression log10(1 + 10000x) similar to previous works

in music tagging [6, 34]. The resulting representations are

stored as half-precision floats (16 bits) resulting in 1.3 TB

of data. Given that our dataset is in the order of magni-

tude of AudioSet (1.8 M vs. 3.3 M) and presents similar

label density (2.7 average labels in AudioSet and 2.1 in

Discogs20), we adopt the sampling strategy used in previ-

ous works [8]. Every epoch, we take a balanced sample of

200,000 tracks without replacement using the inverse label

frequencies as sample weight. We normalize the input to

the mean and standard deviation of the training set.

3.2 Model and training

Our transformer, MAEST, has the same architecture as

AST [3], ViT [2], or PassT [8], and features 12 blocks of

self-attention plus a dense layer resulting in close to 87

million parameters. We use 16 × 16 patches, xt,f , with

a stride of 10 × 10. Similar to PaSST, we split the posi-

tional encoding into time/frequency encodings (tet, fef )

and apply patchout by randomly discarding entire rows

and columns from the sliced spectrogram. The input se-

quence of tokens, k0, is created as a linear projection of

the patches plus the correspondent time/frequency encod-

ings, k0t,f = P (xt,f )+ tet+fef , where P (·) is a trainable

linear layer. 4 k1 to k12 represent the output tokens of the

respective transformer blocks. Similar to DeiT [35] and

PaSST, we extend k0 with classification (cls0) and distil-

lation (dist0) trainable tokens, which are initialized with

the DeiT or PaSST pre-trained weights in the experiments

involving these models. 5 We take the average of cls12

and dis12 tokens to feed a linear classifier targeting y.

We use the Adam Optimizer with a weight decay of

1e−4 and train the model for 130 epochs. We warm up the

model for 5 epochs and then keep the learning rate at 1e−4
until epoch 50. Then the learning rate is linearly decreased

to 1e−7 during 50 additional epochs. We consider two sets

of weights for inference: those from the last epoch and

4 Since the mel scale is not linear, we considered specialized projectors
for each frequency patch. However, this did not improve the performance.

5 We considered a teacher-student approach similar to DeiT by using
a pre-trained MAEST-30 to generate pseudo-labels that were targeted by
the dist12 token in the training stage. We decided to omit the experiment
details since it did not achieve a significant improvement.
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Dataset Size Lab. Dur. Av. Split

MTGJ-Genre 55,215 87 FT 2.44 split 0 [38]
MTGJ-Inst 25,135 40 FT 2.57 split 0 [38]
MTGJ-Moods 18,486 56 FT 1.77 split 0 [38]
MTGJ-T50 54,380 50 FT 3.07 split 0 [38]
MTT 25,860 50 29s 2.70 12-1-3 [39]
MSDs 241,889 50 30 1.72 usual [15]
MSDc 231,782 50 30 1.31 CALS [40]

Table 2. Automatic tagging datasets used in the down-

stream evaluation. The datasets are compared in terms of

sample size, number of labels, audio duration (Full Tracks

or excerpts of fixed duration), average labels per track, and

the splits used in our evaluations.

those obtained by taking the mean of the model’s weights

every 5 epochs from epoch 50 using Stochastic Weight Av-

eraging (SWA). We pre-compute the mel-spectrograms for

efficiency, which limits the set of data augmentations we

could apply. We use mixup [36] with alpha = 0.3 and

SpecAugment [37] by masking up to 20 groups of 8 times-

tamps and up to 5 groups of 8 frequency bands. 6

Initialization weights. Previous works showed the im-

portance of initializing the transformer to weights pre-

trained on ImageNet [3]. To gain further knowledge,

we consider three initialization options: the DeiT B↑384

model pre-trained on ImageNet [35], the PaSST S S16

model pre-trained on mel-spectrograms from AudioSet,

and random initialization.

Spectrogram segment length. We consider spectro-

gram segment lengths of 5 to 30 seconds resulting in the

architectures MAEST-5s, MAEST-10s, MAEST-20s, and

MAEST-30s. In all cases, we take existing PaSST fre-

quency and temporal encodings and interpolate them to

the target shape as an initialization. We use patchout dis-

carding 3 frequency and 15 temporal patches for MAEST-

5s and increase the temporal patchout proportionally for

models with longer input sequences (e.g., 60 patches for

MAEST-20s).

3.3 Evaluation

We evaluate our models in several music automatic tag-

ging datasets covering various musical notions. We con-

sider the popular MagnaTagATune (MTT) and the Mil-

lion Song Dataset (MSD) with the commonly used train-

ing, validation, and testing splits used in [39] and [15] re-

spectively. Additionally, we report the performance of our

models in the CALS split, which is an artist-filtered ver-

sion of the MSD ground truth [40]. Finally, we use the

MTG-Jamendo Dataset, a dataset of Creative Commons

music containing sub-taxonomies with the tags related to

genre (MTGJ-Genre), moods and themes (MTGJ-Mood),

and instrumentation (MTGJ-Inst), along with the top 50

tags (MTGJ-T50) in the dataset. We use the official split

0 for all the subsets similar to previous works [5, 30, 41].

6 We trained MAEST using 4 Nvidia 2080 RTX Ti GPUs with 12GB
of RAM. The training takes 31 hours for MAEST-5 and 48 hours for
MAEST-30.

Table 2 summarizes these datasets in terms of size, num-

ber of labels, audio duration, average number of labels per

track, and used splits.

We evaluate our models by extracting internal repre-

sentations from different blocks of the transformer and

training MLP classifiers on top. Instead of averaging the

cls12 and dist12 tokens as done in the training stage, we

consider three types of representations, clsn, distn, and

the average of the tokens representing the input spectro-

gram patches (avgn) after n transformer blocks. Addition-

ally, we evaluate the complementarity of these embeddings

training MLP classifiers on stacks of the different tokens.

To generate the dataset of embeddings, we average the em-

beddings extracted from half-overlapped segments across

the entire audio available for the tracks in the downstream

datasets. The same setup is used for the training, validation

and testing stages.

The downstream model is an MLP with a single-hidden

layer of 512 dimensions with a ReLU activation and

dropout. In the experiments described in Sections 4.1, 4.2,

4.3, and 4.5, we use a batch size of 128, drop out of 0.5 and

train the model for 30 epochs. In the downstream evalua-

tion from Section 4.4, we perform a grid search over the

following hyper-parameters for each task:

• batch size: {64, 128, 256}

• epochs: {30, 40, 50, 60, 70, 80}

• drop out: {0.5, 0.75}

• maximum learning rate: {1e−3, 1e−4, 5e−4, 1e−5}

The MLP is trained with the binary cross-entropy loss

using the Adam optimizer with a weight decay of 1e−3.

The learning rate is exponentially raised to its maximum

value during the first 10 epochs, kept constant for the num-

ber of epochs, and linearly reduced until reaching 1e−7 at

the end of training. After training, we report the perfor-

mance on the testing set obtained using the weights from

the epoch with the highest validation ROC-AUC.

4. EXPERIMENTS AND RESULTS

In this section, we present the conducted experiments and

discuss the results.

4.1 Extracting embeddings from the transformer

We are interested in finding the optimal representations

from the transformer to be used as embeddings. To do

this, we extract representations clsn, distn, and avgn from

different transformer blocks n ∈ [5, 12] . To measure

the complementarity of these features, we train MLPs fed

with stacks of combinations of these representations. In

this experiment, we use MAEST-30s intialized with PaSST

weights and the MTT dataset.

Figure 2 shows mAP scores obtained with different

stacks of embeddings extracted from the different trans-

former blocks. In accordance with previous studies [29],

we find that the embeddings with the best performance are

found in the middle blocks of the transformer. This con-

trasts with the typical behavior of CNNs, where the best
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Figure 2. mAP scores obtained with our evaluation setup

in the MTT dataset using embeddings extracted from dif-

ferent blocks and tokens transformer. We evaluate the cls

(c), dist (d), and avg (a) tokens and stacks of their combi-

nations extracted from the transformer blocks 5 to 12.

features are normally towards the last layers of the model,

especially, when the downstream task is well aligned with

the training task. Also, concatenating the features benefits

the performance. In the remaining experiments, we fix our

embedding to the stack (cls7, dist7, avg7).

4.2 Impact of the initial weights

Due to the lack of inductive biases present in architectures

such as CNNs, transformers are heavily dependent on pre-

training. Because of this, many audio transformers are ini-

tialized with weights transferred from image tasks [3, 8].

We evaluate the impact of initializing our models from the

weights of DeiT [35] (image input), the best single PaSST

model [8] (mel-spectrogram input), and random initializa-

tion. In this experiment, we use MAEST-10s and its ver-

sion with SWA weights, MAEST-10s-swa. Although our

main focus is to evaluate MAEST on public downstream

datasets, we also report their performance on the training

task to provide additional insights.

Table 3 shows the performance in both, the training

(Discogs20), and a downstream (MTT) task. In both cases,

the scores are higher when the training is started from pre-

trained weights. Since the PaSST weights result in slightly

higher performance, we use this initialization for the re-

maining of this work. Regarding the SWA, we observe a

positive effect on the training task when the model is ini-

tialized with pre-trained weights. However, we do not ob-

serve improvements in the downstream task.

4.3 Effect of the input segment length

We train MAEST using input segment lengths ranging

from 5 to 30 seconds. In our experiments, we keep the fre-

quency patchout constant and proportionally increase the

temporal patchout. For our models with segment lengths

of 5, 10, 20, and 30 seconds we discard 15, 30, 60, and 90

temporal patches respectively.

Model RW DeiT PaSST

Pre-training task: Discogs20

MAEST-10s 20.5 22.7 22.8
MAEST-10s-swa 20.1 23.2 23.5

Downstream task: MTT

MAEST-10s 38.7 40.4 41.1
MAEST-10s-swa 39.0 40.2 41.0

Table 3. mAP scores obtained in the training and down-

stream tasks using different initializations. We considered

Random Weights, and pre-trained weights from DeiT and

PaSST.

Table 4 shows the performance of the MAEST models

with respect to their input spectrogram segment length in

terms of mAP both in the training (Discogs20) and a down-

stream (MTT) evaluation. While music tagging CNNs tend

to reach their peak of performance with receptive fields of

3 to 5 seconds [14], attention-based systems have shown

the capability to take advantage of longer temporal con-

texts [40]. Our models are consistent with this trend, reach-

ing their best performance when trained on segments of 30

seconds. Although even longer segments could be benefi-

cial, we could not use them while keeping the same model

size due to GPU memory limitations.

4.4 Performance in downstream tasks

Considering our previous findings, we extend the evalua-

tion of MAEST to a number of downstream datasets. We

evaluate MAEST-10s, MAEST-20s, MAEST-30s, and a

baseline consisting of embeddings from the penultimate

layer of an EfficientNet-B0 (EffNet-B0) architecture [43]

trained in the same 400 music style tags from Discogs20

following previous work [6]. Additionally, we report the

performance of SOTA models from the literature consider-

ing approaches fully trained in the downstream tasks and

based on embeddings plus shallow classifiers.

Table 4 shows the results of the different models in

terms of ROC-AUC and mAP. We observe that all the

MAEST models outperform the baseline in all tasks, con-

firming the superiority of the proposed approach. Addi-

tionally, we achieve a new SOTA for the MTGJ-Genre,

MTGJ-Inst, and MSDc datasets, although other models re-

main superior in the rest of the datasets. Specifically, Mu-

Lan [7] obtains higher mAP in MTT, probably because it is

Model 5s 10s 20s 30s

Pre-training task: Discogs20

MAEST-T 21.1 22.8 24.8 26.1
MAEST-T-swa 21.3 23.5 25.8 27.0

Downstream task: MTT

MAEST-T 40.8 41.1 41.2 41.7
MAEST-T-swa 40.9 41.0 41.2 41.5

Table 4. mAP scores obtained in the training and down-

stream tasks using different spectrogram segment lengths.

T represents the spectrogram segment length.
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MTGJ-Genre MTGJ-Inst MTGJ-Mood MTGJ-T50 MTAT MSDs MSDc
ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP

State of the art

Fully-trained
- - - - 77.8 15.6 83.2 29.8 90.69 38.44 92.2 38.9 89.7 34.8
- - - - [42] [42] [34] [34] [41] [41] [40] [40] [40] [40]

Embeddings
87.7 19.9 77.6 19.8 78.6 16.1 84.3 32.1 92.7 41.4 - - 90.3 36.3

[6] [6] [6] [6] [5] † [5] † [5] † [5] † [7] † [5] † - - [5] † [5] †

Baseline

EffNet-B0 87.7 19.9 77.6 19.8 75.6 13.6 83.1 29.7 90.2 37.4 90.4 32.8 88.9 32.8

Our models

MAEST-10s 88.1 21.1 79.7 22.4 77.9 15.1 84.0 31.3 91.8 41.0 91.5 36.9 88.9 32.7
MAEST-20s 88.1 21.4 79.9 22.6 77.9 15.2 84.1 31.5 91.8 41.0 92.1 39.2 89.5 34.5
MAEST-30s 88.2 21.6 80.0 22.9 78.1 15.4 84.0 31.5 92.0 41.9 92.4 40.7 89.8 35.4

Table 5. ROC-AUC and mAP scores obtained in the downstream tasks. Our baseline consists of an EffNet-B0 architecture

trained in Discogs20. Additionally, we report the SOTA results distinguishing models with all parameters trained in the

downstream tasks (fully trained) and models evaluated with shallow classifiers. For every task, we mark in bold the best

score obtained by a MAEST model and highlight in grey models achieving better performance than the best open alternative.
† Models not publicly available.

trained on a much larger corpus of 40 M tracks. In MTGJ-

Moods, MTGJ-T50, MTT, and MSDs, Musicset-Sup, a

model trained on a curated dataset of 1.8 M expert annota-

tions, remains superior [5]. In both cases, the advantage is

likely due to the superiority of the training task. Notably,

none of these models is public, which makes MAEST the

best open music embedding extractor available.

4.5 Faster feature extraction with inference patchout

Inferring with transformers is typically more computation-

ally expensive than with CNNs. To speed up our models,

we consider using two types of patchout at inference time:

Time-wise, we keep one out of T spectrogram patches.

Frequency-wise, we discard specific rows of patches. We

experiment with temporal patchout using T ∈ [2, 3, 5, 10]
and frequency patchout of 3 and 4 patches corresponding

to the first and the two last blocks, and the two first and

two last blocks respectively. The embeddings obtained un-

der different patchout settings are compared in the training

and a downstream task following our downstream evalua-

tion approach on the MTT dataset.

Figure 3 shows the mAP scores on the training and

downstream tasks under different patchout settings. In

the downstream task, even under strong patchout settings,

MAEST-30s overcomes the throughput of standard CNN

architectures by two to three times while keeping higher

mAP. On the training task, this technique is not so effec-

tive because the classifier is frozen and cannot adapt to the

effects of patchout, and also it operates on tokens from the

last block, which requires more computations.

5. CONCLUSION

In this work, we demonstrate the benefits of pure-attention-

based transformers for music representation learning and

study how different design decisions affect the downstream

performance. Our experiments show that the best embed-

dings come from a stack of features from the middle blocks

10

20

m
AP

F0T0
F3T0 F3T2 F3T3

F3T5

F4T10

EffNet B0
ResNet50

Pre-training task: Discogs20
MAEST-30s
baseline

0 2 4 6 8 10 12
throughput (analyzed minutes / second)

38

40

42

m
AP

F0T0F3T0
F3T2 F3T3 F3T5

F4T10

EffNet B0ResNet50

Downstream task: MTT

Figure 3. mAP scores against throughput for MAEST-

30s under different amounts of frequency (F) and time (T)

patchout. The radius is proportional to the parameter count

and the inference is performed on the CPU.

of the transformer, initializing from weights pre-trained

in audio event recognition provides the best performance,

and that longer input segments correlate with better re-

sults. We evaluate our models in six popular music tagging

datasets, and experiment with patchout at inference time,

finding that it allows speeding up significantly the trans-

former while producing embeddings with better perfor-

mance/speed trade-offs than our convolutional baselines.

Finally, we present MAEST, a family of transformers for

music style tagging and embedding extraction, which are

publicly available and achieve SOTA performance among

currently available music representation models.

In future work, we will combine our architecture with

additional training objectives combining supervised and

self-supervised paradigms. Additionally, we will experi-

ment with longer input segments and teacher-student se-

tups suitable for noisy datasets such as ours.
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